On Landis’ conjecture and related questions

Jenn-Nan Wang

December 20–24, 2014

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Taiwan
E-mail: jnwang@math.ntu.edu.tw

Abstract

In the late 60’s, E.M. Landis conjectured that if \(\Delta u + Vu = 0 \) in \(\mathbb{R}^n \) with \(\|V\|_{L^\infty(\mathbb{R}^n)} \leq 1 \) and \(\|u\|_{L^\infty(\mathbb{R}^n)} \leq C_0 \) satisfying \(|u(x)| \leq C \exp(-C|x|^{1+}) \), then \(u \equiv 0 \). Landis’ conjecture was disproved by Meshkov who constructed such \(V \) and nontrivial \(u \) satisfying \(|u(x)| \leq C \exp(-C|x|^\frac{4}{3}) \). He also showed that if \(|u(x)| \leq C \exp(-C|x|^{\frac{4}{3}+}) \), then \(u \equiv 0 \). It should be noted that both \(V \) and \(u \) constructed by Meshkov are complex-valued functions. It remains an open question whether Landis’ conjecture is true for real-valued \(V \) and \(u \). Landis’ conjecture is closely related to the estimate of the maximal vanishing order of \(u \) in a bounded domain. In this talk, I would like to discuss my recent joint work with Kenig and Silvestre on Landis’ conjecture in two dimensions and related problems.