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Abstract

In this paper, using fixed point methods, we will establish some existence theorems

of solutions for integral boundary value problems of nonlinear Hadamard fractional differ-

ential equations with p-Laplacian. Also, the Hyers-Ulam stability of this class of problem

is studied. An example is included to show the applicability of our results.

1. Introduction

The theory of fractional calculations has attracted the attention of re-

searchers from various disciplines, such as engineering, mathematics, physics,

chemistry, biology and bioengineering and other applied sciences, processing,

control theory, signals, fluid dynamics, modern physics, set theory, hydro-

dynamics, viscoelastic theory, computer networking, information process-

ing system networking, notable and picture processing; see the remarkable

monographs [5, 6, 15, 17, 18, 20, 22, 23] over the past two decades. Various

mathematical procedures as the Banach contract principle, Schauder’s fixed

point theorem, Schaefera’s fixed point theorem, the Leray-Schauder nonlin-

ear alternative, Mönch’s fixed point and the measure of noncompactness,

have been examined by scientists through different aspects oriented towards

the search for differential fractional equations, in the books [1, 2] and the

papers [7, 8, 9]. Another remarkable line of research, which attracts more
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attention, is the analysis of the stability of fractional order differential equa-

tion. The first work was initiated by Ulam himself and was later confirmed

by Hyers in [16], hence the Ulam-Hyers unstability. Afterwards, Rassias in-

troduced Ulam-Hyers-Rassias stability; see recently reported stability results

in the sense of Ulam [3, 4, 19, 21, 25]. It should be noted that the above, the

said areas of interest (existence and stability) have often been the subject

of deliberations the parameters of the Riemann-Liouville, Caputo and Hilfer

derivatives.

Some authors have worked on the existence of solutions for fractional

differential equations with p-Laplacian operator. For example, the authors in

[27], by using the Krasnoselskii fixed point theorem and the Leggett-Williams

theorem, obtained results of the existence of solutions of Riemann-Liouville

fractional equations involving the p-Laplacian, which is given by:















Dγ
0+

(

φp

(

Dα
0+u(t)

)

)

= f(t, u), 0 < t < 1 and 1 < α, γ ≤ 2,

Dα
0+u(0) = u(0) = 0,

u′(1) = au(ξ), Dα
0+u(1) = bDα

0+u(η), 0 ≤ a, b ≤ 1 and 0 < ξ, η < 1.

In [28], the authors used fixed point methods to study the existence of

positive solutions for Hadamard fractional integral boundary value problem

given by











Dβ
(

φp

(

Dαu(t)
)

)

= f(t, u), 1 < t < e,

u(1) = Dαu(1) = u′(1) = u′(e) = 0,

φp(D
αu(e)) = µ

∫ e
1 φp(D

αu(t))dtt .

We note that no such survey on the p-Laplacian operator in the frame of

fractional differential equation with delay with singularity is known in the

literature. Therefore, inspired by the aforementioned works, we examine the

following proposition for the existence of a positive solution and stability

analysis of the following problem:























Dσ(φp(D
νx))(t) + a(t)f(t, x) = 0,

x(1) = φp(D
νx)(1) = 0,

A1I
γ1x(η1) +B1x(e) = c1, 0 < γ1,

A2I
γ2(φp(D

νx))(η2) +B2φp(D
νx)(e) = c2, 0 < γ2,

(1.1)
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where ν and σ are in (1, 2], η1 and η2 are in (1, e), A1, A2, B1, B2, c1 and

c2 are fixed real numbers.

In this paper, we study the existence of solutions for the Hadamard

fractional p-Laplacian given in Equation (1.1). For this purpose, we give the

essential definitions and results useful for this paper in Section 2. Note that

in Section 3, we give firstly the solution. Then, using the Schauder’s fixed-

point theorem, we obtain the existence of unique solution for the problem

(1.1). And we establish the stability of the solution in Section 4. Finally, in

Section 5, we give an illustrative example.

2. Preliminary

In this section, we give some basic notions like definitions, properties and

theorems on fractional differential equations essentially on the Hadamard

fractional calculus, which we will use in this paper. For more details, we

refer the reader to [18].

Definition 2.1. Let ν be a positive number upper than 1 and g : [1,∞) →

R.

• The Hadamard fractional integral of order ν for a function g is defined

as

Iνg(t) =
1

Γ(ν)

∫ t

1

(

log
t

s

)ν−1 g(s)

s
ds, (2.1)

=
1

Γ(ν)

{

(

log(t)
)ν
∫ 1

0

(

1− s
)ν−1

g(es log(t))ds

}

, (2.2)

where log(·) = loge(·).

• The Hadamard derivative of fractional order ν for a function g is given

by

Dνg(t) =
(

t
d

dt

)n
In−ν , (2.3)

where n = [ν] + 1 and [ν] denotes the integer part of the real number ν.
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Lemma 2.1 ([18]). For any t ∈ [1, e], c ∈ R and any constants ν, σ in [1, 2],

we have

Iν(c)(t) = cIν1(t) = c
1

Γ(ν)

∫ t

1
(log

t

s
)ν−1 ds

s
=

c(log t)ν

Γ(ν + 1)
, (2.4)

and

Iν [(log(·))σ ](t) =
1

Γ(ν)

∫ t

1
(log

t

s
)ν−1 [log(s)]

σds

s
=

(log t)ν+σΓ(σ+1)

Γ(ν + σ + 1)
. (2.5)

Lemma 2.2 ([18]). Let ν > 0 and x ∈ C[1,∞) ∩ L1[1,∞). Then the

Hadamard fractional differential equation Dνx(t) = 0 has the solution

x(t) =

n
∑

i=1

ci(log t)
ν−i,

and the following formula holds:

IνDνx(t) = x(t) +

n
∑

i=1

ci(log t)
ν−i,

where ci ∈ R, i = 1, 2, . . . , n and n = [ν] + 1.

The following elementary relations are useful:

1. If q > 2, and max(|x|, |y|) ≤ R, then

|φq(x)− φq(y)| ≤ (q − 1)Rq−2|x− y|. (2.6)

2. If k > 1, then for all positive numbers a and b, we have

(a+ b)k ≤ (2k − 1)(ak + bk). (2.7)

In the sequel we will make use of the following Schauder’s fixed-point

theorem.

Theorem 2.1 ([13]). Let E be a Banach space and F be a nonempty bounded

convex and closed subset of E and Q : F → F is a compact, and continuous

map. Then Q has at least one fixed point in F .
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By C([1, e],R), we denote the Banach space of all continuous functions

from [1, e] to R endowed with the norm

‖x‖ = max
t∈[1,e]

|x(t)|.

The following elementary relations are useful:

Let us introduce the following assumptions needed to prove the main theo-

rems:

(H1) For each x ∈ C([1, e],R), the function t 7→ f(t, x) is measurable on

[1, e] and the function x 7→ f(t, x) is continuous on C([1, e],R) for a.e

t ∈ [1, e].

(H2) There exist nonnegative functions p(t) ∈ C([1, e],R) and a bounded

function g : R 7→ R, such that

|f(t, x)| ≤ p(t)g(|x|), for each t ∈ [1, e] and x ∈ R,

and g admit a maximum denoted by M = max
x∈R

|g(|x|)|.

(H3) There exists a positive constant δ such that for all x, y ∈ C([1, e],R),

we have

|f(t, x)− f(t, y)| ≤ δ|x(t) − y(t)|.

3. Existence Results

Theorem 3.1. The following fractional differential equation involving the

p-Laplacian



















Dσ(φp(D
νx(t))) + a(t)f(t, x) = 0,

x(1) = φp(D
νx(1)) = 0,

A1I
γ1x(η1) +B1x(e) = c1,

A2I
γ2(φp(D

νx))(η2) +B2φp(D
νx)(e) = c2,

(3.1)

has a solution given by

x(t) = cx4(log t)
ν−1

−
1

Γ(ν)Γ(σ)

∫ t

1
(log(

t

s
))ν−1φq

[

∫ s

1
(log(

s

u
))σ−1a(u)f(u, x)

du

u
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+ cx3(log(s))
σ−1
]ds

s
, (3.2)

where cx3 and cx4 are given by

cx3 =
c2 +A2I

σ+γ2(a(η2)f(η2, x)) +B2I
σ(a(e)f(e, x))

∆1
, (3.3)

and

cx4 = {c1+A1I
ν+γ1φq[I

σ(a(η1)f(η1, x))+cx3(log η1)
σ−1]

+B1I
ν(Iσ(a(e)f(e, x))+cx3 )}/∆2, (3.4)

where ∆1 and ∆2 are given respectively by

∆1 =B2 +
A2Γ(σ)

Γ(γ2 + σ)
(log η2)

γ2+σ−1,

and

∆2 =B1 +
A1Γ(ν)

Γ(γ1 + ν)
(log η1)

γ1+ν−1.

Proof. As argued in [18], the Hadamard differential equation in (3.1) can

be written as

φp(D
νx(t)) = −Iσ(a(t)f(t, x)) + α(log t)σ−1 + β(log t)σ−2.

Since φp(D
νx(1)) = 0, then β = 0. So, we get

φp(D
νx(t)) = −Iσ(a(t)f(t, x)) + α(log t)σ−1. (3.5)

By applying Iγ2 on both sides of (3.5) for t = η2 and using the property

(2.5), we obtain

Iγ2(φp(D
νx(η2))) = −Iγ2+σ[a(η2)f(η2, x)]+α

Γ(σ)

Γ(η2+σ)
(log η2)

γ2+σ−1. (3.6)

On the other hand, putting t = e in Equation (3.5), we obtain

φp(D
νx(e)) = −Iσ[a(e)f(e, x)] + α. (3.7)

By combining Equations (3.6), (3.7) and the second boundary condition in
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(3.1), we obtain:

c2 =α
[

A2
Γ(σ)

Γ(γ2 + σ)
(log η2)

η2+σ−1 +B2

]

−A2I
γ2+σ

[

a(η2)f(η2, x)
]

−B2I
σ
[

a(e)f(e, x)
]

.

Therefore,

α =
c2 +A2I

γ2+σ[a(η2)f(η2, x)] +B2I
σ[a(e)f(e, x)]

∆1
=: cx3 . (3.8)

Then, the solution can be written as follows

x(t) = −Iν{φq[I
σ(a(t)f(t, x)) + cx3(log(t))

σ−1]}+ α′(log t)ν−1 + β′(log t)ν−2.

Since x(1) = 0, then β′ = 0, and we get

x(t) = −Iν{φq[I
σ(a(t)f(t, x)) + cx3(log t)

σ−1]}+ α′(log t)ν−1. (3.9)

Now, if we apply Iγ1 to (3.9) and replace t by η1, then, using the property

(2.5), we obtain

Iγ1(x(η1)) = − Iγ1+ν [φq{I
σ(a(η1)f(η1, x)) + cx3(log η1)

σ−1}]

+ α′ Γ(ν)

Γ(η1 + ν)
(log η1)

γ1+ν−1. (3.10)

On the other hand, Equation (3.9) with t = e, yields

x(e) = −Iν{φq[I
σ(a(e)f(e, x)) + cx3 ]}+ α′. (3.11)

Finally, by combining Equations (3.10), (3.11) with the first boundary con-

dition c1, we obtain:

c1 =−A1I
γ1+ν [φq(I

σ(a(η1)f(η1, x)) + cx3(log η1)
σ−1)]

−B1I
ν [φq(I

σ(a(e)f(e, x)) + cx3)] + α′
[

A1
Γ(ν)

Γ(γ1 + ν)
(log η1)

η1+ν−1 +B1

]

.

It follows that

α′ =
∆′

2

∆2
=: cx4 , (3.12)
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where

∆′
2 = c1 +A1I

γ1+ν [φq{I
σ(a(η1)f(η1, x)) + cx3(log η1)

σ−1}]

+B1I
ν [φq{I

σ(a(e)f(e, x)) + cx3}]

Substituting the values of cx3 and cx4 in (3.9), we obtain (3.2). This completes

the proof. ���

Theorem 3.2. Let q ≥ 2. If f ∈ C ([1, e] ×R,R) is such that hypotheses

(H1) and (H2) are satisfied, then the Hadamard fractional boundary value

problem (1.1) has at least one solution.

Proof. Let us define the operator Q : C([1, e],R) → C([1, e],R) by

Qx(t) = cx4(log t)
ν−1

−
1

Γ(ν)Γ(σ)

∫ t

1
(log(

t

s
))ν−1φq[

∫ s

1
(log(

s

u
))σ−1a(u)f(u, x)

du

u

+ cx3(log(s))
σ−1]

ds

s
, (3.13)

where cx3 and cx4 are given respectively by Equations (3.3) and (3.4). To prove

the existence of solutions for the problem (1.1), we will show the existence of

fixed points of the operator Q. For this purpose, we prove that there exists

a ball of C([1, e],R) which is invariant by the map Q. Let R > 0, t ∈ [1, e]

and x ∈ BR. Then, using the hypothesis (H1) and (H2) and the inequality

(2.7), we get:

|Q(x)(t)|

≤ max
t∈[1,e]

{

1

Γ(ν)

∫ t

1
(log(

t

s
))ν−1

∣

∣

∣

∣

∣

φq

[ 1

Γ(σ)

∫ s

1
(log(

s

u
))σ−1a(u)f(u, x)

du

u

+ cx3(log(s))
σ−1
]

∣

∣

∣

∣

∣

ds

s
+
∣

∣cx4
∣

∣

}

≤ max
t∈[1,e]

{

1

Γ(ν)

∫ t

1
(log(

t

s
))ν−1

∣

∣

∣

∣

∣

φq

[M‖a‖∞‖p‖∞
Γ(σ)

∫ s

1
(log(

s

u
))σ−1 du

u

+ cx3(log(s))
σ−1
]

∣

∣

∣

∣

∣

ds

s
+
∣

∣cx4
∣

∣

}

≤ max
t∈[1,e]

{

1

Γ(ν)

∫ t

1
(log(

t

s
))ν−1

∣

∣

∣

∣

∣

φq

[M‖a‖∞‖p‖∞(log s)σ

Γ(σ + 1)
+ cx3(log s)

σ−1
]

∣

∣

∣

∣

∣

ds

s
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+
∣

∣cx4
∣

∣

}

≤ max
t∈[1,e]

{

1

Γ(ν)

∫ t

1
(log(

t

s
))ν−1

∣

∣

∣

∣

∣

φq

[(M‖a‖∞‖p‖∞
Γ(σ + 1)

+cx3

)

(log s)σ
]

∣

∣

∣

∣

∣

ds

s
+
∣

∣cx4
∣

∣

}

≤ max
t∈[1,e]

∣

∣

∣

∣

∣

{

1

Γ(α)

∫ t

1
(log(

t

s
))ν−1

(M‖a‖∞‖p‖∞
Γ(σ + 1)

+cx3

)q−1
(log s)(q−1)σ

]ds

s

∣

∣

∣

∣

∣

+
∣

∣cx4
∣

∣

}

≤ max
t∈[1,e]

{

Γ(σ(q − 1) + 1)

Γ(ν+σ(q−1)+1)

(M‖a‖∞‖p‖∞
Γ(σ + 1)

+|cx3 |
)q−1

(log t)ν+σ(q−1)+|cx4 |

}

≤
Γ(σ(q − 1) + 1)

Γ(ν + σ(q − 1) + 1)

(M‖a‖∞‖p‖∞
Γ(σ + 1)

+ |cx3 |
)q−1

+ |cx4 |

≤ (2q−1−1)
Γ(σ(q − 1) + 1)

Γ(ν+σ(q−1)+1)

[

(M‖a‖∞‖p‖∞
Γ(σ + 1)

)q−1
+|cx3 |

q−1

]

+|cx4 |. (3.14)

On the other hand, we have

|cx3 | ≤
|c2|+ |A2I

σ+γ2f(x, η2)|+ |B2I
σf(x, e)|

|∆1|

≤
|c2|+ |A2|

M‖a‖∞‖p‖∞
Γ(σ+γ2+1) (log η2)

σ+γ2 + |B2|
M‖a‖∞‖p‖∞

Γ(σ+1)

|∆1|

≤
|c2|+M‖a‖∞‖p‖∞

( |A2|
Γ(σ+γ2+1)(log η2)

σ+γ2 + |B2|
Γ(σ+1)

)

|∆1|

≤
|c2|+M‖a‖∞‖p‖∞

( |A2|
Γ(σ+γ2+1) +

|B2|
Γ(σ+1)

)

|∆1|

≤
|c2|+M‖a‖∞‖p‖∞

(

|A2|+ |B2|
)

Γ(σ + 1)|∆1|
, (3.15)

|cx3 |
q−1 ≤ (2q−1 − 1)

|c2|
q−1 +

(

M‖a‖∞‖p‖∞
)q−1(

|A2|+ |B2|
)q−1

(Γ(σ + 1)|∆1|)q−1
, (3.16)

and

|cx4 | =

∣

∣

∣

∣

∣

c1 −A1I
ν+γ1φq[I

σF (η1, x) + cx3(log η1)
σ−1]−B1I

ν(Iσf(e, x) + cx3)

∆2

∣

∣

∣

∣

∣

≤

{

|c1|+ |A1|

∣

∣

∣

∣

∣

Iν+γ1φq

[M‖a‖∞‖p‖∞(log η1)
σ

Γ(σ + 1)
+ cx3(log η1)

σ−1
]

∣

∣

∣

∣

∣
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+ |B1|

∣

∣

∣

∣

∣

Iν(
M‖a‖∞‖p‖∞(log(·))σ

Γ(σ + 1)
+ cx3)(e)

∣

∣

∣

∣

∣

}/

|∆2|

≤

{

|c1|+ |A1|

∣

∣

∣

∣

∣

Iν+γ1
[M‖a‖∞‖p‖∞

Γ(σ + 1)
+ cx3

]q−1
(log η1)

(q−1)σ

∣

∣

∣

∣

∣

+ |B1|

(

M‖a‖∞‖p‖∞Γ(σ + 1)

Γ(ν + σ + 1)
+

cx3
Γ(ν + 1)

)}/

|∆2|

≤

{

|c1|+|A1|
[M‖a‖∞‖p‖∞

Γ(σ + 1)
+ cx3

]q−1Γ(σ(q − 1) + 1)(log η1)
ν+η1+σ(q−1)

Γ(ν + γ1 + σ(q − 1) + 1)

+ |B1|

(

M‖a‖∞‖p‖∞Γ(σ + 1)

Γ(ν + σ + 1)
+

cx3
Γ(ν + 1)

)}/

|∆2|

≤

{

|c1|+(2q−1 − 1)|A1|
[(M‖a‖∞‖p‖)q−1

∞

Γq−1(σ + 1)
+ (cx3)

q−1
] Γ(σ(q − 1) + 1)

Γ(ν+σ(q−1)+1)

+ |B1|

(

M‖a‖∞‖p‖∞Γ(σ + 1)

Γ(ν + σ + 1)
+

cx3
Γ(ν + 1)

)}/

|∆2|. (3.17)

It follows, from inequalities (3.15), (3.16) and (3.17), that the inequality

(3.14) becomes

‖Q(x)‖ ≤ w1(M‖a‖∞‖p‖)q−1
∞ + w2M‖a‖∞‖p‖∞ + w3,

where

w1 =
(2q−1 − 1)Γ(σ(q − 1) + 1)

Γq−1(σ+1)Γ(ν+σ(q−1)+1)

[

1+
|A1|

|∆2|

][

1+(2q−1−1)
( |A2|+|B2|

|∆1|

)q−1
]

,

w2 =
|B1|

|∆2|

[

Γ(σ + 1)

Γ(ν + σ + 1)
+

|A2|+ |B2|

Γ(σ + 1)Γ(ν + 1)|∆1|

]

,

and

w3 =
|c1|

|∆2|
+

|c2||B1|

|∆1∆2|Γ(ν + 1)Γ(σ + 1)

+
( |c2|

|∆1|Γ(σ + 1)

)q−1 (2q−1 − 1)2Γ(σ(q − 1) + 1)

Γ(ν + (σ − 1)(q − 1) + 1)

(

1 +
|A1|

|∆2|

)

.

Consequently, we have

‖Q(x)‖ ≤ R.

This proves that Q transforms all ball BR := {u ∈: ‖u‖ ≤ R} into itself.
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From an application of Schauder’s Theorem 2.1, we deduce that Q has at

least a fixed point x which is the solution of the problem (3.1). ���

4. Hyers-Ulam Stability

Let C([1, e],R) be the space of all continuous functions from [1,e] to R.

Let B = PC([1, e],R) represent the space of piecewise continuous functions.

Obviously, B = PC([1, e],R) is a Banach space with the norm

‖y‖B = sup
t∈[1,e]

{|y(t)|}.

Now, we introduce the concept of Ulam-type stability for problem (1.1).

Let x ∈ B and ǫ > 0. Let us consider the following set of inequalities:

|Dσ(φp(D
νx))(t) − f(t, x)| ≤ ǫ; t ∈ [1, e]. (4.1)

Definition 4.1. Problem (1.1) is Ulam-Hyers stable if there exists a real

constant cf > 0 such that, for given ξ > 0 and for each solution x ∈ B of

inequality (4.1), there exists a solution y ∈ B of problem (1.1) with

|x(t)− y(t)| ≤ ǫcf ; t ∈ [1, e]. (4.2)

Theorem 4.1. With the assumptions (H1), (H2), and (H3), the fractional

differential equation (3.1) is Hyers-Ulam stable.

Proof. Let x(t) be the fact solution of (3.2) and y(t) be an approximate

solution satisfying (4.1). Then, we have for each t ∈ [1, e]

|y(t)− x(t)|

≤ |y(t) + Iµ(φq(I
σ(f(t, y)) + cy3(log t)

σ−1))− cy4(log t)
µ−1|

+ |Iµ(φq(I
σ(f(t, x)) + cx3(log t)

σ−1))− φq(I
σ(f(t, y)) + cy3(log t)

σ−1)))|

+ |(cy4 − cx4)(log t)
µ−1|

≤ Iµ(φq(I
σ(ξ)))(t)+(q−1)Rq−2Iµ(Iσ(|f(t, x)−f(t, y)|)+|cx3−cy3|)+|cy4−cx4 |

≤
Γ(σ(q − 1) + 1)(ξ)q−1

Γ(µ+ σ(q − 1) + 1)(Γ(σ + 1))q−1
+ (q − 1)Rq−2Iµ

(

Iσ(|f(t, x)− f(t, y)|)

+ |cx3 − cy3|
)

+ |cy4 − cx4 |. (4.3)
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On the other hand, using (H2), (3.3) and (3.4), we obtain respectively

Iµ(Iσ(|f(t, x)− f(t, y)|) ≤ |g(x)− g(y)|Iµ+σ |p|(t), (4.4)

|cx3 − cy3| ≤
|A2|I

σ+γ2 |f(η2, x)− f(η2, y)|+ |B2|I
σ|f(e, x)− f(e, y)|

|∆1|

≤ |g(x) − g(y)|
|A2|I

σ+γ2 |p|(η2) + |B2|I
σ|p|(e)

|∆1|
, (4.5)

and

|∆2||c
x
4 − cy4|

≤ |A1|
{

Iµ+γ1φqI
σ|f(·, x)+cx3(log ·)

σ−1|(η1)−Iµ+γ1φqI
σ|f(·, x)

+ cx3(log ·)
σ−1|(η1)

}

+ |B1|I
µ
(

Iσ|f(·, x)− f(·, y)|+ |cx3 − cy3|
)

(e)

≤ |A1||g(x) − g(y)|(q − 1)Rq−1

{

Iµ+γ1φqI
σ|p|(η1)

+
|A2|I

µ+γ1+σ+γ2 |p|(η2) + |B2|I
µ+γ1+σ|p|(e)

|∆1|

}

+ |g(x)− g(y)||B1|

×
[

Iµ+σ |p|(e) +
|A2|I

µ+γ1+σ+γ2 |p|(η2) + |B2|I
µ+γ1+σ|p|(e)

|∆1|

]

. (4.6)

Using the hypothesis (H3), (4.3), (4.4), (4.5) and (4.6), we obtain that

|y(t)− x(t)| ≤ ǫcf ; t ∈ [1, e]. (4.7)

Hence (4.7) is Hyers-Ulam stable. Consequently, the singular fractional DE

with delay and operator Φp (1.1) is Hyers-Ulam stable. ���

5. Illustrative Examples

In this section, an application of the results which have proved in Sec-

tions 3 and 4, is provided.

We consider the following Hadamard differential equation involving the
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p−Laplacian of the form































D1/2(φ4(D
1/2x))(t) + e−t[(e

−|x(t)|+ 1
1+|x(t)| ) sin(t)t ] = 0,

x(1) = φ4(D
1/2x)(1) = 0,

I1/2x(3/2) + x(e) = 0,

I5/2(φ4(D
1/2x))(5/2) − φ4(D

1/2x)(e) = 1.

Clearly, the function f satisfies the hypothesis (H1), (H2) and (H3) with

M = 2. Then, the existence and the stability of solution is assured and we

have

∆1 ≃ 0.62 and ∆2 ≃ 2.77.

6. Conclusion

In this paper, we have utilized the Schauder’s fixed point theorem to

establish existence and uniqueness criteria for the solution of the nonlin-

ear fractional differential equation given in (1.1). Furthermore, under some

particular assumptions and conditions, we have proved stability results in

the sense of Ulam for the solutions of the said problem. We claim that the

approach used to prove the main results is powerful, effectual, and suitable

for investigating different qualitative properties of the solutions of nonlinear

fractional differential equations.
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