Chromatic Polynomials of Hypergraphs

Dong Fengming1

Nanyang Technological University
Singapore

1Joint work with Ruixue Zhang
Thanks a lot for the invitation and financial support for attending this conference in Taipei.
The main results are from the paper below:
The main results are from the paper below:

Also in Arxiv http:arxiv.org/abs/1611.04245
An Asia map

Any two countries with a common boundary are assigned different colors.
Any two countries with a common boundary are assigned different colors.
Four colour conjecture

(Francis Guthrie, 1852)

Any map can be coloured with at most 4 colours
Four colour conjecture

(Francis Guthrie, 1852)

Any map can be coloured with at most 4 colours such that each region is assigned one colour and any two regions with a common boundary are coloured differently.
Four colour conjecture

(Francis Guthrie, 1852)

Any map can be coloured with at most 4 colours such that each region is assigned one colour and any two regions with a common boundary are coloured differently.
Four colour conjecture

(Francis Guthrie, 1852)
Any map can be coloured with at most 4 colours such that each region is assigned one colour and any two regions with a common boundary are coloured differently.

Any loopless plane graph has a proper vertex-colouring with at most 4 colours.
Four colour conjecture

(Francis Guthrie, 1852)

Any map can be coloured with at most 4 colours such that each region is assigned one colour and any two regions with a common boundary are coloured differently.

Any loopless plane graph has a proper vertex-colouring with at most 4 colours.
Four colour conjecture

(Francis Guthrie, 1852)

Any map can be coloured with at most 4 colours such that each region is assigned one colour and any two regions with a common boundary are coloured differently.

Any loopless plane graph has a proper vertex-colouring with at most 4 colours.

Any plane triangulation has a proper vertex-colouring with at most 4 colours.
First proof of 4-color Conjecture

It was first proven by Kenneth Appel and Wolfgang Haken in 1977.
First proof of 4-color Conjecture

- It was first proven by Kenneth Appel and Wolfgang Haken in 1977.

Kenneth Appel Wolfgang Haken
First proof of 4-color Conjecture

The proof required a computation of 1200 hours by a computer at that time. It introduced a collection of 1476 reducible configurations which form an unavoidable set.
The proof required a computation of 1200 hours by a computer at that time.
First proof of 4-color Conjecture

- The proof required a computation of 1200 hours by a computer at that time.

- It introduced a collection of 1476 reducible configurations which form a unavoidable set.
Another proof

4CT was proven again in 1996 by Robertson, Sanders, Seymour and Thomas. It is also a computer-based proof. They found another set of the unavoidable configurations of size 633 which are reducible.
Another proof

- 4CT was proven again in 1996 by Robertson, Sanders, Seymour, and Thomas.
Another proof

- 4CT was proven again in 1996 by Robertson, Sanders, Seymour and Thomas.

- It is also a computer-based proof.
4CT was proven again in 1996 by Robertson, Sanders, Seymour and Thomas.

It is also a computer-based proof.

They found another set of the unavoidable configurations of size 633 which are reducible.
Map colouring to Vertex colouring

Two graphs with 3-colourings:

![Graph 1](image1.png)

![Graph 2](image2.png)
Map colouring to Vertex colouring

Two graphs with 3-colourings:

Each vertex is assigned a colour
Map colouring to Vertex colouring

Two graphs with 3-colourings:

Each vertex is assigned a colour and any two adjacent vertices are assigned different colours.
A k-colouring of a graph G is a way of assigning k colours to vertices in G, one colour for each vertex, such that any two adjacent vertices are assigned different colours.

Any graph with maximum degree k has a $(k + 1)$-colouring.

Brooks' Theorem: Any connected graph with maximum degree k which is not a complete graph nor an odd cycle has a k-colouring.
A \(k \)-colouring of a graph \(G \) is a way of assigning \(k \) colours to vertices in \(G \), one colour for each vertex, such that any two adjacent vertices are assigned different colours.

Brooks' Theorem: Any connected graph with maximum degree \(k \) which is not a complete graph nor an odd cycle has a \(k \)-colouring.
A k-colouring of a graph G is a way of assigning k colours to vertices in G, one colour for each vertex, such that any two adjacent vertices are assigned different colours.

Any graph with maximum degree k has a $(k+1)$-colouring.
A k-colouring of a graph G is a way of assigning k colours to vertices in G, one colour for each vertex, such that any two adjacent vertices are assigned different colours.

Any graph with maximum degree k has a $(k + 1)$-colouring.

Brooks’ Theorem:
Any connected graph with maximum degree k which is not a complete graph nor an odd cycle has a k-colouring.
Let $P(G, \lambda)$ be the function of λ such that $P(G, k)$ counts the number of k-colourings of G whenever k is a positive integer.
Let $P(G, \lambda)$ be the function of λ such that $P(G, k)$ counts the number of k-colourings of G whenever k is a positive integer.

$P(G, \lambda)$ is called the *chromatic polynomial* of G, and it is indeed a polynomial in λ.
The chromatic polynomial was introduced by Birkhoff in 1912.
The chromatic polynomial was introduced by Birkhoff in 1912 with the hope of proving 4CC by applying the computation of chromatic polynomials.
Example

For any null graph N_n, $P(N_n, \lambda) = \lambda^n$.

For any complete graph K_n, $P(K_n, \lambda) = \lambda(\lambda - 1)\cdots(\lambda - n + 1)$.

For any tree T of order n, $P(T, \lambda) = \lambda(\lambda - 1)^{n-1}$.

For any cycle C_n of order n, $P(C_n, \lambda) = (\lambda - 1)^n + (-1)^n(\lambda - 1)^{n-1}$.
Example

- For any null graph N_n,

$$P(N_n, \lambda) = \lambda^n.$$
Example

- For any null graph N_n,
 \[P(N_n, \lambda) = \lambda^n. \]
- For any complete graph K_n,
 \[P(K_n, \lambda) = \lambda(\lambda - 1) \cdots (\lambda - n + 1). \]
Example

- For any null graph N_n,
 \[P(N_n, \lambda) = \lambda^n. \]

- For any complete graph K_n,
 \[P(K_n, \lambda) = \lambda(\lambda - 1) \cdots (\lambda - n + 1). \]

- For any tree T of order n,
 \[P(T, \lambda) = \lambda(\lambda - 1)^{n-1}. \]
Example

- For any null graph N_n,
 \[P(N_n, \lambda) = \lambda^n. \]

- For any complete graph K_n,
 \[P(K_n, \lambda) = \lambda(\lambda - 1) \cdots (\lambda - n + 1). \]

- For any tree T of order n,
 \[P(T, \lambda) = \lambda(\lambda - 1)^{n-1}. \]

- For any cycle C_n of order n,
 \[P(C_n, \lambda) = (\lambda - 1)^n + (-1)^n(\lambda - 1). \]
Basic properties

$P(G, \lambda)$ is a monic polynomial in λ of degree n, the order of G. $P(G, \lambda)$ can be expressed as:

$$P(G, \lambda) = \lambda^n - a_{n-1}\lambda^{n-1} + \cdots + (-1)^n c_0,$$

where c is the number of components of G and a_i is a positive integer for all $c \leq i \leq n$.

G is connected if and only if λ^2 is not a factor of $P(G, \lambda)$.

Fengming Dong (NTU)
Talk at Taipei
May 2017
Basic properties

- $P(G, \lambda)$ is a monic polynomial in λ of degree n, the order of G.
- $P(G, \lambda)$ can be expressed as
 $$P(G, \lambda) = \lambda^n - a_{n-1} \lambda^{n-1} + \cdots + (-1)^{n-c} a_c \lambda^c,$$
 where c is the number of components of G and a_i is a positive integer for all $c \leq i \leq n$.
- G is connected if and only if λ^2 is not a factor of $P(G, \lambda)$.
Important Results by Sokal

(Sokal 2001) For any simple graph G with maximum degree D, the zeros of $P(G, z)$ are within the disc $|z| < 7.963907D$.

(Sokal 2004) Chromatic polynomials of graphs have dense complex zeros in the whole plane.
Important Results by Sokal

(Sokal 2001) for any simple graph G with maximum degree D, the zeros of $P(G, z)$ are within the disc $|z| < 7.963907D$.

(Sokal 2004) chromatic polynomials of graphs have dense complex zeros in the whole plane.
Important Results by Sokal

- (Sokal 2001) for any simple graph G with maximum degree D, the zeros of $P(G, z)$ are within the disc $|z| < 7.963907D$.

- (Sokal 2004) chromatic polynomials of graphs have dense complex zeros in the whole plane.
Important Results by Thomassen

Fengming Dong (NTU)
Talk at Taipei
May 2017
18 / 59
Important Results by Thomassen

(Thomassen 1997) chromatic polynomials of graphs have dense real zeros in $[32/27, \infty)$.

Fengming Dong (NTU)
Talk at Taipei
May 2017
Important Results by Jackson

Chromatic polynomials of graphs have no real zeros in the following intervals:

$(-\infty, 0)$,

$(0, 1)$,

$(1, 32/27)$.

$(1, 32/27)$ was determined by Jackson in 1993.
Important Results by Jackson

- chromatic polynomials of graphs have no real zeros in the following intervals:
 \((-\infty, 0), (0, 1), (1, 32/27) \).

\((1, 32/27)\) was determined by Jackson 1993.
Results associated with 4CT

For any real $\epsilon > 0$, $P(G, \lambda) = 0$ holds for some plane graph G and some $\lambda \in (4 - \epsilon, 4)$. (Gordon Royle 2008)
Results associated with 4CT

- $4\text{CT} \iff P(G, 4) > 0$ for any loopless plane graph G.

Results associated with 4CT

- $4\text{CT} \Leftrightarrow P(G, 4) > 0$ for any loopless plane graph G.

(Gordon Royle 2008)

For any real $\epsilon > 0$, $P(G, \lambda) = 0$ holds for some plane graph G and some $\lambda \in (4 - \epsilon, 4)$.
Results associated with 4CT

\[P(G, 2 + \tau) > 0 \text{ for all loopless plane graphs } G, \]

where \(\tau \approx 1.618033 \cdots \) is the golden ratio, i.e., the real root > 1 of \[x(x - 1) = 1. \]
Results associated with 4CT

(Tutte 1970)

\[P(G, 2 + \tau) > 0 \] for all loopless plane graphs \(G \),
where \(\tau \approx 1.618033 \cdots \) is the golden ratio, i.e.,
the real root > 1 of \(x(x - 1) = 1 \).
Results associated with 4CT

The roots of the chromatic polynomials of planar graphs are dense in the interval $(32/27, 4)$, except possibly in a small interval (t_1, t_2) with $t_2 - t_1 < 0.000324$ and $t_1 < \tau + 2 < t_2$.

Fengming Dong (NTU)
Talk at Taipei
May 2017
(Perrett and Thomassen 2016)
The roots of the chromatic polynomials of planar graphs are dense in the interval $\left(\frac{32}{27}, 4\right)$, except possibly in a small interval (t_1, t_2) with $t_2 - t_1 < 0.000324$ and $t_1 < \tau + 2 < t_2$.
Birkhoff and Lewis’s Conjecture

Theorem (Birkhoff and Lewis 1946)

\[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \geq 5 \).

Conjecture (Birkhoff and Lewis 1946)

\[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \in (4, 5) \).

So far there is no any progress. It is even unknown if there is a plane graph \(G \) and a real \(\lambda \in (4, 5) \) such that \(P(G, \lambda) \leq 0 \).
Theorem (Birkhoff and Lewis 1946)

\[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \geq 5 \).
Theorem (Birkhoff and Lewis 1946)
\[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \geq 5 \).

Conjecture (Birkhoff and Lewis 1946)
\[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \in (4, 5) \).
Birkhoff and Lewis’s Conjecture

- **Theorem** (Birkhoff and Lewis 1946)
 \[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \geq 5 \).

- **Conjecture** (Birkhoff and Lewis 1946)
 \[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \in (4, 5) \).

- So far there is no any progress.
Birkhoff and Lewis’s Conjecture

- **Theorem** (Birkhoff and Lewis 1946)
 \[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \geq 5 \).

- **Conjecture** (Birkhoff and Lewis 1946)
 \[P(G, \lambda) > 0 \] for any loopless plane graph \(G \) and any real \(\lambda \in (4, 5) \).

So far there is no any progress. It is even unknown if there is a plane graph \(G \) and a real \(\lambda \in (4, 5) \) such that \(P(G, \lambda) \leq 0 \).
Question:
What is a hypergraph?
Question: What is a hypergraph?

Figure: Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

$\mathcal{V} = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$

$\mathcal{E} = \{e_1, e_2, e_3, e_4\}$

$e_1 = \{v_1, v_2, v_3\}$; $e_2 = \{v_3, v_4, v_5, v_6\}$;

$e_3 = \{v_5, v_7, v_8\}$; $e_4 = \{v_8, v_9\}$
Hypergraphs

A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an extension of a simple graph in which edges can contain more than two vertices:

$$\mathcal{E} = \{ e \subseteq \mathcal{V} : |e| \geq 2 \}.$$
A hypergraph \(\mathcal{H} = (\mathcal{V}, \mathcal{E}) \) is an extension of a simple graph in which edges can contain more than two vertices:

\[
\mathcal{E} = \{ e \subseteq \mathcal{V} : |e| \geq 2 \}.
\]

A hypergraph is also called a set system or a family of subsets of a universal set \(\mathcal{V} \).
Special hypergraphs

H is called r-uniform if $|e| = r$ ($r \geq 2$) each edge $e \in E(H)$.

2-uniform hypergraphs are normal graphs.

H is called linear if no two edges intersect in more than one vertex.

A hypergraph is called Sperner if no edge in the hypergraph is a subset of another edge.
\(\mathcal{H} \) is called \textit{r-uniform} if \(|e| = r \) \((r \geq 2)\) each edge \(e \in \mathcal{E}(\mathcal{H}) \).
Special hypergraphs

- \mathcal{H} is called \textit{\textbf{r-uniform}} if $|e| = r \ (r \geq 2)$ each edge $e \in \mathcal{E}(\mathcal{H})$.

- 2-uniform hypergraphs are normal graphs.
Special hypergraphs

- \mathcal{H} is called \textit{r-uniform} if $|e| = r (r \geq 2)$ each edge $e \in \mathcal{E}(\mathcal{H})$.

- 2-uniform hypergraphs are normal graphs.

- \mathcal{H} is called \textit{linear} if no two edges intersect in more than one vertex.
Special hypergraphs

- \mathcal{H} is called **r-uniform** if $|e| = r$ ($r \geq 2$) each edge $e \in \mathcal{E}(\mathcal{H})$.

- 2-uniform hypergraphs are normal graphs.

- \mathcal{H} is called **linear** if no two edges intersect in more than one vertex.

- A hypergraph is called **Sperner** if no edge in the hypergraph is a subset of another edge.
Example

Figure: 3-uniform linear Sperner hypergraph \mathcal{H}
For a hypergraph $H = (V, E)$ and a positive integer λ, a (weak) λ-colouring of H is a mapping $f : V \rightarrow \{1, \ldots, \lambda\}$ such that $|\{f(u) : u \in e\}| \geq 2$ for each $e \in E$, i.e., for each edge e of H, there exist at least two vertices $u, v \in e$ for which $f(u) \neq f(v)$.
For a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and a positive integer λ,
For a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and a positive integer λ, a (weak) λ-colouring of \mathcal{H} is a mapping $f : \mathcal{V} \rightarrow \{1, \cdots, \lambda\}$ such that $|\{f(u) : u \in e\}| \geq 2$ for each $e \in \mathcal{E}$, i.e.,
For a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and a positive integer λ, a \textit{(weak) λ-colouring} of \mathcal{H} is a mapping $f : \mathcal{V} \rightarrow \{1, \cdots, \lambda\}$ such that $|\{f(u) : u \in e\}| \geq 2$ for each $e \in \mathcal{E}$, i.e., for each edge e of \mathcal{H}, there exist at least two vertices $u, v \in e$ for which $f(u) \neq f(v)$.
(Weak) λ-colouring

The (weak) colouring of hypergraphs was introduced by Erdös and Hajnal in 1966.
The (weak) colouring of hypergraphs was introduced by Erdös and Hajnal in 1966.
Example

Figure: This hypergraph can be 2-coloured in 6 different ways
Example

Figure: This hypergraph can be 2-coloured in 6 different ways.
Figure: This hypergraph can be 2-coloured in 6 different ways.

For any positive integer λ, this hypergraph has $\lambda^3 - \lambda$ different λ-colourings.
Example

Figure: two different 2-colourings of \mathcal{H}
Example

Figure: two different 2-colourings of \mathcal{H}

Question?
How many different 2-colourings on \mathcal{H}?
Example

Figure: two different 2-colourings of \mathcal{H}

Question?

How many different 2-colourings on \mathcal{H}? Answer: 54
The chromatic polynomial of a hypergraph \mathcal{H}, denoted by $P(\mathcal{H}, \lambda)$, counts the number of λ-colourings of \mathcal{H} whenever λ is a positive integer.
The chromatic polynomial of a hypergraph \mathcal{H}, denoted by $P(\mathcal{H}, \lambda)$, counts the number of λ-colourings of \mathcal{H} whenever λ is a positive integer.

This concept appeared in Helgason’s work in 1972 and it may have appeared in V. Chvátal’s Ph.D. thesis.
Examples

If H has p vertices and one edge only, which contains all vertices, then $P(H, \lambda) = \lambda^{p-1}$.

If H is the following hypergraph, then $P(H, \lambda) = (\lambda^3 - \lambda) / \lambda$.

Fengming Dong (NTU)
Talk at Taipei
May 2017
33 / 59
Examples

- If \mathcal{H} has p vertices and one edge only, which contains all vertices, then

\[P(\mathcal{H}, \lambda) = \lambda^p - \lambda. \]
Examples

- If \(\mathcal{H} \) has \(p \) vertices and one edge only, which contains all vertices, then

\[
P(\mathcal{H}, \lambda) = \lambda^p - \lambda.
\]

- If \(\mathcal{H} \) is the following hypergraph, then

\[
P(\mathcal{H}, \lambda) = (\lambda^3 - \lambda)^2 / \lambda.
\]
Basic properties

Basic properties

- $P(H, \lambda)$ is a monic polynomial in λ of degree p, the number of vertices in H.
- The constant term in the polynomial $P(H, \lambda)$ is 0, i.e., $P(H, 0) = 0$.
- If H has components H_1, \ldots, H_r, then $P(H, \lambda) = \prod_{1 \leq i \leq r} P(H_i, \lambda)$.
- If H is the union of H_1 and H_2 with $|V(H_1) \cap V(H_2)| = 1$, then $P(H, \lambda) = P(H_1, \lambda)P(H_2, \lambda) / \lambda$.
Basic properties

- $P(\mathcal{H}, \lambda)$ is a monic polynomial in λ of degree p, the number of vertices in \mathcal{H}.

Basic properties

- $P(\mathcal{H}, \lambda)$ is a monic polynomial in λ of degree p, the number of vertices in \mathcal{H}.
- The constant term in the polynomial $P(\mathcal{H}, \lambda)$ is 0, i.e., $P(\mathcal{H}, 0) = 0$.
- If \mathcal{H} has components $\mathcal{H}_1, \ldots, \mathcal{H}_r$, then
 \[P(\mathcal{H}, \lambda) = \prod_{1 \leq i \leq r} P(\mathcal{H}_i, \lambda). \]
- If \mathcal{H} is the union of \mathcal{H}_1 and \mathcal{H}_2 with $|V(\mathcal{H}_1) \cap V(\mathcal{H}_2)| = 1$, then
 \[P(\mathcal{H}, \lambda) = P(\mathcal{H}_1, \lambda)P(\mathcal{H}_2, \lambda) / \lambda. \]
Computing of $P(\mathcal{H}, \lambda)$

$P(\mathcal{H}, \lambda) = \lambda p$ if \mathcal{H} has p vertices and no edges. (R.P. Jones, 1976)

Deletion-contraction formula

For any edge e in \mathcal{H}, then

$P(\mathcal{H}, \lambda) = P(\mathcal{H} - e, \lambda) - P(\mathcal{H} \cdot e, \lambda),$

where $\mathcal{H} \cdot e$ is obtained from \mathcal{H} by identifying all vertices in e.

Repeatedly apply the Deletion-contraction formula until each hypergraph obtained has no edges.
Computing of $P(\mathcal{H}, \lambda)$

- $P(\mathcal{H}, \lambda) = \lambda^p$ if \mathcal{H} has p vertices and no edges.
Computing of $P(\mathcal{H}, \lambda)$

- $P(\mathcal{H}, \lambda) = \lambda^p$ if \mathcal{H} has p vertices and no edges.
- (R.P. Jones, 1976) **Deletion-contraction formula**
 For any edge e in \mathcal{H}, then

\[
P(\mathcal{H}, \lambda) = P(\mathcal{H} - e, \lambda) - P(\mathcal{H} \cdot e, \lambda),
\]

where $\mathcal{H} \cdot e$ is obtained from \mathcal{H} by identifying all vertices in e.
Computing of $P(\mathcal{H}, \lambda)$

- $P(\mathcal{H}, \lambda) = \lambda^p$ if \mathcal{H} has p vertices and no edges.
- (R.P. Jones, 1976) **Deletion-contraction formula**
 For any edge e in \mathcal{H}, then

 \[P(\mathcal{H}, \lambda) = P(\mathcal{H} - e, \lambda) - P(\mathcal{H} \cdot e, \lambda), \]

 where $\mathcal{H} \cdot e$ is obtained from \mathcal{H} by identifying all vertices in e.

- Repeatedly apply the Deletion-contraction formula until each hypergraph obtained has no edges.
Example

Figure: \mathcal{T}_2^3: 3-uniform hypertree with 2 edges
Example

Figure: \mathcal{T}_2^3: 3-uniform hypertree with 2 edges

\[
P(\mathcal{H}, \lambda) = P(\mathcal{H} - e_2, \lambda) - P(\mathcal{H} \cdot e_2, \lambda) \\
= \lambda^2 \cdot (\lambda^3 - \lambda) - (\lambda^3 - \lambda) \\
= \lambda(\lambda^2 - 1)^2.
\]
Example

Figure: C_3^3: 3-uniform elementary hypercycle

$$P(C_3^3, \lambda) = (\lambda^2 - 1)^3 - (\lambda - 1)$$
(Tomescu 1998) Let \mathcal{H} be a hypergraph with n vertices. Then

$$P(\mathcal{H}, \lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda,$$

where

$$a_i = \sum_{j \geq 0} (-1)^j N(i, j)$$

and $N(i, j)$ denotes the number of spanning sub-hypergraphs of \mathcal{H} with i components and j edges.
Interpretation of coefficients

(Tomescu 1998) Let \mathcal{H} be a hypergraph with n vertices. Then

$$P(\mathcal{H}, \lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda,$$

where $a_i = \sum_{j \geq 0} (-1)^j N(i, j)$ and $N(i, j)$ denotes the number of spanning sub-hypergraphs of \mathcal{H} with i components and j edges.
Problem

Do chromatic polynomials of hypergraphs have properties not held for chromatic polynomials of graphs?
Results for chromatic polynomials of graphs

$P(G, -1)$ always counts the number of acyclic orientations of a graph G;
chromatic polynomials of graphs are zero-free on the intervals $(-\infty, 0)$, $(0, 1)$, and $(1, 32/27]$.

G is connected $\iff \lambda^2 \neq |P(G, \lambda)|$;
for a connected graph G, G is non-separable $\iff (\lambda - 1)^2 \neq |P(G, \lambda)|$.
Results for chromatic polynomials of graphs

(Stanley 1970) \(|P(G, -1)|\) always counts the number of acyclic orientations of a graph \(G\);
Results for chromatic polynomials of graphs

- (Stanley 1970) $|P(G, -1)|$ always counts the number of acyclic orientations of a graph G;
- chromatic polynomials of graphs are zero-free on the intervals $(-\infty, 0), (0, 1)$ and $(1, 32/27]$;
Results for chromatic polynomials of graphs

(Stanley 1970) $|P(G, -1)|$ always counts the number of acyclic orientations of a graph G;

chromatic polynomials of graphs are zero-free on the intervals $(-\infty, 0), (0, 1)$ and $(1, 32/27]$;

G is connected $\iff \lambda^2 \nmid P(G, \lambda)$;
Results for chromatic polynomials of graphs

(Stanley 1970) $|P(G, -1)|$ always counts the number of acyclic orientations of a graph G;

chromatic polynomials of graphs are zero-free on the intervals $(-\infty, 0), (0, 1)$ and $(1, 32/27]$;

G is connected $\iff \lambda^2 \not| P(G, \lambda)$;

For a connected graph G, G is non-separable $\iff (\lambda - 1)^2 \not| P(G, \lambda)$.
The Tutte polynomial $T_G(x, y)$ is defined as:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)},$$

where $r(A)$ is the rank of A, i.e., $r(A) = |V| - c(A)$, and $c(A)$ is the number of components of the spanning subgraph of G with edge set A.

Fengming Dong (NTU) Talk at Taipei May 2017 41 / 59
Tutte polynomial

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)},$$

where $r(A)$ is the rank of A, i.e., $r(A) = |V| - c(A)$ and $c(A)$ is the number of components of the spanning subgraph of G with edge set A.
Stanley’s result on $P(G, -1)$

The chromatic polynomial:

$$P(G, x) = x^c(G) (-1)^r(G) T_G(1 - x, 0).$$

In particular, $$(-1)^n P(G, -1) = T_G(2, 0).$$

(Stanley 1970) For any simple graph G of order n, $$(-1)^n P(G, -1)$$ is equal to the number of acyclic orientations of G.

Fengming Dong (NTU)
Talk at Taipei
May 2017
42 / 59
Stanley’s result on $P(G, -1)$

- The chromatic polynomial:
 \[
P(G, x) = x^{c(G)}(-1)^{r(G)}T_G(1 - x, 0).
 \]
 In particular, \((-1)^nP(G, -1) = T_G(2, 0)\).
Stanley’s result on $P(G, -1)$

- The chromatic polynomial:

$$P(G, x) = x^{c(G)}(-1)^{r(G)}T_G(1-x, 0).$$

In particular, $(-1)^nP(G, -1) = T_G(2, 0)$.

- (Stanley 1970) For any simple graph G of order n, $(-1)^nP(G, -1)$ is equal to the number of acyclic orientations of G.

Fengming Dong (NTU) Talk at Taipei May 2017 42 / 59
The number $T_G(0,2)$

It is known that $T_G(0,2)$ is equal to the number of totally cyclic orientations of G.

Does $T_G(0,2)$ have a relation with chromatic polynomial?
The number $T_G(0, 2)$

- It is known that $T_G(0, 2)$ is equal to the number of totally cyclic orientations of G.

The number $T_G(0, 2)$

- It is known that $T_G(0, 2)$ is equal to the number of totally cyclic orientations of G.

- Does $T_G(0, 2)$ have a relation with chromatic polynomial?
Hypergraph \mathcal{H}_G

For a given multigraph $G = (V, E)$, let $\mathcal{H}_G = (\mathcal{V}, \mathcal{E})$ be the hypergraph with $\mathcal{V} = V \cup \{w_e : e \in E\}$ and $\mathcal{E} = \{\{u_e, v_e, w_e\} : e \in E\}$, where u_e and v_e are the two ends of e.
Hypergraph \mathcal{H}_G

For a given multigraph $G = (V, E)$, let $\mathcal{H}_G = (V, \mathcal{E})$ be the hypergraph with $V = V \cup \{w_e : e \in E\}$ and $\mathcal{E} = \{\{u_e, v_e, w_e\} : e \in E\}$, where u_e and v_e are the two ends of e, i.e., \mathcal{H}_G is obtained from G by adding $|E|$ new vertices $\{w_e : e \in E\}$ and changing each edge e in G to an edge $\{u_e, v_e, w_e\}$ in \mathcal{H}_G.

![Diagram of G and \mathcal{H}_G]
\(P(\mathcal{H}_G, -1) \)

(Zhang and Dong, 2017)

For any \((n, m)\)-graph \(G\) with \(c\) components,

\[
P(\mathcal{H}_G, -1) = \lambda^{m-n+2c} \cdot (-1)^{n+c} T_G(1 - \lambda^2, (\lambda-1)/\lambda^2),
\]

\(T_G\) is equal to the number of totally cyclic orientations of \(G\).
For any \((n, m)\)-graph \(G\) with \(c\) components,

\[
P(\mathcal{H}_G, -1) = \frac{(-1)^m + c}{m} \cdot T_G\left(1 - \lambda^2, \left(\frac{\lambda - 1}{\lambda}\right)\right).\]

(Zhang and Dong, 2017)

For any \((n, m)\)-graph \(G\) with \(c\) components,

\[
P(\mathcal{H}_G, \lambda) = \lambda^{m-n+2c} \cdot (-1)^{n+c} \cdot T_G\left(1 - \lambda^2, (\lambda - 1)/\lambda\right),
\]
For any \((n, m)\)-graph \(G\) with \(c\) components,

\[
P(\mathcal{H}_G, \lambda) = \lambda^{m-n+2c} \cdot (-1)^{n+c} \cdot T_G(1 - \lambda^2, (\lambda - 1)/\lambda),
\]

In particular, \(P(\mathcal{H}_G, -1) = (-1)^{m+c}T_G(0, 2)\).
(Zhang and Dong, 2017)
For any \((n, m)\)-graph \(G\) with \(c\) components,

\[
P(\mathcal{H}_G, \lambda) = \lambda^{m-n+2c} \cdot (-1)^{n+c} \cdot T_G(1 - \lambda^2, (\lambda - 1)/\lambda),
\]

In particular, \(P(\mathcal{H}_G, -1) = (-1)^{m+c}T_G(0, 2)\).

\((-1)^{m+c}P(\mathcal{H}_G, -1)\) is equal to the number of totally cyclic orientations of \(G\).
Zero-free intervals for chromatic polynomials

Chromatic polynomials of graphs have no zeros in the following intervals:

\[(-\infty, 0), (0, 1), (1, 32/27) \]

Do chromatic polynomials of hypergraphs have zero-free intervals?

Fengming Dong (NTU)
Talk at Taipei
May 2017
Zero-free intervals for chromatic polynomials

Chromatic polynomials of graphs have no zeros in the following intervals:

\[(-\infty, 0), (0, 1), (1, \frac{32}{27}] \]
Chromatic polynomials of graphs have no zeros in the following intervals:

\[(-\infty, 0), (0, 1), (1, 32/27]. \]

Do chromatic polynomials of hypergraphs have zero-free intervals?
For any simple graph $G = (V, E)$, let \mathcal{H}_G be the hypergraph with vertex set $V = V \cup \{w\}$ and edge set $E = \{\{u, v, w\} : uv \in E\}$.
For any simple graph \(G = (V, E) \), let \(\mathcal{H}_G \) be the hypergraph with vertex set \(V = V \cup \{w\} \) and edge set \(E = \{\{u, v, w\} : uv \in E\} \), i.e., \(\mathcal{H}_G \) is obtained from \(G \) by adding a new vertex \(w \) and changing each edge \(\{u, v\} \) in \(G \) to an edge \(\{u, v, w\} \) in \(\mathcal{H}_G \).
Hypergraph \mathcal{H}_G

For any simple graph $G = (V, E)$, let \mathcal{H}_G be the hypergraph with vertex set $V = V \cup \{w\}$ and edge set $E = \{\{u, v, w\} : uv \in E\}$, i.e., \mathcal{H}_G is obtained from G by adding a new vertex w and changing each edge $\{u, v\}$ in G to an edge $\{u, v, w\}$ in \mathcal{H}_G

For example, if G is K_3 with vertex set $\{u_1, u_2, u_3\}$,
For any simple graph $G = (V, E)$, let \mathcal{H}_G be the hypergraph with vertex set $V = V \cup \{w\}$ and edge set $\mathcal{E} = \{\{u, v, w\} : uv \in E\}$, i.e., \mathcal{H}_G is obtained from G by adding a new vertex w and changing each edge $\{u, v\}$ in G to an edge $\{u, v, w\}$ in \mathcal{H}_G.

For example, if G is K_3 with vertex set $\{u_1, u_2, u_3\}$, then \mathcal{H}_G is the hypergraph with vertex set $\{w, u_1, u_2, u_3\}$ and three edges e_1, e_2, e_3:

$$e_1 = \{w, u_1, u_2\}, e_2 = \{w, u_1, u_3\}, e_3 = \{w, u_2, u_3\}.$$
For any simple graph $G = (V, E)$ of order n,

$$P(H \circ_G \lambda) = \lambda(\lambda - 1)^n I(G, 1/(\lambda - 1)),$$

(Zhang and Dong, 2017)
For any simple graph $G = (V, E)$ of order n,

$$P(H\ bulletin_G, \lambda) = \lambda(\lambda - 1)^n I(G, 1/(\lambda - 1)),$$

where $I(G, x) = \sum_A x^{|A|}$ is the independence polynomial of G.

(Zhang and Dong, 2017)
For any simple graph $G = (V, E)$ of order n,

$$P(\mathcal{H}_G, \lambda) = \lambda(\lambda - 1)^n I(G, 1/(\lambda - 1)),$$

where $I(G, x) = \sum_{A \text{ ind.}} x^{|A|}$ is the independence polynomial of G.

Brown, Hickman and Nowakowski in 2004 showed that real roots of independence polynomials are dense in $(-\infty, 0]$.
Thus the real roots of $P(\mathcal{H}_G, \lambda)$’s for all graphs G are dense in $(-\infty, 1]$.
Thus the real roots of $P(\mathcal{H}_G, \lambda)$'s for all graphs G are dense in $(-\infty, 1]$.

It can be shown further that the real zeros of chromatic polynomial of hypergraphs are dense in $(-\infty, \infty)$.
Thus the real roots of $P(\mathcal{H}_G, \lambda)$'s for all graphs G are dense in $(-\infty, 1]$.

It can be shown further that the real zeros of chromatic polynomial of hypergraphs are dense in $(-\infty, \infty)$.

Hence chromatic polynomial of hypergraphs have no zero-free intervals.
$P(G, \lambda)$ and connectivity of graphs

Known: G is connected $\iff \lambda^2 \not| P(G, \lambda)$.
$P(G, \lambda)$ and connectivity of graphs

Known: G is connected $\iff \lambda^2 \nmid P(G, \lambda)$.

Is this property true for chromatic polynomials of hypergraphs?
Assume that $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is connected.
Assume that $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is connected.

An edge e in \mathcal{H} is called as a *bridge* of \mathcal{H} if $\mathcal{H} - e$ (i.e., the hypergraph obtained from \mathcal{H} by removing e) is disconnected.
Assume that $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is connected.

An edge e in \mathcal{H} is called as a bridge of \mathcal{H} if $\mathcal{H} - e$ (i.e., the hypergraph obtained from \mathcal{H} by removing e) is disconnected.

Let $B(\mathcal{H})$ be the set of bridges of \mathcal{H}.
Bridges in a hypergraph

Assume that $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is connected.

An edge e in \mathcal{H} is called as a *bridge* of \mathcal{H} if $\mathcal{H} - e$ (i.e., the hypergraph obtained from \mathcal{H} by removing e) is disconnected.

Let $B(\mathcal{H})$ be the set of bridges of \mathcal{H}.

(Zhang and Dong, 2017)

If $B(\mathcal{H})$ is a proper subset of \mathcal{E} and the sub-hypergraph $(\mathcal{V}, B(\mathcal{H}))$ is connected, then λ^2 is a factor of $P(\mathcal{H}, \lambda)$.
Example for Bridges

B \subseteq E and (V, B(H)) is connected.

So \lambda_2 | P(H, \lambda).
$B(\mathcal{H})$ is a proper subset of \mathcal{E} and $(\mathcal{V}, B(\mathcal{H}))$ is connected.
Example for Bridges

$B(\mathcal{H})$ is a proper subset of \mathcal{E} and $(\mathcal{V}, B(\mathcal{H}))$ is connected.

So $\lambda^2 | P(\mathcal{H}, \lambda)$.
Known: If G is connected, then G is separable $\iff (\lambda - 1)^2 | P(G, \lambda)$.
Known: If G is connected, then G is separable $\iff (\lambda - 1)^2 \mid P(G, \lambda)$.

Is this property true for chromatic polynomials of hypergraphs?
Example

a separable hypergraph
Example

a separable hypergraph

But its chromatic polynomial is $\lambda(\lambda - 1)(\lambda^2 + \lambda - 1)$, no factor $(\lambda - 1)^2$.
Assume that no vertex is contained in all edges of \mathcal{H}.
Separable at w

Assume that no vertex is contained in all edges of \mathcal{H}. Assume that \mathcal{V}_1 and \mathcal{V}_2 are two proper subsets of vertices of \mathcal{H} with sizes at least 2 such that

(a) $\mathcal{V}_1 \cup \mathcal{V}_2 = \mathcal{V}$;
(b) $\mathcal{V}_1 \cap \mathcal{V}_2 = \{w\}$;
(c) for each $e \in E$, either $w \in e$ or $e \subseteq \mathcal{V}_i$ for some i.

Thus $\mathcal{H} - w$ is disconnected.

(Zhang and Dong, 2017) $(\lambda - 1)^2 \not\mid P(\mathcal{H}, \lambda)$ if (i) $e \not\subseteq \mathcal{V}_1$ for all $e \in E$ and (ii) $(\lambda - 1)^2 \not\mid P(\mathcal{H} \cdot \mathcal{V}_1, \lambda)$.

Fengming Dong (NTU) Talk at Taipei May 2017 55 / 59
Separable at w

Assume that no vertex is contained in all edges of H.

Assume that V_1 and V_2 are two proper subsets of vertices of H with sizes at least 2 such that

(a) $V_1 \cup V_2 = V$;
Separable at \(w \)

Assume that no vertex is contained in all edges of \(\mathcal{H} \).
Assume that \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) are two proper subsets of vertices of \(\mathcal{H} \) with sizes at least 2 such that

(a) \(\mathcal{V}_1 \cup \mathcal{V}_2 = \mathcal{V} \);

(b) \(\mathcal{V}_1 \cap \mathcal{V}_2 = \{w\} \);

Thus \(\mathcal{H} - w \) is disconnected.

(Zhang and Dong, 2017)
Assume that no vertex is contained in all edges of \mathcal{H}. Assume that \mathcal{V}_1 and \mathcal{V}_2 are two proper subsets of vertices of \mathcal{H} with sizes at least 2 such that

(a) $\mathcal{V}_1 \cup \mathcal{V}_2 = \mathcal{V}$;

(b) $\mathcal{V}_1 \cap \mathcal{V}_2 = \{w\}$;

(c) for each $e \in \mathcal{E}$, either $w \in e$ or $e \subseteq \mathcal{V}_i$ for some i.

Thus $\mathcal{H} - w$ is disconnected.

(Zhang and Dong, 2017)

$\lambda - 1 \neq \left| P(\mathcal{H}, \lambda) \right|$ if

(i) $e \not\subseteq \mathcal{V}_1$ for all $e \in \mathcal{E}$ and

(ii) $\lambda - 1 \neq \left| P(\mathcal{H} - \mathcal{V}_1, \lambda) \right|$.

Fengming Dong (NTU)

Talk at Taipei

May 2017 55 / 59
Separable at w

Assume that no vertex is contained in all edges of \mathcal{H}.

Assume that \mathcal{V}_1 and \mathcal{V}_2 are two proper subsets of vertices of \mathcal{H} with sizes at least 2 such that

(a) $\mathcal{V}_1 \cup \mathcal{V}_2 = \mathcal{V}$;

(b) $\mathcal{V}_1 \cap \mathcal{V}_2 = \{w\}$;

(c) for each $e \in \mathcal{E}$, either $w \in e$ or $e \subseteq \mathcal{V}_i$ for some i.

Thus $\mathcal{H} - w$ is disconnected.
Assume that no vertex is contained in all edges of H.

Assume that V_1 and V_2 are two proper subsets of vertices of H with sizes at least 2 such that

(a) $V_1 \cup V_2 = V$;
(b) $V_1 \cap V_2 = \{w\}$;
(c) for each $e \in E$, either $w \in e$ or $e \subseteq V_i$ for some i.

Thus $H - w$ is disconnected.

(Zhang and Dong, 2017) $(\lambda - 1)^2 \triangledown P(H, \lambda)$ if
(i) $e \nsubseteq V_1$ for all $e \in E$ and (ii) $(\lambda - 1)^2 \triangledown P(H \cdot V_1, \lambda)$.
Open problems

Result (Dong 2000): For every graph G of order n, where $n \geq 1$, when real $\lambda \geq n$, we have
$$(\lambda - 1)n \prod_{\lambda}(G, \lambda) - \lambda n \prod_{\lambda - 1}(G, \lambda - 1) \geq 0.$$ This result proved "the shameful conjecture" proposed by Bartels and Welsh in 1995.

Conjecture: For any hypergraph $H = (V, E)$ with $|V| = n$, $$(\lambda - 1)n \prod_{\lambda}(H, \lambda) - \lambda n \prod_{\lambda - 1}(H, \lambda - 1) \geq 0$$ holds for all real $\lambda \geq n$.

Fengming Dong (NTU) Talk at Taipei May 2017 56 / 59
Open problems

- **Result** (Dong 2000): For every graph G of order n, where $n \geq 1$, when real $\lambda \geq n$, we have

$$ (\lambda - 1)^nP(G, \lambda) - \lambda^n P(G, \lambda - 1) \geq 0. $$
Open problems

- **Result** (Dong 2000): For every graph G of order n, where $n \geq 1$, when real $\lambda \geq n$, we have

$$ (\lambda - 1)^n P(G, \lambda) - \lambda^n P(G, \lambda - 1) \geq 0. $$

- This result proved “the shameful conjecture" proposed by Bartels and Welsh in 1995.
Open problems

- **Result** (Dong 2000): For every graph G of order n, where $n \geq 1$, when real $\lambda \geq n$, we have

$$\begin{eqnarray*}
(\lambda - 1)^n P(G, \lambda) - \lambda^n P(G, \lambda - 1) \geq 0.
\end{eqnarray*}$$

- This result proved “the shameful conjecture" proposed by Bartels and Welsh in 1995.

- **Conjecture**: For any hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = n$,

$$\begin{eqnarray*}
(\lambda - 1)^n P(\mathcal{H}, \lambda) - \lambda^n P(\mathcal{H}, \lambda - 1) \geq 0
\end{eqnarray*}$$

holds for all real $\lambda \geq n$.
Open problems

Conjecture (Welsh, 1970 and Brenti, 1992)

For any graph G and any integer $k > 0$, \[
(P(G, k))^2 \geq P(G, k+1)P(G, k-1).
\]

Counterexamples were found by Seymour in 1998 for $k = 6$.
Conjecture (Welsh, 1970 and Brenti, 1992)
For any graph G and any integer $k > 0,$

$$(P(G,k))^2 \geq P(G,k+1)P(G,k-1).$$
Conjecture (Welsh, 1970 and Brenti, 1992)
For any graph G and any integer $k > 0$,

$$(P(G,k))^2 \geq P(G,k+1)P(G,k-1).$$

Counterexamples were found by Seymour in 1998 for $k = 6$.
Open problems

Conjecture (Modified)
Let G be a graph of order n. For all real $\lambda \geq n - 1$,
\[
(P(G, \lambda))^2 \geq P(G, \lambda + 1) P(G, \lambda - 1).
\]

Conjecture (Zhang and Dong, 2016)
The above conjecture also holds for hypergraphs.
Conjecture (Modified)
Let G be a graph of order n. For all real $\lambda \geq n - 1$,

$$(P(G, \lambda))^2 \geq P(G, \lambda + 1)P(G, \lambda - 1).$$
Conjecture (Modified)
Let G be a graph of order n. For all real $\lambda \geq n - 1$,

$$(P(G, \lambda))^2 \geq P(G, \lambda + 1)P(G, \lambda - 1).$$

Conjecture (Zhang and Dong, 2016)
The above conjecture also holds for hypergraphs.
THANK YOU!