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Abstract

Under the consideration that the non-local condition has a spatial impact to the study

of the boundary values problems, we present a study of the existence and uniqueness of

weak solution for nonlinear parabolic Bessel problem with Neumann integral conditions,

in addition to part devoted to the proof of the finite time blow up solutions. Actually, in

the case p ≥ 1, sufficient conditions of blow up of solutions can be established by Kaplan’s

method backed by the numerical results.

1. Introduction

Since the last century, many mathematicians have been to a meeting

point for practitioners interested in real-world problems and striving to be

part of the international scientific community, breaking down the traditional

models of isolation and partial differential equations formed a fertile ground

to describe evolution, describing a variety of realities. They appear in all

branches of science, such as the vibration of solids, the flow of liquids, the

diffusion of chemicals, the propagation of heat, the structure of molecules,
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the interaction of photons and electrons, and the emission of electromag-

netic waves. Principal scientists of partial differential equations include Eu-

ler, d’Alembert, Lagrange and Laplace,. . . . One part of them worked on

the parabolic equations which are an important class of EDPs with different

boundary conditions, covering the different types of classical (Dirichlet, Neu-

mann, . . . ), non-classical (non-local condition), linear, non-linear . . . . Thus,

integral type boundary conditions can be used as a central tool to describe

the domain in cases where the quantity cannot be measured directly on the

boundary whose overall or mean value is known. We have an interest in

phenomena modeled by parabolic equations. One amongst the foremost re-

markable properties that distinguish nonlinear evolution problems from the

linear ones is that the possibility of the eventual occurrence of singularities

ranging from perfectly smooth data, more specifically, from classes of infor-

mation that a theory of existence, uniqueness, and continuous dependence

may be established for tiny time intervals, so-called well-posedness within

the small. On the other hand, we are interested in the solutions that be-

come infinite in finite time due to the cumulative effect of the nonlinearities

we call an explosion phenomenon which attracted firstly special attention

to the early developments by the Russian school. But the researchers drew

attention to the subject after the fundamental work of Fujita who proved

that the Cauchy problem with f = uP has no global positive nontrivial so-

lutions if 1 < p < 1+ 2/N . Motivated by this in this work we are interested

in studying the solvability and finite time blow-up for nonlinear parabolic

problems with Bessel operator with integral boundary conditions.

2. Formulation of the Nonlinear Problem

Let Q =
{

(x, t) ∈ R2, x ∈ Ω = ]0, 1[ and 0 < t < T
}

. This work is de-

voted to the study of a solution u(x, t) satisfying the following parabolic

problem:











































∂u

∂t
− a

x

∂

∂x

(

x
∂u

∂x

)

= f (x, t, u) , ∀ (x, t) ∈ Q

u (x, 0) = ϕ (x) ∀x ∈ (0, 1)

∂u

∂x
(0, t) =

∫ 1

0
xu(x, t)dx ∀ t ∈ (0, T )

∂u

∂x
(1, t) =

∫ 1

0
xu(x, t)dx ∀ t ∈ (0, T ) .

(P )
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For bounded domain Ω of R with smooth boundary ∂Ω. Also, f, ϕ and

the weight function k2 are known functions such that k2 is continuous on

[0, 1], and we have the following conditions:

The function f is Lipschitzian, which means that there exists a positive

constant k such that :

‖f (x, t, u1)− f (x, t, u2)‖L2(Q) ≤ k(‖u1 − u2‖L2(Q)),

∀u1, u2 ∈ L2 (Q) . (1)

We will denote ut and ux to the partial derivative with respect to t, x

respectively, and

u = u(x, t);∀ (x, t) ∈ (0, 1) × (0, T ).

3. Study of the Linear Problem

3.1. Position of the problem

In the domain Q =
{

(x, t) ∈ R2, 0 < x < 1 and 0 < t < T
}

, consider

the following linear problem:











































∂u

∂t
− a

x

∂

∂x

(

x
∂u

∂x

)

= f (x, t) ∀ (x, t) ∈ Q

u (x, 0) = ϕ (x) ∀x ∈ (0, 1)

ux(0, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T )

ux(1, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) ,

(P1)

where the functions f, ϕ and k2 are known functions, whose parabolic equa-

tion is given as follows:

Lu =
∂u

∂t
− a

x

∂

∂x

(

x
∂u

∂x

)

= f (x, t)

With the initial condition:

u(x, 0) = ϕ (x) , ∀x ∈ (0, 1) ,
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And the integral conditions of the second type

ux(0, t) =

∫ 1

0
xu(x, t)dx, t ∈ (0, T ) , (2)

ux(1, t) =

∫ 1

0
k2(x)u(x, t)dx, t ∈ (0, T ) , (3)

we divide the main linear problem to two other linear problems which are:











































vt −
a

x

∂

∂x

(

x
∂v

∂x

)

= 0, ∀ (x, t) ∈ Q.

v (x, 0) = ϕ (x), ∀x ∈ (0, 1).

vx(0, t) =

∫ 1

0
xv(x, t)dx, ∀ t ∈ (0, T ).

vx(1, t) =

∫ 1

0
k2(x)v(x, t)dx, ∀ t ∈ (0, T ) .

(P2)

and


















wt −
a

x

∂

∂x

(

x
∂w

∂x

)

= f (x, t), ∀ (x, t) ∈ Q.

w (x, 0) = 0, ∀x ∈ (0, 1).

wx(0, t) = wx(1, t) = 0, ∀ t ∈ (0, T ).

(P3)

3.2. Solving the problem (P2)

To solve the homogeneous problem P2, we use the variable separation

method:

We pose

v(x, t) = X(x)T (t). (4)

Replacing (4) in P2, we get the problem:











































T
′
X − a

x
TX

′ − aTX
′′
= 0.

X(x)T (0) = ϕ(x).

X ′(0)T (t) =

∫ 1

0
xX(x)T (t)dx.

X ′(1)T (t) =

∫ 1

0
xX(x)T (t)dx.
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For λ = ω2 > 0, we get:

a

x

X ′

X
+ a

X ′′

X
=
T

′

T
= −ω2. (5)

◮Find X(x) : The equality (5) gives the following Sturm-Liouville problem

:


























ax2X
′′
(x) + xX(x)

′
+ ω2X = 0

X ′(0) =

∫ 1

0
xX(x)dx

X ′(1) =

∫ 1

0
xX(x)dx

So the solution of this problem is given by

Xn(x) = AJ +By.

◮Find T (t): According to the superposition principle, we put:

v(x, t) =
∑

n≥0

Xn(x) · Tn(t),

which implies

v(x, 0) =
∑

n≥0

Xn(x)Tn(0)

= ϕ(x)

=
∑

n≥0

ϕn ·Xn(x)dx.

Then

ϕn =

∫ 1

0
ϕ(x) ·Xn(x)dx,

so

Tn (0) = ϕn,

Tn (t) = ϕne
−w2

nt.
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3.4. Solvability of the problem (P3) by the energy inequality method















wt − a
x
(xwx)x = f (x, t), ∀ (x, t) ∈ Q,

w (x, 0) = 0, ∀x ∈ (0, 1),

wx(0, t) = wx(1, t) = 0, ∀ t ∈ (0, T ),

(P3)

where f is a known function and ∀ a � 0, whose parabolic equation is given

as follows :

Lw =
∂w

∂t
− a

x

∂

∂x

(

x
∂w

∂x

)

= f (x, t) . (6)

With the initial condition

w(x, 0) = 0, ∀x ∈ (0, 1) ,

and the integral conditions of the second type

wx(0, t) = 0, t ∈ (0, T ) ,

wx(1, t) = 0, t ∈ (0, T ) ,
(7)

we obtain uniqueness of the solution of the problem (P3) :

Theorem 1. For any function w ∈ C(0, T, L
2√
x
(0, 1)), we obtain the esti-

mate :

‖w‖E ≤ k ‖Lw‖F , (8)

where k is a positive constant independent of w, such that :

k =

√

eT

min {1, 2a} ,

where E is the Banach space with finite norm

‖w‖2E = ‖w‖2
C(0,T, L

2√
x
(0,1))

+ ‖wx‖2L2(0,T, L2√
x
(0,1))

and F is a Hilbert space with the finite norm

‖w‖2F = ‖f ‖2L2(Q) .
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Proof. We first multiply the equation (6) by the following multiplier Mw:

Mw = xw(x, t).

We get

[

wt −
a

x
(xwx)x

]

·Mw(x, t) = f(x, t) ·Mw(x, t).

Integrating both sides of this identity over Qτ = (0, 1) × (0, τ), where

τ ∈ [0, T ], gives us:

∫

Qτ

[

wt −
a

x
(xwx)x

]

·Mw(x, t)dxdt

=

∫

Qτ

[

wt −
a

x
(xwx)x

]

· xw(x, t)dxdt

=

∫

Qτ

wt(x, t) · xw(x, t)dxdt −
∫

Qτ

(a

x
(xwx)x

)

· xw(x, t)dxdt

=

∫

Qτ

f(x, t) · xw(x, t)dxdt,

where wx, wt indicate the partial derivative with respect to x, t respectively,

such that wx = wx(x, t) and wt = wt(x, t).

Let us use an integration by parts for each term. By taking account of

the initial condition and the boundary conditions, we find :

1

2

∫

Ω
xw2(x, τ)dx + a

∫

Qτ

xw2
xdxdt =

∫

Qτ

f · xwdxdt.

Thus, we apply the Cauchy inequality, and it becomes:

1

2

∫

Ω
xw2(x, τ)dx+ a

∫

Qτ

xw2
xdxdt ≤

1

2

∫

Q

f2dxdt+
1

2

∫

Q

(xw)2 dxdt.

Applying Gronwall’s lemma, we find :

∫

Ω
xw2(x, τ)dx+ 2a

∫

Qτ

xw2dxdt ≤
(

∫

Q

f(x, t)2dxdt
)

e
∫ T

0 dt
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which implies that

max
0<t<T

∫

Ω
xw2(x, τ)dxdt +

∫

Qτ

xw2
x(x, t)dxdt,

≤ eT

min {1, 2a}
(

∫

Q

f(x, t)2dxdt
)

,

Therefore, we obtain

‖w‖2
C(0,T, L

2√
x
(0,1))

+ ‖wx‖2L2(0,T, L2√
x
(0,1)) ≤ C ‖f ‖2L2(Q) ,

where

C =
eT

min {1, 2a}
finally, it follows that

‖w‖E ≤ k ‖F‖F , where k =
√
C.

This completes the proof. ���

Corollary 1. If for any function w ∈ D (L), we have the following estimate:

‖w‖E ≤ k ‖F‖F ,

then if the solution of the problem (P3) exists, it is unique.

3.3.1. Existence of the solution of the problem (P3) :

In this part, we shall establish the existence of solutions for the second

linear problem. Specifically, we shall prove the following items:

(1) The operator

L = (L, ℓ) : E −→ F

is closable.

(2) R(L) is dense in F for any w ∈ E and for any arbitrary F = (f, ϕ) ∈ F.

Proposition 1. The operator L of E in F is closable.
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Proof. Let {wn} ∈ D(L) be a sequence such that :

wn −→ 0 in E,

and

Lwn −→ (f ; 0) in F. (9)

We must prove that

f ≡ 0 .

The convergence of wn towards 0 in E implies:

wn −→ 0 in D
′
(Q) . (10)

From the continuity of the derivation of D
′
(Q) in D

′
(Q), the relation (10)

implies:

Lwn −→ 0 in D
′
(Q) , (11)

Moreover, the convergence of Ln towards f in L2(Q) generates:

Lwn −→ f in D
′
(Q) . (12)

By vertue of the uniqueness of the limit in D
′
(Q), we conclude from (11)

and (12) that

f = 0,

which is the result. ���

Let L be the closure of L, and D(L) the domain of definition of L.

Theorem 2. If for ϑ ∈ L2 (Q) and for any w ∈ C(0, T, L
2√
x
(0, 1)), we have

∫

Q

Lw · ϑdxdt = 0, (13)

then ϑ vanishes almost everywhere in Q.

Proof. The scalar product of F is defined by:

(Lw,W )F =

∫

Q

Lw · ωdxdt,



448 D. SOFIANE, T. EDDINE OUSSAEIF AND C. ZAINOUBA [December

where W = (ω, ω0). The equality (13) can be written as follows:

∫

Q

∂w

∂t
· ωdxdt−

∫

Q

a

x

∂

∂x

(

x
∂w

∂x

)

· ωdxdt = 0, (14)

which implies

∫

Q

∂w

∂t
· ωdxdt =

∫

Q

a

x

∂

∂x

(

x
∂w

∂x

)

· ωdxdt, (15)

where w, ∂w
∂t

and ∂w
∂x

∈ L
2
(Q), with w satisfying the boundary conditions

(7). We put

w(x, t) =

∫ t

0
z(x, τ)dτ = ℑtz (16)

By replacing (16) in (15) we get

∫

Q

z · ωdxdt = a

∫

Q

1

x

∂

∂x

(

x
∂ℑtz
∂x

)

ωdxdt. (17)

During the establishment of the function ω,and from this last equality, we

give the function ω in terms of the function z as follows:

ω = xℑtz

Since z satisfies the same conditions as the function w in (7), z, ∂z
∂x

∈ L
2
(Q),

so ω ∈ L2 (Q).

Now replacing ω in (17), we obtain :

∫

Q

xzℑtzdxdt = a

∫

Q

ℑtz ·
∂

∂x

(

x
∂ℑtz
∂x

)

dxdt.

According to integration by parts and using the boundary conditions of

Neumann, we get :

∫ 1

0

x

2
(ℑtz)2

∣

∣

∣

∣

τ=T

τ=0

dx = −a
∫

Q

x

(

∂ℑtz
∂x

)2

dxdt 6 0;

which gives
∫

Q

a(x, t) (ℑtz)2 dxdt = 0.
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So

(ℑtz) = 0.

Therefore, it becomes w = 0 in Q, which gives ω = 0 in Q. Finally, we have

R(L) = F.

This was demonstrated. ���

4. The Uniqueness of the Linear Problem

In this section we will study the uniqueness of the linear problem (P1).

Theorem 3. For any function u ∈ D (L), we have the estimate :

‖u‖E ≤ R ‖Lu‖F

where k is a positive constant independent of u, such that :

R =
max

{

1, 1
ε

}

min {1, 2a(1 − δ)}e
2aδT+ aβ2

δ
T+εT .

Proof. Assuming that a solution of the problem exists, multiplying the

equation of the problem (P1) by the following multiplicator Mu:

Mu = xu(x, t) ,

and by integrating on the domain Qτ = (0, 1) × (0, τ), where τ ∈ [0, T ], we

obtain :

∫

Qτ

Lu ·Mu(x, t)dxdt

=

∫

Qτ

[

∂tu(x, t) −
a

x

∂

∂x
(x
∂u

∂x
)

]

· xu(x, t)dxdt

=

∫

Qτ

∂tu(x, t) · xu(x, t)dxdt − a

∫

Qτ

1

x

∂

∂x
(x
∂u

∂x
) · xu(x, t)dxdt

=

∫

Qτ

f(x, t) · xu(x, t)dxdt.
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After an integration by parts and using the boundary conditions, we find

1

2

∫ 1

0
xu2(x, τ)dx − 1

2

∫ 1

0
xϕ2(x)dx − a

∫ τ

0
u(1, t)ux(1, t)dt

+ a

∫

Qτ

xu2x(x, t)dxdt =

∫

Qτ

√
xf(x, t) ·

√
xu(x, t)dxdt.

Using the Cauchy with ε−inequality, we obtain

1

2

∫ 1

0
xu2(x, τ)dx + a

∫

Qτ

xu2x(x, t)dxdt− a

∫ τ

0
u(1, t)ux(1, t)dt,

≤ 1

2ε

∫

Qτ

xf2(x, t)dxdt+
ε

2

∫

Qτ

xu2dxdt+
1

2

∫ 1

0
xϕ2(x)dx. (18)

To find our estimate, we must give an estimate for the third part of the left

hand side in the inequality (18). By using integral conditions (3), (3) and

the Cauchy with δ inequality, we obtain:

∫ τ

0
u(1, t)ux(1, t)dt ≤

δ

2

∫ τ

0
u2(1, t)dt+

1

2δ

∫ τ

0
u2x(1, t)dt,

=
δ

2

∫ τ

0
u2(1, t)dt+

1

2δ

∫ τ

0
(

∫ 1

0
xu(x, t)dx)2dt,

≤ δ

2

∫ τ

0
u2(1, t)dt+

1

2δ

∫ τ

0
(

∫ 1

0
xu(x, t)dx)2dt,

≤ δ

2

∫ τ

0
u2(1, t)dt+

1

2δ

∫ τ

0

∫ 1

0
(
√
xu(x, t))2dxdt. (19)

Now, we must find the estimate of the first part of the right hand side of

(19). Let’s put:

u(1, t) =

∫ 1

x

∂

∂ξ
(
√
xu(ξ, t))dξ +

√
xu(x, t).

Then, using the inequality |a+ b|2 ≤ 2a2 + 2b2, we find:

u2(1, t) =
(

∫ 1

x

∂

∂ξ
(
√
xu(ξ, t))dξ +

√
xu(x, t)

)2
,

≤ 2
(

∫ 1

x

∂

∂ξ
(
√
xu(ξ, t))dξ

)2
+ 2xu2(x, t).
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By applying Hölder’s inequality, we get

u2(1, t) ≤ 2

∫ 1

x

12dξ ·
∫ 1

x

(
∂

∂ξ
(
√
xu(ξ, t)))2dξ + 2xu2(x, t).

Integrating over (0, τ), we find

∫ τ

0
u2(1, t) ≤ 2

∫ τ

0

∫ 1

0
(
∂

∂x
(
√
xu(x, t)))2dxdt+ 2

∫ τ

0
xu2(x, t)dt.

So

δ

2

∫ τ

0
u2(1, t) ≤ δ

∫ τ

0

∫ 1

0
(x(

∂

∂x
u(x, t))2dxdt+ δ

∫ τ

0
xu2(x, t)dt,

≤ δ

∫

Qτ

x(
∂u

∂x
(x, t))2dxdt+ δ

∫ τ

0
xu2(x, t)dt. (20)

Under the previous inequalities (19) and (20), the inequality (18) becomes:

1

2

∫ 1

0
xu2(x, τ)dx+ a

∫

Q
τ
x(
∂u

∂x
)2dxdt,

≤ aδ

∫

Qτ

x(
∂u

∂x
)2dxdt+ aδ

∫ τ

0
xu2dt+

a

2δ

∫

Qτ

xu2dxdt,

+
1

2ε

∫

Qτ

xf2dxdt+
ε

2

∫

Qτ

xu2dxdt+
1

2

∫ 1

0
xϕ2(x)dx.

Integrating one more time over (0, 1), we get:

1

2

∫ 1

0
xu2(x, τ)dx + a

∫

Q
τ
x(
∂u

∂x
)2dxdt,

≤aδ
∫

Qτ

x(
∂u

∂x
)2dxdt+ aδ

∫ 1

0

∫ τ

0
xu2dtdx+

aβ2

2δ

∫

Qτ

xu2dxdt,

+
1

2ε

∫

Qτ

xf2dxdt+
ε

2

∫

Qτ

xu2dxdt+
1

2

∫ 1

0
xϕ2(x)dx.

Then, we have

1

2

∫ 1

0
xu2(x, τ)dx + a(1− δ)

∫

Q
τ
x(
∂u

∂x
)2dxdt,

≤ (aδ +
a

2δ
+
ε

2
)

∫

Qτ

xu2dxdt+
1

2ε

∫

Qτ

xf2dxdt+
1

2

∫ 1

0
xϕ2(x)dx.
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By applying Gronwall’s lemma, we get

∫ 1

0
xu2(x, τ)dx +

∫

Q
τ
x(
∂u

∂x
)2dxdt,

≤ max
{

1, 1
ε

}

min {1, 2a(1 − δ)}e
2aδT+ a

δ
T+εT

(

∫

Qτ

xf2dxdt+

∫ 1

0
xϕ2(x)dx

)

.

Finally we put

‖u‖2L∞(0,T ;L2√
x
(Ω)) +

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2(0,T ;L2√
x
(Ω))

≤ R(‖f‖2L2(0,T ;L2√
x
(Ω)) + ‖ϕ‖2L2(0,T ;L2√

x
(Ω))

where

R =
max

{

1, 1
ε

}

min {1, 2a(1 − δ)}e
2aδT+ a

δ
T+εT

which complete the proof. ���

5. Solvability of the Weak Solution of the Nonlinear Problem

Based on the last section, this section is mainly devoted to nonlinear

parabolic problem and the proof the existence and the uniqueness by using

the the linearization method :







































ut −
a

x
(xux)x = f (x, t, u), ∀ (x, t) ∈ Q;

u (x, 0) = ϕ (x), ∀x ∈ (0, 1);

ux(0, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T );

ux(1, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) .

(P )

Putting

u = y + θ,
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such that w is a solution to the following problem:







































θt − a
x
(xθx)x = 0, ∀ (x, t) ∈ Q,

θ (x, 0) = ϕ (x), ∀x ∈ (0, 1),

θx(0, t) =

∫ 1

0
xθ(x, t)dx, ∀ t ∈ (0, T ),

θx(1, t) =

∫ 1

0
xθ(x, t)dx, ∀ t ∈ (0, T ),

(P4)

and the solution

y = u− w

satisfies the following problem

Ly = yt −
a

x
(xyx)x = G (x, t, y) , (21)

y(x, 0) = 0, ∀x ∈ (0, 1) , (22)

yx(0, t) = yx (1, t) = 0, ∀ t ∈ (0, t) , (23)

where

G (x, t, y) = f (x, t, y + θ) .

As the function f , the function G is also Lipschitzian, so there is a positive

constant k such that:

‖ G (x, t, u1)−G (x, t, u2) ‖L2(Q)≤ k
(

‖u1 − u2‖L2(0,T,H1(0,1))

)

. (24)

From the result of the previous section, we deduce that the problem

(P4) has a unique solution which depends continuously on the data. So it

remains to prove that the problem (21)-(23) admits a unique weak solution.

First, we propose the concept of studied solution.

Let v = v(x; t) be any function of L2(0;T ;H1(0, 1)). Then, multiplying

(21) by xv and integrating both sides over Q = (0, 1) × (0, T ) give us:

∫

Q

∂y

∂t
(x, t) · xv(x, t)dxdt − a

∫

Q

∂

∂x
(x
∂y

∂x
) · v (x, t) dxdt

=

∫

Q

G(x, t) · xv (x, t) dxdt.
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Then by using integration by parts and the conditions (22) and (23) we

find:
∫

Q

∂y

∂t
(x, t) · v(x, t)dxdt + a

∫

Q

x
∂y

∂x

∂v

∂x
=

∫

Q

G(x, t, u) · xv(x, t)dxdt. (25)

It follows from (25) that:

A(y, v) =

∫

Q

G(x, t, u) · xv(x, t)dxdt (26)

where

A(y, v) =

∫

Q

∂y

∂t
(x, t) · v(x, t)dxdt + a

∫

Q

x
∂y

∂x

∂v

∂x
dxdt.

Definition 4. A function y ∈ L2
(

0, T ; H
1
(0, 1)

)

is said to be a weak

solution of the problem (21)− (23) if (26) and (23) are fulfilled.

We build a recurring sequence starting with y(0) = 0. The sequence
(

y(n)
)

n∈N is defined as follows : given the element y(n−1), then for n =

1, 2, 3, . . ., we will solve the following problem:



















∂y(n)

∂t
− a

x
(xy

(n)
x )x = G

(

x, t, y(n−1)
)

,

y(n) (x, 0) = 0,

y
(n)
x (0, t) = y

(n)
x (1, t) = 0.

(P5)

According to the study of the previous linear problem each time we fix the

n, the problem (P5) admits a unique solution y(n) (x, t). Now we suppose

z(n) (x, t) = y(n+1) (x, t)− y(n) (x, t) ,

so we get a new problem which is:















∂z(n)

∂t
− a

x
(xz

(n)
x )x = p(n−1)(x, t),

z(n) (x, 0) = 0,

z
(n)
x (0, t) = z

(n)
x (1, t) = 0,

(P6)
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where

p(n−1)(x, t) = G
(

x, t, y(n)
)

−G
(

x, t, y(n−1)
)

.

Lemma 1. Assume that the condition (24) is satisfied. So we have the

following estimate

‖ z(n) ‖2
L2(0,T ;H1√

x
(0,1))≤ C ‖ z(n−1) ‖2

L2(0,T ;H1√
x
(0,1))

where

C =
k2eT

min {1, 2a}

Proof. Multiplying

∂z(n)

∂t
− a

x
(xz(n)x )x = p(n−1)(x, t)

by xz(n) and integrating it on Qτ , we get:

∫

Qτ

∂z(n)

∂t
(x, t) · xz(n)(x, t)dxdt− a

∫

Qτ

(xz(n)x )x · z(n) (x, t) dxdt

=

∫

Qτ

p(n−1)(x, t) · xz(n) (x, t) dxdt.

If we use integration by parts for each term, taking into consideration the

initial and boundary conditions, we get:

1

2

∫ 1

0
x(z(n) (x, τ))2dx+ a

∫

Qτ

x

(

∂z(n)

∂x
(x, t)

)2

dxdt

=

∫

Qτ

p(n−1)(x, t) · xz(n) (x, t) dxdt.

When the Cauchy inequality is applied to the second part of the equation,

the following result is obtained:

∫

Qτ

p(n−1)(x, t) · xz(n) (x, t) dxdt

=

∫

Qτ

√
xp(n−1)(x, t) ·

√
xz(n) (x, t) dxdt
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6
1

2

∫

Qτ

x
(

p(n−1)(x, t)
)2
dxdt+

1

2

∫

Qτ

x
(

z(n) (x, t)
)2
dxdt.

On the other hand, we have

∣

∣

∣p(n−1)(x, t)
∣

∣

∣

2
=
∣

∣

∣G
(

x, t, y(n)
)

−G
(

x, t, y(n−1)
)∣

∣

∣

2
.

Like G function is Lipschitzian, we find :

∣

∣

∣
p(n−1)(x, t)

∣

∣

∣

2
≤ k2

∣

∣

∣
y(n) − y(n−1)

∣

∣

∣

2

= k2
∣

∣

∣z(n−1)
∣

∣

∣

2
.

Multiplying by x and integrating over Q, we find:

∫

Q

x
∣

∣

∣p(n−1)(x, t)
∣

∣

∣

2
dxdt ≤ k2

∫

Q

x
∣

∣

∣z(n−1)
∣

∣

∣

2
dxdt.

Then
∥

∥

∥
p(n−1)

∥

∥

∥

2

L2(0,T ;H1√
x
(0,1))

≤ k2
∥

∥

∥
z(n−1)

∥

∥

∥

2

L2(0,T ;H1√
x
(0,1))

. (27)

This result gives us the following inequality

1

2

∫ 1

0
x(z(n) (x, τ))2dx+ a

∫

Qτ

x

(

∂z(n)

∂x
(x, t)

)2

dxdt,

≤ 1

2

∫

Qτ

x
(

p(n−1)(x, t)
)2
dxdt+

1

2

∫

Qτ

x
(

z(n) (x, t)
)2
dxdt,

≤ k2

2
‖ z(n−1) ‖2

L2(0,T ;H1√
x
(0,1)) +

1

2
‖ z(n) ‖2

L2(0,T ;H1√
x
(0,1)) .

Thus, it is easy to get that

‖ z(n) ‖2
L2√

x
(0,1) +2a ‖ ∂xz(n) ‖2L2√

x
(Qτ ),

≤ k2 ‖ z(n−1) ‖2
L2(0,T ;H1√

x
(0,1)) + ‖ z(n) ‖2

L2(0,T ;H1√
x
(0,1)) .

Now we shall apply Gronwall’s lemma. We get:

‖ z(n) ‖2
L2√

x
(0,1) +2a ‖ ∂xz(n) ‖2L2√

x
(Qτ ),
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6 k2e
∫ T

0 dt ‖ z(n−1) ‖2
L2(0,T ;H1√

x
(0,1)) .

The result enables us to pass to the maximum in the right part of the last

inequality, and we obtain:

‖ z(n) ‖2
L∞(0,T ;L2√

x
(0,1)) + ‖ ∂xz(n) ‖2L2√

x
(Qτ ),

6
k2eT

min {1, 2a} ‖ z(n−1) ‖2
L2(0,T ;H1√

x
(0,1)) .

Finally, we get :

‖ z(n) ‖L2(0,T ;H1√
x
(0,1))≤ C ‖ z(n−1) ‖L2(0,T ;H1√

x
(0,1)),

where

C =

√

k2eT

min {1, 2a} .

According to the convergence criterion of the series, the series
∞
∑

n=1
z(n) con-

verges if |C| < 1, which implies:

√

k2eT

min {1, 2a} < 1,

k2 <
min {1, 2a}

eT
,

k <

√

min {1, 2a}
eT

.

As

z(n)(x, t) = y(n+1)(x, t)− y(n)(x, t),

y(n) =
n−1
∑

i=1

z(i).

Then y(n) converges to an element y ∈ L2(0, T ;H1√
x
(0, 1)) . Now, we will

prove that limn−→∞ y(n)(x, t) = y(x, t) is a solution of the problem (P5) by
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showing that y satisfies

A(y, v) =

∫

Q

G(x, tt) · xv(x, t)dxdt. (28)

Therefore we consider the weak formulation of the problem (P5)

A(y(n), v) =

∫

Q

∂y(n)

∂t
(x, t) · xv(x, t)dxdt + a

∫

Q

x
∂y(n)

∂x

∂v

∂x
dxdt.

From the linearity of A we have

A
(

y(n), v
)

= A
(

y(n) − y, v
)

+A (y, v) ,

=

∫

Q

xvdxdt+ a

∫

Q

x
∂(y(n) − y)

∂x

∂v

∂x
dxdt+A (y, v) . (29)

When the Cauchy-Schwartz inequality is applied to A(y(n) − y, v), we get

A
(

y(n), v
)

≤ ‖v‖L2(0,T ;H1√
x
(0,1))

∥

∥

∥
(y(n) − y)t

∥

∥

∥

On the other hand,

y(n) −→ y in L2
(

0, T ; H
1√
x
(0, 1)

)

,

so

y(n) −→ y in L2
(

0, T ; L2√
x
(0, 1)

)

,

y
(n)
t −→ yt in L2

(

0, T ; L2√
x
(0, 1)

)

,

y(n)x −→ yx in L2
(

0, T ; L2√
x
(0, 1)

)

.

Let us pass to the limit when n −→ +∞. We find

lim
n−→+∞

A
(

y(n) − y, v
)

= 0. (30)

According to (30) and by passing to the limit in (29) we obtain

lim
n−→+∞

A
(

y(n), v
)

= A (y, v) .

Thus, we have proved the following result : ���
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Theorem 5. If the condition (24) is satisfied, and

k <

√

min {1, 2a}
eT

.

Then the problem (21)− (23) admits a weak solution belonging to

L2
(

0, T ; L2√
x
(0, 1)

)

.

Now, we will show that the solution of the problem (21)−(23) is unique.

Theorem 6. If the condition (24) is verified, then the solution is unique.

Proof. Let y1, y2 be two solutions of L2
(

0, T ;H1√
x
(0, 1)

)

(21)− (23), and

then

y = y1 − y2,

is also a solution in L2
(

0, T ;H1√
x
(0, 1)

)

and we check

∂y

∂t
− a

1

x

∂

∂x

(

x
∂y

∂x

)

= G (x, t, y) , (31)

y(x, 0) = 0, (32)

∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0, (33)

∂y

∂t
− a

x

∂

∂x

(

x
∂y

∂x

)

= Ψ(x, t), ∀ (x, t) ∈ Q

y (x, 0) = 0,

∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0

and

Ψ(x, t) = G (x, t, y1)−G (x, t, y2) .

Using the Lemma 1, we can conclude that

‖y‖
L2

(

0,T,H1√
x
(0,1)

) ≤ C‖y‖
L2

(

0,T,H1√
x
(0,1)

),

from which

(1− C) ‖y‖
L2

(

0,T,H1√
x
(0,1)

) ≤ 0,



460 D. SOFIANE, T. EDDINE OUSSAEIF AND C. ZAINOUBA [December

and as C ≤ 1, then we get

‖y‖L2(0,T,H1(0,1)) = 0,

from which

y1 = y2,

This contributes to the solutions uniqueness. ���

6. Finite Time Blow-Up for Nonlinear Problem by using

Kaplan’s First Eigenvalue Method

In this section we are interested in the study of the blow-up phenomena

for the nonlinear problem where the diffusion term is given in the following

manner f(x, t, u) = up.

6.1. Statement of the problem

Let T > 0, Ω = (0, 1) and Q = Ω × (0, T ) =
{

(x, t) ∈ R2, x ∈ Ω and

0 < t < T
}

.

Consider the following nonlinear problem :











































∂u

∂t
− a

x

∂

∂x

(

x
∂u

∂x

)

= up, ∀ (x, t) ∈ Q;

u (x, 0) = ϕ (x), ∀x ∈ Ω;

∂u
∂x

(0, t) =

∫ 1

0
k1(x)u(x, t)dx, ∀ t ∈ Ω;

∂u
∂x

(1, t) =

∫ 1

0
k2(x)u(x, t)dx, ∀ t ∈ (0, T ) .

(P7)

Assuming that f ∈ L2 (Q), k1, k2 are known functions such that k2(x) >

ω > 0 and p > 1, whose parabolic equation is given as follows

∂u

∂t
− a

x

∂

∂x

(

x
∂u

∂x

)

= up, x ∈ Ω and 0 < t ≤ T, (34)
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with the initial condition

u(x, 0) = ϕ(x), 0 < x < 1, (35)

and the nonlocal boundary conditions

u(0, t) =

∫ 1

0
k1(x)u(x, t)dx, 0 < t ≤ T, (36)

u(1, t) =

∫ 1

0
k2(x)u(x, t)dx, 0 < t ≤ T. (37)

6.2. Determining the finite-time blow up solution by using Ka-

plan’s first eigenvalue method

Let ψ(x) be the normalized eigenfunction corresponding to the eigen-

value λ of the following Sturm-Liouville problem:















− 1
x
∂
∂x

(

x∂ψ
∂x

)

= λψ,

ψ(0) = 0,

ψx(1) = 0.

(P8)

Let’s find the solution ψ(x) :

By multiplying the equation in the problem (P8) by x,we get

−∂ψ
∂x

− x
∂2ψ

∂x2
− λxψ = 0,

which is the Bissel’s function, with the following general solution

ψ(x) = c1J0(
√
λx) + c2Y0(

√
λx),

where c1,c2 are constants and we have

J0(
√
λx) =

+∞
∑

k=0

(−1)k

(k!)2
(

√
λx

2
)2k,

and
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Y0(
√
λx) = lim

α→0

cos(απ)J0(
√
λx)− J0(

√
λx)

sin(απ)
.

Since Y0 is not bounded as x → 0+, then we must have c2 = 0 where

the solution becomes

ψ(x) = c1J0(
√
λx).

Let λ1 be the first eigenvalue of the problem (P8) where J
′
0(
√
λ1) = 0.

Theorem 7. For p > 1 and ∀ (x, t) ∈ Q, the solution of the problem (P7)

blows up in a finite time T ∗such that:

T ∗ =
1

K
ln





r(1−p)
K

(

(Π(0))1−p − r(1−p)
K

)



 ,where Π(0) =

(

B +
r(1− p)

K

)
1

1−p

.

Proof. We based this proof on a sufficiently large initial data, for the study

of one of the most profiles importantant of explosion phenomenon for the

solutions of problem (P7).

To estimate the finite time blow up of the main problem we use the

Kaplans method by multiplying the equation in (34) by (xψ), and integrating

by parts over the domain Ω = (0, 1), we get

∫ 1

0
xψ · ∂u

∂t
dx− a

∫ 1

0

∂

∂x

(

x
∂u

∂x

)

· ψdx =

∫ 1

0
xψ · updx.

Then

∂

∂t

∫ 1

0
xψ · u(x, t)dx − a

[

xψ(x)ux|10 −
∫ 1

0
xψx · ux

]

=

∫ 1

0
xψ · updx.

After using the boundary conditions and integration by parts one more time

the last inequality becomes

∂

∂t

∫ 1

0
xψ · u(x, t)dx − a

[

ψ(1)ux(1, t) +

∫ 1

0
u
∂

∂x
(xψx)dx

]

=

∫ 1

0
xψ · updx.

Then

∂

∂t

∫ 1

0
xψ · u(x, t)dx − ac1J0(

√
λ)

∫ 1

0
k2(x)udx − a

∫ 1

0
u
∂

∂x
(xψx)dx
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=

∫ 1

0
xψ · updx. (38)

On the other hand, we have

∫ 1

0
u
∂

∂x
(xψx)dx = −λ

∫ 1

0
xuψdx,

So, the equality (38) becomes

∂

∂t

∫ 1

0
xψ · u(x, t)dx − ac1J0(

√
λ)

∫ 1

0
k2(x)udx + aλ

∫ 1

0
xψ · u(x, t)dx

=

∫ 1

0
xψ · updx.

Then

∂

∂t

∫ 1

0
xψ · udx+ aλ

∫ 1

0
xψ · udx=ac1J0(

√
λ)

∫ 1

0
k2(x)udx+

∫ 1

0
xψ · updx.

Now, by applying Jensen inequality, we find

∂

∂t

∫ 1

0
xψ · udx+ aλ

∫ 1

0
xψ · udx

≥ aωc1J0(
√
λ)

∫ 1

0
udx+

(

∫ 1

0
xψdx

)1−p(
∫ 1

0
xψu

)p

. (39)

On the other hand, we have

∫ 1

0
u(x, t)dx ≥ 1

c1

∫ 1

0
xψ · u(x, t)dx, where c1 = ‖xψ‖L∞(0,1) .

Then, the inequality (39) becomes

∂

∂t

∫ 1

0
xψ · udx+ aλ

∫ 1

0
xψ · udx

≥ aωJ0(
√
λ)

∫ 1

0
xψ · udx+

(

∫ 1

0
xψdx

)1−p(
∫ 1

0
xψu

)p

.

Finally, we obtain

∂

∂t

∫ 1

0
xψ · udx+ a

(

λ− ωJ0(
√
λ)
)

∫ 1

0
xψ · udx



464 D. SOFIANE, T. EDDINE OUSSAEIF AND C. ZAINOUBA [December

≥
(

∫ 1

0
xψdx

)1−p(
∫ 1

0
xψu

)p

.

By putting

Π(t) =

∫ 1

0
xψ · udx,

we find

Π′(t) + a
(

λ− ωJ0(
√
λ)
)

Π(t) ≥ (

∫ 1

0
xψdx)1−pΠp(t). (40)

By putting

r = (

∫ 1

0
xψdx)1−p and d = a

(

λ− ωJ0(
√
λ)
)

,

the equality (40) becomes

Π′(t) + dΠ(t) ≥ rΠp(t).

Let’s solve the following Bernoulli equation

Π′(t) + dΠ(t)− rΠp(t) = 0 (41)

By putting

v = Π1−p, (42)

and replacing (42) in (41) we find

1

1− p
v′v

p

1−p + dv
1

1−p − rv
p

1−p = 0. (43)

Multiplying the equation (43) by (1− p)v
−p
1−p , we get

v′ +Kv − r(1− p) = 0;where K = (1− p) d. (44)

First, we are going to solve the following homogeneous equation:

v′ +Kv = 0,
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which has a known solution given by:

υh(t) = Be−Kt

Now, we move on to solving the non-homogeneous equation (44) by the

method of constant variation, where we put

υg(t) = B(t)e−Kt, (45)

so

υ′g(t) = B′(t)e−Kt −KB(t)e−Kt. (46)

Combining (45) and (46) with (44) where we get

B′(t)e−Kt = r(1− p),

then

υg(t) =
r(1− p)

K
.

The final solution is given by

v(t) = vh(t) + vg(t)

= Be−Kt +
r(1− p)

K
,

so

Π(t) =

(

Be−Kt +
r(1− p)

K

) 1
1−p

.

For t = 0, we get

B = (Π(0))1−p − r(1− p)

K
.

Finally, we get

Π(t) =





1
(

(Π(0))1−p − r(1−p)
K

)

e−Kt + r(1−p)
K





1
p−1

,
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where 1
p−1 > 0, and then

Π → ∞ if

(

(Π(0))1−p − r(1− p)

K

)

e−Kt +
r(1− p)

K
→ 0,

so we get

T ∗ =
1

K
ln





r(1−p)
K

(

(Π(0))1−p − r(1−p)
K

)





is the finite time blow up of the problem (P7). ���

6.3. Determining the finite-time blow up solution numerically

As an important section of the chapter, we establish a numerical study

for the nonlinear problem. We aspire to support the theorical results by

relying on the finite difference technique. For positive integers N and M ,

let ∆x = 1/M and ∆t = T/N be the spatial and temporal step sizes,

respectively. For i = 0, 1, . . . ,M and n = 0, 1, . . . , N, denote xi = i∆x and

tn = n∆t. The notations uni are used for the finite difference approximations

of u(xi, tn).

6.3.1. The explicit scheme:

We can approximate the time derivative by the forward difference quo-

tient, and use the centred first and second-order approximation for the spa-

tial derivative of first and second order in (P7) to obtain :

un+1
i − uni

∆t
− a

xi

uni+1 − uni−1

2∆x
− a

uni+1 − 2uni + uni−1

∆x2
= (uni )

p .

This scheme can be written as :

un+1
i = ∆t (uni )

p + (1− 2ar)uni + (ar +
α

2i
r)uni+1 + (ar − α

2i
r)uni−1, (47)

for i = 1, 2, . . . ,M − 1, n = 0, 1, . . . , N , and r = ∆t/∆x2.

This procedure is explicit. We still have to determine two unknowns u0

and uM . For this we approximate integrals in (36) and (37) numerically by

trapezoidal rule.
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For u(0, tn+1) :

un+1
1 −un+1

0 =
(∆x)2

2

[

k1(0)u
n+1
0 +k1(1)u

n+1
M + 2

M−1
∑

i=1

k1(xi)u
n+1
i +o(∆x2)

]

.

For u(1, tn+1) :

un+1
M −un+1

M−1=
(∆x)2

2

[

k2(0)u
n+1
0 +k2(1)u

n+1
M + 2

M−1
∑

i=1

k2(xi)u
n+1
i +o(∆x2)

]

.

Thus, we can write

−(1+
(∆x)2

2
k1(0))u

n+1
0 − (∆x)2

2
k1(1)u

n+1
M =(∆x)2

M−1
∑

i=1

k1(xi)u
n+1
i −un+1

1 ,

(48)

−(∆x)2

2
k2(0)u

n+1
0 +(1− (∆x)2

2
k2(1))u

n+1
M = ∆x

M−1
∑

i=1

k2(xi)u
n+1
i +un+1

M−1.

(49)

We put

a1 = − (1 +
(∆x)2

2
k1(0)), a2 = −(∆x)2

2
k1(1),

b1 = − (∆x)2

2
k2(0)k2(1), b2 = (1− (∆x)2

2
k2(1))u

n+1
M ,

c1 = (∆x)2
M−1
∑

i=1

k1(xi)u
n+1
i − un+1

1 , c2 = ∆x

M−1
∑

i=1

k2(xi)u
n+1
i + un+1

M−1.

Under the condition a1b2 − a2b1 6= 0 which is true for sufficiently small

∆x, by Cramer rule we have

un+1
0 =

∣

∣

∣

∣

∣

c1 b1
c2 b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

∣

=
c1b2 − c2b1
a1b2 − a2b1

,
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un+1
M =

∣

∣

∣

∣

∣

a1 c1
a2 c2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

∣

=
a1c2 − a2c1
a1b2 − a2b1

.

The consistency and stability of the scheme

We shall analyze the forward-centered scheme (47) as usual, by estab-

lishing consistency and stability. Let uni = u(xi, tn) denote the restriction of

the exact solution. We have the finite difference scheme

un+1
i − uni

∆t
− a

xi

uni+1 − uni−1

2∆x
− a

uni+1 − 2uni + uni−1

∆x2
= (uni )

p . (50)

1-Consistency:

By using Taylor’s formula, we have

un+1
i − uni

∆t
= ut(xi, tn) +

∆t

2
utt(xi, ξ1). (51)

Then

uni+1 − uni−1

2∆x
= ux(xi, tn) +

∆x2

6
u(3)(η1, tn), (52)

and thus

uni+1 − 2uni + uni−1

∆x2
= uxx(xi, tn) +

∆x2

12
u(4)(η2, tn). (53)

Combining (51), (52) and (53) with (50), we find

ut(xi, tn)−
a

xi
ux(xi, tn)− auxx(xi, tn) + o(∆t) + o(∆x2) = up(xi, tn),

such that

o(∆t) =
∆t

2
utt(xi, ξ1) and o(∆x2) = − a

xi

∆x2

6
u(3)(η1, tn)−a

∆x2

12
u(4)(η2, tn).
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While o(∆t) + o(∆x2) → 0, we obtain

ut(xi, tn)−
a

xi

∂

∂x
(x
∂u

∂x
) = up(xi, tn).

So the explicit schema is consistent.

2-Stability

Next we establish a stability result. Suppose that a mesh function uni
satisfies (50). We want to bound an appropriate norm of the mesh function

uni in terms of an appropriate norm of the function (uni )
p on the right hand

side. For the norm, we use the max norm :

‖U‖L∞ = max
1≤i≤M

|uni | .

Write

Mn = max
1≤i≤M

|uni | , Fn = max
1≤i≤M

|(uni )p| .

From (50) we get by putting r = 1
2i

un+1
i = ∆t (uni )

p + (1− 2ar)uni + (ar +
1

2i
r)uni+1 + (ar − 1

2i
r)uni−1,

and thus

∣

∣un+1
i

∣

∣ =
∣

∣

∣
∆t (uni )

p + (1− 2ar)uni + (ar +
α

2i
r)uni+1 + (ar − α

2i
r)uni−1

∣

∣

∣

≤ ∆t |(uni )p|+ |1− 2ar| |uni |+
∣

∣

∣
ar +

α

2i
r
∣

∣

∣

∣

∣uni+1

∣

∣+
∣

∣

∣
ar − α

2i
r
∣

∣

∣

∣

∣uni−1

∣

∣ .

Now we make the assumption that r ≤ 1
2a . We get :

∣

∣un+1
i

∣

∣ ≤ ∆tFn + |(1− 2ar)|Mn + (ar +
a

2i
r)Mn + (ar − a

2i
r)Mn,

so it easily follows that

∣

∣un+1
i

∣

∣ ≤Mn +∆tFn. (54)

We deduce by passing to the maximum on
(

un+1
i

)

1≤i≤M , and (54) becomes
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:

Mn+1 ≤Mn +∆tFn.

By recurrence

Mn+1 ≤ Mn +∆tFn ≤Mn−1 +∆t(Fn + Fn−1) ≤Mn−2 +∆t(Fn + Fn−1 + Fn−2)

≤ · · · ≤M0 +∆t(Fn + Fn−1 + Fn−2 + · · ·+ F 0).

Putting

F = max
0<n<N

|Fn| .

We obtain

Mn+1 ≤M0 +∆tF,

so

‖U‖L∞ ≤
∥

∥U0
∥

∥

L∞ + ‖F‖L∞ ,

which is a stability result. We have thus shown stability under the condition

that r ≤ 1
2a . We say that the forward-centered difference method for the

heat equation is conditionally stable.

The implicit scheme:

Basically an implicit scheme contains information at the current level

which requires solving of simultaneous equations where the scheme are very

stable and can have much larger timesteps. So we write the scheme at the

point (xi, tn) so that the difference equation now becomes:

un+1
i − uni

∆t
− a

xi

un+1
i+1 − un+1

i−1

2∆x
− a

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
= (uni )

p , (55)

after,

un+1
i − uni

∆t
− a

xi

un+1
i+1 − un+1

i−1

2∆x
− a

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
= (uni )

p ,

un+1
i − uni −

a∆t

i∆x2
(

un+1
i+1 − un+1

i−1

)

− a∆t

∆x2
(

un+1
i+1 − 2un+1

i + un+1
i−1

)

= ∆t (uni )
p .
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By putting R = a∆t
∆x2

, we obtain:

un+1
i −uni −

R

i

(

un+1
i+1 − un+1

i−1

)

−R
(

un+1
i+1 − 2un+1

i + un+1
i−1

)

= ∆t (uni )
p ,

R

(

1

i
− 1

)

un+1
i−1 + (1 + 2R)un+1

i +R

(

−1

i
+ 1

)

un+1
i+1 = ∆t (uni )

p−uni ,

to get the first line and the last line of the matrix:

(

(∆x)2

2
k1(0)+1

)

un+1
0 +

(∆x)2

2
k1(1)u

n+1
M +(∆x)2

M−1
∑

i=1

k1(xi)u
n+1
i =un+1

1 ,

(

(∆x)2

2
k1(0)+1

)

un+1
0 +

(∆x)2

2
k1(1)u

n+1
M +

(

(∆x)2 k1(x1)− 1
)

un+1
1

+(∆x)2
M−1
∑

i=2

k1(xi)u
n+1
i = 0.

then

(∆x)2

2
k2(0)u

n+1
0 +

(

(∆x)2

2
k2(1) − 1

)

un+1
M + (∆x)2

M−2
∑

i=1

k2(xi)u
n+1
i

+
(

(∆x)2 k2(xM−1) + 1
)

un+1
M−1 = 0.

Now when we simplify this expression, the matrix once and at each

timestep perform. In particular if we write the system as

An+1Un+1 = Bn+1 (56)

which

An+1 =



















k(0) k(1) k(2) · · · · · · k(M − 1) k(M)

0 r 0 0 · · · 0

0 δ2 r −δ2 0 · · · 0

· · ·
0 δM−1 r −δM−1

p(0) p(1) p(2) · · · · · · p(M − 1) p(M)



















(M+1)×(M+1)
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with






































































































δi = R
(

1
i
− 1
)

,

r = 1 + 2R,

k(0) =
(

(∆x)2

2 k1(0) + 1
)

,

k(1) =
(

(∆x)2 k1(x1)− 1
)

,

k(i) = (∆x)2 k1(xi),∀ i = 2, . . . ,M − 1,

k(M) = (∆x)2

2 k1(1),

p(0) = (∆x)2

2 k2(0),

p(i) = (∆x)2 k2(xi),∀ i = 1, . . . ,M − 2,

p(M − 2) =
(

(∆x)2 k2(xM−1) + 1
)

,

p(M) =
(

(∆x)2

2 k2(1)− 1
)

,

Un+1 =





















un+1
0

un+1
1

un+1
2
...

un+1
M−1

un+1
M





















(M+1)×1

,

Bn+1 =

























0

∆t (un1 )
p − un1

∆t (un2 )
p − un2

· · ·
· · ·

∆t
(

unM−1

)p − unM−1

0

























.

6.4. Numerical examples

In this section we will use the two discrete finite equations derived (ex-

plicit and implicit). Three numerical experiments will be considered.
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Problem 1:







































∂u

∂t
− 1

x

∂

∂x
(x
∂u

∂x
) = u3, x ∈ [0.1] , t > 0,

u(0, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) ,

u(1, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) ,

u(x, 0) = − sin(x) + 1, x ∈ [0, 1] .

Problem 2:







































∂u

∂t
− 1

x

∂

∂x
(x
∂u

∂x
) = u5, x ∈ [0, 1] , t > 0,

u(0, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) ,

u(1, t) =

∫ 1

0
xu(x, t)dx, ∀ t ∈ (0, T ) ,

u(x, 0) = − sin(x) + 1, x ∈ [0, 1] .

Since the analytical (exact) solutions to problems 1, 2 and 3 with the as-

sociated initial condition are known, we can only estimate numerically the

blow-up times.

Figure 1:

Figure 2:
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