On cross hedging, BSDE and Malliavin’s calculus*

S. Ankirchner, A. Fromm, Y. Hu, P. Imkeller, M. Müller, A. Popier, G. Dos Reis

Université Rennes I, Humboldt-Universität zu Berlin, Université du Maine
http://wws.mathematik.hu-berlin.de/~imkeller

Lectures held at Spring School on
Stochastic Calculus and Applications
Taipei, April 10, 11, 2010

*Supported by the DFG research center MATHEON at Berlin
Chapter 1

Cross hedging: basic concepts, martingale optimality and BSDE

1.1 Basis risk: definition and examples

Basis = price of **hedged asset** - price of **hedging instrument**

Problem of basis risk: uncertainties of processes describing the evolution of prices of **asset** and **hedging instrument** not identical, only **highly correlated**

Example 1: weather derivatives

hedged asset: heating oil sales, **hedging instrument:** HDD derivative

HDD derivative: contract paying a premium in case HDD above a critical threshold

Example 2: commodity markets

hedged asset: power spot price, **hedging instrument:** power futures

Futures: contract to deliver amount of commodity at pre-fixed price

Hedge spot price fluctuations on time slots not coinciding with futures delivery dates
1.2 a toy example

Aim: show problems with hedging basis risk, given very high correlation

Diagram indicates high correlation between jet fuel spot price and heating oil spot price.
1.3 Cross hedging principle: correlation

simplest caricature of hedging problem:

static situation: \(Y \) hedged asset, \(X \) hedging instrument, both standard Gaussian, possibly strongly correlated

\[\rho = E(XY) \quad \text{(correlation of } X \text{ and } Y) \]

decomposition of \(Y \) into part parallel to \(X \) and independent standard Gaussian part \(Z \):

\[Z = \frac{1}{\sqrt{1 - \rho^2}}[Y - \rho X] \]

then

\[\sqrt{1 - \rho^2}E(XZ) = E(XY) - \rho E(X^2) = 0, \]

hence \(Z \) independent of \(X \), and

\[Y = \rho X + Y - \rho X = \rho X + \sqrt{1 - \rho^2}Z. \]
1.4 Cross hedging principle: mean variance

What quantity a of position X would agent hold to optimally hedge position Y? The quality of hedging: minimize quadratic error

$$E((Y-aX)^2) = E(((\rho-a)X+\sqrt{1-\rho^2}Z)^2) = (\rho-a)^2 + (1 - \rho^2)$$ minimal,

i.e.

$$a = \rho, \quad \text{Hedging error: } \sqrt{1 - \rho^2}Z$$

<table>
<thead>
<tr>
<th>ρ</th>
<th>$\sqrt{1 - \rho^2}$</th>
<th>% uncertainty hedged</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>0.05</td>
<td>95</td>
</tr>
<tr>
<td>0.99</td>
<td>0.14</td>
<td>86</td>
</tr>
<tr>
<td>0.98</td>
<td>0.20</td>
<td>80</td>
</tr>
<tr>
<td>0.95</td>
<td>0.31</td>
<td>69</td>
</tr>
<tr>
<td>0.9</td>
<td>0.44</td>
<td>56</td>
</tr>
</tbody>
</table>
1.5 Mean variance hedging of jet fuel by heating oil

simple model for price processes (better: geometric BM) (J. C. Hull 2008)

jet fuel

\[J_t = J_0 + \mu t + \sigma Y_t, \quad t \geq 0 \]

heating oil

\[H_t = H_0 + \nu t + \beta X_t, \quad t \geq 0 \]

\[\mu, \nu, \sigma, \beta \in \mathbb{R}, \quad X \text{ and } Y \text{ correlated BM, to be estimated from data;} \]

for \(\sigma \) and \(\beta \): sample standard deviation for \(x_1, \ldots, x_n \):

\[\hat{s} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \frac{1}{n} \sum_{j=1}^{n} x_j)^2}. \]

yields ML estimates \(\hat{\sigma} \approx 3,998, \hat{\beta} \approx 3,835; \)

For correlation between \(X \) and \(Y \): sample (Pearson) correlation coefficient for \(x_1, \ldots, x_n \):

\[\hat{\rho} = \frac{n \sum_i x_i y_i - \sum_i x_i \sum_i y_i}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}} \]

yields ML estimator for correlation \(\hat{\rho} = 0.897 \)
1.5 Mean variance hedging of jet fuel by heating oil

decomposition of the jet fuel price

\[J_t = J_0 + \mu t + 0.897 \hat{\sigma} X_t + 0.443 \hat{\sigma} Z_t, \]

\(Z \) BM independent of \(X \).

Airline aims at hedging increasing fuel prices by buying heating oil futures; suppose \(K = E[H_1] = H_0 + \nu \) is price of heating oil futures at time 0; quantity of futures \(a \) the airline has to hold to minimize quadratic error determined by

\[E((J_1 - J_0) - a(H_1 - K))^2 = \mu^2 + (0.897 \hat{\sigma} - a \hat{\beta})^2 + 0.321 \hat{\sigma}^2, \]

i.e. \(a = \frac{0.897 \hat{\sigma}}{\hat{\beta}} \).

Hedging error at time 1

\[I_1 = 0.443 \hat{\sigma} Z_1. \]

Correlation between spot prices almost 0.9; only 56% of standard deviation of price change can be hedged!
1.6 Conclusions: mean variance hedging

- Even if correlation very high, hedging error large!

- correlation high: small change in correlation entails big change in percentage of basis risk relative to total risk

- correlation low: small change in correlation entails essentially no change in percentage of basis risk relative to total risk

- downside part of basis risk has to be properly respected
1.7 Our approach of utility based hedging

Aims:

- present a **purely probabilistic** approach, combining martingale optimality and BSDE
- determine **utility indifference price**
- determine **explicit optimal cross hedging strategy**, using Malliavin’s calculus
- clarify role of **correlation in hedging**
- describe reduction of risk by **cross hedging**
1.8 The financial market model

Index process, e.g. temperature, spot price

\[dR_t = \sigma(t, R_t) dW_t + b(t, R_t) dt, \]

\(W \) \(d \)-dimensional Brownian motion, \(b : [0, T] \times \mathbb{R}^m \rightarrow \mathbb{R}^m \), \(\sigma : [0, T] \times \mathbb{R}^m \rightarrow \mathbb{R}^{m \times d} \) deterministic functions, globally Lipschitz and of sublinear growth, i.e.

there exists \(C \in \mathbb{R}_+ \) such that for all \(t \in [0, T] \) and \(x, x' \in \mathbb{R}^m \)

\[
\begin{align*}
|b(t, x) - b(t, x')| + |\sigma(t, x) - \sigma(t, x')| & \leq C|x - x'|, \\
|b(t, x)| + |\sigma(t, x)| & \leq C(1 + |x|).
\end{align*}
\]

Markov process, \(R^{t,r}_s \): start at \(t \) in \(r \)

Hedged asset: liability or derivative \(F(R_T) \), \(F : \mathbb{R}^m \rightarrow \mathbb{R} \) bounded
1.8 The financial market model

Hedging instrument: correlated financial market, \(k \) risky assets with price process:

\[
\frac{dS^i_t}{S^i_t} = \tau_i(t, R_t) dW_t + c_i(t, R_t) dt = \tau_i(t, R_t)[dW_t + \theta_t dt], \quad i = 1, \ldots, k,
\]

\[c : [0, T] \times \mathbb{R}^m \rightarrow \mathbb{R}^k, \quad \tau : [0, T] \times \mathbb{R}^m \rightarrow \mathbb{R}^{k \times d}, \quad \theta = \tau^*[\tau\tau^*]^{-1}c,\]

\(I_k \) the \(k \times k \) unit matrix

\[c \text{ is bounded,} \quad \varepsilon I_k \leq (\tau(t, r)\tau^*(t, r)) \leq K I_k \quad \text{for some } 0 < \varepsilon < K, \text{ all } (t, r) \in [0, T] \times \mathbb{R}^m.\]

To exclude arbitrage, assume \(d \geq k \). Correlation expressed by \(\tau \) and \(\sigma \).
1.9 The optimal investment problem

(N. El Karoui, R. Rouge ’00; J. Sekine ’02; J. Cvitanic, J. Karatzas ’92, Kramkov, Schachermayer ’99,...)

investment strategy λ: value of portfolio fraction invested in risky assets

wealth gain on $[0, s]$ (here $\tau_t = \tau(t, \cdot)$ etc.)

$$G_s^\lambda = v + \sum_{i=1}^{k} \int_0^s \lambda_i^u \frac{dS_i^u}{S_i^u} = v + \int_0^s \lambda_u \tau_u [dW_u + \theta_u du],$$

utility function: $U(x) = -e^{-\alpha x}$ ($0 < \alpha$ risk aversion); maximal expected utility from terminal wealth without and with derivative:

$$V^0(v) = \sup_{\lambda \in \tilde{C}} EU(G_T^\lambda), \quad V^F(v) = \sup_{\lambda \in \tilde{C}} EU(G_T^\lambda - F(R_T))$$

utility indifference $V^F(v^F) = V^0(v^0)$, λ^0 resp. λ^F optimal strategies

utility indifference price derivative hedge

$$\Delta_v = v^F - v^0 = p = p(r) = p(t, r)$$

$$\Delta_\lambda = \lambda^F - \lambda^0$$
1.10 Optimization under non-convex constraints

Interpretation as maximization problem with convex constraints

\[\tilde{C} \subset \mathbb{R}^k \text{ convex}, \quad \lambda \in \tilde{C} \]

\[p_t = \lambda_t \tau_t \in C_t = \tilde{C} \tau_t \]

\[C_t \text{ convex} \]

Aim: construct solution combining *martingale optimality* with BSDE, even for non-convex constraints

(N. El Karoui, R. Rouge ’00 for convex constraints)

\[\tilde{C} \subset \mathbb{R}^k \text{ closed}, \quad \lambda \in \tilde{C} \]
1.10 Optimization under non-convex constraints

\[F = F(R_T) \] hedged asset

First formulation:

Find

\[
V(v) = \sup_{\lambda \in \tilde{C}} E(U(G_T^\lambda - F)) = \sup_{\lambda \in \tilde{C}} E(U(v + \int_0^T \lambda_s \tau_s [dW_s + \theta_s ds] - F)).
\]

For simplicity:

\[
p = \lambda \tau, \\
C = \tilde{C} \tau.
\]

\[
G^p_t = v + \int_0^t p_s [dW_s + \theta_s ds], \quad t \in [0, T]
\]

Second formulation:

Find

\[
V(v) = \sup_{p \in C} E(U(G_T^p - F)) = \sup_{p \in C} E(-\exp(-\alpha(v + \int_0^T p_s [dW_s + \theta_s ds] - F))).
\]
1.11 Martingale optimality and BSDE

Idea: Construct family of processes $Q^{(p)}$ such that

Form 1

$Q^{(p)}_0 = \text{constant,}$
$Q^{(p)}_T = -\exp(-\alpha (G^p_T - F)),$
$Q^{(p)}$ supermartingale, $p \in C,$
$Q^{(p*)}$ martingale, for (exactly) one $p^* \in C.$

Then

$E(-\exp(-\alpha [G^p_T - F])) = E(Q^{(p)}_T)$
$\leq E(Q^{(p)}_0)$
$= V(v)$
$= E(Q^{(p*)}_0)$
$= E(-\exp(-\alpha [G_T^{(p*)} - F])).$

Hence p^* optimal strategy.
1.11 Martingale optimality and BSDE

BSDE

Given: F (terminal variable), $f : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ measurable.

(BSDE) $Y_t = F - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds, \quad t \in [0, T].$

forward form $Y_t = Y_0 + \int_0^t Z_s dW_s - \int_0^t f(s, Z_s) ds, \quad Y_T = F, \quad t \in [0, T].$

Solution: pair (Y, Z) satisfying (BSDE), describes stochastic dynamics which controls Y into F

Simplest case: $f = 0$. Then $Y_t = E(F|\mathcal{F}_t) = E(F) + \int_0^t Z_s dW_s$ (martingale representation).

Come back to general problem of solving a BSDE later; first show what the consequences of this approach are.
1.11 Martingale optimality and BSDE

Introduction of BSDE into problem

Find generator \(f \) of BSDE

\[
Y_t = F - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds, \quad Y_T = F,
\]

such that with

\[
Q^{(p)}_t = -\exp(-\alpha [G^p_t - Y_t]), \quad t \in [0, T],
\]

we have

\[
Q^{(p)}_0 = -\exp(-\alpha (v - Y_0)) = \text{constant},
\]

(fulfilled)

form 2

\[
Q^{(p)}_T = -\exp(-\alpha (G^p_T - F)) \quad (\text{fulfilled})
\]

\[
Q^{(p)} \quad \text{supermartingale}, \quad p \in C,
\]

\[
Q^{(p^*)} \quad \text{martingale, for (exactly) one} \quad p^* \in C.
\]

This gives solution of valuation problem.
1.12 Construction of generator of BSDE

How to determine f:

Suppose f generator of BSDE. Then by Ito’s formula

$$Q_t^{(p)} = -\exp(-\alpha [v + G_t^p - Y_t])$$

$$= Q_0^{(p)} + M_t^{(p)} + \int_0^t \alpha Q_s^{(p)} [-p_s\theta_s - f(s, Z_s) + \frac{\alpha}{2} (p_s - Z_s)^2] ds,$$

with a local martingale $M^{(p)}$. $Q^{(p)}$ satisfies (form 2) iff for

$$q(\cdot, p, z) = -f(\cdot, z) - p\theta + \frac{\alpha}{2} (p - z)^2, \quad p \in \mathcal{A}, z \in \mathbb{R},$$

we have

(form 3) $$q(\cdot, p, z) \geq 0, \quad p \in \mathcal{A} \quad \text{(supermartingale)}$$

$$q(\cdot, p^*, z) = 0, \quad \text{for (exactly) one } p^* \in \mathcal{A} \quad \text{(martingale)}.$$
1.12 Construction of generator of BSDE

Now

\[q(\cdot, p, z) = -f(\cdot, z) - p\theta + \frac{\alpha}{2}(p - z)^2 \]
\[= -f(\cdot, z) + \frac{\alpha}{2}(p - z)^2 - (p - z)\cdot\theta + \frac{1}{2\alpha}\theta^2 - z\theta - \frac{1}{2\alpha}\theta^2 \]
\[= -f(\cdot, z) + \frac{\alpha}{2}[p - (z + \frac{1}{\alpha}\theta)]^2 - z\theta - \frac{1}{2\alpha}\theta^2. \]

Under non-convex constraint \(p \in C \):

\[[p - (z + \frac{1}{\alpha}\theta)]^2 \geq d^2(C, z + \frac{1}{\alpha}\theta). \]

with equality for at least one possible choice of \(p^* \) due to closedness of \(C \).

Hence (form 3) is solved by the choice

form 4 \[\frac{f(\cdot, z)}{p^*} = \frac{\alpha}{2}d^2(C, z + \frac{1}{\alpha}\theta) - z\cdot\theta - \frac{1}{2\alpha}\theta^2 \quad \text{(supermartingale)} \]

such that \(d(C, z + \frac{1}{\alpha}\theta) = d(p^*, z + \frac{1}{\alpha}\theta) \quad \text{(martingale)}. \)
1.12 Construction of generator of BSDE

Problem: Let
\[\Pi_C(v) = \{ p \in \mathbb{R}^d : d(C, v) = d(p, v) \} \]. Find measurable selection \(p_t^* \) from \(\Pi_{C_t}(Z_t + \frac{1}{\alpha} \theta_t) \). Solved by classical measurable selection method.

Measurable selection \(p_t^* \) from \(\pi_{C_t}(z + \frac{1}{\alpha} \theta_t) \)
Chapter 2

BSDE: existence and uniqueness

2.1 Backward stochastic differential equations

Let \(T > 0 \), (time horizon), \(m \in \mathbb{N} \) (dimension), \((\Omega, \mathcal{F}, P)\) canonical \(d \)-dimensional Wiener space, \(W = (W^1, \cdots, W^d) \) canonical Wiener process, \((\mathcal{F}_t)_{t \geq 0}\) canonical filtration

\(L^2(\mathbb{R}^m) \) space of \(\mathbb{R}^m \)-valued \(\mathcal{F}_T \)-measurable random variables, normed by \(E(|X|^2)^{1/2} \);

\(H^2(\mathbb{R}^m) \) space of \((\mathcal{F}_t)_{0 \leq t \leq T}\)-adapted processes \(X : \Omega \times [0, T] \to \mathbb{R}^m \), normed by \(||X||_2 = E(\int_0^T |X_t|^2 dt)^{1/2} \);

\(H^1(\mathbb{R}^m) \) space of \((\mathcal{F}_t)_{0 \leq t \leq T}\)-adapted processes \(X : \Omega \times [0, T] \to \mathbb{R}^m \), normed by \(||X||_1 = E(\int_0^T |X_t|^2 dt)^{1/2} \);

for \(\beta > 0 \) and \(X \in H^2(\mathbb{R}^m) \) let

\[
||X||_{2,\beta} = E(\int_0^T e^{\beta t} |X_t|^2 dt),
\]

and \(H^{2,\beta}(\mathbb{R}^m) \) space \(H^2(\mathbb{R}^m) \) normed by \(|| \cdot ||_{2,\beta} \).
2.1 Backward stochastic differential equations

describe hypotheses for parameters of BSDE

terminal condition F belongs to $L^2(\mathbb{R}^m)$

generator depends on (y, z):

$$f : \Omega \times \mathbb{R}_+ \times \mathbb{R}^m \times \mathbb{R}^{d \times m} \rightarrow \mathbb{R}^m,$$

product measurable, adapted in time, satisfies

$$(H1) \ f(\cdot, 0, 0) \in H^2(\mathbb{R}^m),$$

f uniformly Lipschitz, i.e. there is $C \in \mathbb{R}$ such that for any

$(y_1, z_1), (y_2, z_2) \in \mathbb{R}^m \times \mathbb{R}^{n \times m}, P \otimes \lambda$-a.e. $(\omega, t) \in \Omega \times \mathbb{R}_+$

$$(H2) \ |f(\omega, t, y_1, z_1) - f(\omega, t, y_2, z_2)| \leq C[|y_1 - y_2| + |z_1 - z_2|].$$

Definition 1. A pair of functions (f, F) fulfilling, besides the mentioned measurement requirements, hypotheses $(H1), (H2)$ is said to be a standard parameter.
2.1 Backward stochastic differential equations

Aim: Given a standard parameter \((f, F)\), solve problem of finding a pair of \((\mathcal{F}_t)_{0 \leq t \leq T}\)-adapted processes \((Y_t, Z_t)_{0 \leq t \leq T}\) such that the **backward stochastic differential equation (BSDE)**

\[
(*) \quad dY_t = Z_t^*dW_t - f(\cdot, t, Y_t, Z_t)dt, \quad Y_T = F,
\]

holds.

Use contraction argument on suitable Banach space; this needs *a priori* inequalities.
2.2 BSDE: a priori inequalities

Lemma 1. For $i = 1, 2$ let (f^i, F^i) be standard parameters, $(Y^i, Z^i) \in H^2(\mathbb{R}^m) \times H^2(\mathbb{R}^{d \times m})$ solutions of (*) for (f^i, F^i), where for $z \in \mathbb{R}^{d \times m}$ we denote $|z| = (tr(zz^*))^{\frac{1}{2}}$. Let C be a Lipschitz constant for f^1. Define for $0 \leq t \leq T$

$$\delta Y_t = Y^1_t - Y^2_t,$$

$$\delta_2 f_t = f^1(\cdot, t, Y^2_t, Z^2_t) - f^2(\cdot, t, Y^2_t, Z^2_t).$$

Then for any triple (λ, μ, β) with $\lambda > 0$, $\lambda^2 > C$, $\beta \geq C(2 + \lambda^2) + \mu^2$ we have

$$\|\delta Y\|_{2,\beta}^2 \leq T[e^{\beta T} E(|\delta Y_T|^2) + \frac{1}{\mu^2} \|\delta_2 f\|_{2,\beta}^2],$$

$$\|\delta Z\|_{2,\beta}^2 \leq \frac{\lambda^2}{\lambda^2 - C}[e^{\beta T} E(|\delta Y_T|^2) + \frac{1}{\mu^2} \|\delta_2 f\|_{2,\beta}^2].$$
2.2 BSDE: proof of a priori inequalities

Proof

1. \((Y, Z) \in H^2(\mathbb{R}^m) \times H^2(\mathbb{R}^{d \times m})\) solution of (*), standard parameters \((F, f)\), i.e. for \(0 \leq t \leq T\)

\[
(*) \quad Y_t = F - \int_t^T Z^*_s dW_s + \int_t^T f(\cdot, s, Y_s, Z_s) ds.
\]

We show:

\[
\sup_{0 \leq t \leq T} |Y_t| \in L^2(\mathbb{R}^m).
\]

By (*) we have

\[
\sup_{0 \leq t \leq T} |Y_t| \leq |F| + \int_0^T |f(\cdot, s, Y_s, Z_s)| ds + \sup_{0 \leq t \leq T} \left| \int_t^T Z^*_s dW_s \right|,
\]

hence by Doob’s inequality

\[
E(\sup_{0 \leq t \leq T} |\int_t^T Z^*_s dW_s|^2) \leq 4E(\sup_{0 \leq t \leq T} |\int_0^t Z^*_s dW_s|^2) \leq 8E(\int_0^T |Z_s|^2 ds).
\]
2.2 BSDE: proof of a priori inequalities

(H1) and (H2) guarantee $|F| + \int_0^T |f(\cdot, s, Y_s, Z_s)|ds \in L^2(\mathbb{R})$. So

$$E\left(\sup_{0 \leq t \leq T} |Y_t|^2 \right) < \infty.$$
2.2 BSDE: proof of a priori inequalities

2. Now derive auxiliary equation; apply Itô’s formula to semimartingale \((e^{\beta s}|\delta Y_s|^2)_{0 \leq s \leq T}\); obtain for \(0 \leq t \leq T\)

\[
e^{\beta T}|\delta Y_T|^2 - e^{\beta t}|\delta Y_t|^2 = \beta \int_t^T e^{\beta s}|\delta Y_s|^2 ds + 2 \int_t^T e^{\beta s} \langle \delta Y_s, f^1(\cdot, s, Y_s^1, Z_s^1) \rangle ds - f^2(\cdot, s, Y_s^2, Z_s^2) ds - \beta \int_t^T e^{\beta s} \langle \delta Y_s, \delta Z_s^* dW_s \rangle ds + \int_t^T e^{\beta s}|\delta Z_s|^2 ds.
\]

By reordering the terms in the equation we obtain

\[
e^{\beta t}|\delta Y_t|^2 + \beta \int_t^T e^{\beta s}|\delta Y_s|^2 ds + \int_t^T e^{\beta s}|\delta Z_s|^2 ds = e^{\beta T}|\delta Y_T|^2 + 2 \int_t^T e^{\beta s} \langle \delta Y_s, \delta Z_s^* dW_s \rangle ds - f^2(\cdot, s, Y_s^2, Z_s^2) ds.
\]
2.2 BSDE: proof of a priori inequalities

3. We prove for $0 \leq t \leq T$:

$$E(e^{\beta t} | \delta Y_t|^2) \leq E(e^{\beta T} | \delta Y_T|^2) + \frac{1}{\mu^2} E(\int_t^T e^{\beta s} |\delta_2 f_s|^2 ds).$$

take expectations on both sides of equation from 2.:

$$E(e^{\beta t} | \delta Y_t|^2) + \beta E(\int_t^T e^{\beta s} |\delta Y_s|^2 ds) + E(\int_t^T e^{\beta s} |\delta Z_s|^2 ds) = E(e^{\beta T} | \delta Y_T|^2)$$

$$+ 2E(\int_t^T e^{\beta s} \langle \delta Y_s, f^1(\cdot, s, Y_s^1, Z_s^1) - f^2(\cdot, s, Y_s^2, Z_s^2) \rangle ds).$$

Now by our assumptions for $0 \leq s \leq T$

$$|f^1(\cdot, s, Y_s^1, Z_s^1) - f^2(\cdot, s, Y_s^2, Z_s^2)| \leq |f^1(\cdot, s, Y_s^1, Z_s^1) - f^1(\cdot, s, Y_s^2, Z_s^2)| + |\delta_2 f_s|$$

$$\leq C[|\delta_s Y| + |\delta_s Z|] + |\delta_2 f_s|. $$
2.2 BSDE: proof of a priori inequalities

The latter implies

\[\int_t^T E(2e^{\beta s}|\langle \delta Y_s, f^1(\cdot, s, Y^1_s, Z^1_s) - f^2(\cdot, s, Y^2_s, Z^2_s)\rangle|) ds \]

\[\leq \int_t^T 2e^{\beta s} E(|\delta Y_s| [C(|\delta Y|) + |\delta Z|] + |\delta f_s|) ds \]

\[= \int_t^T 2e^{\beta s} [CE(|\delta Y_s|^2) + E(|\delta Y| (C|\delta Z|) + |\delta f_s|)] ds. \]

Now for \(C, y, z, t > 0 \) with \(\mu, \lambda > 0 \)

\[2y(Cz + t) = 2Cyz + 2yt \]

\[\leq C[(y\lambda)^2 + (\frac{z}{\lambda})^2] + (y\mu)^2 + (\frac{t}{\mu})^2 \]

\[= C(\frac{z}{\lambda})^2 + (\frac{t}{\mu})^2 + y^2(\mu^2 + C\lambda^2). \]
2.2 BSDE: proof of a priori inequalities

With this estimate last term inequality further:

\[\int_t^T 2e^{\beta s}[C E(|\delta Y_s|^2) + E(|\delta_s Y |(C|\delta_s Z|) + |\delta_2 f_s|)] ds \]

\[\leq \int_t^T e^{\beta s}[2CE(|\delta Y_s|^2) + \frac{C}{\lambda^2} E(|\delta_s Z|^2) \]

\[+ \frac{1}{\mu} E(|\delta_2 f_s|^2) + (\mu^2 + C\lambda^2) E(|\delta_s Y|^2)] ds \]

\[= \int_t^T e^{\beta s}[(\mu^2 + C(2 + \lambda^2)) E(|\delta Y_s|^2) \]

\[+ \frac{C}{\lambda^2} E(|\delta_s Z|^2) + \frac{1}{\mu} E(|\delta_2 f_s|^2)] ds. \]
2.2 BSDE: proof of a priori inequalities

Summarizing, using assumptions on parameters

\[
\begin{align*}
(**) \quad E(e^{\beta t}|\delta Y_t|^2) & \leq E\left(\int_t^T e^{\beta s}|\delta Y_s|^2 ds\right)\left[-\beta + C(2 + \lambda^2) + \mu^2\right] \\
& + E\left(\int_t^T e^{\beta s}|\delta Z_s|^2 ds\right)\left[\frac{C}{\lambda^2} - 1\right] + E(e^{\beta T}|\delta Y_T|^2) \\
& + \frac{1}{\mu^2} E\left(\int_t^T e^{\beta s}|\delta_2 f_s|^2 ds\right) \\
& \leq E(e^{\beta T}|\delta Y_T|^2) + \frac{1}{\mu^2} E\left(\int_t^T e^{\beta s}|\delta_2 f_s|^2 ds\right).
\end{align*}
\]

This is the claimed inequality.

4. To obtain the **first inequality**, integrate the inequality resulting from 3. in \(t \in [0,T] \).

5. The **second inequality follows from (**) by taking the second term from the right hand side to the left. •
2.3 BSDE: existence and uniqueness

Theorem 1. Let \((f, F)\) be standard parameters. Then there exists a uniquely determined pair \((Y, Z) \in H^2(\mathbb{R}^m) \times H^2(\mathbb{R}^{d \times m})\) satisfying

\[
Y_t = F - \int_t^T Z_s^* dW_s + \int_t^T f(\cdot, s, Y_s, Z_s) ds, \quad 0 \leq t \leq T.
\]

Proof

Consider

\[
\Gamma : H^{2,\beta}(\mathbb{R}^m) \times H^{2,\beta}(\mathbb{R}^{d \times m}) \to H^{2,\beta}(\mathbb{R}^m) \times H^{2,\beta}(\mathbb{R}^{d \times m}), (y, z) \mapsto (Y, Z),
\]

where \((Y, Z)\) is solution of BSDE

\[
(*) \quad Y_t = F - \int_t^T Z_s^* dW_s + \int_t^T f(\cdot, s, y_s, z_s) ds, \quad 0 \leq t \leq T.
\]
2.3 BSDE: proof of existence and uniqueness

1. We prove: \((Y, Z)\) is well defined. By assumptions

\[
F + \int_t^T f(\cdot, s, y_s, z_s) ds \in L^2(\Omega), \quad 0 \leq t \leq T.
\]

Therefore

\[
M_t = E(F + \int_0^T f(\cdot, s, y_s, z_s) ds | \mathcal{F}_t), \quad 0 \leq t \leq T,
\]

is a martingale. \(M\) possesses continuous version and is square integrable. Hence martingale representation provides (unique) \(Z \in H^2(\mathbb{R}^{d \times m})\) such that

\[
M_t = M_0 + \int_0^t Z_s^* dW_s, \quad 0 \leq t \leq T.
\]

Let now

\[
Y_t = M_t - \int_0^t f(\cdot, s, y_s, z_s) ds.
\]
2.3 BSDE: proof of existence and uniqueness

Then Y is square integrable, and

$$Y_t = E(F + \int_t^T f(\cdot, s, y_s, z_s) ds | \mathcal{F}_t), 0 \leq t \leq T.$$

Hence

$$Y_T = F = M_0 + \int_0^T Z^*_s dW_s - \int_0^T f(\cdot, s, y_s, z_s) ds,$$

and thus for $0 \leq t \leq T$

$$Y_t = F - M_0 - \int_0^T Z^*_s dW_s + \int_0^T f(\cdot, s, y_s, z_s) ds + M_0 + \int_0^t Z^*_s dW_s - \int_0^t f(\cdot, s, y_s, z_s) ds$$

$$= F - \int_t^T Z^*_s dW_s + \int_t^T f(\cdot, s, Y_s, Z_s) ds.$$
2.3 BSDE: proof of existence and uniqueness

2. We prove: For $\beta > 2(1 + T)C$ the mapping Γ is a contraction.

For this purpose, let $(y^1, z^1), (y^2, z^2) \in H^{2,\beta}(\mathbb{R}^m) \times H^{2,\beta}(\mathbb{R}^{d \times m}),$
$(Y^1, Z^1), (Y^2, Z^2)$ corresponding solutions of (*) according to 1. Apply Lemma 1 with $C = 0, \beta = \mu^2,$ and $f^i = f(\cdot, y^i, z^i).$ Then

$$||\delta Y||_{2,\beta} \leq \frac{T}{\beta} E(\int_0^T e^{\beta s}|f(\cdot, s, y^1_s, z^1_s) - f(\cdot, s, y^2_s, z^2_s)|^2 ds),$$

$$||\delta Z||_{2,\beta} \leq \frac{1}{\beta} E(\int_0^T e^{\beta s}|f(\cdot, s, y^1_s, z^1_s) - f(\cdot, s, y^2_s, z^2_s)|^2 ds).$$

Since f is Lipschitz continuous, we further obtain

$$||\delta Y||_{2,\beta} \leq \frac{2TC}{\beta} ||\delta y||_{2,\beta} + ||\delta z||_{2,\beta},$$

$$||\delta Z||_{2,\beta} \leq \frac{2C}{\beta} ||\delta y||_{2,\beta} + ||\delta z||_{2,\beta}.$$
2.3 BSDE: proof of existence and uniqueness

Summarizing

\[(**): \quad ||\delta Y||_{2,\beta} + ||\delta Z||_{2,\beta} \leq \frac{2C(T+1)}{\beta} [||\delta y||_{2,\beta} + ||\delta z||_{2,\beta}].\]

By choice of \(\beta\), \(\Gamma\) is a contraction.

3. Now let \((\overline{Y}, \overline{Z})\) be the fixed point of \(\Gamma\), which exists due to 2. Let

\[Y_t = E(F + \int_t^T f(\cdot, s, \overline{Y}_s, \overline{Z}_s) ds | \mathcal{F}_t), \quad 0 \leq t \leq T.\]

Then \(Y\) is continuous and \(P\)-a.s. identical to \(\overline{Y}\). Then \((Y, \overline{Z})\) is solution of BSDE.

4. Uniqueness follows from the contraction property of \(\Gamma\) and the uniqueness of the fixed point. •
2.4 BSDE: recursion for solution

Corollary 1. Let $\beta > 2(1 + T)C$, $((Y^k, Z^k))_{k \geq 0}$ given by $Y^0 = Z^0 = 0$,

$$Y^{k+1}_t = F - \int_t^T (Z^{k+1}_s)^* dW_s + \int_t^T f(\cdot, s, Y^k_s, Z^k_s) ds$$

according to preceding proof. Then $((Y^k, Z^k))_{k \geq 0}$ converges in $H^{2,\beta}(\mathbb{R}^m) \times H^{2,\beta}(\mathbb{R}^{d \times m})$ to unique solution (Y, Z) of (*).

Proof

The inequality (**) in the proof of Theorem 1 recursively yields

$$\|Y^{k+1} - Y^k\|_{2,\beta} + \|Z^{k+1} - Z^k\|_{2,\beta} \leq \epsilon^k [\|Y^1 - Y^0\|_{2,\beta} + \|Z^1 - Z^0\|_{2,\beta}],$$

with $\epsilon = \frac{2C(T+1)}{\beta} < 1$. This implies

$$\sum_{k \in \mathbb{N}} [\|Y^{k+1} - Y^k\|_{2,\beta} + \|Z^{k+1} - Z^k\|_{2,\beta}] < \infty.$$

Now a standard argument applies. •
Chapter 3

Measure solutions of BSDE

3.1 The concept of measure solution

idea:

hedging
historical measure P

martingale measure Q

BSDE
compute (Y, Z) from f, F martingale representation of F ($f = 0$)

simplify: $m = d = 1$ $|f(s, y, z)| \leq cz^2, s \in [0, T], z \in \mathbb{R}$

with $g(s, y, z) = \frac{f(s, y, z)}{z}$ BSDE takes form

\begin{align}
(1) \quad Y_t &= F - \int_t^T Z_s [dW_s - g(s, Y_s, Z_s)ds] \\
Q &= \exp\left(\int_0^T g(s, Y_s, Z_s) dW_s - \frac{1}{2} \int_0^T g(s, Y_s, Z_s)^2 ds \right) \cdot P
\end{align}

$W^Q = W - \int_0^\cdot g(s, Y_s, Z_s)ds$ is a Q-Brownian motion, hence

\begin{align}
Y_t &= E^Q(F|\mathcal{F}_t) = E^Q(F) + \int_0^t Z_s dW^Q_s
\end{align}
3.1 The concept of measure solution

Pb: Starting from a measure $Q \sim P$, how can one state these findings without reference to a solution (Y, Z)?

Let

$$R = \frac{dQ}{dP}, \quad R_t = E(R|\mathcal{F}_t), \quad 0 \leq t \leq T.$$

Then by martingale representation

$$R = 1 + \int_0^t \eta_s dW_s$$

for some adapted η a.s. square integrable on $[0, T]$. By positivity of R, we also have that $\zeta = \frac{\eta}{R}$ is a.s. square integrable on $[0, T]$. Moreover,

$$R = 1 + \int_0^t R_s \zeta_s dW_s,$$

hence

$$R = \exp(\int_0^t \zeta_s dW_s - \int_0^t |\zeta_s|^2 ds).$$
3.1 The concept of measure solution

Now let

\[W^Q = W - \int_0^\cdot \zeta_s ds. \]

Then \(W^Q \) is \(Q \)-Brownian motion and by preservation of martingale representation property we have for square integrable \(\mathcal{F}_T \)-measurable \(F \)

\[Y = E^Q(F|\mathcal{F}) = E^Q(F) + \int_0^\cdot Z_s dW^Q_s \]

with some unique adapted square integrable \(Z \).

Definition 2. Let \(g : \Omega \times [0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be adapted in \((\omega, t)\), \(Q \sim P \), and \(F \in L^2(\mathcal{F}_T, Q) \), \(\zeta, Y, Z \) as above. We call \(Q \) measure solution related to \((g, F)\) if

\[\zeta = g(\cdot, \cdot, Y, Z) \quad P \otimes \lambda - \text{a.e.} \]
3.1 The concept of measure solution

In this case

\[Y = E^Q(F) + \int_0^\cdot Z_s dW_s^Q \]

\[= E^Q(F) + \int_0^\cdot Z_s dW_s - \int_0^\cdot Z_s \zeta_s ds \]

\[= E^Q(F) + \int_0^\cdot Z_s dW_s - \int_0^\cdot Z_s g(\cdot, s, Y_s, Z_s) ds. \]

So \((Y, Z)\) is solution in classical sense of BSDE with generator \((f, F)\), where

\[f(\cdot, t, y, z) = zg(\cdot, t, y, z). \]
3.2 Strong solutions induce measure solutions

Problem 1: Do strong solutions induce measure solutions? Assume from now on

\[f \text{ locally Lipschitz, } |f(s, y, z)| \leq c|z|^2 \]

Assume (1) possesses strong solution \((Y, Z)\)

Recall

\[|g(s, y, z)| \leq c|z|, \quad s \in [0, T], z \in \mathbb{R} \]

\[M = \int_0^\cdot g(s, Y_s, Z_s) \, dW_s, \quad \tau_n = \inf\{t \geq 0 : \langle M \rangle_t \geq n\} \]

Crucial question: \(V = \exp(M - \frac{1}{2} \langle M \rangle)\) martingale?

\[Q^n = V_T|\mathcal{F}_{\tau_n} \cdot P, \quad \tilde{W}^n = W - \int_0^{\tau_n \wedge \cdot} g(s, Y_s, Z_s) \, ds \]

Criterion for martingale property of \(V\) (Liptser, Shiryaev ’77; Heyde, Wong ’04):

\[Q^n(\tau_n < T) \to 0 \quad (n \to \infty) \]
3.2 Strong solutions induce measure solutions

Let F be bounded. Recall $Y^n = E_{Q^n}^n(F|\mathcal{F}_{\tau^n} \wedge \cdot)$

\[Q^n(\tau_n < T) \leq \frac{1}{n} E_{Q^n}^n \left(\int_0^{\tau^n} g(s, Y_s, Z_s)^2 ds \right) \]
\[\leq c \frac{1}{n} E_{Q^n}^n \left(\int_0^{\tau^n} (Z_s)^2 ds \right) \]
\[= c \frac{1}{n} E_{Q^n}^n \left(| \int_0^{\tau^n} Z_s d\tilde{W}_s^n |^2 \right) \]
\[= c \frac{1}{n} E_{Q^n}^n (| Y^n_{\tau_n} - Y^n_0 |^2) \]
\[\leq \frac{4}{n} c ||F||_{\infty}^2 \to 0 \ (n \to \infty). \]

Theorem 2

Assume f locally Lipschitz, $|f(s, y, z)| \leq cz^2$ and F is bounded. Then (Y, Z) is a classical solution for (f, F) if and only if there exists a probability measure Q, equivalent to P, such that Q is a measure solution for (g, F') of (1).
3.3 An algorithm for Lipschitz generators

Problem 2: How to find a measure solution without knowledge of a strong one?

Consider Lipschitz generator. For simplicity $f(0, \cdot) = 0$, F bounded. Assume

$$|f(s, y, z) - f(s, y', z')| \leq C[|y - y'| + |z - z'|], \quad s \in [0, T], (y, z, y', z') \in \mathbb{R}^4.$$

Then $g(s, y, z) = \frac{f(s, y, z)}{z}$ is bounded by C.

Natural to introduce BMO spaces: let $BMO(P)$ be space of progressive processes normed by

$$\|Z\|_{BMO} = \inf\{C : C > 0, E(\int_t^T |Z_s|^2 ds |\mathcal{F}_t)^{\frac{1}{2}} \leq C\}.$$

for $\beta > 0$ let $BMO_\beta(P)$ be space of progressive processes normed by

$$\|Z\|_{BMO_\beta} = \inf\{C : C > 0, E(\int_t^T e^{\beta s} |Z_s|^2 ds |\mathcal{F}_t)^{\frac{1}{2}} \leq C\}.$$

All these norms are equivalent.
3.3 An algorithm for Lipschitz generators

Algorithm:
Recursion: $Y^0 = Z^0 = 0, \zeta^1 = g(\cdot, Y^0, Z^0)$.

\[Q^1 = \exp \left[\int_0^T \zeta^1_s dW_s - \frac{1}{2} \int_0^T (\zeta^1_s)^2 ds \right] \cdot P, \quad W^{Q^1} = W - \int_0^T \zeta^1_s ds, \]

\[Y^1 = E(F|\mathcal{F}_.) = E(F) + \int_0^T Z^1_s dW^{Q^1}_s. \]

Assume Y^n, Z^n given, $\zeta^{n+1} = g(\cdot, Y^n, Z^n)$. Define

\[Q^{n+1} = \exp \left[\int_0^T \zeta^{n+1}_s dW_s - \int_0^T (\zeta^{n+1}_s)^2 ds \right] \cdot P, \quad W^{Q^{n+1}} = W - \int_0^T \zeta^{n+1}_s ds, \]

\[Y^{n+1} = E^{Q^{n+1}}(F|\mathcal{F}_.) = E^{Q^{n+1}}(F) + \int_0^T Z^{n+1}_s dW^{Q^{n+1}}_s. \]

By boundedness of g, $(Q^n)_{n \in \mathbb{N}}$ well defined and measures are equivalent with P.

3.3 An algorithm for Lipschitz generators

Lemma 2

There exist $\beta > 0$, $\alpha \in [0, 1]$ such that for $n \in \mathbb{N}$

$$
||Y^{n+1} - Y^n||_{BMO^\beta} + ||Z^{n+1} - Z^n||_{BMO^\beta}
\leq \alpha (||Y^n - Y^{n-1}||_{BMO^\beta} + ||Z^n - Z^{n-1}||_{BMO^\beta}).
$$

Proof:

Apply Itô’s formula to $(e^{\beta s}|Y_s|^2)_{t \leq s \leq T}$ with $Y_t = \int_t^T X_s ds + \int_t^T Z_s dW_s$, $Y_T = 0$:

$$
e^{\beta s}|Y_s|^2 = e^{\beta t}|Y_t|^2 + \int_t^s \beta e^{\beta r}|Y_r|^2 dr
- \int_t^s 2 e^{\beta r} Y_r X_r dr
- \int_t^s 2 e^{\beta r} Y_r Z_r dW_r
+ \int_t^s e^{\beta r}|Z_r|^2 dr.
$$
3.3 An algorithm for Lipschitz generators

Hence for $s = T$

$$\int_t^T \beta e^{\beta r} |Y_r|^2 ds + \int_t^T e^{\beta r} |Z_r|^2 dr \leq 2 \left[\int_t^T e^{\beta r} Y_r X_r dr + \int_t^T e^{\beta r} Y_r Z_r dW_r \right].$$

Use Young’s inequality for $x, y \in \mathbb{R}, \lambda > 0$:

$$2xy \leq \lambda y^2 + \frac{1}{\lambda} x^2.$$

Therefore

$$\beta E(\int_t^T e^{\beta r} |Y_r|^2 ds \mid \mathcal{F}_t) + E(\int_t^T e^{\beta r} |Z_r|^2 dr \mid \mathcal{F}_t) \leq E(\int_t^T e^{\beta r} [\lambda |Y_r|^2 + \frac{1}{\lambda} |X_r|^2 dr \mid \mathcal{F}_t].$$
3.3 An algorithm for Lipschitz generators

For $\beta > \lambda$, this entails

$$(\beta - \lambda)\|Y\|_{BMO^\beta} + \|Z\|_{BMO^\beta} \leq \frac{1}{\lambda} \|X\|_{BMO^\beta}.$$

Observe

$$Y^n = F - \int_t^T Z^n_s \cdot g(\cdot, s, Y^{n-1}_s, Z^{n-1}_s) ds + \int_s^T Z^n_s dW_s,$$

$$Y^{n+1} = F - \int_t^T Z^{n+1}_s \cdot g(\cdot, s, Y^n_s, Z^n_s) ds + \int_s^T Z^{n+1}_s dW_s.$$

Then the above estimates are valid with

$$Y = Y^{n+1} - Y^n,$$

$$Z = Z^{n+1} - Z^n,$$

$$X = Z^n \cdot g(\cdot, Y^{n-1}, Z^{n-1}) - Z^{n+1} \cdot g(\cdot, Y^n, Z^n).$$
3.3 An algorithm for Lipschitz generators

We further estimate X with some constant C_1:

$$|X| \leq |Z^n \cdot g(\cdot, Y^{n-1}, Z^{n-1}) - Z^{n-1} \cdot g(\cdot, Y^{n-1}, Z^{n-1})|$$
$$+ |Z^{n-1} \cdot g(\cdot, Y^{n-1}, Z^{n-1}) - Z^n \cdot g(\cdot, Y^n, Z^n)|$$
$$+ |Z^n \cdot g(\cdot, Y^n, Z^n) - Z^{n+1} \cdot g(\cdot, Y^n, Z^n)|$$
$$\leq C_1[|Z^n - Z^{n-1}| + |Y^n - Y^{n-1}| + |Z^n - Z^{n-1}| + |Z^{n+1} - Z^n|].$$

Hence we can write with some constant C_2

$$|X|^2 \leq C_2[|Z^n - Z^{n-1}|^2 + |Y^n - Y^{n-1}|^2 + |Z^{n+1} - Z^n|^2].$$

Now choose $\lambda = 4, \beta = \lambda + \frac{1}{2}$ to get

$$\frac{1}{2}||Y||_{BMO^\beta}^2 + (1 - \frac{1}{8})||Z||_{BMO^\beta}^2 \leq \frac{1}{4}[||Z^n - Z^{n-1}||_{BMO^\beta}^2 + ||Y^n - Y^{n-1}||_{BMO^\beta}^2].$$

Set $\alpha = \frac{1}{2}$. •
3.3 An algorithm for Lipschitz generators

If we define

\[||(Y, Z)||_\beta = \left(||Y||^2_{BMO\beta} + ||Z||^2_{BMO\beta} \right)^{\frac{1}{2}}, \]

we thus obtain for \(n \in \mathbb{N} \)

\[||(Y^{n+1} - Y^n, Z^{n+1} - Z^n)||_\beta \leq \sqrt{\alpha} ||(Y^n - Y^{n-1}, Z^n - Z^{n-1})||_\beta, \]

hence the pair of processes converges in \(BMO(P) \), by Banach’s fixed point theorem, to a pair \((Y, Z) \). Let

\[\zeta = g(\cdot, Y, Z), Q = \exp\left(\int_0^\cdot \zeta_s dW_s - \frac{1}{2} \int_0^\cdot (\zeta_s)^2 ds \right) \cdot P. \]

Observe

\[
Y^n = F - \int_t^T Z^n_s \cdot g(\cdot, s, Y^{n-1}_s, Z^{n-1}_s) ds + \int_t^T Z^n_s dW_s \\
= F - \int_t^T f(\cdot, s, Y^{n-1}_s, Z^{n-1}_s) ds + \int_t^T (Z^{n-1}_s - Z^n_s) \cdot g(\cdot, s, Y^{n-1}_s, Z^{n-1}_s) ds \\
+ \int_t^T Z^n_s dW_s.
\]
3.3 An algorithm for Lipschitz generators

Now recall the convergence of the processes in $BMO(P)$, the Lipschitz continuity of f, and the boundedness of g. Therefore the right hand side of the equation converges to

$$F - \int_t^T Z_s \cdot g(\cdot, s, Y_s, Z_s) ds + \int_t^T Z_s dW_s.$$

Upon extracting a subsequence of $(Y^n)_{n \in \mathbb{N}}$ we obtain

$$Y = F - \int_t^T f(\cdot, s, Y_s, Z_s) ds + \int_t^T Z_s dW_s.$$

This completes the proof of

Theorem 3
Let F be bounded, $f = z \cdot g$ uniformly Lipschitz continuous in (y, z). The sequence $(Y^n, Z^n)_{n \in \mathbb{N}}$ converges in $BMO(P)$ to a pair of processes (Y, Z) such that $\mathcal{E}(g(\cdot, Y, Z) \cdot W)_T \cdot P$ is a measure solution to the BSDE given by (g, F).
3.4 A more general result, including generators quadratic in z

$(Q_n)_{n \in \mathbb{N}}$ measure solutions to BSDE given by $f_n, F_n, n \in \mathbb{N}$, $f_n \to f$, $F_n \to F$, $f_n = z \cdot g_n, n \in \mathbb{N}$

p, q such that $\frac{1}{p} + \frac{1}{q} = 1$

$F_n \to F$ in L^{2q} and $F \in L^{q^2}$

$Y^n \to \tilde{Y}$ uniformly in L^q

for a.a. (ω, s), $g_n(\omega, s, \cdot) \to g(\omega, s, \cdot)$ uniformly on compacts K not intersecting the space $\{(y, z) : z = 0\}$, $g(\omega, s, \cdot)$ continuous outside this space

$$\sup_{n \in \mathbb{N}} \mathbb{E}(\frac{dQ_n}{dP}^p) < \infty, \quad \sup_{n \in \mathbb{N}} \mathbb{E}(\frac{dP}{dQ_n}^p) < \infty.$$

Theorem 4

Then there exists a measure solution to the BSDE given by (f, F).

The proof uses weak convergence of probability measures.
3.5 Quadratic growth generators, unbounded terminal variable

(Briand, Bao, Delbaen, Hu,...)

Assume now \(f(s, z) = \alpha z^2, z \in \mathbb{R}, s \in [0, T], \) and that \(F \) is unbounded.

Theorem 5

If \(F \) is either bounded above or below (by 0) and \(E(\exp(\gamma |F|)) < \infty \) for some \(\gamma \geq \alpha \), (1) possesses a measure solution. Moreover, \(Q \sim P \) and (1) possesses a strong solution.

Unboundedness of \(F \): serious complications

BSDE with infinite time horizon (by the transformation \(t \mapsto \frac{t}{1+t} \) we may return to horizon 1)

\[
Y_t = F - \int_t^\infty Z_s dW_s + \int_t^\infty \frac{1}{2} Z_s^2 ds.
\]

For \(a, b > 0 \), let \(\tau_b = \inf\{t \geq 0 : W_t \leq bt - 1\} \), \(F = 2a(b - a)\tau_b - 2a \).

By Laplace transform techniques: \(E(\exp(\gamma |F|)) < \infty, \quad \gamma < \frac{b^2}{4a|b-a|} \).
3.5 Quadratic growth generators, unbounded terminal variable

The first solution

\[Y = 2aW \wedge \tau_b - 2a^2 (\tau_b \wedge \cdot), \ Z = 2a1_{[0, \tau_b]} \] solution of (2).

Measure solution property:

\[E \left(\frac{1}{2} \int Z \, dW \right)_{\tau_b} = e^{aW_{\tau_b} - a^2 \tau_b} = e^{a(b - \frac{a}{2}) \tau_b - a}. \]

By Laplace transform techniques

\[E(e^{a(b - \frac{a}{2}) \tau_b - a}) = e^{-b[1 - \frac{2}{b^2} a(b - \frac{a}{2}) - 1] - a} = e^{-b[1 - \frac{a}{b}] - 1] - a}, \]

and the latter equals 1 in case \(b \geq a \) and \(\exp(2(b - a)) < 1 \) in case \(a > b \).

Hence first solution measure solution if \(b \geq a \), not measure solution if \(a > b \).
3.5 Quadratic growth generators, unbounded terminal variable

The second solution
If $2a > b$

$$Y = 2b - 4a + 2(b - a)W_{\tau_b \wedge} - 2(b - a)^2(\tau_b \wedge \cdot), \quad Z = 2(b - a)1_{[0, \tau_b]}.$$

Measure solution property:

We have

$$\mathbb{E}\left(\frac{1}{2} \int ZdW\right)_{\tau_b} = e^{(b-a)W_{\tau_b} - \frac{1}{2}(b-a)^2\tau_b} = e^{(a-b)}e^{\frac{1}{2}(b-a)(b+a)\tau_b}.$$

By Laplace transform techniques

$$e^{(a-b)}\mathbb{E}e^{-\frac{1}{2}(b-a)(b+a)\tau_b} = e^{(a-b)}e^{-b(\sqrt{1-(1-a^2/b^2)}-1)} = 1.$$

Therefore second solution is measure solution of (3).
3.5 Quadratic growth generators, unbounded terminal variable

Summary:

\[b \geq 2a \quad \text{one solution which is measure solution} \]

\[2a > b \geq a \quad \text{two solutions, both measure solutions} \]

\[a > b \quad \text{two solutions, one measure solution, the other one not} \]
Chapter 4

Cross hedging: the explicit formula via Malliavin’s calculus

4.1 Back to cross hedging: main BSDE result

Theorem 6

\((Y, Z)\) unique solution of BSDE

\[Y_t = F - \int_t^T Z_s dW_s - \int_t^T f(s, Z_s) ds, \quad t \in [0, T], \]

with

\[f(t, Z_t) = -\frac{\alpha}{2} d^2(C_t, Z_t + \frac{1}{\alpha} \theta_t) + Z_t \cdot \theta_t + \frac{1}{2\alpha} \theta_t^2. \]

Then value function of utility optimization problem under constraint \(p \in C\) given by

\[V(v) = -\exp(-\alpha[v - Y_0]). \]

There exists an (non-unique) optimal trading strategy \(p^* \in C\) such that

\[p_t^* \in \Pi_{C_t}(Z_t + \frac{1}{\alpha} \theta_t), \quad t \in [0, T]. \]

Proof:
- existence, uniqueness for BSDE with quadratic non-linearity in \(z\) (M. Kobylanski ’00)
- measurable selection theorem for \(\Pi_{C_t}(Z_t + \frac{1}{\alpha} \theta_t)\)
- BMO properties of the martingales \(\int Z_s dW_s, \int p_s^* dW_s\)
 for uniform integrability of exponentials (regularity of coefficients)•
4.2 Calculation of derivative hedge

generalization to \([t, T]\) instead of \([0, T]\), cond. on \(R_t = r\):

\((Y^{t,r}, Z^{t,r}), p^{t,r}\) (without \(F\)) resp. \((\hat{Y}^{t,r}, \hat{Z}^{t,r}), \hat{p}^{t,r}\) (with \(F\)) instead of \((Y, Z), p\)
yields

\[
V^0(t, v, r) = -\exp(-\alpha(v - Y^{t,r}_t)), \quad V^F(t, v, r) = -\exp(-\alpha(v - \hat{Y}^{t,r}_t)),
\]

instead of \(V(v) = -\exp(v - Y_0)\).

due to linearity of \(C(t, r)\) projections unique and linear, hence

\[
p^{t,r}_s = \Pi_{C(t,r)}[Z^{t,r}_s + \frac{1}{\alpha}\theta(s, R^{t,r}_s)], \quad \hat{p}^{t,r}_s = \Pi_{C(t,r)}[\hat{Z}^{t,r}_s + \frac{1}{\alpha}\theta(s, R^{t,r}_s)],
\]

and so

\[
(\Delta_{\lambda, \tau})(s, R^{t,r}_s) = \Pi_{C(t,r)}[\hat{Z}^{t,r}_s - Z^{t,r}_s].
\]
4.3 Markov property and its consequences

Markov property of R implies (Kobylanski ’00, El Karoui, Peng, Quenez ’97):

Theorem 7
There are measurable (deterministic) functions u and \hat{u} such that

$$Y_{s}^{t,r} = u(s, R_{s}^{t,r}), \quad \hat{Y}_{s}^{t,r} = \hat{u}(s, R_{s}^{t,r}).$$

There are measurable (deterministic) functions v and \hat{v} such that

$$Z_{s}^{t,r} = v\sigma(s, R_{s}^{t,r}), \quad \hat{Z}_{s}^{t,r} = \hat{v}\sigma(s, R_{s}^{t,r}).$$

Corollary 1

$$p(t, r) := Y_{t}^{t,r} - \hat{Y}_{t}^{t,r} = u(t, r) - \hat{u}(t, r)$$

is the **indifference price**, i.e. $V^{F}(t, v - p(t, r), r) = V^{0}(t, v, r)$.

p depends only on R, not on S.

Aim: Explicit description of Δ_{λ}
4.4 Differentiability

Theorem 8 (Parameter Differentiability) smoothness conditions on F, f
There exists a version of $(\hat{Y}^{t,r}_s, \hat{Z}^{t,r}_s)$ such that a.s.
- $\hat{Y}^{t,r}_s$ is continuous in s and cont. differentiable in r (classical sense)
- $\hat{Z}^{t,r}_s$ is differentiable in a weak sense (norm topology)
- $(\nabla_r \hat{Y}^{t,r}_r, \nabla_r \hat{Z}^{t,r}_r)$ solves the BSDE

\[
\nabla_r \hat{Y}^r_t = \nabla_r F(R^{t,r}_s) \nabla_r R^{t,r}_s - \int_t^T \nabla_r \hat{Z}^{t,r}_s dW_s \\
+ \int_t^T \left[\nabla_r f(s, R^{t,r}_s, \hat{Z}^{t,r}_s) \nabla_r R^{t,r}_s \\
+ \nabla_z f(s, R^{t,r}_s, \hat{Z}^{t,r}_s) \nabla_r \hat{Z}^{t,r}_s \right] ds.
\]

Proof uses norm inequalities, and inverse Hölder inequalities, based on BMO properties of the stochastic integral processes of $\hat{Z}^{t,r}_s$

Theorem 9 (Malliavin Differentiability)

\[
D_\vartheta \hat{Y}^{t,r}_s = \nabla_r \hat{u}(s, R^{t,r}_s) D_\vartheta R^{t,r}_s
\]

and

\[
\hat{Z}^{t,r}_s = D_s \hat{Y}^{t,r}_s = \nabla_r \hat{u}(s, R^{t,r}_s) \sigma(s, R^{t,r}_s)
\]
4.5 Explicit description of derivative hedge

Properties of the BSDEs \[\iff\]

Theorem 10
The *indifference price* \[p(t, r) = Y^{t,r}_t - \hat{Y}^{t,r}_t\] is differentiable in \(r\).

Theorem 11
The *derivative hedge* \(\Delta_\lambda\) at time \(t\) depends only on \(R_t\), and

\[
\Delta_\lambda(t, r) \tau(t, r) = \Pi C(t, r) [\hat{Z}^{t,r}_t - Z^{t,r}_t]
\]

\[
= \Pi C(t, r) [\nabla_r (\hat{Y}^{t,r}_t - Y^{t,r}_t) \sigma(t, r)]
\]

\[
= -\Pi C(t, r) [\nabla_r p(t, r) \sigma(t, r)].
\]

Remarks:

- **complete case:** \(\Delta_\lambda = 'delta hedge'

- where is the risk aversion \(\alpha\)?
4.6 Example: Heating degree days

- common underlying of weather derivatives

- $T_i =$ average of the maximum and the minimum temperature on day i at a specific location

- $HDD_i = \max (0, 18 - T_i)$

Cumulative heating degree days

$$cHDD_t = \sum_{i=1}^{30} HDD_{t-i}$$

Derivatives:

- Option: $(cHDD - K)^+$

- Swap: $b(cHDD - K)$
4.6 Example: Heating degree days

\(cHDD \):

- statistical analysis shows: cHDDs are log-normally distributed (M. Davis ‘01)

- \(cHDD \) can be modeled as a geometric Brownian motion

\[
dX_t = \mu X_t dt + \nu X_t dW_t
\]

(moving average)

Other indices: cooling degree days

\[
CDD_i = \min (0, 18 - T_i)
\]
4.6 Example: Heating degree days

- \(R = \text{cHDDs (geometric Brownian Motion)} \)

- \(d = 2 \)

- 1-dim market + index: \(k = m = 1 \)

- index volatility: \(\sigma = \begin{pmatrix} c & 0 \end{pmatrix} \)

- price volatility: \(\tau = \begin{pmatrix} \tau_1 & \tau_2 \end{pmatrix} \) with \(c, \tau_1, \tau_2 \in \mathbb{R} \setminus \{0\} \)

Then

\[
\Delta \lambda(t, r) = -c \frac{\partial p(t, r)}{\partial r} \frac{\tau_1}{\tau_1^2 + \tau_2^2}.
\]
4.6 Example: Heating degree days; diversification pressure derivative hedge:

\[
\Delta_{\lambda}(t, r) = -c \frac{\partial p(t, r)}{\partial r} \frac{\tau_1}{\tau_1^2 + \tau_2^2}.
\]

Call option: \(F(R_T) = (R_T - K)^+ \)

\[\Rightarrow \frac{\partial p(t, r)}{\partial r} > 0 \]

Comparison of the optimal strategies:

- \(\tau_1 c < 0 \) (negative correlation)
 \[\Rightarrow F(R_T) \text{ diversifies portfolio} \Rightarrow \Delta_{\lambda} > 0 \]
 \[\Rightarrow \hat{p} > p \]

- \(\tau_1 \alpha > 0 \) (positive correlation)
 \[\Rightarrow F(R_T) \text{ amplifies portfolio} \Rightarrow \Delta_{\lambda} < 0 \]
 \[\Rightarrow \hat{p} < p \]
4.7 Some further ideas and results

- algorithm for measure solution: approximation by \((Q^n_n \in \mathbb{N})\) as in random Lipschitz case: tightness for generator of subcubic growth \(|f(\cdot, z)| \leq c |z|^\gamma, \gamma < 3\) (cf Bao, Delbaen, Hu)

- ideas as in the examples above: complete solution of Skorokhod embedding problem for Wiener process with linear drift (Diplomarbeit G. Heyne)

- direct approach of nonlinear Feynman-Kac formula by measure solutions in Markovian case (Diplomarbeit J. Zhang)

- measure solution intermediate notion on the way to efficient notion of weak solution (A. Fromm)