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Abstract

We give a parametrization of the canonical basis of the modified quantum group

corresponding to a root datum in terms of the flag manifold over the semifield Z associated

to the reductive group corresponding to the dual root datum.

Introduction

0.1. Let f be the + part of the Drinfeld-Jimbo quantized enveloping algebra

U (over Q(v)) attached to a root datum of simply laced type and let U̇ be

the modified form of U (see [9, §23]). Let B (resp. Ḃ) be the canonical

basis of f (resp. U̇) defined in [6] (resp. in [8], see also [9, 25.2]). In [6] it

was shown that B is naturally parametrized by something which later [10]

was interpreted in terms of certain objects attached to the semifield Z. In

this paper we want to find an analogous parametrization for Ḃ (see 5.12),

compatible with the involution ω of U̇ interchanging the + part and the −

part (see 3.3) which preserves Ḃ (see 3.8). In particular we show that Ḃ is

preserved by ω.

Let X be the lattice of weights of our root datum and let X+ be the set

of dominant weights in X. We will put Ḃ in bijection with ⊔λ∈X+(Bλ×Bλ)

where Bλ is the canonical basis [6] of the simple finite dimensional U -module
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Λλ with highest weight λ. We are reduced to finding a parametrization of

Bλ in terms of objects attached to the semifield Z. Such a parametrization

was given in [6, §8], but this is still not enough for our purpose.

We will give another parametrization of Bλ based on the following ob-

servation of [12]. According to [6, §8], the set Bλ can be parametrized in two

different ways: by regarding Λλ as a highest weight module or as a lowest

weight module. The rather complicated combinatorics relating these two

parametrizations was shown in [12] to be expressible in terms of a remark-

able involution φZ (defined in [12]) of a certain object BZ attached to the

semifield Z. We can parametrize Bλ in terms of this involution φZ. More

precisely, if G is a reductive group corresponding to the dual root datum,

then BZ is a variant of the flag manifold of G over the semifield Z. Then BZ

has two remarkable subsets B+
N
,B−

N
(interchanged by φZ) in which certain

parameters in Z are assumed to be in N. As in [12], BZ has an action of

the group X; this is the Z-variant of the conjugation action of a maximal

torus of G on the flag manifold of G. Now, for λ ∈ X we can consider the

intersection of B+
N

with the λ translate (in the sense of the X-action) of B−
N
.

Although B+
N

and B−
N

are in general infinite, we show that the intersection

above is finite; moreover, it is nonempty if and only if λ is dominant, in

which case it naturally parametrizes Bλ. This parametrization is an imme-

diate consequence of [12, 4.9], except for the nonemptiness criterion above.

(The proof of 4.9 in [12] contained some misprints and we reprove it in 5.5.)

The resulting parametrization of Ḃ has the property that the action of

ω has a simple description in terms of the involution φZ.

Another parametrization of Bλ (which again uses ideas in [12]) is given

in [3].

0.2. One can show that similar results hold when our root datum is not

assumed to be simply laced, by using folding to reduce to the simply laced

case (as was done for B in [14] where again the group G corresponding to

the dual root datum was used.)

1. The Flag Manifold BK for a Semifield K

1.1. We fix a finite set I and a simply laced Cartan matrix (aij) indexed

by I × I, that is a symmetric, positive definite matrix with integer entries
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such that aii = 2 for i ∈ I, aij ∈ {0,−1} for i 6= j in I. We denote the

obvious Z-basis of Z[I] as {i′; i ∈ I}. For i ∈ I we define a homomorphism

si : Z[I] → Z[I] by j′ 7→ j′ − aiji
′ (j ∈ I). Let W be the subgroup of the

automorphism group of Z[I] generated by {si; i ∈ I}. This is a finite Coxeter

group with length function w 7→ |w|.

Let w0 be the unique element of W with |w0| maximal and let ν = |w0|.

For i ∈ I we define i! ∈ I by si! = w0siw0; then i 7→ i! is an involution

of I.

Let I be the set of sequences i = (i1, i2, . . . , iν) such that si1si2 . . . siν =

w0. For example, if I = {i, j}, aij = −1, we have I = {(i, j, i), (j, i, j)}.

1.2. Let K be a semifield. Let (i,a), (i′,a′) in I ×Kν be given by

i =(i1, i2, . . . , iν), i′ = (i′1, i
′
2, . . . , i

′
ν),

a =(a1, a2, . . . , aν), a′ = (a′1, a
′
2, . . . , a

′
ν).

We say that (i,a), (i′,a′) are adjacent if one of (i),(ii) below holds.

(i) For some l ∈ [1, ν − 3] we have i′k = ik for k /∈ {l, l + 1, l + 2} and

(il, il+1, il+2) = (i, j, i), (i′l, i
′
l+1, i

′
l+2) = (j, i, j) where i, j in I satisfy

aij = −1; moreover, (al, al+1, al+2) = (a, b, c), (a′l, a
′
l+1, a

′
l+2) = (a′, b′, c′)

where

a′ = bc/(a + c), b′ = a+ c, c′ = ab/(a+ c),

or equivalently

a = b′c′/(a′ + c′), b = a′ + c′, c = a′b′/(a′ + c′);

(ii) for some l ∈ [1, ν − 2] we have i′k = ik for k /∈ {l, l + 1} and (il, il+1) =

(i, j), (i′l, i
′
l+1) = (j, i) where i, j in I satisfy aij = 0; moreover, a′l = al+1,

a′l+1 = al.

Let UK be the set of equivalence classes on I ×Kν for the equivalence

relation on I ×Kν generated by the adjacency relation.

We shall sometime denote (i,a) ∈ I ×Kν , (or its equivalence class) as

ia11 ia22 . . . iaνν , where i = (i1, i2, . . . , iν),a = (a1, a2, . . . , aν).
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The assignment

ia11 ia22 . . . iaνν → iaνν i
aν−1

ν−1 . . . ia11

defines an involution A 7→ A∗ of UK .

1.2. For i = (i1, i2, . . . , iν) ∈ I and k ∈ [1, ν], we have

si1si2 . . . sik−1
(i′k) =

∑

h∈I

rh,kh
′

(in Z[I]) where rh,k ∈ N. For a = (a1, a2, . . . , aν) ∈ Kν , h ∈ I we set

||i,a||h =
∏

k∈[1,ν]

a
rh,k
k ∈ K.

We show:

(a) If (i,a), (i′,a′) in I ×Kν are adjacent, then ||i,a||h = ||i′,a′||h.

Let r′h,k ∈ N be defined in terms of i′ in the same way as rh,k was defined in

terms of i. In case 1.1(i) we must show:

(b) a
rh,l
l a

rh,l+1

l+1 a
rh,l+2

l+2 = a′l
r′
h,la′l+1

r′
h,l+1a′l+2

r′
h,l+2 .

For some w ∈ W we have

w(i′) =
∑

h1∈I
rh1,lh

′
1,

wsi(j
′) = w(i′) + w(j′) =

∑

h1∈I
rh1,l+1h

′
1,

wsisj(i
′) = w(j′) =

∑

h1∈I
rh1,l+2h

′
1,

w(j′) =
∑

h1∈I
r′h1,l

h′1,

wsj(i
′) = w(i′) + w(j′) =

∑

h1∈I
r′h1,l+1h

′
1,

wsjsi(j
′) = w(i′) =

∑

h1∈I
r′h1,l+2h

′
1.

Thus,

rh,l = r′h,l+2, rh,l+1 = r′h,l+1 = rh,l + rh,l+2, rh,l+2 = r′h,l.

Thus, (b) is equivalent to

(alal+1)
rh,l(al+1al+2)

rh,l+2 = (a′la
′
l+1)

rh,l(a′l+1a
′
l+2)

rh,l+2 .
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This follows from

alal+1 = a′l+1a
′
l+2, a′la

′
l+1 = al+1al+2.

This proves (a) in case 1.1(i).

In case 1.1(ii) we must show

(c) a
rh,l
l a

rh,l+1

l+1 = a′l
r′
h,la′l+1

r′
h,l+1 .

For some w ∈ W we have

w(i′) =
∑

h1∈I
rh1,lh

′
1,

wsi(j
′) = w(j′) =

∑

h1∈I
rh1,l+1h

′
1,

w(j′) =
∑

h1∈I
r′h1,l

h′1,

wsj(i
′) = w(i′) =

∑

h1∈I
r′h1,l+1h

′
1.

Thus, rh,l = r′h,l+1, rh,l+1 = r′h,l so that

rh,l = r′h,l+1, rh,l+1 = r′h,l.

Thus, (c) is equivalent to

a
rh,l
l a

rh,l+1

l+1 = a′l
rh,l+1a′l+1

rh,l

and this follows from a′l = al+1, a
′
l+1 = al. This proves (a) in case 1.1(ii).

In view of (a) we can define ||A||h ∈ K for any A ∈ UK , h ∈ I to be

||i,a||h for any (i,a) in A.

1.3. Let i ∈ I. We define a map fi : K
ν → UK by sending a ∈ Kν to the

equivalence class of (i,a). We show:

(a) fi is a bijection.

Let A ∈ UK . If (i′,a′) ∈ A then using Matsumoto’s theorem [13, 1.9] for

w0, we can find a sequence (i1,a1), . . . , (in,an) in I ×Kν in which any two

consecutive terms are adjacent such that (in,an) = (i′,a′), i1 = i. We have

(i,a1) ∈ A. Thus fi is surjective.

Next we prove that fi is injective. Assume first that K is contained on

the multiplicative group of a field k of characteristic zero with +,× induced

from that of k. Then fi is injective by 4.2(a).
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Next we consider a general K. Assume that a = (a1, . . . , aν) ∈ Kν ,a′ =

(a′1, . . . , a
′
ν) in Kν are such that fi(a) = fi(a

′). Then we can find

(i1,a1), . . . , (in,an)

in I × Kν in which any two consecutive terms are adjacent and (i1,a1) =

(i,a), (in,an) = (i,a′). By [2, 2.1.6] we can find a semifield K̃ as in the first

part of the proof and a homomorphism of semifields z : K̃ → K such that

a1 = z(ã1), . . . , aν = z(ãν)

for some

ã = (ã1, . . . , ãν) ∈ K̃ν .

We define

ã1, ã2, . . . , ãν

by the condition that any two consecutive terms of

(i1, ã1), (i2, ã2), . . . , (in, ãn)

are adjacent (in I × K̃ν). Now z takes ã1 to a1 and then it automatically

takes ã2, . . . , ãn to a2, . . . ,an. We have i1 = in = i and the injectivity of our

map (for K̃) implies that ã1 = ãn. Applying z we see that a1 = an that is

a = a′. This proves injectivity of fi. This proves (a).

1.4. Let i ∈ I, c ∈ K. If A ∈ UK we can find (i,a) ∈ A such that the

first term of i is i. (We use Matsumoto’s theorem [13, 1.9] for w0.) We set

ca = (a1c, a2, . . . , aν) where a = (a1, a2, . . . , aν). Assume that (i′,a′) ∈ A is

also such that the first term of i′ is i. Then ca
′ ∈ Kν is defined. We show

that

(a) (i, ca), (i
′, ca

′) are equivalent.

Using Matsumoto’s theorem for siw0, we see that we can find a sequence

(i1,a1), . . . , (in,an)
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in I ×Kν in which any two consecutive terms are adjacent as in 1.1(i),(ii)

with l ≥ 2 such that

(i1,a1) = (i,a), in = i′

(in particular each i1, i2, . . . starts with i). Then (i′,an), (i′,a′) are both in

A hence by 1.3(a) we must have an = a′. Now any two consecutive terms of

(i1, ca
1), . . . , (in, ca

n)

are adjacent and we have

(i1, ca
1) = (i, ca), (i

n, ca
n) = (i′, ca

′).

This proves (a).

We see that (i,a) 7→ (i,ac) defines a map (in fact a bijection) Ti,c :

UK → UK .

For c, c′ in K we have Ti,cTi,c′ = Ti,cc′.

1.5. Let i ∈ I, c ∈ K,A ∈ UK .

We can find (i,a) ∈ A such that the first term of i is i. Define rh,k in

terms of i as in 1.2. We have rh,1 = δh,i1 (this is 1 if h = i and is 0 if h 6= i).

We have

||i,a||h = a
δi,h
1

∏

k∈[2,ν]

a
rh,k
k ∈ K.

||i, ca||h =(ca1)
δi,h

∏

k∈[2,ν]

a
rh,k
k = cδi,h ||i,a||h.

Thus we have

||Ti,cA||h = cδi,h ||A||h.

1.6. We regard KI as a group (the product of (pi) and (p′i) is (pip
′
i)).

For p = (pi)i∈I ∈ KI there is well defined bijection Sp : UK → UK given

by

ia11 ia22 . . . iaνν 7→ i
a1pi1
1 i

a2pi2
2 . . . i

aνpiν
ν

for (i,a) ∈ I ×Kν , see [16, no.8].
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This defines an action of the group KI on UK .

For p ∈ KI , i ∈ I, c ∈ K we have

(a) Ti,cSp = SpTi,c.

There is a well defined involution ι : UK → UK such that

ia11 ia22 . . . iaνν 7→ (i!1)
a1(i!2)

a2 . . . (i!ν)
aν

for (i,a) ∈ I ×Kν . For p ∈ KI we have ιSp = Sp!ι where p! ∈ KI is given

by (p!)i = pi!.

For i ∈ I, c ∈ K we have

(b) Ti,cι = ιTi!,c

We show:

(c) The action of KI on UK described above is free.

We must show that if p = (pi) ∈ KI and A ∈ UK are such that SpA = A then

pi = 1 for all i. Let (i,a) ∈ A with i = (i1, i2, . . . , iν),a = (a1, a2, . . . , aν).

Let a′ = (a1pi1 , a2pi2 , . . . , aνpiν ) ∈ Kν . By assumption we have (i,a′) ∈ A.

Using 1.3(a) we deduce that a′ = a. Thus ak = akpik for k = 1, . . . , ν so

that pik = 1 for k = 1, . . . , ν. For any i ∈ I we can find k such that ik = i.

It follows that pi = 1 for i ∈ I. This proves (c).

1.7. For a semifield K, let φK : UK → UK be the bijection defined in 4.6,

see also [16, no.11]. We have φ2
K = 1.

For example, if I = {i} we have φK(ia) = i1/a; if I = {i, j} with aij = 1,

we have

φK(iajbic) = ia/c(a+c)j(a+c)/abi1/(a+c) = jc/abi1/cj1/b.

We have

(a) ιφK = φKι.

For p ∈ KI we have

(b) SpφK = φKSp−1 ;

hence SpφK : UK → UK has square 1.
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For i ∈ I, c ∈ K we have

(c) Ti,cφK = φKTi!,c−1 .

Now (b),(c) can be viewed as sequences of equalities between certain rational

functions which are quotients of nonzero polynomials in several variables

with all coefficients in N (after substituting elements of K for the variables).

It is enough to prove these equalities in the case where K = R>0; in that

case (b) is proved in [15, 4.3(d)] and (c) is proved in [16, 10(a)].

1.8. Let BK = {(A,A′) ∈ UK × UK ;φK(A) = A′} be the graph of φK . We

define an involution φ
K

: BK → BK by φ
K
(A,A′) = (A′, A). (We use that

φ2
K = 1.) We define an involution ι : BK → BK by ι(A,A′) = (ι(A), ι(A′)).

(We use 1.7(a).) Now the group KI acts on BK by p : B 7→ Sp(B) where

Sp(A,A
′) = (SpA,Sp−1A′). (We use 1.7(b)).

For p ∈ KI we have SpφK
= φ

K
Sp−1 .

1.9. Let A ∈ UK and let (i,a)∈A with i=(i1, i2, . . . , iν), a=(a1, a2, . . . , aν).

Let i′ = (iν , . . . , i2, i1) ∈ I. Define a′ = (a′1, a
′
2, . . . , a

′
ν) by (i′,a′) ∈ φK(A).

Lemma 1.10. We have a′ν = (
∑

k∈[1,ν];ik=i1
ak)

−1.

Using [2, 2.1.6] we see that we can reduce the general case to the case

whereK is as in 4.2. In that case the result follows from 4.5. (More precisely

4.5 gives the analogous result for φ′
K in 4.6 instead of 4.5, but the case of

φK is then a consequence.)

2. The Subsets B+
N
,B−

N
of BZ

2.1. In this section we assume thatK = Z with the usual semifield structure:

the sum of a, b is taken to be min(a, b); the product of a, b is taken to be

a+ b. Then UZ is defined as in 1.1. Note that the subset I ×Nν of I × Zν

is a union of equivalence classes for ∼. (We use that, if a, c ∈ N, then

a − min(a, c) ∈ N.) The set of these equivalence classes is a subset UN of

UZ.

For i ∈ I there is a well defined map g′i : UN → N such that ia11 ia22 . . . iaνν
7→ aν whenever (i,a) ∈ I ×Nν satisfies iν = i.
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For any p = (pi) ∈ NI we define

UN,p = {x ∈ UN; g′i(x) ≤ pi ∀i ∈ I}.

Note that ι : UZ → UZ restricts to a bijection

UN,p
∼
−→ UN,p!

where p! ∈ NI is as in 1.6.

2.2. For p = (pi) ∈ NI we set hp = i
pi1
1 i

pi2
2 . . . i

piν
ν ∈ UN where i ∈ I. From

the definition we see that this is independent of the choice of i hence is well

defined.

Note that h0 ∈ UN,p,hp ∈ UN,p. We have

(a) hp = S(p)(h0),

(b) ι(hp) = hp! ,

From [12, 2.9(a), 3.9] we have

(c) φZ(h0) = h0.

In fact, by [12, 2.9], φZ is the unique bijection UZ → UZ satisfying (c) and

1.7(c) (with K = Z).

2.3. Let p = (pi) ∈ NI . By definition, for h ∈ I we have

||hp||h =
∑

k∈[1,ν]

rh,kpik ∈ N

where i = (i1, i2, . . . , iν) ∈ I and for k ∈ [1, ν], rh,k ∈ N are defined by

si1si2 . . . sik−1
(i′k) =

∑

h∈I

rh,kh
′
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(in Z[I]). We state the following result.

(a) ||hp||h =
∑

i∈I

(pi + (p!)i)bih ∈ N

where (bij) is the inverse of the Cartan matrix (aij). It is known that bij ∈

Q≥0 (see for example [17]). Now (a) can be verified case by case.

Assume for example that I = {i}. We have ||hp||i = pi, bii = 1/2,

(pi + (p!)i)bii = pi hence (a) holds.

Assume now that I = {i, j} with aij = −1. Let i = (i, j, i). We have

i ∈ I. The corresponding sequence
∑

h∈I rh,kh
′, (k = 1, 2, 3) is i′, i′ + j′, j′

hence

∑

h∈I

||hp||hh
′ = pii

′ + pj(i
′ + j′) + pij

′ = (pi + pj)(i
′ + j′).

We have bii = bjj = 2/3, bij = bji = 1/3. Hence

∑

h∈I

(pi + (p!)i)bihh
′ +

∑

h∈I

(pj + (p!)j)bjhh
′

= (pi + pj)((2/3)i
′ + (1/3)j′) + (pj + pi)((1/3)i

′ + (2/3)j′)

= (pi + pj)(i
′ + j′).

Thus, (a) holds.

Assume now that I = {0, c, d, e} with

a0c = ac0 = a0d = ad0 = a0e = ae0 = −1,

acd = adc = ace = aec = ade = aed = 0.

Let i = (c, d, e, 0, c, d, e, 0, c, d, e, 0). We have i ∈ I.

The corresponding sequence
∑

h∈I rh,kh
′ (k = 1, 2, . . . , 12) is

c′, d′, e′, 0′c′d′e′, 0′d′e′, 0′c′e′, 0′c′d′, 0′0′c′d′e′, 0′c′, 0′d′, 0′e′, 0′

where we omit + signs (for example we write 0′c′ for 0′ + c′.)
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Thus we have

∑

h∈I

||hp||hh
′ = pcc

′+pdd
′+pee

′+p0(0
′+c′+d+e′)+pc(0

′+d′+e′)

+ pd(0
′+c′+e′)+pe(0

′+c′+d′)+p0(0
′+0′+c′+d′+e′)

+ pc(0
′ + c′) + pd(0

′ + d′) + pe(0
′ + e′) + p00

′

+ (2pc + pd + pe + 2p0)c
′ + (pc + 2pd + pe + 2p0)d

′

+ (pc + pd + 2pe + 2p0)e
′ + (2pc + 2pd + 2pe + 4p0)0

′.

We have

b00 = 2, bcc = bdd = bee = 1,

b0c = bc0 = b0d = bd0 = b0e = be0 = 1,

bcd = bdc = bce = bec = bde = bed = 1/2.

Moreover, p = p!. We see that (a) holds.

2.4. We define two subsets of BZ (see 1.8) by B+
N

= {(A,A′) ∈ BZ;A ∈ UN},

B−
N

= {(A,A′) ∈ BZ;A
′ ∈ UN}.

For any p ∈ ZI we define

BN,p = B+
N
∩ Sp(B

−
N
) ⊂ BZ.

Clearly, (A,A′) 7→ A is a bijection

(a) BN,p
∼
−→ {A ∈ UN;SpφZ(A) ∈ UN}.

Note that if p ∈ NI then (h0,hp) ∈ BN,p. (We use 2.2(a),(c).) In particular,

in this case we have BN,p 6= ∅.

2.5. We show that, conversely,

(a) if p ∈ ZI and BN,p 6= ∅, then p ∈ NI .

Assume for example that I = {i, j} with aij = −1, and that A ∈ UN satisfies

SpφZ(A) ∈ UN. We show that p ∈ NI . We have iajbic ∈ A with a, b, c in

N and jc−a−b+pj i−c+pij−b+pj ∈ SpφZ(A) with c− a− b+ pj ∈ N,−c+ pi ∈

N,−b+ pj ∈ N. Then pi ≥ c ≥ 0, pj ≥ b ≥ 0, so that indeed p ∈ NI .
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We now consider the general case. Assume that A ∈ UN satisfies

SpφZ(A) ∈ UN. Let i ∈ I. We can find (i,a) ∈ A with i = (i1, i2, . . . , iν),

a = (a1, a2, . . . , aν) ∈ Nν such that iν = i. Let i′ = (iν , . . . , i2, i1) ∈ I.

Define a′ = (a′1, a
′
2, . . . , a

′
ν) by (i′,a′) ∈ φK(A). By 1.10 we have a′ν =

−mink∈[1,ν];ik=i1 ak. In particular we have a′ν ≤ 0. By assumption we have

pi + a′ν ≥ 0 hence pi ≥ −a′ν ≥ 0. This proves (a).

3. Canonical Bases

3.1. We fix a simply laced root datum; this consists of a finite set I, two

finitely generated free abelian groups Y,X; a perfect pairing (, ) : Y ×X → Z;

an imbedding I ⊂ X, i 7→ i′ and an imbedding I ⊂ Y, i 7→ i. It is assumed

that I is as in 1.1 and (i, j′) = aij where aij is as in 1.1. We identify Z[I]

in 1.1 with a subgroup of X by i′ 7→ i′. The action of si on Z[I] extends to

an action on X by si : x 7→ x − (i, x)i′. Here i ∈ I. Thus the W -action of

on Z[I] extends to a W -action on X. For λ ∈ X we set λ! = −w0(λ); then

λ 7→ λ! is an involution of X.

Let X+ = {λ ∈ X; (i, λ) ∈ N ∀i ∈ I}. Note that X+ is stable under

λ 7→ λ!.

For λ, λ′ in X we write λ′ ≥ λ if λ′ − λ ∈
∑

i∈I Ni′ and λ′ > λ if λ′ ≥ λ

and λ′ 6= λ.

3.2. Let v be an indeterminate. Let f be the associative algebra with 1 over

Q(v) with generators {θi; i ∈ I} associated to the matrix (aij) in [10, 1.2.5].

This can be identified with the + part of the algebra U (see below) attached

to the root datum.

There is a unique algebra antiautomorphism f → f (x 7→ x∗) such that

θ∗i = θi for all i ∈ I. It has square 1.

Let U be the Drinfeld-Jimbo quantized enveloping algebra attached to

the root datum. This is an associative algebra with 1 over Q(v). As a

vector space, U can be identified with ⊕γ∈Y f⊗ f in two different ways: one

by (x ⊗ x′)y 7→ x+Kyx
′− and one by (x ⊗ x′)y 7→ x−Kyx

′+; here K0 is the

unit element. The map f → U, x 7→ x− and the map f → U, x 7→ x+ are

imbeddings of algebras with 1.
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3.3. Let U̇ be the modified form of U , see [9, §23]. This is an associative

algebra (without 1 in general) over Q(v). In type A it was defined in [1];

the definition in the general case is the same. As a vector space, U̇ can be

identified with ⊕λ∈Xf⊗ f in two different ways: one by (x⊗x′)λ 7→ x+1λx
′−

and one by (x⊗ x′)λ 7→ x−1λx
′+.

There is a unique vector space isomorphism ♯ : U̇ → U̇ such that

♯(x+1λx
′−) = (x′∗)+1λ(x

∗)−

for x, x′ in f, λ ∈ X; we have also

♯(x−1λx
′+) = (x′∗)−1λ(x

∗)−

for x, x′ in f, λ ∈ X; hence ♯2 = 1. Moreover, ♯ is an algebra antiautomor-

phism.

There is a unique vector space isomorphism ω : U̇ → U̇ such that

ω(x+1λx
′−) = x−1−λx

′+

for x, x′ in f, λ ∈ X; we have also ω(x−1λx
′+) = x+1−λx

′− for x, x′ in f,

hence ω2 = 1. Moreover ω is an algebra automorphism satisfying ω♯ = ♯ω.

3.4. For λ ∈ X+ let Λλ be the simple U -module defined in [9, 3.5.6]. We shall

regard Λλ also as (unital) U̇ -module as in [9, 23.1.4]. We have dimΛλ < ∞.

Let ηλ ∈ Λλ be as in [9, 3.5.7]. We have 1ληλ = ηλ.

Let (, )λ be the symmetric bilinear form Λλ × Λλ → Q(v) defined in [9,

19.1.2]. Recall that (ηλ, ηλ)λ = 1.

Let U̇ [≥ λ] (resp. U̇ [> λ]) be the set of all u ∈ U̇ such that the following

condition holds.

For any λ′ ∈ X+ such that u acts on Λλ′ by a nonzero map we have

λ′ ≥ λ (resp.λ′ > λ).

Clearly, U̇ [≥ λ] and U̇ [> λ] are two-sided ideals of U̇ .

3.5. Let B be the canonical basis of f (see [6], [9]). By [6, 3.3],

for b ∈ B we have b∗ ∈ B and b 7→ b∗ is a bijection B
∼
−→ B.
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If b ∈ B then there is a well defined element wt(b) ∈
∑

h∈I Nh′ ∈

X such that the following holds: b is Q(v)-linear combination of elements

θi1θi2 . . . θin where i1, i2, . . . , in in I satisfy i′1 + i′2 + · · ·+ i′n = wt(b).

3.6. Let λ ∈ X+. By [6],

there is a uniqueQ(v)-basis Bλ of Λλ and a unique subsetB(λ) ofB such

that b 7→ b−ηλ maps B−B(λ) to 0 and restricts to a bijection B(λ)
∼

−→ Bλ.

Let ξλ be the unique element in Bλ such that 1−λ!ξλ = ξλ.

By [9, §21],

(a) there is a unique vector space isomorphism τ : Λλ → Λλ! such that

τ(ux) = ω(u)τ(x) for u ∈ U̇ , x ∈ Λλ and τ(ηλ) = ξλ! . It satisfies

τ(Bλ) = Bλ! and τ(ξλ) = ηλ! .

We see that there is a unique bijection κ : B(λ)
∼

−→ B(λ!) such that

τ(b−ηλ) = κ(b)−ηλ! for b ∈ B(λ). For b ∈ B(λ) we have

(b) b+ξλ! = κ(b)−ηλ! .

This follows from τ(b−ηλ) = b+ξλ! .

3.7. From [9, 19.1.4] for any b ∈ B(λ) we have

(b−ηλ, b
−ηλ)λ ∈ 1 + v−1Q[[v−1]].

3.8. Let Ḃ be the canonical basis of U̇ defined in [8], see also [9, 25.2]. By

[9, 26.3.2],

(a) for β ∈ Ḃ we have ω♯(β) ∈ ±Ḃ and ω(β) ∈ ±Ḃ.

In loc.cit. it was conjectured that the signs in (a) are +. The fact that

the sign is + for ω♯ is proved in [5, 4.3.2]. I thank H.Nakajima for pointing

out to me that [5, 4.3.2] together with [11, 4.14] imply that the sign for ω is

+. See also 3.16(a) for a more precise statement.

3.9. For λ ∈ X+ let Ḃ[λ] be the set of all β ∈ Ḃ ∩ U̇ [≥ λ] such that β acts

on Λλ by a nonzero map. By [9, 29.1.2, 29.1.3, 29.1.4] we have a partition
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Ḃ = ⊔λ∈X+Ḃ[λ]. Note that for λ ∈ X+, U̇ [≥ λ] (resp. U̇ [> λ]) is the

subspace of U̇ with basis ⊔λ′∈X+;λ′≥λḂ[λ′] (resp. ⊔λ′∈X+;λ′>λḂ[λ′]).

3.10. Let λ ∈ X+.

By [11, 4.4(a)], for b1 ∈ B(λ), b2 ∈ B(λ), there exists a unique element

β ∈ Ḃ[λ] such that b11λb
∗+
2 − β ∈ U̇ [> λ]. We set β = βλ(b1, b2).

By [11, 4.4(b)],

(a) the map f : ⊔λ∈X+B(λ)×B(λ) → Ḃ[λ] given by (λ, (b1, b2)) 7→ βλ(b1, b2)

is bijective.

Lemma 3.11. Let λ ∈ X+, b1 ∈ B(λ), b2 ∈ B(λ). For any r ∈ Z we set

ur := 1λb
∗+
2 b−1 1λ − vr(b−1 ηλ, b

−
2 ηλ)λ1λ.

Then for some r = rb2,λ ∈ Z we have ur ∈ U̇ [> λ].

Here we write r = rb2,λ instead of: r depending on b2, λ but not on b1.

The following proof is almost copied from [11, 4.7].

Since 1λ ∈ U̇ [≥ λ] and U̇ [≥ λ] is a two-sided ideal of U̇ , we have ur ∈

U̇ [≥ λ] and it is enough to show that for some r = rb2,λ ∈ Z, ur acts as 0

on Λλ. Since ur = ur1λ and 1λΛλ is the line spanned by ηλ, it is enough

to show that urηλ = 0 for some r = rb2,λ ∈ Z. Since ur = 1λur, we have

urηλ = zrηλ for some zr ∈ Q(v). We have

zr(ηλ, ηλ)λ = (urηλ, ηλ)λ.

By the definition of (, )λ, for some r0 = (r0)b2,λ ∈ Z we have

(1λb
∗+
2 b−1 1ληλ, ηλ)λ = (b−1 ηλ, v

r0♯(1λb
∗+
2 )ηλ)λ = (b−1 ηλ, v

r0b−2 ηλ)λ,

so that

zr0(ηλ, ηλ)λ = (b−1 ηλ, b
−
2 ηλ)λ)(v

r0 − vr0(ηλ, ηλ)λ).

Since (ηλ, ηλ)λ = 1 we see that zr0 = 0 so that ur0ηλ = 0. The lemma is

proved.
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3.12. In the setup of Lemma 3.11 let b0 ∈ B(λ). By Lemma 3.11 and its

proof, we can find r0 = (r0)b2,λ ∈ Z such that ur0ηλ = 0; we then have

b−0 ur0ηλ = 0. We see that

b−0 1λb
∗+
2 b−1 1ληλ = vr0(b−1 ηλ, b

−
2 ηλ)λb

−
0 ηλ.

We now replace λ, b0, b1, b2 by λ
!, κ(b0), κ(b1), κ(b2). (Recall that κ(b0), κ(b1),

κ(b2) are in B(λ!)). We see that for any λ ∈ X+ and any b0, b1, b2 in B(λ)

we can find r̃0 = (r̃0)b2,λ ∈ Z such that

κ(b0)
−1λ!κ(b2)

∗+κ(b1)
−1λ!ηλ! = vr̃0(κ(b1)

−ηλ! , κ(b2)
−ηλ!)λ!κ(b0)

−ηλ! .

Using 3.6(b), we deduce

(a) κ(b0)
−1λ!κ(b2)

∗+κ(b1)
−1λ!ηλ! = vr̃0(b+1 ξλ!, b+2 ξλ!)λ!b+0 ξλ! .

Lemma 3.13. Let λ ∈ X+, b1 ∈ B(λ), b2 ∈ B(λ). Let δ = (ξλ! , ξλ!)λ! . For

any r ∈ Z we set

u′r := 1−λb
∗−
2 b+1 1−λ − vrδ−1(b+1 ξλ! , b+2 ξλ!)λ!1−λ.

Then for some r = rb2,λ ∈ Z we have u′r ∈ U̇ [> λ!].

The proof is similar to that of Lemma 3.11.

Since 1−λ ∈ U̇ [≥ λ!] and U̇ [≥ λ!] is a two-sided ideal of U̇ we have

u′r ∈ U̇ [≥ λ!] and it is enough to show that for some r = rb2,λ ∈ Z, u′r acts as

0 on Λλ! . Since u′r = u′r1−λ and 1−λΛλ! is the line spanned by ξλ! , it is enough

to show that u′rξλ! = 0 for some r = rb2,λ ∈ Z. Since u′r = 1−λu
′
r, we have

u′rξλ! = z′rξλ! for some z′r ∈ Q(v). We have z′r(ξλ! , ξλ!)λ! = (u′rξλ! , ξλ!)λ!). By

the definition of (, )λ! , for some r′0 = (r′0)b2,λ ∈ Z we have

(1−λb
∗−
2 b+1 1−λξλ! , ξλ!)λ! = (b+1 ξλ! , vr

′

0♯(1−λb
∗−
2 )ξλ!)λ! = (b+1 ξλ! , vr

′

0b+2 ξλ!)λ! ,

so that

z′r′0
(ξλ! , ξλ!)λ! = (b+1 ξλ! , b+2 ξλ!)λ!)(vr

′

0 − vr
′

0δ−1(ξλ! , ξλ!)λ!).

Since (ξλ! , ξλ!)λ! = δ 6= 0 (see 3.7), we see that z′r′0
= 0 so that u′r′0

ξλ! = 0.

The lemma is proved.
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3.14. In the setup of Lemma 3.13, let b0 ∈ B(λ). By Lemma 3.13 and

its proof we can find r′0 = (r′0)b2,λ ∈ Z such that u′r′0
ξλ! = 0; we then have

(b+0 1−λ)u
′
r′0
ξλ! = 0. We see that

b+0 1−λb
∗−
2 b+1 1−λξλ! = vr

′

0δ−1(b+1 ξλ!, b+2 ξλ!)λ!b+0 ξλ! .

Comparing with 3.12(a), we deduce

(a) v−r′0δb+0 1−λb
∗−
2 b+1 1−λξλ! = v−r̃0κ(b0)

−1λ!κ(b2)
∗+κ(b1)

−1λ!ηλ! .

3.15. Let λ ∈ X+, b0 ∈ B(λ), b2 ∈ B(λ). Since 1−λ ∈ U̇ [≥ λ!], 1λ! ∈ U̇ [≥ λ!]

and U̇ [≥ λ!] is a two-sided ideal of U̇ we have

b+0 1−λb
∗−
2 ∈ U̇ [≥ λ!],

κ(b0)
−1λ!κ(b2)

∗+ ∈ U̇ [≥ λ!].

Let µ = b+0 1−λb
∗−
2 − Cκ(b0)

−1λ!κ(b2)
∗+ where C = vr

′

0−r̃0δ−1 with r̃0, r
′
0 as

in 3.12, 3.13 and δ is as in 3.13. We show:

(a) µ ∈ U̇ [> λ!].

It is enough to show that µ acts as zero on Λλ! or that µs = 0 for any s ∈ Bλ!

that is, for any s of the form s = b+1 ξλ! = κ(b1)
−ηλ! with b1 ∈ B(λ). Thus,

it is enough to show that

b+0 1−λb
∗−
2 b+1 ξλ! − Cκ(b0)

−1λ!κ(b2)
∗+κ(b1)

−ηλ! = 0

for any b1 ∈ B(λ). This clearly follows from 3.14(a).

We have b+0 1−λb
∗−
2 = ω(b−0 1λb

∗+
2 ), b−0 1λb

∗+
2 = βλ(b0, b2) + γ and

κ(b0)
−1λ!κ(b2)

∗+ = βλ!(κ(b0), κ(b2)) + γ′

where γ ∈ U̇ [> λ], γ′ ∈ U̇ [> λ!] so that (a) implies

ω(βλ(b0, b2) + γ)− C(βλ!(κ(b0), κ(b2)) + γ′) ∈ U̇>λ! .
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From [9, 29.3.1] we see that ω(U̇ [≥ λ]) ⊂ U̇ [≥ λ!] and ω(U̇ [> λ]) ⊂ U̇ [>

λ!]. Thus ω(γ) ∈ U̇ [> λ!]. We see that

ω(βλ(b0, b2))− Cβλ!(κ(b0), κ(b2)) ∈ U̇ [> λ!].

By 3.8(a) we have ω(βλ(b0, b2)) = ǫβ′ where ǫ ∈ {1,−1}, β′ ∈ Ḃ is

necessarily in Ḃ[≥ λ!] and we have

(b) ǫβ′ −Cβλ!(κ(b0), κ(b2)) ∈ U̇ [> λ!].

If β′ ∈ Ḃ[> λ!], then we have

Cβλ!(κ(b0), κ(b2)) ∈ U̇ [> λ!],

contradicting

βλ!(κ(b0), κ(b2)) ∈ Ḃ[λ!], C 6= 0

Thus, we have β′ ∈ Ḃ[λ!] so that (b) implies

β′ = ǫCβλ!(κ(b0), κ(b2)).

It follows that ǫC = 1 that is, δ = ǫvr
′

0−r̃0 . Since δ ∈ 1 + v−1Q[[v−1]] (see

3.7), we see that

(c) δ = 1, ǫ = 1, r̃0 = r′0,

so that C = 1. Thus we have the following result.

Proposition 3.16.

(a) Let λ ∈ X+, b0 ∈ B(λ), b2 ∈ B(λ). We have

ω(βλ(b0, b2)) = βλ!(κ(b0), κ(b2)).

In particular, ω(Ḃ(λ)) = Ḃ(λ!).

(b) We have (ξλ, ξλ)λ = 1.

3.17. Let A = Q[[v−1]] ∩Q(v). Let fA be the A-submodule of f with basis

B.
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For i ∈ I let f̃i : f → f, ẽi : f → f be the linear maps defined in

[4]. From [4, 7] we see that there are well defined maps φi : B → B,

ǫi : B → B ∪ {0} such that for any b ∈ B we have f̃i(b) = φi(b)mod v−1fA,

ẽi(b) = ǫi(b)mod v−1fA. Recall that for b, b′ in B we have φi(b) = b′ if and

only if ǫi(b
′) = b.

For λ ∈ Λ+ let Λλ,A be the A-submodule of Λλ with basis Bλ. For i ∈ I

let F̃i : Λλ → Λλ, Ẽi : Λλ → Λλ be the linear maps denoted by f̃i, ẽi in [4].

From [4, 7] we see that there are well defined maps Fi : Bλ → Bλ ∪ {0}, Ei :

Bλ → Bλ∪{0} such that for any d ∈ Bλ we have F̃i(d) = Fi(d)mod v−1Λλ,A

Ẽi(d) = Ei(d)mod v−1Λλ,A. Recall that for d, d
′ in Bλ we have Fi(d) = d′ if

and only if Ei(d
′) = d. From the definitions we have:

(a) If b, b′ in B(λ), i ∈ I satisfy b−ηl = Fi(b
′−ηl) then b = φi(b

′).

Lemma 3.18. If b, b′ in B(λ!), i ∈ I satisfy b+ξl = Fi(b
′+ξl), then b = ǫi(b

′).

Consider the vector space isomorphism τ−1 : Λλ! → Λλ, see 3.6(a). It

induces an A-module isomorphism Λλ!,A → Lλ,A (since τ−1(Bλ!) = Bλ);

moreover, we have τ−1F̃i = Ẽiτ
−1 : Λλ! → Λλ.

Let d ∈ Bλ! ; we have τ−1(d) ∈ Bλ. Applying τ−1 to

F̃i(d) = Fi(d)mod v−1Λλ!,A

we obtain

Ẽi(τ
−1(d)) = τ−1(Fi(d))mod v−1Λλ,A.

We have also

Ẽi(τ
−1(d)) = Ei(τ

−1(d))mod v−1Λλ,A.

Thus

τ−1(Fi(d)) = Ei(τ
−1(d))mod v−1Λλ,A.

Since τ−1(Fi(d)), Ei(τ
−1(d)) are in Bλ ∪ {0}, it follows that

(a) τ−1(Fi(d)) = Ei(τ
−1(d)).

Now let d′ = b+ξλ, d = b′+ξλ. By assumption we have d′ = Fi(d).

We have τ−1(Fi(d)) = τ−1(d′) = b−ηλ, τ
−1(d) = b′−ηλ. Using now (a), we

deduce b−ηλ = Ei(b
′−ηλ), so that b = ǫi(b

′). The lemma is proved.
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4. The Involution φK

4.1. Let k be an algebraically closed field of characteristic 0. Let G be

a connected reductive group over k with a fixed pinning corresponding to

the root datum dual to that in 3.1. Thus, G has a given maximal torus T ,

given Borel subgroups B+, B− with intersection T (with unipotent radicals

U+, U−) and given imbeddings of algebraic groups xi : k → U+, yi : k →

U− (i ∈ I) with the usual properties (see for example [10, 1.1]). Note

that X (resp. Y ) is now the group of homomorphisms of algebraic groups

Hom(k∗, T ) (resp. Hom(T,k∗)).

Let Ω : G → G be the (involutive) automorphism of G such that

Ω(xi(a)) = yi(a), Ω(yi(a)) = xi(a) for i ∈ I, a ∈ k, Ω(t) = t−1 for t ∈ T .

Let g 7→ Θ(g) be the (involutive) antiautomorphism of G such that

Θ(xi(a)) = xi(a), Θ(yi(a)) = yi(a) for i ∈ I, a ∈ k, Θ(t) = t−1 for t ∈ T .

We have ΘΩ = ΩΘ.

For i ∈ I we set ṡi = yi(−1)xi(1)yi(−1) (an element in the normalizer

of T ).

Let B be the variety of Borel subgroups of G. Now Ω (resp. Θ) induces

an involution B → B denoted again by Ω (resp. Θ); now Ω interchanges

B+, B−, while Θ preserves B+, B−.

4.2. We now fix a semifield K contained in k∗ with +,× induced from k.

Let U+
>0 (resp. U−

>0) be the totally positive part of U+ (resp. U−) defined

in terms of K in [10, 2.12]. In [10, 2.7] a family of bijections g+
i
: Kν → U+

>0

indexed by the various i ∈ I is considered; it is also shown, using Bruhat

decomposition, that each of these maps in injective. Using [10, 2.5], we see

that these maps define a (surjective) map g+ : UK → U+
>0. Note that for any

i we have g+
i
= g+fi where fi : K

ν → UK is as in 1.3. Since g+
i

is injective,

it follows that

(a) fi is injective.

As shown in 1.3, fi is surjective hence bijective so that g+ = g+
i
f−1

i
.

Since g+
i

is injective it follows that g+ is injective. But it is also surjective

so that it is bijective. Thus,

(b) g+ : UK → U+
>0 is a bijection.
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Similarly, in [10, 2.9] a family of bijections g−
i

: Kν → U−
>0 indexed by

the various i ∈ I is considered. Now these maps define a map g− : UK →

U−
>0. As above we see that

(c) g− : UK → U−
>0 is a bijection.

For A ∈ UK we write A+ = g+(A) ∈ U+
>0, A

− = g−(A) ∈ U−
>0; we have

A+ = Ω(A−).

Let T>0 be the subgroup of T generated by {λ(a);λ ∈ X = Hom(k∗, T ),

a ∈ K}.

Lemma 4.3. Let i = (i1, i2, . . . , iν) ∈ I, a = (a1, a2, . . . , aν) ∈ Kν. We set

i = iν. Let k ∈ [1, ν]. For any b∗ = (bk+1, bk+2, . . . , bν) ∈ Kν−k there exists

a unique b′∗ = (b′k, b
′
k+1, . . . , b

′
ν) ∈ Kν−k+1 such that

(a)

xi1(a1)xi2(a2) . . . xik−1
(ak−1)xik(ak)yiν (bν)yiν−1

(bν−1) . . .

yik+1
(bk+1)ṡik+1

ṡik+2
. . . ṡiνB

−

= xi1(a1)xi2(a2) . . . xik−1
(ak−1)yiν (b

′
ν)

yiν−1
(b′ν−1) . . . yik(b

′
k)ṡik ṡik+1

. . . ṡiνB
−.

Moreover, we have

(b) b′ν = bν(1 + akbν)
−1 if ik = i, b′ν = bν if ik 6= i.

The proof is essentially a repetition of arguments in the proof in [12,

3.2] (except for (b)); with this occasion we correct some typos in that

proof. We only have to prove existence; the uniqueness is immediate. Now

xik(ak)yiν (bν) is equal to yiν (b
′
ν)xik(c)t where b′ν is as in (b), c ∈ K and

t ∈ T>0. Hence the left hand side of (a) is of the form

xi1(a1)xi2(a2) . . . xik−1
(ak−1)yiν (b

′
ν)xik(c)yiν−1

(b′′ν−1) . . .

yik+1
(b′′k+1)ṡik+1

ṡik+2
. . . ṡiνB

−

for some (b′′k+1, . . . , b
′′
ν) ∈ Kν−k. Using the usual commutation relations

between xik(?) and yj(?) we see that the left hand side of (a) is of the form

xi1(a1)xi2(a2) . . . xik−1
(ak−1)yiν (b

′
ν)yiν−1

(b′′ν−1) . . .

yik+1
(b′′k+1)xik(c

′)ṡik+1
ṡik+2

. . . ṡiνB
−
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where c′ ∈ K. We now use that xik(c
′) = yik(1/c

′)ṡikyik(1/c
′)t′ where t′ ∈

T>0. we see that the left hand side of (a) is of the form

xi1(a1)xi2(a2) . . . xik−1
(ak−1)yiν (b

′
ν)yiν−1

(b′′ν−1) . . .

yik+1
(b′′k+1)yik(1/c

′)ṡikyik(1/c
′)ṡik+1

ṡik+2
. . . ṡiνB

−

It remains to observe that

yik(1/c
′)ṡik+1

ṡik+2
. . . ṡiνB

− = ṡik+1
ṡik+2

. . . ṡiνB
−

since siksik+1
sik+2

. . . siν is a reduced expression in W . This proves the

lemma.

Lemma 4.4. Let i = (i1, i2, . . . , iν) ∈ I, a = (a1, a2, . . . , aν) ∈ Kν. We

set i = iν . Let k ∈ [1, ν] and let (bk+1, bk+2, . . . , bν) ∈ Kν−k. Assume that

bν = (
∑

l∈[k+1,ν];il=i al)
−1. Then there exists a unique

(b′k, b
′
k+1, . . . , b

′
ν) ∈ Kν−k+1

such that

xi1(a1)xi2(a2) . . . xik(ak)yiν (bν)yiν−1
(bν−1)

. . . yik+1
(bk+1)ṡik+1

ṡik+2
. . . ṡiνB

−

= xi1(a1)xi2(a2) . . . xik−1
(ak−1)yiν (b

′
ν)yiν−1

(b′ν−1)

. . . yik(bk)ṡik ṡik+1
ṡik+2

. . . ṡiνB
−.

Moreover, we have b′ν = (
∑

l∈[k,ν];il=i al)
−1.

Except for the last sentence, this is a special case of Lemma 4.3. It

remains to prove the formula for b′ν . If ik 6= i, then from 4.3 we have

b′ν =

(

∑

l∈[k+1,ν];il=i

al

)−1

=

(

∑

l∈[k,ν];il=i

al

)−1

.

If ik = i, then from 4.3 we have

b′ν =
(
∑

l∈[k+1,ν];il=i al)
−1

1 + ak(
∑

l∈[k,ν];il=i al)
−1

=

(

∑

l∈[k,ν];il=i

al

)−1

.
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The lemma is proved.

Proposition 4.5. Let i = (i1, i2, . . . , iν) ∈ I, a = (a1, a2, . . . , aν) ∈ Kν.

We set i = iν . There exists a unique (b1, b2, . . . , bν) ∈ Kν such that

xi1(a1)xi2(a2) . . . xiν (aν)B
− = yiν (bν)yiν−1

(bν−1) . . . yi1(b1)ṡi1 ṡi2 . . . ṡiνB
−.

Moreover, we have bν = (
∑

l∈[1,ν];il=i al)
−1.

Again this is contained in [12, 3.2] except for the last sentence. It follows

by applying 4.4 repeatedly with k = ν, ν − 1, . . . , 1.

4.6. From 4.5 we see that the image of the (injective) map

(a) UK
c+
−→ B, A 7→ A+B−(A+)−1

is contained in the image of the (injective) map

(b) UK
c−
−→ B, A 7→ A−B+(A−)−1.

Applying Ω we see that the image of c− is contained in the image of c+

hence

(c) the image of c+ is equal to the image of c−.

We denote this image by BK,>0 (a subset of B). Applying Θ to (c) we see

that

(d) the image of UK → B, A 7→ (A+)−1B−A+ is equal to the image of

UK → B, A 7→ (A−)−1B+A− and that these two maps are injective.

We denote this image by BK,<0 (a subset of B equal to Θ(BK,>0)). We

see that Ω : B → B restricts to an involution Ω′
K : BK,>0 → BK,>0 and to an

involution ΩK : BK,<0 → BK,<0.

We also see that there is a unique bijection φ′
K : UK → UK such that

A+B−(A+)−1 = φ′
K(A)−B+(φ′

K(A)−)−1

for any A ∈ UK , that is, Ω′
Kc− = c−φ′

K . Since Ω′
K

2 = 1, it follows that

φ′
K

2 = 1. Moreover we see that there is a unique bijection φK : UK → UK

such that

(A+)−1B−A+ = (φK(A)−)−1B+φK(A)−
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for any A ∈ UK ; we have φK = ∗φ′
K∗ (∗ as in 1.1) hence φ2

K = 1.

4.7. From the proof of 4.5 we see that φK (and also φ′
K), when expressed

as a map Kν → Kν , is given by rational functions which are quotients

of nonzero polynomials in several variables with all coefficients in N (after

substituting elements ofK for the variables); moreover these polynomials are

independent of K. Replacing the variables in these polynomials by elements

of an arbitrary semifield K ′ we see that φK ′ : UK ′ → UK ′ is defined for any

semifield K ′ (not necessarily contained in a field). Then various properties

of this map can be deduced from the analogous properties in the case where

K is as in 4.2.

4.8. We can identify BK (see 1.8) with BK,<0 by (A,A′) 7→ (A+)−1B−A+.

5. Connecting Bases with Objects over the Semifield Z

5.1. Let u : UN

∼
−→ B be the bijection defined in [6]. It satisfies u(h0) = 1.

More generally, if A ∈ UN and b = u(A) then

(a) wt(b) =
∑

h∈I

||A||hh
′.

See [6, 2.9]. From [6, 2.11] we see that under u, the restriction to UN of the

involution ∗ι = ι∗ (see 1.1, 1.6, with K = Z) corresponds to the involution

∗ of B in 3.2.

5.2. In [7] it is shown that for i ∈ I we have

φiu(A) = u(Ti,1A) for all A ∈ UN.

From (a) we can deduce:

(b) if A ∈ UN is such that ǫiu(A) ∈ B, then Ti,−1A ∈ UN and ǫiu(A) =

u(Ti,−1A).

Indeed, we have ǫiu(A) = u(A1) for some A1 ∈ UN. Then u(A) = φiu(A1)

so that by (a) we have A = Ti,1A1 hence A1 = Ti,−1A.
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5.5. Until the end of 5.6 we fix λ ∈ X+. We define pλ = (pλi ) ∈ NI by

pλi = (i, λ) for i ∈ I. We show:

(a)
∑

h∈I

||hpλ||hh
′ = λ+ λ!.

Using 2.3(a) we see that this is equivalent to the equality

∑

h∈I

∑

i∈I

((i, λ) + (i, λ!))bihh
′ = λ+ λ!.

that is

(b)
∑

h∈I

∑

i∈I

(i, ζ)bihh
′ = ζ

where ζ = λ+λ! = λ−w0(λ) ∈
∑

h∈I h
′ ⊂ X. It is enough to show that the

two sides of (b) have the same (, ) with any j ∈ I (viewed as an element of

Y ) that is,
∑

h∈I

∑

i∈I

(i, ζ)bihahj = (j, ζ)

for j ∈ I. This follows immediately from the definition of bih.

5.4. According to [6],

(a) u restricts to a bijection uλ : UN,pλ
∼

−→ B(λ).

We have uλ(h0)
−ηλ = ηλ.

We show:

(b) uλ(hpλ)
−ηλ = ξλ.

Let d = uλ(hpλ)
−ηλ. Since d ∈ Bλ and ξλ is the unique element b ∈ Bλ

such that 1w0(λ)b = b, it is enough to show that 1w0(λ)d = d. Since 1ληλ = ηλ,

we see from the definition of d that 1λ′d = d where λ′ = λ − wt(uλ(hpλ).

Using 5.1(a), 5.3(a) this can be rewritten as λ′ = λ−(λ+λ!) = −λ! = w0(λ).

This proves (b).

Theorem 5.5.
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(i) For any A ∈ UN,pλ we have

ιSpλφZ(A) ∈ U
N,pλ!

.

(ii) Define a bijection κ̃ : UN,pλ → U
N,pλ!

by uλ!(κ̃(A)) = κ(uλ(A)) for any

A ∈ UN,pλ. For any A ∈ UN,pλ we have

κ̃(A) = ιSpλφZ(A).

Something close to this is proved in [12, 4.9], but that proof contains

some misprints. For this reason we reprove it without referring to [12, 4.9].

Let A ∈ UN,pλ. Let d = uλ(A)−ηλ ∈ Bλ. From [4] it is known that there

exists a sequence i1, i2, . . . , ik in I such that

d = Fi1Fi2 . . .Fikηλ.

The smallest such k is a number f(A) ∈ N. We argue by induction on f(A).

If f(A) = 0 we have uλ(A)−ηλ = ηλ hence uλ(A) = 1 and A = h0. Using

2.2(c),(b),(a), we have

ιSpλφZ(h0) = ιSpλ(h0) = ιhpλ = h
pλ!

which belongs to U
N,pλ!

; thus (i) holds in this case. By the proof of (i),

proving (ii) for A = h0 it is the same as proving that

κ(uλ(h0)) = uλ!

(h
πλ! )

or, using 5.4(b) for λ! instead of λ, that κ(1)−ηλ! = ξλ! . From the definition

of κ this is the same as 1+ξλ! = ξλ! which is obvious. Thus (ii) is proved in

our case.

We can now assume that A is such that f(A) ≥ 1 and that the result is

known when A is replaced by any A′ ∈ UN,pλ such that f(A′) < f(A). By

the definition of f(A) we can find A′ ∈ UN,pλ such that f(A′) = f(A) − 1

and

uλ(A)−ηλ = Fi(u
λ(A′)−ηλ)

for some i ∈ I. From 3.17(a) we then have u(A) = φi(u(A
′)) hence, by 5.2,

we have u(A) = u(Ti,1A
′) so that A = Ti,1A

′.
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Let b = κ(uλ(A)) = κ(φi(u(A
′)), b′ = κ(u(A′)). We have

b+ξλ = uλ(A)
−ηλ = (φiu(A

′))−ηλ = Fi(u(A
′)−ηλ) = Fi(b

′+ξλ).

Using 3.18 we see that b = ǫi(b
′), that is

(a) κ(uλ(A)) = ǫiκ(uλ(A
′)).

By the induction hypothesis we have

(b) ιSpλφZ(A
′) ∈ U

N,pλ!
and κ̃(A′) = ιSpλφZ(A

′).

Using (a) we have

u(k̃(A)) = κ(uλ(A)) = ǫiκ(uλ(A
′)) = ǫiu(ιSpλφZ(A

′)).

(The third equality follows from (b).) Using 5.2(b) we see that

Ti,−1ιSpλφZ(A
′) ∈ UN

and

ǫiu(ιSpλφZ(A
′)) = u(Ti,−1ιSpλφZ(A

′)).

Here the right hand side is equal to

u(ιSpλφZTi,1(A
′)) = u(ιSpλφZA).

(We have used 1.6(a), (b), 1.7(c).)

Thus we have u(k̃(A)) = u(ιSpλφZA), so that k̃(A) = ιSpλφZA. We see

that (i) and (ii) hold for A. The theorem is proved.

Corollary 5.6.

(i) For any A ∈ UN,pλ we have SpλφZ(A) ∈ UN,pλ.

(ii) The map UN,pλ → UN,pλ given by A 7→ SpλφZ(A) is a bijection.

(i) follows from 5.5(i); (ii) follows from 5.5(ii).

Corollary 5.7. Let p ∈ N
I , A ∈ UN,p. Then SpφZ(A) ∈ UN,p. Moreover,

the map UN,p → UN,p given by A 7→ SpφZ(A) is a bijection.
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We replace Y,X, (, ) by Y ′,X ′ = Hom(Y ′,Z), (, )′ where Y ′ =
∑

iZi ⊂ Y

and (, )′ is the obvious pairing. Define i′ ∈ X ′ by (j, i′)′ = aij . We apply 5.6

to this new root datum and to λ replaced by λ′ ∈ X ′ given by (i, λ′) = pi.

Then 5.7 follows.

Corollary 5.8. For any p ∈ N
I we have

UN,p = {A ∈ UN;SpφZ(A) ∈ UN}.

Hence (A,A′) 7→ A is a bijection BN,p
∼

−→ UN,p.

The first sentence follows immediately from 5.7, as shown in [16, no.12].

The second sentence follows from the first sentence using 2.4(a).

Corollary 5.9. Let λ ∈ X+. The map BN,pλ → B(λ) given by (A,A′) 7→

u(A) is a bijection.

This follows from 5.4(a) and 5.8.

5.10. Let

Ξ = ⊔λ∈X+ BN,pλ × BN,pλ

= ⊔λ∈X+ {(B1, B2) ∈ BZ × BZ;B1 ∈ B+
N
, B2 ∈ B+

N
, Sp−λB1 ∈ B−

N
,

Sp−λB2 ∈ B−
N
}.

We define u̇ : Ξ → Ḃ by u̇(B1, B2, λ) = bλ(u(A1),u(A2)) for any λ ∈ X+

and any B1 = (A1, A
′
1) ∈ BN,pλ, B2 = (A2, A

′
2) ∈ BN,pλ.

We define ω̃ : Ξ → Ξ by ω̃(B1, B2, λ) = (ιφ
Z
(B1), ιφ

Z
(B2), λ

!).

We define ♯̃ : Ξ → Ξ by ♯̃(B1, B2, λ) = (B2, B1, λ).

Theorem 5.11.

(a) u̇ is a bijection.

(b) We have ωu̇ = u̇ω̃.

(c) We have ♯u̇ = u̇♯̃.

(a) follows from 3.10(a) and 5.9; (b) follows from 3.16, 5.5 and 5.8; (c)

follows from [11, 4.14(a)].
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5.12. The group X acts on BZ × BZ by λ : (B, B̃) 7→ (SpλB,SpλB̃).

We now assume that the root datum in 3.1 is of simply connected type,

that is, the map X → ZI , λ 7→ pλ is a bijection. Then the X-action above

is free. Let

Ξ′ = {(B1, B2, B̃1, B̃2) ∈ B+
N
× B+

N
× B−

N
× B−

N
;

(B1, B2) is in the X-orbit of (B̃1, B̃2)}.

We define Ξ → Ξ′ by

(a) (B1, B2, λ) 7→ (B1, B2, Sp−λB1, Sp−λB2).

We show:

(b) The map (a) is a bijection.

The injectivity follows from the freeness of the X-action. We show that (a)

is surjective. It is enough to show that:

(c) if B1 ∈ B+
N
, B̃1 ∈ B−

N
, λ ∈ X are such that B̃1 = Sp−λB1, then λ ∈ X+.

This follows from 2.5(a).

Using (b), we see that in our case, Ξ′ can be viewed as an indexing set

for Ḃ.
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Appendix

A.1. Let p = (pi) ∈ NI . Then the set UN,p is finite since it is in bijection

with the finite set Bλ for some λ ∈ X+ (assuming that the root datum is of

simply connected type). But one would like to have a proof of the finiteness

of UN,p independent of the theory of canonical bases. Such a proof will be

given in this appendix.

Let n ∈ N. Let Un
N

be the set of all A ∈ UN such that for any (i,a) ∈ A

we have a1 ≤ n.

Lemma A.2. Let A ∈ Un
N
. For any (i,a) ∈ A we have ak ≤ 2k−1n for

k ∈ [1, ν].

We argue by induction on k. For k = 1 the result is clear. Now assume

that k ≥ 2. Let (i,a) ∈ A. We set ak−1 = a, ak = b, ik−1 = i, ik = j. If

aij = 0 then

((i1, . . . , ik−2, j, i, . . . ), (a1, . . . , ak−2, b, a, . . . )) ∈ A

and by the induction hypothesis we have b ≤ 2k−2n hence b ≤ 2k−1n as

desired. Thus we can assume that aij = −1.

Case 1. Assume that sisik+1
. . . siν is not a reduced expression; then

sik+1
. . . siν = sisjk+2

. . . sjν

(reduced expression) for some jk+2, . . . , jν in I so that for some bk+1, . . . , bν

we have

((i1, . . . , ik−2, i, j, i, jk+2 , . . . , jν), (a1, . . . , ak−2, a, b, bk+1, . . . , bν)) ∈ A.

Here we can replace i, j, i by j, i, j and a, b, bk+1 by

b+ bk+1 −min(a, bk+1),min(a, bk+1), a+ b−min(a, bk+1).

From the induction hypothesis we have b+ bk+1 −min(a, bk+1) ≤ 2k−2n. If

a ≤ bk+1, then b+ bk+1 − a ≤ 2k−2n hence

b ≤ b+ bk+1 ≤ a+ 2k−2n ≤ 2k−2n+ 2k−2n = 2k−1n.
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If bk+1 ≤ a then b ≤ 2k−2n hence b ≤ 2k−1n as desired.

Case 2. We can now assume that sisik+1
. . . siν is a reduced expression. Then

setting y = sik+1
. . . siν we have that |siy| > |y|, |sjy| > |y|, hence |sjsisjy| =

|y|+3, hence can find u ∈ W such that usjsisjy = w0, |u|+ |sjsisj|+ |y| = ν.

Hence we can find (i′,a′) ∈ A with

(i′k−2, i
′
k−1, i

′
k) = (j, i, j),

(a′k−2, a
′
k−1, a

′
k) = (a′k−2, a, b).

Here we can replace j, i, j by i, j, i and a′k−2, a, b by

a+ b−min(a′k−2, b),min(a′k−2, b), a
′
k−2 + a−min(a′k−2, b).

By the induction hypothesis we have a′k−2 ≤ 2k−3n, a+b−min(a′k−2, b) ≤

2k−3n. If b ≤ a′k−2 then b ≤ 2k−3n hence b ≤ 2k−1n. If a′k−2 ≤ b then

a+ b− a′k−2 ≤ 2k−3n hence

b ≤ a+ b ≤ a′k−2 + 2k−3n ≤ 2k−3n+ 2k−3n = 2k−2n

hence b ≤ 2k−1n. This completes the induction step. The lemma is proved.

Proposition A.3. Un
N

is a finite set.

Let i ∈ I. Using 1.3(a) it is enough to show the finiteness of the set of all

a ∈ Nν such that the equivalence class of (i,a) is in Un
N
. By the lemma, the

number of elements in this set is ≤ (N +1)(2N +1)(4N +1) · · · (2ν−1N +1).

The proposition is proved.

A.4. We now choose n such that n ≥ pi for all i ∈ I. Clearly, UN,p is

contained in the image of Un
N

under A 7→ A∗. Using A.3, we deduce that

UN,p is finite.
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