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Abstract

We give a parametrization of the canonical basis of the modified quantum group
corresponding to a root datum in terms of the flag manifold over the semifield Z associated

to the reductive group corresponding to the dual root datum.

Introduction

0.1. Let f be the 4 part of the Drinfeld-Jimbo quantized enveloping algebra
U (over Q(v)) attached to a root datum of simply laced type and let U be
the modified form of U (see ﬂﬁ, §23]). Let B (resp. B) be the canonical
basis of f (resp. U) defined in [6] (resp. in [8], see also ﬂg, 25.2]). In ﬂaﬁt

]

was interpreted in terms of certain objects attached to the semifield Z. In

was shown that B is naturally parametrized by something which later

this paper we want to find an analogous parametrization for B (see 5.12),
compatible with the involution w of U interchanging the + part and the —
part (see 3.3) which preserves B (see 3.8). In particular we show that B is
preserved by w.

Let X be the lattice of weights of our root datum and let X be the set
of dominant weights in X. We will put B in bijection with Uyex+(Bx x By)
where B) is the canonical basis ﬂa] of the simple finite dimensional U-module
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Ay with highest weight A. We are reduced to finding a parametrization of
B, in terms of objects attached to the semifield Z. Such a parametrization
was given in ﬂa, §8], but this is still not enough for our purpose.

We will give another parametrization of By based on the following ob-
servation of B] According to ﬂa, §8], the set By can be parametrized in two
different ways: by regarding Ay as a highest weight module or as a lowest
weight module. The rather complicated combinatorics relating these two
parametrizations was shown in [12] to be expressible in terms of a remark-
able involution ¢z (defined in |12]) of a certain object Bz attached to the
semifield Z. We can parametrize B) in terms of this involution ¢z. More
precisely, if G is a reductive group corresponding to the dual root datum,
then Bz is a variant of the flag manifold of G over the semifield Z. Then By
has two remarkable subsets By, By (interchanged by ¢z) in which certain
parameters in Z are assumed to be in N. As in [12], Bz has an action of
the group X; this is the Z-variant of the conjugation action of a maximal
torus of G on the flag manifold of G. Now, for A € X we can consider the
intersection of Bf; with the A translate (in the sense of the X-action) of By.
Although BKT and By are in general infinite, we show that the intersection
above is finite; moreover, it is nonempty if and only if \ is dominant, in
which case it naturally parametrizes B). This parametrization is an imme-
diate consequence of, 4.9], except for the nonemptiness criterion above.

2|

(The proof of 4.9 in contained some misprints and we reprove it in 5.5.)

The resulting parametrization of B has the property that the action of
w has a simple description in terms of the involution ¢z.

Another parametrization of By (which again uses ideas in B]) is given

in [3].

0.2. One can show that similar results hold when our root datum is not
assumed to be simply laced, by using folding to reduce to the simply laced
case (as was done for B in [14] where again the group G corresponding to
the dual root datum was used.)

1. The Flag Manifold By for a Semifield K

1.1. We fix a finite set I and a simply laced Cartan matrix (a;;) indexed
by I x I, that is a symmetric, positive definite matrix with integer entries
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such that a; = 2 for i € I, a;; € {0,—1} for i # j in I. We denote the
obvious Z-basis of Z[I] as {i’;i € I}. For i € I we define a homomorphism
si  Z[I) — Z[I] by j' — j' — a;;i’ (j € I). Let W be the subgroup of the
automorphism group of Z[I] generated by {s;;i € I'}. This is a finite Coxeter
group with length function w — |w|.

Let wg be the unique element of W with |wp| maximal and let v = |wp|.

For i € I we define ¢' € I by s; = wos;wp; then i — i' is an involution
of I.

Let Z be the set of sequences i = (i1, 12, ...,17,) such that s;;s;,...s;, =

v

wo. For example, if I = {i,j},a;; = —1, we have Z = {(, 4,1), (4,4,7) }.

1.2. Let K be a semifield. Let (i,a), (i’,a’) in Z x K" be given by

i=(i1,i2,...,%,), i = (i},1h,...,1),

a=(ay,ag,...,a,), a' = (da},dh,...,ad).

We say that (i,a), (i’,a’) are adjacent if one of (i),(ii) below holds.

(i) For some ! € [1,v — 3] we have i) = i for k ¢ {l,l + 1,1 + 2} and
(ityiti1yitga) = (irdyd)s (ii),10ihag) = (jrirj) where 4,5 in T satisfy
aij = —1; moreover, (a;, ay1,a112) = (a,b,¢), (aj,a;,1,a;,,) = (a',V',¢)
where

a=bc/(a+c), b=a+c, =ab/la+c),
or equivalently
a=Vcd/(d+), b=d+, c=dV/(d+);
(ii) for some I € [1,v — 2] we have i) = iy for k ¢ {I,1 + 1} and (i;,941) =
(4,5), (i},47,1) = (j,4) where 4, j in I satisfy a;; = 0; moreover, a; = a1,
a2+1 = aj.

Let Ux be the set of equivalence classes on Z x K" for the equivalence

relation on Z x K" generated by the adjacency relation.

We shall sometime denote (i,a) € Z x K", (or its equivalence class) as

aray . . B
i1tig? .. 1%, where i = (i, 42,...,1,),a = (a1,a2,...,ay).
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The assignment

yal a2 jay

<y Ay —1 -a1
17097 ..,

B S

defines an involution A — A* of U.

1.2. For i = (i1,42,...,4y) € Z and k € [1,v], we have
Siy Sig - -+ Sif_, (1) = Zrh,k‘h/
hel
(in Z[I]) where 74, € N. For a = (a1, a2,...,a,) € K”,h € I we set
HiaaHh = H a;;h,k e K.
ke(l,v]
We show:
(a) If (i,a), (i’;a’) in Z x K" are adjacent, then ||i,al|, = ||i’,a’||s.

Let 7}, . € N be defined in terms of i’ in the same way as rj, ;, was defined in
terms of i. In case 1.1(i) we must show:

(b) Thii Thi+l Thl+2

! ! !
a;" a7 aly :agrh,la2+1rh,l+1a2+2rh,l+2'

For some w € W we have
w(i') =3 h er Th s
wsi(j') = w(i’) +w(i’) = Xop e Thai+1hl,
wSiSj(i/) =w(j') = Zhlel Thl,l+2h/1,
w(j") =Y her Th s
ws;(i') = w(i’) +w(i") = 3 p 1 Thy 417
ws;si(j') = w(i') = Zhlel T;H,H-Qh/l‘
Thus,
Thi = Thpyes Thitl = Thyo1 = Thi + Thit2, Thi+2 = Tj

Thus, (b) is equivalent to

(arai41)" ™ (arp1ai42) ™2 = (aqap, )™ (apy 1 ap,9) 2.
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This follows from

/ / ™)
Qa1 = App1Qpy; G014 = G141014-2-

This proves (a) in case 1.1(i).

In case 1.1(ii) we must show

! !
(C) a;h’la;‘i’{+1 = a;rh,la;+lrh,l+1.

For some w € W we have
w(i') = per Thi il
wsi(j') = w(j') = 34, cr Thy 1110
w(j") = Zhlel r;zl,lh,h
ws; (i) =w(i') =X p er Th a1 M-
Thus, 7, = 7";17Z+1, Thitl = T;z,l so that
Th,l = T;L,l+17 Thl+1 = T;L,z-

Thus, (c) is equivalent to

Th,zarh,z+1

— A4!Thi+1,4" Thi
ap G = q Q41

and this follows from a; = a;11, aj,; = a;. This proves (a) in case 1.1(ii).

In view of (a) we can define ||A||, € K for any A € Ug,h € I to be
)i, al|, for any (i,a) in A.

1.3. Let i € Z. We define a map f; : K¥ — Uk by sending a € K to the
equivalence class of (i,a). We show:

(a) f; is a bijection.

Let A € Uk. If (i,a’) € A then using Matsumoto’s theorem , 1.9] for
wp, we can find a sequence (i',a'),...,(i",a") in Z x K” in which any two
consecutive terms are adjacent such that (i*,a") = (i',a’), i' =i. We have
(i,a') € A. Thus f; is surjective.

Next we prove that f; is injective. Assume first that K is contained on
the multiplicative group of a field k of characteristic zero with +, x induced
from that of k. Then f; is injective by 4.2(a).
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Next we consider a general K. Assume that a = (a1,...,q,) € K”,a' =
(a},...,a;) in K¥ are such that f;(a) = f;(a’). Then we can find

in Z x K" in which any two consecutive terms are adjacent and (i',al) =
(i,a), (i",a") = (i,a’). By B, 2.1.6] we can find a semifield K as in the first
part of the proof and a homomorphism of semifields z : K — K such that

ar = z(a),...,a, = z(a,)
for some
a=(a,...,a,) € K.
We define
al,a?,...,a"

by the condition that any two consecutive terms of

are adjacent (in Z x KV ). Now z takes a' to a' and then it automatically
takes a2,...,a" to a2,...,a" We have i' =i" =i and the injectivity of our
map (for K) implies that a' = a". Applying z we see that al = a” that is

a = a’. This proves injectivity of f;. This proves (a).

1.4. Let i € I,c € K. If A € Uk we can find (i,a) € A such that the
first term of i is 4. (We use Matsumoto’s theorem ﬂﬁ, 1.9] for wg.) We set
ca = (ayc,az,...,a,) where a = (aj,as,...,a,). Assume that (i’,a’) € A is
also such that the first term of i’ is . Then .a’ € K" is defined. We show
that

(a) (i,ca), (', .a") are equivalent.

Using Matsumoto’s theorem for s;wg, we see that we can find a sequence
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in Z x K" in which any two consecutive terms are adjacent as in 1.1(i),(ii)
with [ > 2 such that

(i',a') = (i,a),i" =1

(in particular each i',i%,... starts with 7). Then (i’,a"), (i’,a’) are both in
A hence by 1.3(a) we must have a” = a’. Now any two consecutive terms of

(il,cal), (i at)

are adjacent and we have
(ila cal) = (i7 ca)a (in’ can) = (il, ca/)-

This proves (a).

We see that (i,a) — (i,a.) defines a map (in fact a bijection) T :
U — Uk.

For ¢, in K we have T; T} oo = T; o'

1.5. Letiel,ce K,A € Ug.

We can find (i,a) € A such that the first term of i is . Define rp, ;, in
terms of i as in 1.2. We have 7,1 = d5,;1 (thisis 1 if h =4 and is 0 if h # ).
We have

\]i,a\]h:afi‘h H a;;h’keK.
ke[2,v]
i, calln = (ca)® T[ a* =i alln
ke[2,v]

Thus we have

1T5.cAlln = Pt All.

1.6. We regard K! as a group (the product of (p;) and (p) is (pip})).

For p = (p;)ics € K there is well defined bijection S, : Uy — Uk given
by

.01 -z .a, .a1Piy 2P -aypi,
11707 ) iy Ty oty

for (i,a) € Z x K", see ﬂﬁ, no.8].
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This defines an action of the group K’ on U.

For pe K',i € I,c € K we have

(a) E:CSp = Spﬂ,C'
There is a well defined involution ¢ : U — Uk such that

91852 LA s (1) (ih)%2 L (i)™

for (i,a) € Z x K¥. For p € K! we have 15, = Syt where p' e K is given
by (p')i = py-
For ¢ € I,c € K we have

(b) T’i,CL = LI—ZL'!,C
We show:

(c) The action of K! on Uy described above is free.

We must show that if p = (p;) € K! and A € U are such that SpA = Athen
p; = 1 for all i. Let (i,a) € A with i = (i1,42,...,4,),a = (a1,a9,...,a,).
Let &' = (a1pi,, agpiy, - - - ,a,p;,) € K. By assumption we have (i,a’) € A.
Using 1.3(a) we deduce that a’ = a. Thus ap = agp;, for k = 1,...,v so
that p;, =1 for k =1,...,v. For any 7 € I we can find k such that i, = 7.
It follows that p; = 1 for ¢ € I. This proves (c).

1.7. For a semifield K, let ¢ : Uy — Uk be the bijection defined in 4.6,
see also ﬂﬁ, no.11]. We have ¢% = 1.

For example, if I = {i} we have ¢ (i%) = i'/%; if I = {i,j} with a;; = 1,

we have

ca +b:c -a/c(a+c) ‘(a+c)/abi1/(a+c)

d)K(Z b ): i j _ ~c/abi1/0j1/b.

‘We have

(a) oK = PxL.

For p € K! we have

(b) Spor = ¢rS,-1;
hence S,¢r : Uy — Uk has square 1.
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For i € I,c € K we have
(C) E,CQSK - QZ)KE!,cfl.

Now (b),(c) can be viewed as sequences of equalities between certain rational
functions which are quotients of nonzero polynomials in several variables
with all coefficients in N (after substituting elements of K for the variables).
It is enough to prove these equalities in the case where K = R~q; in that
case (b) is proved in , 4.3(d)] and (c) is proved in ﬂﬁ, 10(a)].

1.8. Let Bx = {(A, A") € Ux X Uk; ¢ (A) = A’} be the graph of ¢x. We
define an involution ¢, : Bx — Bx by ¢,.(A,A") = (4, A). (We use that
¢ = 1.) We define an involution ¢ : Bx — Bx by t(A4, A") = (1(A),(A)).
(We use 1.7(a).) Now the group K acts on Bg by p : B — S,(B) where
S,(A,A") = (SpA, S, A'). (We use 1.7(b)).

I _
For p € K* we have §P?K = QKﬁpq.

1.9. Let A € Uk and let (i,a) € A with i=(i1,49,...,%,), a=(a1,a2,...,a,).
Let i’ = (iy,...,i2,41) € Z. Define &’ = (a},d},...,a,) by (i',a’) € ¢px(A).

Lemma 1.10. We have a;, = (e v)iip—is ag)~ L.

Using B, 2.1.6] we see that we can reduce the general case to the case
where K is as in 4.2. In that case the result follows from 4.5. (More precisely
4.5 gives the analogous result for ¢ in 4.6 instead of 4.5, but the case of
¢k is then a consequence.)

2. The Subsets BKT,B;I of By

2.1. In this section we assume that K = Z with the usual semifield structure:
the sum of a,b is taken to be min(a,b); the product of a,b is taken to be
a +b. Then Uy is defined as in 1.1. Note that the subset Z x N” of 7T x Z¥
is a union of equivalence classes for ~. (We use that, if a,¢c € N, then
a — min(a,c) € N.) The set of these equivalence classes is a subset Un of
Uz,

ai ;a2

For i € I there is a well defined map ¢ : Un — N such that {52 ... 1%

v

— a, whenever (i,a) € Z x N satisfies i, = i.
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For any p = (p;) € N’ we define
Unp = {z €Un;gi(z) <p; Viel}
Note that ¢ : Uz — Uz restricts to a bijection
Unp — Un !

where p' € N is as in 1.6.

2.2. For p = (p;) € N! we set h, =,y ... il € Un where i € Z. From
the definition we see that this is independent of the choice of i hence is well

defined.

Note that hy € Un . h, € Un . We have

(a) h, = 5(p)(ho),

(b) t(hy) =h,
From , 2.9(a), 3.9] we have
() ¢z(ho) = ho.

In fact, by , 2.9], ¢z is the unique bijection Uz — Uz satisfying (c) and
1.7(c) (with K = Z).

2.3. Let p = (p;) € N. By definition, for h € I we have

byl = > rawpi, €N
ke(l,v]

where i = (i1,42,...,1,) € Z and for k € [1,v], r,, € N are defined by

-/ !
Siy Sig - - - Sip_, (13,) = E rh el
hel
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(in Z[I]). We state the following result.
!
(a) byl =Y (i + ()i)bin € N
i€l
where (b;;) is the inverse of the Cartan matrix (a;;). It is known that b;; €

Q> (see for example [17]). Now (a) can be verified case by case.

Assume for example that I = {i}. We have ||hy|[; = pi, bii = 1/2,
(pi + (p")i)bii = p; hence (a) holds.

Assume now that I = {4,j} with a;; = —1. Let i = (4,7,4). We have
i € Z. The corresponding sequence >, 7y b/, (k= 1,2,3) is 7,7 + 5, §'
hence

> lIhpllnh! = pii’ + pi (i + §) + pid’ = (pi + pj) (@ + 7).
hel

We have b“ = bjj == 2/3,()” = bji == 1/3 Hence

> i+ @))binh +_(p; + (0);)bjnh’

hel hel
= (pi +p;)((2/3)7 + (1/3)5") + (pj + i) ((1/3)i" + (2/3)5")
= (pi +p) (@ +5).

Thus, (a) holds.
Assume now that I = {0, ¢,d, e} with
A0c = Ac) = Gpd = Ado = Age = Ge0 = —1,
Ued = Qde = Uce = Uec = Ade = Ged = 0.
Let i = (¢,d,e,0,¢,d,e,0,c,d,e,0). We have i € Z.

The corresponding sequence -, ;. ch’ (k=1,2,...,12) is
d,d, e, 0dde,0de,0de,0dd,00dde,0d,0'd, 0,0

where we omit + signs (for example we write 0'¢’ for 0’ + ¢.)



246 GEORGE LUSZTIG [September

Thus we have

> byl lnh = ped +pad +pee’ +po(0'+¢ +d+€) +pe(0 +d +¢)

hel
+ pa(0'+ +€ )+ pe(0' 4+ +d')+po(0' 40"+ +d' +¢')
+pe(0/ 4+ ) + pag (0 + d) + pe(0 + €') + po0/
+ (2pc + Pd + Pe + QPO)C/ + (pc + 2pd + Pe + 2p0)d/
+ (pe + Pa + 2pe + 2p0)e’ + (2pe + 2pa + 2pe + 4po)0’.
We have

boo = 2, bec = bgd = bee = 1,
boc = beo = bod = bdo = boe = beo = 1,
bed = baec = bee = bec = bge = bea = 1/2.
Moreover, p = p'. We see that (a) holds.
2.4. We define two subsets of Bz (see 1.8) by By; = {(A, 4') € Bz; A € Un},
By ={(A,A) € Bz; A’ € Un}.

For any p € Z' we define

BNy = BltT ﬂﬁp([)’ﬁ) C By.

Clearly, (A, A") — A is a bijection
(a) BNyp = {A € Un; Spgf)z(A) S UN}.

Note that if p € N then (hg, h,) € Bn . (We use 2.2(a),(c).) In particular,
in this case we have Bn, # 0.

2.5. We show that, conversely,

(a) if p € Z! and BN, # 0, then p € N”.

Assume for example that I = {4, j} with a;; = —1, and that A € U satisfies
Sypz(A) € Un. We show that p € N7, We have i?j%° € A with a,b,c in
N and j¢=0704Pij=cHpij=b+Pi ¢ S 7 (A) withc—a—b+p; € N, —c+p; €
N,-b+p; € N. Then p; > ¢ >0, p; > b >0, so that indeed p € N7,
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We now consider the general case. Assume that A € Un satisfies
Sppz(A) € Un. Let i € I. We can find (i,a) € A with i = (i1,42,...,1,),
a = (ai,a9,...,a,) € NY such that i, = i. Let i’ = (iy,...,i2,91) € Z.
Define a’ = (a},d),...,al,) by (i',a') € ¢x(A). By 1.10 we have a] =
— miNlge(q,y)si,=i; G- I particular we have a,, < 0. By assumption we have
pi + al, > 0 hence p; > —al, > 0. This proves (a).

3. Canonical Bases

3.1. We fix a simply laced root datum; this consists of a finite set I, two
finitely generated free abelian groups Y, X; a perfect pairing (,) : Y x X — Z;
an imbedding I C X,i + 7 and an imbedding I C Y,7 + 7. It is assumed
that I is as in 1.1 and (4, ) = a;; where a;; is as in 1.1. We identify Z[I]
in 1.1 with a subgroup of X by ¢ — i’. The action of s; on Z[I] extends to
an action on X by s; : @ — = — (¢,2)i’. Here i € I. Thus the W-action of
on Z[I] extends to a W-action on X. For A € X we set \' = —wg()\); then

A — A is an involution of X.

Let Xt ={\ € X;(i,A\) € N Vi e I}. Note that X is stable under
A AL

For A\, N in X we write N > Xif X' =X € " Ni" and X > Nif N > A
and \ # ).

3.2. Let v be an indeterminate. Let f be the associative algebra with 1 over
Q(v) with generators {6;;i € I} associated to the matrix (a;;) in ﬂﬁ, 1.2.5].
This can be identified with the + part of the algebra U (see below) attached

to the root datum.

There is a unique algebra antiautomorphism f — f (z +— x*) such that
07 = 0; for all + € I. It has square 1.

Let U be the Drinfeld-Jimbo quantized enveloping algebra attached to
the root datum. This is an associative algebra with 1 over Q(v). As a
vector space, U can be identified with ©,cyf® f in two different ways: one
by (z ® 2'), — zTKyz'~ and one by (z ® z'), — 2~ Kya'T; here Ky is the
unit element. The map f — U,z + 2~ and the map f — U,z — 2T are
imbeddings of algebras with 1.
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3.3. Let U be the modified form of U, see ﬂg, §23]. This is an associative
algebra (without 1 in general) over Q(v). In type A it was defined in ﬂ],
the definition in the general case is the same. As a vector space, U can be
identified with ®)cxf® f in two different ways: one by (z @ 2')) — zT1\2'~
and one by (r @ 2')) — z~ 1\2'T.

There is a unique vector space isomorphism # : U — U such that
Bz a’") = (&) 1A (z")”
for z,2' in f, A € X; we have also
fx 1ha't) = (™) " 1a(2*) ™
for z,2’ in f, A € X; hence #2 = 1. Moreover, f is an algebra antiautomor-

phism.

There is a unique vector space isomorphism w : U — U such that

waTlze'™) =271 52"

for z,2" in f, A\ € X; we have also w(z~ 1 \2'") = z71_ a'~ for x,2" in f,

hence w? = 1. Moreover w is an algebra automorphism satisfying wf = fw.

3.4. For A € X7 let Ay be the simple U-module defined in ﬂg, 3.5.6]. We shall
regard Ay also as (unital) U-module as in ﬂg, 23.1.4]. We have dim Ay < oo.
Let ny € Ay be as in ﬂﬁ, 3.5.7]. We have 1yny = 1.

Let (,)x be the symmetric bilinear form Ay x Ay — Q(v) defined in ﬂﬁ,
19.1.2]. Recall that (nx,ma)x = 1.

Let U[> A] (resp. U[> A]) be the set of all u € U such that the following
condition holds.

For any M € X such that u acts on Ay by a nonzero map we have
N > X (resp.\ > N).

Clearly, U[> A] and U[> )] are two-sided ideals of U.

3.5. Let B be the canonical basis of f (see ﬂa], ﬂa]) By ﬂa, 3.3],

for b € B we have b* € B and b ~ b* is a bijection B — B.
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If b € B then there is a well defined element wt(b) € >, Nh' €
X such that the following holds: b is Q(v)-linear combination of elements

0;,0;, ...0;, where iy,ia,..., i, in I satisfy ¢} + 5 + -+ + i), = wt(b).

3.6. Let A € X*. By ﬂa],

there is a unique Q(v)-basis B), of A and a unique subset B(A) of B such
that b+ b~n) maps B —B()) to 0 and restricts to a bijection B(\) — Bj.

Let &) be the unique element in By such that 1_,1&y = &
By [d, 521),

(a) there is a unique vector space isomorphism 7 : Ay — A, such that
T(ur) = w(u)r(z) for u € U,z € Ay and 7(n)) = &yu. Tt satisfies
7(By) = By and 7(§)) = 0y

We see that there is a unique bijection s : B(\) — B(\') such that
T(b7ny) = k(b)"ny for b € B(A). For b € B(\) we have

(b) bFen = K(b) Ty

This follows from 7(b~ny) = bT&,.

3.7. From ﬂg, 19.1.4] for any b € B(\) we have

(b, b m)x € L+ v Q)]

3.8. Let B be the canonical basis of U defined in ﬂ§], see also ﬂg, 25.2]. By
ld, 26.3.2],

(a) for f € B we have wi(8) € +B and w(f) € +B.

In loc.cit. it was conjectured that the signs in (a) are +. The fact that
the sign is + for wf is proved in ﬁ, 4.3.2]. I thank H.Nakajima for pointing
out to me that ﬁ, 4.3.2] together with m, 4.14] imply that the sign for w is

+. See also 3.16(a) for a more precise statement.

3.9. For A € X let B[)] be the set of all 3 € BN U[> \] such that 3 acts
on Ay by a nonzero map. By ﬂg, 29.1.2, 29.1.3, 29.1.4] we have a partition
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B = L cx+B[\. Note that for A\ € X, U[> \] (resp. U[> }\]) is the
subspace of U with basis Uyex+.v> B[V (resp. Uyex+vsaBN]).

3.10. Let A€ X ™.

By , 4.4(a)], for by € B(\), by € B(A), there exists a unique element
B € B[)] such that b11\b5™ — 8 € U[> \]. We set 3 = By (b1, ba).

By [l 440)],
(a) the map f : Uyex+B(\) x B(\) — B[\ given by (X, (b1,bs)) — Ba(by, b2)
1s bijective.
Lemma 3.11. Let A € X, by € B()\),ba € B()\). For any r € Z we set
Uy 1= 1,\b§+bl_1)\ — ’Ur(bl_n)\, b2_77/\))\1)\.

Then for some r = ry, x € Z we have u, € U[> Al

Here we write r = 1, ) instead of: r depending on by, A but not on b;.
The following proof is almost copied from , 4.7].

Since 1, € U[> A and U[> A is a two-sided ideal of U, we have u, €
U [> A] and it is enough to show that for some r = ry, \ € Z, u, acts as 0
on Ay. Since u, = u,1) and 1)A), is the line spanned by n,, it is enough
to show that u,ny = 0 for some r = 1, » € Z. Since u, = 1 u,, we have

uny = 21y for some z,. € Q(v). We have

Zr (M)A = (U, M2 A

By the definition of (,)y, for some ro = (70)p, » € Z we have

(LAL5TBT Lama, ma)a = (b7 mx, 08 (1AD5T)ma)x = (b7 ma, v"™0by ma)
so that
Zro (M, M)A = (b 7, by ma)x) (V0 — 0™ (173, 1m0 A )-

Since (nx,mr)x = 1 we see that z,, = 0 so that u,,my = 0. The lemma is

proved.
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3.12. In the setup of Lemma 3.11 let by € B(A\). By Lemma 3.11 and its
proof, we can find ro = (ro)p,,» € Z such that u,,ny = 0; we then have
by ur,mx = 0. We see that

by 105 Tb7 Lamy = 0" (b7 M, by 73 ) abg -

We now replace \, by, by, by by X', k(bo), k(by), k(b2). (Recall that s(bg), s (by),
#(b2) are in B(\')). We see that for any A € X+ and any by, by, by in B(\)
we can find 7y = (79)p, » € Z such that

r(bo) ™ Lyea(b2) T hi(br) "Ly = 070 (s (br) T, m(b2) Ty ) s (bo) T

Using 3.6(b), we deduce
(a) #(bo) " Ly (b2)* TR (b1) " Luny = 0™ (b &y, by Ex)abE Enr

Lemma 3.13. Let A € X, by € B(\),by € B(\). Let § = (&,1,&\)n. For
any r € Z we set

ul =1 b5 b1y — v (b €y, b € ) L
Then for some r = ry, € Z we have u, € Ul> M.

The proof is similar to that of Lemma 3.11.

Since 1_, € U[> A'] and U[> ] is a two-sided ideal of U we have
u!. € U[> A and it is enough to show that for some r = Ty ) € Z, u;. acts as

Oon Ay. Since u, = ul.1_y and 1_5A,: is the line spanned by &1, it is enough

to show that w.{, = 0 for some r = ry, € Z. Since u. = 1_yu,., we have

ulyr = z1.&y for some 2. € Q(v). We have z/.(&y1, &)y = (uh&y1,&y) ). By
the definition of (,)y, for some r{ = (1()p, » € Z we have

(LB~ 1 0Ex, Ex)a = (b Ex, 0" 08(1_ab3 )€ )ar = (B Exr, 070b Exr)
so that
2y (Ex5 €a ) = (bF €xs b € ) ) (070 — 0708 (€, Ex))-

Since (§y1,&y)x = 0 # 0 (see 3.7), we see that 2/, = 0 so that u/, &, = 0.
0 0
The lemma is proved.
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3.14. In the setup of Lemma 3.13, let by € B()\). By Lemma 3.13 and

its proof we can find 7 = (r)s,,n € Z such that v/, &, = 0; we then have
0

(bsrl_,\)u;(,)ﬁ/\! = 0. We see that

by 1oaby b L a&y = 0708 (B &y, by E) b -

Comparing with 3.12(a), we deduce

(a)  vTTOGbE 1 \by b1 aEx = v k(o) " 1yk(ba) T (1) T Ly

3.15. Let A € Xt, by € B(\), by € B(\). Since 1_y € U[> \], 1, € U[> N
and U[> M is a two-sided ideal of U we have

b1 \bs~ € U[> A\,

K(bo) " 1yuk(b)*t € U> N

Let 1= b1 _\b5~ — Ck(bo) " 1yr(ba)*t where C = 7077051 with 7,7} as
in 3.12, 3.13 and ¢ is as in 3.13. We show:

(a) peUl> M.

It is enough to show that x acts as zero on Ay or that us = 0 for any s € By,
that is, for any s of the form s = b &, = k(by) "y with by € B()\). Thus,

it is enough to show that
by Lo\b5 b & — Cr(bo) ™ Lyk(b)* Tr(b1) " ny =0

for any b; € B(A). This clearly follows from 3.14(a).
We have bj1_\b5~ = w(by 1ab3T), by 1ab5T = Ba(bo, b2) + v and

K(bo)~ Lyk(b)™" = By (k(bo), k(b2)) +
where v € U[> A,y € U[> \'] so that (a) implies

w(Br(bo, b2) +7) — C(By (K(bo), K(b2)) + ') € Usy.
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From ﬂg, 29.3.1] we see that w(U[> \]) € U[> N'] and w(U[> \]) C U[>
M. Thus w(y) € U[> \']. We see that

wW(Bx(bo, b2)) — OB (r(bo), k(b2)) € U[> N].

By 3.8(a) we have w(fx(bo,b2)) = €3’ where € € {1,—1}, 8/ € B is
necessarily in B[> \'] and we have

(b) e’ — CPBy (r(bo), k(b)) € U[> N].
If 8/ € B[> \'], then we have
By (s(bo), k(b2)) € U> N,
contradicting
B (r(bo), x(b2)) € BIN],C #0
Thus, we have 3’ € B[\'] so that (b) implies
B/ = 60B>\!(H(bo), /i(bg)).

It follows that eC' = 1 that is, § = ev”0~ ™. Since § € 1 + v ' Q[[v™"]] (see
3.7), we see that

(c) §=1,e=1,7 =r{,
so that C' = 1. Thus we have the following result.

Proposition 3.16.
(a) Let A € XT by € B(\),by € B(\). We have

w(Br(bo, b2)) = B (k(bo), £(b2))-

In particular, w(B(\)) = B()\).
(b) We have (£x,6)1 = 1.

3.17. Let A = Q[[v!]] N Q(v). Let fa be the A-submodule of f with basis
B.
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For i € I let f; : f — f, & : £ — f be the linear maps defined in
M] From M, B] we see that there are well defined maps ¢; : B — B,
¢; - B — B U {0} such that for any b € B we have f;(b) = ¢;(b) modv—'fa,
€;(b) = €;(b) mod v~ 'fa. Recall that for b,b" in B we have ¢;(b) = b’ if and
only if ¢;(b') = b.

For A € A" let Ay A be the A-submodule of Ay with basis By. For i € I
let E; : Ay — Ay, E; : Ay — Ay be the linear maps denoted by fi, €; in M]
From M, H] we see that there are well defined maps F; : By — By U {0}, & :
By — B\ U{0} such that for any d € B) we have ﬁ;(d) = Fi(d)modv~tAy 4
E;(d) = Ei(d)mod v~ Ay 4. Recall that for d,d’ in By we have F;(d) = d' if
and only if & (d') = d. From the definitions we have:

(a) If b,0 in B(X), @ € I satisfy b~ = F;(b'~n;) then b = ¢; (V).
Lemma 3.18. Ifb, b in B(\'), i € I satisfy b+& = F;(V'F&), then b = (V).

Consider the vector space isomorphism 771 : Ay, — Ay, see 3.6(a). It
induces an A-module isomorphism Ay 4 — Ly 4 (since 771(By) = B));
moreover, we have 71 F, = F;7 1 : Ay — Ay

Let d € By:; we have 7-1(d) € By. Applying 77! to
Fy(d) = F;(d)mod v "Ay 4

we obtain

Ei(r71d)) = 7 HF;(d)) mod v Ay 4.

We have also

Ei(r7Y(d)) = &(r7H(d)) mod vt Ay 4.
Thus

T Fid)) = E(r7H(d)) mod v T A 4.
Since 771(Fi(d)), & (77 (d)) are in By U {0}, it follows that
(a) 71 (Fi(d)) = Ei(r(d)).

Now let d' = bt¢y, d = VT, By assumption we have d' = F;(d).
We have 771 (F;(d)) = 771(d') = b=y, 7-1(d) = ¥'"ny. Using now (a), we
deduce b—ny = &;(b'"ny), so that b = ¢;(b'). The lemma is proved.
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4. The Involution ¢x

4.1. Let k be an algebraically closed field of characteristic 0. Let G be
a connected reductive group over k with a fixed pinning corresponding to
the root datum dual to that in 3.1. Thus, G has a given maximal torus 7',
given Borel subgroups B*, B~ with intersection 7' (with unipotent radicals
U*,U™) and given imbeddings of algebraic groups z; : k — U™, y; : k —
U~ (i € I) with the usual properties (see for example m, 1.1]). Note
that X (resp. Y) is now the group of homomorphisms of algebraic groups
Hom(k*,T) (resp. Hom(7,k")).

Let © : G — G be the (involutive) automorphism of G such that
Qzi(a)) = yi(a), Uy;i(a)) = z4(a) fori € [,a €k, Qt) =t L fort € T.

Let g — O(g) be the (involutive) antiautomorphism of G such that
O(zi(a)) = zi(a), O(yi(a)) = yi(a) for i € I,a € k, O(t) =t~ for t € T.
We have 6€) = Q0.

For i € I we set $; = y;(—1)x;(1)y;(—1) (an element in the normalizer
of T).

Let B be the variety of Borel subgroups of G. Now 2 (resp. O) induces
an involution B — B denoted again by € (resp. O); now (2 interchanges
BT, B~, while © preserves BT, B~.

4.2. We now fix a semifield K contained in k* with +, x induced from k.
Let U¥, (resp. UZ,) be the totally positive part of U™ (resp. U~) defined
in terms of K in [10, 2.12]. In ﬂﬁ, 2.7] a family of bijections g;' KV — U;'O
indexed by the various i € 7 is considered; it is also shown, using Bruhat
decomposition, that each of these maps in injective. Using m, 2.5], we see
that these maps define a (surjective) map gt : Ux — U;ro. Note that for any
i we have giJr = g+fi where f; : K — Uk is as in 1.3. Since gi+ is injective,
it follows that

(a) fj is injective.

As shown in 1.3, f; is surjective hence bijective so that gt = gi+ f{l.
Since gi+ is injective it follows that g™ is injective. But it is also surjective
so that it is bijective. Thus,

(b) g™ : Uk — UL, is a bijection.
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Similarly, in m, 2.9] a family of bijections 9 - K" — U, indexed by
the various i € 7 is considered. Now these maps define a map ¢~ : Ux —

U2y As above we see that
(c) g~ :Ux — U, is a bijection.

For A € U we write AT = g (A4) € UZ,,
AT = QA7)

Let T-¢ be the subgroup of T" generated by {A(a); A € X = Hom(k™*, T,
a€c K}.

A =g (A) € UZy; we have

Lemma 4.3. Let i = (i1,i2,...,iy) € Z, a = (a1,az,...,a,) € K¥. We set
i =1,. Let k € [1,v]. For any by = (bpy1,bri2,...,b,) € KY™F there exists
a unique b, = (b}, b} ..., b,) € K**1 such that

ziy (a1)wiy(az2) . .. xqy_ (ag—1)i, (ak)Yi, (00)Yi, 1 (by—1) - ..
yikJrl (bk+1)'§ik+1'§ik+2 . éiVBi
= Ty (al)itz‘g (az)... Ty (ak—1)vi, (b;/)

Yi, 1 (b;/—l) < Yig, (b;i‘)slk éik+1 8, BT

(a)

Moreover, we have

(b) b, = b, (1 +apb,) "t ifip, =i, b, = b, if i, #1i.

The proof is essentially a repetition of arguments in the proof in ﬂa,
3.2] (except for (b)); with this occasion we correct some typos in that
proof. We only have to prove existence; the uniqueness is immediate. Now
zi, (ax)yi, (by) is equal to y;, (b],)x;, (c)t where b), is as in (b), ¢ € K and
t € T-(. Hence the left hand side of (a) is of the form

iy (a1)wiy (ag) - i (ap—1)yi, (b)) 2, ()Y, _, (b)_1) - -

1 . . . _
yik+1( k+1)3ik+1sik+2 s siuB

for some (b 1 by € KY=F. Using the usual commutation relations
between x;, (?) and y;(7) we see that the left hand side of (a) is of the form

iy (a1) iy (az) - iy (ak—1)yi, (0y)yi,_y (B)_1) -

yikJrl (bg+1)$1k (C,)éik+1§ik+2 . éiVBi
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where ¢ € K. We now use that z;, (¢/) = y;, (1/¢)$;,yi,(1/¢)t" where t' €
T-o. we see that the left hand side of (a) is of the form

iy (a1)ziy(az) - iy (ar-1)Yi, (0,)yi,  (by_q) - .-
yik+1( ,lc/+1)yik (1/6,)‘§ikyik (1/6,)'§ik+1 ‘éik+2 28, B

It remains to observe that
/N . . . - _ . . . —
Vi, (1/¢ )80, 84y pg - 31, B7 = 84, 84,0 - - - 84, B

since $;; Siy 1 Sip,s - - Si, 18 a reduced expression in W. This proves the

v

lemma.

Lemma 4.4. Leti = (i1,i2,...,i,) € Z, a = (a1,a2,...,a,) € K¥. We
set i =1i,. Let k € [1,v] and let (bgi1,bpy2,...,b,) € KV7F. Assume that
b, = (Zle[k-H Vsi=i a;)~Y. Then there exists a unique

( ;m ;<:+17 cee ?b:/) € KV_IH_I

such that

zy (a1)wiy(az) . . w4y (ak)Yi, (o) yi, o (bu-1)
e y’ik+1 (bk+1)éik+1éik+2 e éi,,B_
= wiy (a1)ziy(a2) - . wiy_ (an—1)yi, (0,)Yi,_y (b,_1)

- Yiy, (bk)SlkSlkJrlSlkJrQ e SiUBi.
/ -1
Moreover, we have by, = (3 e, 1)siy=i M) -

Except for the last sentence, this is a special case of Lemma 4.3. It
remains to prove the formula for b),. If ij, # ¢, then from 4.3 we have

= X a) =( X )

lelk+1,v];4=1 lelk,v];i=1
If i, = 7, then from 4.3 we have

o (ZZG[kJrl,v];iz:i a’)il = ( Z az>_1
Y14 ak(Zle[k,V];iz:i a)~! |

lelk,v]yi=i
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The lemma is proved.

Proposition 4.5. Let i = (i1,i2,...,1,) € Z, a = (a1,a2,...,a,) € K”.
We set i =1i,. There exists a unique (by,ba,...,b,) € KY such that

iy (a1)Tiy (02) - - @i, (a0) BT = 93, (b )i, (by—1) - - yiy (b1) 33y Si - - 53, B
Moreover, we have by = (3_1eq1 1)1, a;)~ L.

Again this is contained in ﬂa, 3.2] except for the last sentence. It follows
by applying 4.4 repeatedly with k =v,v —1,...,1.

4.6. From 4.5 we see that the image of the (injective) map
(a) Ux <5 B, Avs ATB—(A+)!
is contained in the image of the (injective) map
(b) Ux <= B, Ars A"BH(A™)"L.
Applying € we see that the image of ¢~ is contained in the image of ¢t
hence

(c) the image of ¢ is equal to the image of ¢™.

We denote this image by B ~o (a subset of B). Applying © to (c) we see
that

(d) the image of U — B, A — (AT)"1B~AT is equal to the image of
U — B, Ars (A7) 1 BT A~ and that these two maps are injective.

We denote this image by B, <o (a subset of B equal to ©(Bk ¢)). We
see that Q : B — B restricts to an involution Q' : Bx o — Bk >0 and to an
involution Q : B <o — Bk, <o-

We also see that there is a unique bijection ¢ : Ux — U such that
ATBT(AY) ™ = ¢l (A)" BT (¢ (A) )7

for any A € Uk, that is, Qc™ = ¢~ ¢. Since V%2 = 1, it follows that
gi)’K2 = 1. Moreover we see that there is a unique bijection ¢x : Ux — Uk
such that

(AN ' B™AT = (¢ (A)7) ' BY o (A)~
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for any A € Ug; we have ¢ = ¢+ (* as in 1.1) hence ¢% = 1.

4.7. From the proof of 4.5 we see that ¢ (and also @), when expressed
as a map KY — KV, is given by rational functions which are quotients
of nonzero polynomials in several variables with all coefficients in N (after
substituting elements of K for the variables); moreover these polynomials are
independent of K. Replacing the variables in these polynomials by elements
of an arbitrary semifield K’ we see that ¢x : U — Uk is defined for any
semifield K’ (not necessarily contained in a field). Then various properties
of this map can be deduced from the analogous properties in the case where
K is as in 4.2.

4.8. We can identify By (see 1.8) with Bk <o by (A, 4’) — (AT)"1B~AT.

5. Connecting Bases with Objects over the Semifield Z

5.1. Let u: Un — B be the bijection defined in ﬂa] It satisfies u(hg) = 1.
More generally, if A € Un and b = u(A) then

(a) wt(b) =D ||Allnh'.
hel

See ﬂa, 2.9]. From ﬂa, 2.11] we see that under u, the restriction to Un of the
involution %t = vx (see 1.1, 1.6, with K = Z) corresponds to the involution
x of B in 3.2.

5.2. In H] it is shown that for ¢ € I we have

piu(A) =u(T; 1 A) for all A € Un.

From (a) we can deduce:
(b) if A € Un is such that ¢u(A) € B, then T; 1A € Un and ¢u(A4) =
u(Ti,_lA).

Indeed, we have e;u(A) = u(A;) for some A; € Un. Then u(A) = p;u(A;)
so that by (a) we have A = T; 1Ay hence A; =T; 1 A.
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5.5. Until the end of 5.6 we fix A € X*. We define p* = (p) € N’ by
pg\ = (i, \) for i € I. We show:

(@) > lhallnh' = A+ A
hel
Using 2.3(a) we see that this is equivalent to the equality
SO + 6 A))bink = A+ A
hel icl
that is

(b) SN 6 QObnk = ¢

hel el

where ( = A+ X' = X—wy(A) € Y, W C X. It is enough to show that the
two sides of (b) have the same (,) with any j € I (viewed as an element of
Y') that is,

> (@ binan; = (5,€)

hel iel

for j € I. This follows immediately from the definition of b;.

5.4. According to ﬂa],
(a) u restricts to a bijection u* : Uy n — B(A).

We have u(hg) "1y = 0.
We show:

(b) w () "y = &y

Let d = uA(hpA)*n,\. Since d € B, and &, is the unique element b € By
such that 1,,,(x)b = b, it is enough to show that 1,,,\)d = d. Since 1xnx = ny,
we see from the definition of d that 1yd = d where X' = X — wt(u?(h,»).
Using 5.1(a), 5.3(a) this can be rewritten as X = A—(A+ ) = =\ = wo(N).
This proves (b).

Theorem 5.5.
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(i) For any A € Uy ,» we have
LS apz(A) € UN,p’\!'

(ii) Define a bijection i : Up ,» — Up by uy (R(A)) = k(ur(A)) for any
A €Uy, For any A € Uy ,» we have

R(A) = 197 d7(A).

Something close to this is proved in , 4.9], but that proof contains
some misprints. For this reason we reprove it without referring to , 4.9].

Let A € Uy pr- Let d = u*(A)~ny € By. From M] it is known that there
exists a sequence i1, 19, ...,1; in I such that

d= J_':ij_';g cee ‘Ekn)\

The smallest such k is a number f(A) € N. We argue by induction on f(A).
If f(A) = 0 we have u*(A4)"ny = ) hence u*(4) = 1 and A = hg. Using
2.2(c),(b),(a), we have

tSpa¢z(hg) = 1S,x (hg) = thy) = hpA!

which belongs to Uy L thus (i) holds in this case. By the proof of (i),
proving (ii) for A = hy it is the same as proving that

k(u (hg)) = u* (h_y)

or, using 5.4(b) for A" instead of A, that x(1)"ny = &,. From the definition
of  this is the same as 17¢,1 = &,; which is obvious. Thus (ii) is proved in

our case.

We can now assume that A is such that f(A) > 1 and that the result is
known when A is replaced by any A" € Uy, such that f(A’) < f(A). By
the definition of f(A) we can find A" € Uy ,» such that f(A") = f(A) — 1
and

ut(A) gy = F(aMA) )

for some i € I. From 3.17(a) we then have u(A) = ¢;(u(4’)) hence, by 5.2,
we have u(A) = u(7;14’) so that A =T, A’
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Let b = k(ux(A)) = k(¢;(u(A"), v/ = k(u(4’)). We have
b e =un(4) "y = (¢iu(A')) "y = Fi(u(A) "nn) = F(V 6.
Using 3.18 we see that b = ¢;(0'), that is
(a) K(ur(4)) = er(ux(A)).
By the induction hypothesis we have

(b) Lprgf)z(A/) S UN,p’\! and FL(A/) = LSpAQZ)z(A/).

Using (a) we have
u(k(A)) = k(uy(A)) = er(uy(4A)) = eu(LSapz(A')).
(The third equality follows from (b).) Using 5.2(b) we see that
Ti,_lbspxd)z(A/) € UN
and
eu(Sapz(A)) = u(T; 1052 pz(A")).
Here the right hand side is equal to
(1S pzT;1(A") = u(LS gz A).

(We have used 1.6(a), (b), 1.7(c).)

Thus we have u(k(A)) = u(tSr¢zA), so that k(A) = tSrpzA. We see
that (i) and (ii) hold for A. The theorem is proved.
Corollary 5.6.

(i) For any A € Uy ,» we have Sprdz(A) € Uy pr-
(ii) The map Uy, — U ,n given by A Spagz(A) ds a bijection.

(i) follows from 5.5(i); (ii) follows from 5.5(ii).

Corollary 5.7. Letp € NI, A e Unyp. Then Sppz(A) € Uny. Moreover,
the map Unp — Unp given by A — Spdz(A) is a bijection.
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We replace Y, X, (,) by Y/, X’ = Hom(Y’,Z),(,) whereY' =3~ Zi CY
and (,)’ is the obvious pairing. Define i € X’ by (j,4')’ = a;;. We apply 5.6
to this new root datum and to A replaced by N € X' given by (i, \') = p;.
Then 5.7 follows.

Corollary 5.8. For any p € N' we have
UNJJ = {A € Un; Squz(A) S UN}.
Hence (A, A’) — A is a bijection By, — Un,p.

The first sentence follows immediately from 5.7, as shown in ﬂﬁ, no.12].
The second sentence follows from the first sentence using 2.4(a).

Corollary 5.9. Let X € XT. The map By ,» — B()\) given by (A, A") —
u(A) is a bijection.

This follows from 5.4(a) and 5.8.

5.10. Let

== |_|)\€X+ BN,p)‘ X BN,p)‘
= Upex+ {(B1, Ba) € Bz x Bz; B € By, Ba € BY,S,-2B1 € By,
§p7>\B2 S Bl:T}
We define 1t : 2 — B by u(By, Bz, A) = by(u(A1),u(A4y)) for any A € X+
and any B, = (Al,A,l) S BNJJ)" By = (AQ,AIQ) S BNJJ)"
We define © : Z — 2 by ©(B1, B, A) = (10,(B1), 16, (Ba), \').
We define £ : E — Z by §(B1, Ba, \) = (Ba, B1, \).

Theorem 5.11.

(a) w is a bijection.
(b) We have wi = ww.
(c) We have fiv = uf.

(a) follows from 3.10(a) and 5.9; (b) follows from 3.16, 5.5 and 5.8; (c)
follows from , 4.14(a)].
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5.12. The group X acts on Bz x Bz by \: (B, B) — (ﬁpr,ﬁp)\B).

We now assume that the root datum in 3.1 is of simply connected type,
that is, the map X — Z, A — p* is a bijection. Then the X-action above
is free. Let

== {(Bl,BQ,Bl,BQ) S BltT X Bf\? X B;I X Bl:T’
(B1, Bs) is in the X-orbit of (Bl,Bg)}.

We define = — Z/ by
(a) (B1, B2, \) v (By, B2, 8,-2B1,S,-2B2).

We show:

(b) The map (a) is a bijection.

The injectivity follows from the freeness of the X-action. We show that (a)
is surjective. It is enough to show that:

(c) if B € Bf, By € Bn, A € X are such that By = S,-»Bi, then A € X*.
This follows from 2.5(a).

Using (b), we see that in our case, Z’' can be viewed as an indexing set
for B.
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Appendix

A.1. Let p = (p;) € NZ. Then the set Un p is finite since it is in bijection
with the finite set By for some A € X (assuming that the root datum is of
simply connected type). But one would like to have a proof of the finiteness
of Un , independent of the theory of canonical bases. Such a proof will be
given in this appendix.

Let n € N. Let Ug be the set of all A € Un such that for any (i,a) € A

we have a1 < n.

Lemma A.2. Let A € UY. For any (i,a) € A we have ar < 28 In for
ke llv].

We argue by induction on k. For k = 1 the result is clear. Now assume
that £ > 2. Let (i,a) € A. We set ax_1 = a,ap = b, i1 = i,i = j. If
Aj5 = 0 then

((il,...,ik,Q,j,i,...),(al,...,ak,g,b,a,...)) cA

and by the induction hypothesis we have b < 25¥72n hence b < 2F"In as
desired. Thus we can assume that a;; = —1.

Case 1. Assume that s; s, is not a reduced expression; then

Sik+1"' v

Sik+1---3il,:3i5jk+2-~3j

v

(reduced expression) for some jj12,...,J, in I so that for some bgi1,...,b,
we have

((il) o )ik—Q)ivj)ivjk-‘er cee )jl/)) (al) e, ap—2,a, b) bk-i—lv cee )bu)) S A
Here we can replace ¢, 5,7 by j,7,j and a,b, bx41 by
b+ bxy+1 — min(a, bgy1), min(a, bg11),a + b — min(a, by11).

From the induction hypothesis we have b + b1 — min(a, by 1) < 28 2n. If
a < byy1, then b+ by —a < 2872 hence

b<b+by <a+2F2n <282 4282y =2k 1y,
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If by+1 < a then b < 2k=2p hence b < 28— 1n as desired.

Case 2. We can now assume that s;s;, 41+ - S, 18 areduced expression. Then
setting y = s, ... si, we have that [s;y| > |y, [s;y| > |y|, hence |s;s;s;y| =
ly|+3, hence can find w € W such that us;s;sjy = wo, |u|+|sjs;s;|+|y| = v.
Hence we can find (i’,a’) € A with

(i;€—27i;€—17i;€) = (]7%])7

(a)—9, a)_y, a)) = (a),_,a,b).
Here we can replace j,i,j by ,j,7 and aj,_,,a,b by

a+ b —min(aj,_,,b), min(aj,_,,b),a)_, + a — min(aj,_y,b).

By the induction hypothesis we have a}_, < 2*73n, a+b—min(aj_,,b) <
k=3, Ifb < aj,_o then b < 2k=3n hence b < 2F~1n. If aj_o < b then
a+b—a,_,< 2k=31 hence

b<a+b<ada) o+2"3n <2k 3p 42k 3y =2k 2y
hence b < 28~pn. This completes the induction step. The lemma is proved.
Proposition A.3. U} is a finite set.

Let i € Z. Using 1.3(a) it is enough to show the finiteness of the set of all
a € IN” such that the equivalence class of (i,a) is in Y. By the lemma, the
number of elements in this set is < (N +1)(2N +1)(4N +1)--- (271N +1).
The proposition is proved.

A.4. We now choose n such that n > p; for all « € I. Clearly, Un, is
contained in the image of U under A — A*. Using A.3, we deduce that
Un p is finite.
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