
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 17 (2022), No. 4, pp. 417-438
DOI: 10.21915/BIMAS.2022404

IMPULSIVE STOCHASTIC DIFFERENTIAL EQUATIONS

INVOLVING HILFER FRACTIONAL DERIVATIVES

RAHMA YASMINA MOULAY HACHEMI1,a AND

TOUFIK GUENDOUZI1,b

1Loboratory of Stochastic Models, Statistic and Applications, University of Saida- Dr. Moulay Tahar,

P.O.Box 138 En-Nasr Saida 20000, Algeria.
aE-mail: yasmin.moulayhachemi@yahoo.com
bE-mail: tf.guendouzi@gmail.com (Corresponding Author)

Abstract

In this paper, we study the existence of mild solutions of Hilfer fractional stochastic

differential equation with impulses driven by sub-fractional Brownian motion. The results

are obtained by using Burton-Kirk’s fixed point theorem. In the end, an example is given

to illustrate the obtained results.

1. Introduction

Differential equations and inclusions with fractional derivatives have re-

cently proved to be strong tools in the modeling of many phenomena in vari-

ous fields of engineering, economics, physics, biology, ecology, aerodynamics

and fluid dynamic traffic models [6, 26, 28, 30]. For some fundamental re-

sults in the theory of differential equations involving Caputo and Riemann-

Liouville fractional derivatives, please see [1, 2, 24, 32, 33, 34, 41] and the ref-

erences therein. Since Hilfer [18] proposed the generalized Riemann-Liouville

fractional derivative, there has been some interest in studying differential

equations involving Hilfer fractional derivatives (see [10, 11, 20] and the

references therein). Recently, considerable attention has been given to the

existence of solutions of initial and boundary value problems for fractional

differential equations with Hilfer fractional derivative [5, 35, 36]. Jaiswal and
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Bahuguna [19] studied the existence of mild solutions for an abstract Cauchy

problem with the Hilfer fractional derivative and an almost sectorial opera-

tor. Karthikeyan et al. [21] investigated a class of nonlocal integro-differential

equations involving Hilfer fractional derivatives and almost sectorial opera-

tors. Zhou et al. [40] obtained new sufficient conditions of the existence of

mild solutions for Hilfer fractional evolution equations in the cases that the

semigroup associated with an almost sectorial operator is compact as well

as noncompact. On the other hand, stochastic perturbation is unavoidable

in nature and hence it is important and necessary to consider stochastic

effect into the investigation of fractional differential equations. There are

many interesting results on the theory and applications of stochastic dif-

ferential equations involving fractional derivatives (see [9, 13, 15, 16, 17]

and references therein). Guendouzi and Bousmaha [14] investigated the ex-

istence of mild solutions for a class of fractional partial neutral stochastic

functional integro-differential inclusions with state-dependent delay and an-

alytic α-resolvent operators in Hilbert spaces. Guendouzi and Benzatout

[12] studied the existence of mild solutions for a class of impulsive fractional

stochastic differential inclusions with state-dependent delay. However, to

the best of our knowledge, it seems that there are very few contributions

regarding stochastic differential equations with Hilfer fractional derivatives

in the literature [3, 37]. Ahmed and El-Borai [4] investigated the existence

of mild solutions of Hilfer fractional stochastic integro-differential equations

with nonlocal conditions. Kasinathan et al. [22] investigated the existence

of mild solution of Hilfer fractional neutral stochastic differential equations

with non-instantaneous impluses.

Strongly inspired by the above-mentioned papers, we offer to study the

existence of integral solutions for impulsive stochastic differential equations

driven by sub-fractional Brownian motion with Hilfer fractional derivative

of the form



























Dα,β
0+

X (t, xt) = A (t)X (t, xt) + f(t, xt)

+ σ (t, xt)
dSH

Q
(t)

dt , for t∈ [sk, tk+1], k=0, . . . ,m,

x (t) = hk (t, xt) , for t∈(tk, sk], k=1, 2, . . . ,m,

(I1−γ
0 x)(t)|t=0 = φ ∈ DF0

((−∞, 0], U ],
(1)
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where Dα,β
0+

is the generalized Hilfer fractional derivative of order α ∈ (0, 1),

β ∈ [0, 1], x(·) takes value in a real separable Hilbert space U with inner

product (·, ·) and norm ‖ · ‖, A is the infinitesimal generator of strongly

continuous semigroup of bounded linear operator {T (t)}t≥0. S
H
Q is an Q-sub-

fBm with Hurst parameter H ∈ (12 , 1), and I1−γ
0 is the fractional integral

of orders 1 − γ (γ = α + β − αβ). The impulses times satisfy 0 = t0 =

s0 < t1 ≤ s1 < t2 ≤ · · · < tm ≤ sm < tm+1 = T, for t > 0. xt means

a segment solution which is defined by x(·, ·) : (−∞, T ] × Ω → U , and for

any t ≥ 0, xt(·, ·) : (−∞, 0) × Ω → U is given by xt(θ, ω) = x(t + θ, ω),

θ ∈ (−∞, 0], ω ∈ Ω. Dγ
FT

is defined as

Dγ
FT

=
{

x : (−∞, T ]× Ω → U ; x |Jk∈ C (Jk;U) , t1−γx(t) ∈ DFT
,
}

k = 1, . . . ,m,

with the norm

‖ x ‖Dγ
FT

=‖ φ ‖DF0
+

(

sup
0≤t≤T

E ‖ t1−γx(t) ‖2
)

1

2

,

and φ ∈ DF0
, where Jk = (sk, tk+1], k = 1, . . . ,m.

If the space DFt is the space formed by all Ft-adapted measurable square

integrable H-valued stochastic process {x(t) : t ∈ [0, T ]} with the norm

‖x‖2DFt
= sup

t∈[0,T ]
E‖x(t)‖2, then (DFt , ‖.‖DFt

) is a Banach space.

DF0
denotes the family of all almost surely bounded F0-measurable, and

D̃-valued random variables. D̃ = D((−∞, 0], U) denotes the family of all

right piecewise continuous functions with left-hand limit φ from (−∞, 0] to

U, with the norm

‖ φ ‖t= sup
−∞<θ≤t

‖ φ(θ) ‖ .

We assume in the sequel thatX(t, xt) : J×U −→ U , such thatX(t, xt) =

φ(0)−g(t, xt), g : J×Dγ
FT

→ U and f : J×Dγ
FT

→ U , hk ∈ (tk, sk]×Dγ
FT

−→
U for all k = 1, . . . ,m. σ : J ×Dγ

FT
→ L0

Q(K,H).

This paper is structured as follows. In Section 2 we introduce some

notations, definitions and preliminary facts about sub-fractional Brownian

motion and fractional calculus which are useful throughout the paper. In
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Section 3 we prove the existence of Dγ
FT

-mild solutions for problem (1).

Finally an example is given to illustrate our result in Section 5.

2. Preliminaries

In this section, we give some basic definitions, notations, lemmas and

some basic facts about sub-fractional Brownian motion and fractional cal-

culus.

Definition 2.1 (Cylindrical Sub-Fractional Brownian Motion). Let K be a

separable Hilbert space. A continuous, zero mean, K-valued Gaussian pro-

cess
(

SH
I (t), t ≥ 0

)

is said to be cylindrical sub-fractional Brownian motion

with Hurst parameter H ∈ (0, 1) if its covariance is given by

E
〈

k, SH
I (s)

〉 〈

k′, SH
I (t)

〉

=
〈

k, k
′
〉

[

s2H + t2H − 1

2

[

(s+ t)2H + |t− s|2H
]

]

for all s, t ∈ R
+and k, k

′ ∈ K.

Definition 2.2. Let Q be a non-negative, self-adjoint bounded linear oper-

ator that is not nuclear. Then, a cylindrical sub-fractional Brownian motion

is defined by the formal series

SH
I (t) =

∞
∑

n=1

SH
n (t)en t ≥ 0;

where {SH
n (t)}∞n=1 is a sequence of independent, real valued standard sub-

fractional Brownian motion with Hurst parameter H ∈ (0, 1) and {en}∞n=1

being a complete orthonormal basis in the Hilbert space K.

Let (H, ‖ · ‖H, (·, ·)H) and (K, ‖ · ‖K, (·, ·)K) being the separable Hilbert

spaces. The notation C(J,H) stands for the Banach space of continuous

functions from J to H with supermum norm, i.e., ‖ x ‖J= sup
t∈J

‖ x(t) ‖

and L1(J,H) denotes the Banach space of functions x : J → H which are

Bochner integrable normed by ‖ x ‖L1=
∫ b
0 ‖ x(t) ‖ dt, for all x ∈ L1(J,H).

A measurable function x : J → H is Bochner integrable if and only if ‖ x ‖
is Lebesgue integrable.
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Let (Ω,F ,P) be a complete probability space equipped with a normal

filtration {Ft}t≥0 satisfying the usual conditions (i.e., right continuous and

F0 containing all P-null sets).

Definition 2.3. The sub-fractional Brownian motion (sub-fBm in short)

with Hurst parameter H ∈ (0, 1) is a mean zero Gaussian process SH =
{

SH
t : t ≥ 0

}

with S0
H = 0 and the covariance

CH(t, s) = E
[

SH
t SH

s

]

= s2H + t2H − 1

2

[

(s+ t)2H+ | t− s |2H
]

, (2)

for all s, t ≥ 0.

For H = 1
2 , S

H coincides with the standard Brownian motion B. SH

is neither semimartingale nor a Markov process when H 6= 1
2 . The sub-

fBm SH has properties analogous to those of fBm (self-similarity, long-range

dependence, Hölder paths), but it does not have stationary increments. For

more details on sub-fBm, we refer to [7, 31, 29].

The sub-fractional Brownian motion satisfies the following estimates:

[

(2− 22H−1) ∧ 1
]

| t−s |2H E | SH(t)−SH(s) |26
[

(2− 22H−1) ∧ 1
]

| t−s |2H .

(3)

Thus, Kolmogorov’s continuity criterion implies that sub-fBm is Hölder con-

tinuous of order γ for any γ < H on any finite interval. Therefore, if y is a

stochastic process with Hölder continuous trajectories of order β > 1 − H

then the pathwise Riemann-Stieltjes integral

∫ b

0
yt(ω)dS

H(t)(ω) exists for

all b ≥ 0. In particular, if H > 1
2 , the pathwise integral

∫ b

0
f

′

(SH
t )dSH

t

exists for all f ∈ C2(R), and

f(SH
b )− f(0) =

∫ b

0
f

′

(SH
t )dSH

t . (4)

However, when H < 1
2 the pathwise Riemann-Stieltjes integral

∫ b

0
f

′

(SH
t )dSH

t (ω) does not exist. For more details, we refer the reader to

[29][38][39].
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Now we aim at introducing the Wiener integral with respect to one

dimensional sub-fBm SH . Fix a time interval [0, b]. We denote by Λ the

linear space of R-valued step functions on [0, b], that is, y ∈ Λ if

y(t) =

n−1
∑

i=1

xi1[ti,ti+1](t),

where t ∈ [0, b], xi ∈ R and 0 = t1 < t2 < · · · < tn = b. For y ∈ Λ we define

its Wiener integral with respect to SH as

∫ b

0
y(s)dSH

Q (s) =
n−1
∑

i=1

xi(S
H
ti+1 − SH

ti ).

Let HSH be the canonical Hilbert space associated to the sub-fBm SH , that

is, HSH is the closure of the linear span Λ with respect to the scalar product

(

1[0,t], 1[0,s]
)

H
SH

= CH(t, s).

We know that the covariance of sub-fBm can be written as

E
[

SH
t SH

s

]

=

∫ t

0

∫ s

0
ηH(u, v)dudv = CH(t, s), (5)

where ηH(u, v) = H(2H − 1)
(

| u− v |2H−2 −(u+ v)2H−2
)

.

Equation (5) implies that

(y, z)H
SH

=

∫ t

0

∫ s

0
yuzvηH(u, v)dudv, (6)

for any pair step functions y and z on [0, b]. Consider the kernel

KH(t, s) =
21−H√

π

Γ(H − 1
2 )

s3/2−H

(
∫ t

0
(x2 − s2)H−3/2ds

)

1[0,t](s). (7)

By Dzhaparidze and Van Zanten [8], we have

CH(t, s) = c2H

∫ t∧s

0
KH(t, u)KH(s, u)du (8)
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where

c2H =
Γ(1 + 2H)sin(πH)

π
.

Then, (8) implies that CH(s, t) is non-negative definite. Consider the linear

operator K∗
H : Λ → L2([0, b]) defined by

(K∗
Hy) (s) = cH

∫ r

s
yr

∂KH

∂r
(r, s)dr.

Using (6) and (8) we have

(K∗
Hy,K∗

Hz)L2([0,b])

= c2H

∫ b

0

(
∫ b

s
yr

∂KH

∂r
(r, s)dr

)(
∫ b

s
zu

∂KH

∂u
(u, s)du

)

ds

= c2H

∫ b

0

∫ b

0

(
∫ r∧u

0

∂KH

∂r
(r, s)

∂KH

∂u
(u, s)ds

)

yrzudrdu

= c2H

∫ b

0

∫ b

0

∂2KH

∂r∂u
(u, s)yrzudrdu

= H(2H − 1)

∫ b

0

∫ b

0

(

| u− r |2H−2 −(u+ r)2H−2
)

yrzudrdu

= (y, z)H
SH

. (9)

As a consequence, the operator K∗
H provides an isometry between the

Hilbert space HSH and L2([0, b]). Hence, the process W defined by W (t) :=

SH((K∗
H)−1(1[0,t])) is a Wiener process, and SH has the following Wiener

integral representation:

SH(t) = cH

∫ t

0
KH(t, s)dW (s)

because (K∗
H)(1[0,t])(s) = cHKH(t, s). By [8], we have

W (t) =

∫ t

0
ZH(t, s)dSH(s),

where

ZH(t, s) =
sH−1/2

Γ(3/2 −H)

[

tH−3/2(t2 − s2)1/2−H
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− (H − 3/2)

∫ t

s
(x2 − s2)1/2−HxH−3/2dx

]

(1[0,t])(s).

In addition, for any y ∈ HSH ,

∫ b

0
y(s)dSH(s) =

∫ b

0
(K∗

Hy)(t)dW (t)

if and only if K∗
Hy ∈ L2([0, b]).

Also, denote L2
H

SH
([0, b]) =

{

y ∈ HSH ,K∗
Hy ∈ L2([0, b])

}

. Since H > 1
2 ,

we have by (9) and Lemma 2.1 of [25],

L2([0, b]) ⊂ L
1

H ([0, b]) ⊂ L2
H

SH ([0,b]). (10)

Lemma 2.1 ([27]). For y ∈ L
1

H ([0, b]),

H(2H − 1)

∫ b

0

∫ b

0
| yr || yu || u− r |2H−2 drdu ≤ CH ‖ y ‖

L
1
H ([0,b])

,

where CH =
(

H(2H−1)

β(2−2H,H− 1

2
)

)1/2
, with β denoting the beta function.

Let L(K,H) denote the space of all bounded linear operators from K
into H with the usual norm ‖.‖L(K,H). Let Q ∈ L(K,H) be a non-negative

self-adjoint operator. Denoted by L0
Q(K,H) the space of all ξ ∈ L(K,H)

such that ξQ
1

2 is a Hilbert-Schmidt operator. The norm is given by

‖ξ‖2L0
Q
(K,H) = ‖ξQ 1

2‖2HS = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H. Let {SH
n (t)}n∈N

be a sequence of one-dimensionnal standard sub-fractional Brownian motions

mutually independent over (Ω,F ,P).

Set

SH
Q (t) =

∞
∑

n=1

SH
n (t)Q

1

2 en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K.

If Q is a non-negative self-adjoint trace class operator, then the above K-

valued stochastic process SH
Q (t) is called Q-cylindrical sub-fractional Brow-
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nian motion with covariance operator Q.

Lemma 2.2 ([27]). For any y : [0, b] −→ L0
Q(K,H) such that

∞
∑

n=1

‖yQ 1

2 en‖
L

1
H ([0,b],H)

< ∞

holds, and for any u, v ∈ [0, b] with u > v,

E
∥

∥

∫ u

v
y(s)dSH

Q (s)
∥

∥

2

H
≤ CH(u− v)2H−1

∞
∑

n=1

∫ u

v
‖y(s)Q 1

2 en‖2Hds.

If, in addition,

∞
∑

n=1

‖y(s)Q 1

2 en‖2H is uniformly convergent for t ∈ [0, b],

then

E
∥

∥

∫ u

v
y(s)dSH

Q (s)
∥

∥

2

H
≤ CH(u− v)2H−1

∫ u

v
‖y(s)‖2L0

Q
(K,H)ds.

We suppose that Ft = σ{SH
Q ; 0 ≤ s ≤ t} is the σ-algebra generated by

the K-valued Q-cylindrical sub-fractional Brownian motion, Fb = F .

Definition 2.4 ([23]). The fractional integral of order α > 0 with the lower

limit zero for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the
gamma function.

Definition 2.5. The Riemann-Liouville fractional derivative of order α > 0

n− 1 < α < n, n ∈ N, is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)

(

d

dt

)n ∫ t

0
(t− s)n−1−αf(s)ds,

where the function f(t) has absolutely continuous derivative up to order

(n− 1).
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Definition 2.6 ([18]). The Hilfer fractional derivative of order 0 ≤ α ≤ 1

and 0 < β < 1 for a function f is defined by

Dα,β
0+

f(t) = I
α(1−β)
0+

d

dt
I
(1−α)(1−β)
0+

f(t).

Remark 2.1. When α = 0, 0 < β < 1, the Hilfer fractional derivative

coincides with the classical Riemann-Liouville farctional derivative

D0,β
0+

f(t) =
d

dt
I1−β
0+

f(t) =L Dβ
0+
f(t).

When α = 1, 0 < β < 1, the Hilfer fractional derivative coincides with the

classical Caputo fractional derivative

D1,β
0+

f(t) = I1−β
0+

d

dt
f(t) =c Dβ

0+
f(t).

Next we mention an axiomatic definition of the phase space DF0
intro-

duced by Hale and Kato.

Definition 2.7. DF0
is a linear space of family of F0-measurable functions

from (−∞, 0] into U endowed with a norm ‖ · ‖DF0
, which satisfies the

following axioms:

(A-1) If x : (−∞, T ] → U, T > 0 is such that y0 ∈ DF0
, then for every

t ∈ [0, T ) the following conditions hold

(i) yt ∈ DF0
.

(ii) ‖ y(t) ‖≤ L ‖ yt ‖DF0
.

(iii) ‖ yt ‖DF0
≤K(t) sup {‖ y(s) ‖: 0≤s≤ t}+N(t) ‖ y(0) ‖DF0

, where

L > 0 is a constant; K, N : [0,∞) −→ [0,∞), K is continuous,

N is locally bounded and K, N are independent of y(·).

(A-2) : For the function y(·) in (A-1), yt is aDF0
-valued function for t ∈ [0, T ).

(A-3) : The space DF0
is complete.

Denote

K̃ = sup {K(t) : t ∈ J} and Ñ = sup {N(t) : t ∈ J} .
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Theorem 2.8 (Banach’s Fixed Point Theorem). Let (X, d) be a complete

metric space and let T : X −→ X be a contraction on X. Then T has a

unique fixed point x ∈ X (such that T (x) = x).

Let us define the operators {Sα,β(t) : t ≥ 0} and {Pβ(t) : t ≥ 0} by

Sα,β(t) = I
α(1−β)
0+

Pβ(t),

Pβ(t) = tβ−1Tβ(t),

Tβ(t) =

∫ ∞

0
βθΨβ(θ)T (t

βθ)dθ;

where

Ψβ(θ) =

∞
∑

n=1

(−θ)n−1

(n− 1)Γ(1 − nβ)
, 0 < β < 1, θ ∈ (0,∞)

is a function of Wright type which satisfies

∫ ∞

0
θξΨβ(θ)dθ =

Γ(1 + ξ)

Γ(1 + βξ)
, ξ ∈ (−1,∞).

Lemma 2.3 ([11]). The operators Sα,β and Pβ have the following proper-

ties

i) For any fixed t ≥ 0, Sα,β(t) and Pβ(t) are bounded linear operators, and

‖Pβ(t)x‖2 ≤M
t2(β−1)

(Γ(β))2
‖x‖2 and

‖Sα,β(t)x‖2 ≤M
t2(α−1)(1−β)

(Γ(α(1 − β) + β))2
‖x‖2.

ii) {Pβ(t) : t ≥ 0} is compact if {T (t) : t ≥ 0} is compact.

Remark 2.2. D
α(1−β)
0+

Sα,β(t) = Pβ(t).
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3. Existence of Mild Solution

In this section, we first establish the existence of mild solutions to

stochastic differential equations with non-instantaneous impulses driven by

a Q-sub-fractional Brownian motion (1). More precisely, we will formulate

and prove sufficient conditions for the existence of solutions to (1). In order

to establish the results, we make the following hypotheses.

(H1) The operator A is the infinitesimal generator of a strongly continuous

of bounded linear operators {S(t)}t≥0 which is compact for t > 0 in H
such that ‖ S(t) ‖2≤ M for each t ∈ J , where J = [0, T ].

(H2) The operators Sα,β, Pβ ∈ D(A).

(H3) The function f : J ×Dγ
FT

→ U satisfies that:

E ‖ f(t, φ1)− f(t, φ2) ‖2≤ Lf ‖ φ1 − φ2 ‖2Dγ
FT

,

for all φ1, φ2 ∈ Dγ
FT

, t ∈ (sk, tk+1] and k = 1, . . . ,m.

(H4) The function g : J ×Dγ
FT

→ U and there exists a positive number Kg.

For t ∈ J , we have

E ‖ g(t, φ1)− g(t, φ2) ‖2≤ Kg ‖ φ1 − φ2 ‖2Dγ
FT

, for all φ1, φ2∈Dγ
FT

, t∈J.

(H5) The function σ : J × Dγ
FT

→ L0
Q satisfies that there exists a positive

constant Lσ such that

E ‖ σ(t, φ1)−σ(t, φ2) ‖2L0
2

≤ Lσ ‖ φ1−φ2 ‖2Dγ
FT

, for all φ1, φ2 ∈ Dγ
FT

, t ∈
(sk, tk+1] and k = 1, . . . ,m.

(H6) There exist constants Lhk
> 0, for all φ1, φ2 ∈ Dγ

FT
, t ∈ (tk, sk] and

k = 1, . . . ,m such that

E ‖ hk(t, φ1)− hk(t, φ2) ‖2≤ Lhk
‖ φ1 − φ2 ‖2Dγ

FT

and hk ∈ C((tk, sk]×Dγ
FT

, U), for all k = 1, . . . ,m.

Now, we give the definition of mild solutions to our problem.

Definition 2.9. An Ft-adapted stochastic process x : (−∞, T ] → U is said

to be an mild solution of (1) if x0 = φ ∈ DF0
and

(i) {xt, t ∈ J} ∈ Dγ
FT

,

(ii)

∫ t

0
[xs + g(s, xs)] ds ∈ D(A) , t ∈ [0, T ].
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(iii) for each t > 0

x(t)=



























































Sα,β(t) [φ(0) − g(0, φ)] + g(t, xt)

+
∫ t
0 Pβ(t− s)f(s, x(s))ds

+
∫ t
0 Pβ(t− s)σ(s, xs)dS

H
Q (s), for t ∈ [0, t1],

hk(t, xt), for t∈(tk, sk];

k=1, . . . ,m.

Sα,β(t− sk)hk(sk, xsk)+g(sk, xsk)

+
∫ t
sk
Pβ(t− s)f(s, xs)ds for t∈ [sk, tk+1];

+
∫ t
sk
Pβ(t− s)σ(s, xs)dS

H
Q (s) k=1, . . . ,m.

(11)

To establish the existence and uniqueness theorem of the mild solution

for system (1), we use a Banach fixed point to investigate the existence and

uniqueness of solutions for impulsive stochastic differential equations.

Theorem 2.10. Let (H1)-(H6) hold with φ(0)− g(0, φ) ∈ D(A), and

L0 = max(µ1, µ2, µ3) < 1,

where

µ1 =3t
2(αβ+1)
1

(

t1−α−β
1 Kg +

t−α
1 LfM

(Γ(β))2
+

MLσt
H−α
1

(Γ(β))2

)

,

µ2 = max
k=1,...,m

2Lhk
T 2(1−γ),

µ3 = max
k=1,...,m

[

4MLhk

Γ(α(1−α) + β)2
+4t2(1−γ)Kg+

4t2(1−γ)M(tk+1−sk)
2(β−1)Lf

(Γ(β))2

+
CHMLσt

2(H−γ)+1(tk+1 − sk)
2(β−1)

(Γ(β))2

]

.

Then for every initial function φ ∈ DF0
there exists a unique associated mild

solution x ∈ Dγ
FT

of the problem (1).

Proof. The proof is given in several steps. Consider the problem (1)



























Dα,β
0+

X (t, xt) = A (t)X (t, xt) + f(t, xt) for t ∈ [sk, tk+1],

+σ (t, xt)
dSH

Q
(t)

dt , k = 0, . . . ,m,

x (t) = hk (t, xt) , for t ∈ (tk, sk], k = 1, 2, . . . ,m,

(I1−γ
0 x)(t)|t=0 = φ ∈ DF0

((−∞, 0], U ].
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We transform the problem into a fixed point one. Consider the operator

Φ : Dγ
FT

−→ Dγ
FT

defined by

Φ(x)(t) =



















































































φ(t); t ∈ (−∞, 0],

Sα,β(t) [φ(0)− g(0, φ)] + g(t, xt)

+
∫ t
0 Pβ(t− s)f(s, xs)ds

+
∫ t
0 Pβ(t− s)σ(s, xs)dS

H
Q (s), if t ∈ (0, t1],

hk(t, xt), if t ∈ (tk, sk+1],

k = 1, . . . ,m,

Sα,β(t− sk)hk(sk, xsk) + g(sk, xsk)

+
∫ t
sk
Pβ(t− s)f(s, xs)ds if t ∈ (sk, tk+1],

+
∫ t
sk
Pβ(t− s)σ(s, xs)dS

H
Q (s), k = 1, . . . ,m.



















































































For φ ∈ DF0
, we define φ̃ by

φ̃(t) =

{

φ(t), t ∈ (−∞, 0],

Sα,β(t) [φ(0) − g(0, φ)] , t ∈ (0, t1].

}

It is clear that φ̃ ∈ Dγ
FT

. Let x(t) = z(t) + φ̃(t); t ∈ (−∞, T ], z(t) satisfies

that

z(t) =































































0, for t ∈ (−∞, 0],

g(t, zt+φ̃t)+
∫ t
0 Sα,β(t− s)f(s, zs + φ̃s)ds

+
∫ t
0 Pβ(t− s)σ(s, zs + φ̃s)dS

H
Q (s), for t ∈ (0, t1],

hk(t, zt + φ̃t), for t ∈ (tk, sk],

Sα,β(t− sk)hk(sk, zsk + φ̃sk)+g(sk, zsk + φ̃sk)

+
∫ t
sk
Pβ(t− s)f(s, zs + φ̃s)ds for t ∈ (sk, tk+1],

+
∫ t
sk
Pβ(t− s)σ(s, zs + φ̃s)dS

H
Q (s), k = 1, . . . ,m.































































So, for any z ∈ D′

FT
, we have D′

FT
= {z ∈ Dγ

FT
, such that z(0) = 0}, then

(D′

FT
, ‖ · ‖FT

) is a Banach space.
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Let the operator Φ̃ : D′

F
T
−→ D′

F
T
be defined by

Φ̃(x)(t)=































































0, for t ∈ (−∞, 0],

g(t, zt + φ̃t)

+
∫ t
0 Pβ(t− s)f(s, zs + φ̃s)ds

+
∫ t
0 Pβ(t− s)σ(s, zs + φ̃s)dS

H
Q (s), for t ∈ (0, t1],

hk(t, zt + φ̃t), for t ∈ (tk, sk],

Sα,β(t− sk)hk(sk, zsk
+φ̃sk) + g(sk, zsk + φ̃sk) for t ∈ (sk, tk+1],

+
∫ t
sk
Pβ(t− s)σ(s, zs + φ̃s)dS

H
Q (s), k = 1, . . . ,m.































































From the assumptions, it is clear that Φ̃ is well defined. Now we need only

to show that Φ̃ is a contraction mapping.

Case 1. For u, v ∈ D′

F
T
, and for t ∈ [0, t1] we have

E ‖ t1−γ
[

Φ̃(u(t)) − Φ̃(v(t))
]

‖2

≤ 3t2(1−γ)
E ‖ g(t, ut + φ̃t)− g(t, vt + φ̃t) ‖2

+ 3t2(1−γ)
E ‖

∫ t

0
Pβ(t− s)

[

f(s, us + φ̃s)− f(s, vs + φ̃s)
]

‖2 ds

+ 3t2(1−γ)
E ‖

∫ t

0
Pβ(t− s)

[

σ(s, us + φ̃s)− σ(s, v(s) + φ̃s)
]

dSH
I (s) ‖2

≤ I1 + I2 + I3, (12)

where

I1 : = 3t2(1−γ)
E ‖ g(t, ut + φ̃t)− g(t, vt + φ̃t) ‖2

≤ 3t2(1−γ)Kg ‖ u− v ‖2
D

′

FT

,

I2 : = 3t2(1−γ)
E ‖

∫ t

0
Pβ(t− s)

[

f(s, us + φ̃s)− f(s, vs + φ̃s)
]

‖2 ds

≤ 3
t2(1−γ)M

Γ2(β)
E

∫ t

0
(t− s)2(β−1) ‖ f(s, us + φ̃s)− f(s, vs + φ̃s) ‖2 ds

≤ 3
t2α(β−1)LfM

(Γ(β))2
‖ u− v ‖2

D
′

FT

,
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I3 : = 3t2(1−γ)
E ‖

∫ t

0
Pβ(t− s)

[

σ(s, us + φ̃s)− σ(s, v(s) + φ̃s)
]

dSH
Q (s) ‖2

≤ 3t2(H−γ)+1CH

∫ t

0
‖ Pβ(t− s)

[

σ(s, us + φ̃s)− σ(s, v(s) + φ̃s)
]

ds ‖2L0
Q

≤ 3t2(H−γ)+1CHM

(Γ(β))2

∫ t

0
(t− s)2(β−1) ‖ σ(s, us + φ̃s)− σ(s, v(s) + φ̃s) ‖L0

Q

≤ MLσt
2(H−α+αβ)

(Γ(β))2
‖ u− v ‖2

D
′

FT

.

By taking the supremum over t, we obtain

‖ Φ̃(u)(t) − Φ̃(v)(t) ‖2
D

′

FT

= sup
t∈[0,t1]

E ‖ t1−γ
[

Φ̃(u(t))− Φ̃(v(t))
]

‖2

≤ 3t
2(αβ+1)
1

(

t1−α−β
1 Kg +

t−α
1 LfM

(Γ(β))2
+

MLσt
H−α
1

(Γ(β))2

)

‖ u− v ‖2
D

′

FT

.

Case 2. For u, v ∈ D′

FT
, t ∈ (tk, sk], k = 1, . . . ,m,

E ‖ t1−γ
[

Φ̃(u)(t)− Φ̃(v)(t)
]

‖2 ≤ Lhk
‖ u− v ‖2

D
′

FT

≤ 2K̃t2(1−γ)Lhk
‖ ut − vt ‖2D′

FT

.

By taking the supremum over t, we obtain

‖ Φ̃(u)(t) − Φ̃(v)(t) ‖2
D

′

FT

= sup
t∈[tk ,sk],k=1,...,m

E ‖ t1−γ
[

Φ̃(u(t))− Φ̃(v(t))
]

‖2

≤ 2Lhk
T 2(1−γ) ‖ u− v ‖2

D
′

FT

.

Case 3. For u, v ∈ D′

FT
and for t ∈ (sk, tk+1], k = 1, . . . ,m, we have

E ‖ t1−γ
(

Φ̃(u)(t)− Φ̃(v)(t)
)

‖2

≤ 4t2(1−γ)
E ‖ Sα,β(t− sk)

[

h(sk, usk + φ̃sk)− h(sk, vsk + φ̃sk)
]

‖2

+ 4t2(1−γ)
E ‖

(

g(t, ut + φ̃t)− g(t, vt + φ̃t)
)

‖2

+ 4t2(1−γ)
E ‖

∫ tk+1

sk

Pβ(t− s)
[

f(s, us + φ̃s)− f(s, vs + φ̃s)
]

‖2 ds
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+ 4t2(1−γ)
E ‖

∫ tk+1

sk

Pβ(t− s)
[

σ(s, us + φ̃s)− σ(s, vs + φ̃s)
]

dSH
Q (s) ‖2

≤ I1 + I2 + I3 + I4,

where

I1 = 4t2(1−γ)
E ‖ Sα,β(t− sk)

[

h(sk, usk + φ̃sk)− h(sk, vsk + φ̃sk)
]

‖2

≤ 4t2(1−γ) Mt2(α−1)(β−1)

Γ(α(1 − α) + β)2
E ‖ h(sk, usk + φ̃sk)− h(sk, vsk + φ̃sk) ‖2

≤ 4MLhk

Γ(α(1 − α) + β)2
‖ u− v ‖2

D
′

FT

,

I2 = 4t2(1−γ)
E ‖

(

g(t, ut + φ̃t)− g(t, vt + φ̃t)
)

‖2

≤ 4t2(1−γ)Kg ‖ u− v ‖2
D

′

FT

,

I3 = 4t2(1−γ)
E ‖

∫ tk+1

sk

Pβ(t− s)
[

f(s, us + φ̃s)− f(s, vs + φ̃s)
]

ds ‖2

≤ 4t2(1−γ)
E

∫ tk+1

sk

‖ Pβ(t− s)
[

f(s, us + φ̃s)− f(s, vs + φ̃s)
]

ds ‖2

≤ 4t2(1−γ)M(tk+1 − sk)
2(β−1)

(Γ(β))2
E

∫ tk+1

sk

‖ f(s, us+φ̃s)−f(s, vs+φ̃s) ‖2 ds

≤ 4t2(1−γ)M(tk+1 − sk)
2(β−1)Lf

(Γ(β))2
‖ u−v ‖2

D
′

FT

,

I4 = 4t2(1−γ)
E ‖

∫ tk+1

sk

Pβ(t− s)
[

σ(s, us + φ̃s)− σ(s, vs + φ̃s)
]

dSH
Q (s) ‖2

≤ 3t2(H−γ)+1CHE

∫ tk+1

sk

‖ Pβ(t− s)
[

σ(s, us+φ̃s)−σ(s, v(s)+φ̃s)
]

‖2L0
Q
ds

≤ 3t2(H−γ)+1CHM

(Γ(β))2
E

∫ tk+1

sk

(t− s)2(β−1) ‖ σ(s, us+φ̃s)−σ(s, v(s)+φ̃s) ‖2L0
Q

≤ CHMLσt
2(H−γ)+1(tk+1 − sk)

2(β−1)

(Γ(β))2
‖ u− v ‖2

D
′

FT
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By taking the supremum over t, we obtain

‖ Φ̃(u)(t) − Φ̃(v)(t) ‖2
D

′

FT

≤
(

4MLhk

Γ(α(1 − α) + β)2
+ 4t2(1−γ)Kg +

4t2(1−γ)M(tk+1 − sk)
2(β−1)Lf

(Γ(β))2

+
CHMLσt

2(H−γ)+1(tk+1 − sk)
2(β−1)

(Γ(β))2

)

‖ u− v ‖2
D

′

FT

,

which implies that Φ̃ is a contraction and there exists a unique fixed point

z(t) ∈ D′

FT
of Φ, so xt ∈ Dγ

FT
is a mild solution of (1). The proof is

completed. ���

4. Application



































































D
1

2
, 1
4

0+
[vt(·, ξ)−G(t, vt(·, ξ))]

= ∂2

∂ξ2

[

vt(·, ξ) −G(t, vt(·, ξ))
]

dt, for 0 ≤ ξ ≤ π, t ∈ [sk, tk+1],

+F (t, vt(·, ξ) + σ(t, vt(·, ξ))
dSH

Q (t)

dt , k = 0, . . . ,m,

v(t, ξ) = Hk(t, vt(·, ξ)), for t ∈ (tk, sk], k = 1, 2, . . . ,m,

vt(·, 0) = vt(·, π) = 0, for t ∈ [0, 2],

(I
3

8

0 vt(·, ξ))|t=0 = φ(t, ξ), for t ∈ (−∞, 0],

(13)

where D
1

2
, 1
4

0+
denotes the Hilfer fractional derivative. SH

Q (t) is an Q-sub-f.B.m

with Hurst parameter H ∈ (12 , 1) defined on a complete probability space

(Ω,F , P ). The impulses times satisfy 0 = t0 = s0 < t1 ≤ s1 < t2 ≤ · · · <
tm ≤ sm < tm+1 = T , for t > 0. vt means a segment solution which is defined

by v(·, ·) : (−∞, T ]×Ω → U . Then for any t ≥ 0, vt(·, ·) : (−∞, 0)×Ω → U

is given by vt(θ, ω) = x(t + θ, ω), for θ ∈ (−∞, 0], ω ∈ Ω with its value in

D
5

8

FT
, and U = L2[0, π]. F,G : [0, 2] × D

5

8

FT
−→ R are continuous functions.

I
3

8

0 is the fractional integral of order 3
8 = 1− 5

8 , where γ = 5
8 = 1

2 + 1
4 − 1

8 .
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Now let

y(t)(ξ) = u(t, ξ), t ∈ [0, 2], ξ ∈ [0, π],

Hk(t, φ(θ, ξ)) = hk(t, φ)(ξ), θ ∈ (−∞, 0), ξ ∈ [0, π] k = 1, . . . ,m, and,

φ(θ)(ξ) = φ(θ, ξ). We need now to define the operator Q : K −→ K, for

this we choose a sequence {σn}n≥1 ∈ R
+ such that Qen = σnen and suppose

that tr(Q) =
∑∞

n=1

√
σn < ∞.

The process SH
Q (s) will be defined by SH

Q (t) =
∑∞

n=1 S
H
n (t)

√
σnen, where

H ∈ (12 , 1) and
{

SH
n (t)

}

n∈N
is a sequence of one dimensional standard sub-

fractional Brownian motions mutually independent over (ω,F , P ).

Finally we assume that:

• For all k = 0, . . . ,m, the function f : [sk, tk+1]× D
5

8

FT
−→ U defined by

f(t, v)(·) = F (t, v(·)) is continuous and we impose conditions on F to

verify assumption (H3). For example we take F (t, φ) = t+ 2φ
1+‖φ‖

D
5
8

; t ∈

[sk, tk+1]; φ ∈ D
5

8

FT
.

• For all k = 0, . . . ,m, the function σ[sk, tk+1] × D
5

8

FT
−→ L0

Q(K,U) is

continuous. We impose conditions on σ to make assumptions (H5) hold.

We put: σ(t, φ) = t3 + sinφ; t ∈ [sk, tk+1]; φ ∈ D
5

8

FT
.

• For all k = 0, . . . ,m, the function hk : [tk, sk] × D
5

8

FT
−→ U defined by

hk(t, v)(·) = Hk(t, v(·)) is continuous and we impose conditions on Hk to

make assumption (H6) hold. For example we take: Hk(t, φ) = Rkφ, ξ ∈
Ω, t ∈ [sk, tk+1], φ ∈ D

5

8

FT
.

Thus the problem (13) can be written in the abstract form



























Dα,β
0+

X (t, xt) = A (t)X (t, xt)

+f(t, xt) + σ (t, xt)
dSH

Q
(t)

dt , for t ∈ [sk, tk+1], k = 0, . . . ,m,

x (t) = hk (t, xt) , for t ∈ (tk, sk], k = 1, 2, . . . ,m,

(I1−γ
0 x)(t)|t=0 = φ ∈ DF0

((−∞, 0], U ].

(14)

Thanks to these assumptions, it is easy to check that (H1)-(H6) hold and thus

assumptions in Theorem 3.1 are fulfilled, ensuring that system 13 possesses

a mild solution on (−∞, T ).
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