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A Nim-like Game and Dynamic Recurrence Relations

By Boon-Beng Gan and Yeong-Nan Yeh

~

The nim-like game (n, f; X, Y} is defined by an integer n > 2, a constraint
function f, and two players X and Y. Players X and Y alternate taking coins
from a pile of n coins, with X taking the first turn. The winner is the one who takes
the last coin. On the kth turn, a player may remove #; coins, where | < ¢, <n—1
and 1 < fp < max{l, f(f-1)) fork > 1.

Let the set Sy = {1} U {n| there is a winning strategy for ¥ in the nim-
like game (n, f; X, Y}}. In this paper, an algorithm is provided to construct
the set §¢ = {ay, a2, ...} in an increasing sequence when the function f(x) is
monotonic. We show that if the function f(x) is linear, then there exist integers
no and m such that a,4+y = ap + @z, for n > ng, and we give upper and lower
bounds for m (dependent on f). A duality is established between the asymptotic
order of the sequence of elements in Sy and the degree of the function f(x). A
necessary and sufficient condition for the sequence (ay, a;, a3, . ..) of elements
in Sy to satisfy a regular recurrence relation is described as well.

1. Introduction

One of the oldest and most popular games in the world is the Chinese game of
fan-tan [1], better known as the Chinese game of nim. In this paper, we introduce
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a nim-like game played with one pile of coins. .

The nim-like game (n, f; X, Y) is defined by an integer n > 2, a constraint
function f, and two players X, Y. Players X and Y alternate taking coins from a
pile of n coins, with X taking the first turn. The winner is the one who takes the
last coin. On the kth turn, a player may remove f coins, where 1 <ty <n -1
and 1 < f < max{l, f(%_1)} fork > 1.

Let [x] be the greatest integer < x. Throughout this paper, because the number
% 1s obviously a positive integer, any function f(x) should be replaced by the
function f*(x), where

1, * iffx)y =1
[f(x)], if f(x) > L.

For convenience, without wishing to cause confusion, we use f(x) in this paper.

The Fibonacci nim game, {1, 2x; A, B), was invented by Dr. R. E., Gaskell of
Oregon State University [2] and has been discussed by many mathematicians [3}-
[9]. While playing the nim-like game (n, f; X, ¥), we let the set Sy = {1} U {n|
there is a winning strategy for Y in the nim-like game (n, f; X, ¥)).

EXAMPLE 1. Let f(x) = c. Then S, ={1,2,...,c,¢+ 1}. If we add the
requirement that t| < c, then we obtain the well-known game of nim Jor which
Sr={1L2,...,c}U{jlc+1)| jeN).

A. J. Schwenk [8] studied the set Sr when f(x) = ax, and R. J. Epp and
T. 5. Ferguson (10] continued this stady when f(x) is a nondecreasing function.
E. Berlekamp et al. [3] showed that the sequence {a,} of all elements in Sy
satisfies the recurrence relation

£ = {

Qnyl = ap + 0y

for sufficiently large n, when f(x) = ax, but they did not establish any relation
o and m.

In Section 2 of this paper, an algorithm for constructing the set §7 = {a, a3,
...} in increasing order is provided. In Section 3 we prove that integers ng and
m exist such that a,41 = a, + a,_,» for n > ny when the function f(x)is
linear. Furthermore, upper and lower bounds for m (depending on f) are given.
In Section 4 we study the duality between the asymptotic order of the sequence
of elements in Sy and the degree of the function f(x). A necessary and sufficient
condition for the sequence (ag, a;, az, . ..) of elements in Sy to satisfy a regular
recurrence relation is provided in Section 5.

2. Construction of S,

The number of coins a player takes in the last turn, while playing the game
{n, f; X, Y), is denoted either Last(X) or Last(Y), depending on which player
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wins. In this section we show how to construct Sy for the game (n, f; X, ¥) when

f(x) is a monotonic function. We first study the case when f(x) is an increasing
function. :

THEOREM 2.1. Let f(x) be an increasing function. Then Sy can be con-
structed by the following algorithm.

Step 1. Seta; = 1.

Step2. Ifay,...,ap € Sy, andif Ty = {s | s < k and f(a;) > ai) # @, then
set

Ak+1 = Qg + Quk)

where (k) = min Ty, Add ag to S¢, and repeat Step 2 until Ty, = @.
Step3. Ifay,...,ac € Sy, and if T, = @, then Sg=l{ay, ..., a).

If n & Sy, then there exists a strategy for the first player A to win the game
(n, fi A, B).

Proof: We have the following three cases to consider: (1) n = ap41 for some
m=>12n=an+uandu < a,m; and 3) n = an + u, and w(m) is not
defined, i.e., f{a,;) < an. In each case, we find a strategy for the winner W (A
or B) of the game (n, f; A, B} with Last(W) < a,,. [

We consider these cases separately.

Case 11 If m = I, then n = 2. A must take one coin on the first play and
B takes the remaining one. Hence the statement for case 1 is true, since a 1 = 1.
Suppose Case listrueforl < k < m.Ifk = m+1, thenn = Ami1 = Am+ay(m).
Suppose A first takes #; coins, 1 < #; < n — 1. There are two possibilities:
(@) t1 = auomy, or (b) 11 < Gyom)-
(@) Ift) > ay(m). B canremove all the remaining coins since f(¢;) > flayom) =
Gm = N — Qu@m) = 1 — 1. Thus, B wins (a1, f; A, B) with Last(B) =
h=n—1 < ay.

(b) If 5y < aum), then by the induction hypothesis, B will first win the short

game (ay(m). f3 A, B} with Last(B) < a,,(m)—1. A and B will then continue
to play {(an. f; A, B) since f(dum)—1) < am. By induction, it follows that
B will win {a,,, f; A, B} with Last(B) < an_1 < a,,.

Case 2: Here we also have two possibilities: (a) n = a,, +q;, where L (m) >
or(byn =am +am, +---+an,, where u(m;) >m;,i =1,2,...(r — 1).

(a) A can first take a; coins. Then players B and A will finish the game (a,,, f;

¥

B, A) (note that the order of players A and B is reversed) since f(a;) < ap.
As proven in Case 1, A will win the game {n, f; A, B), with Last(A) < a,,.
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(b) A can start by taking a,, coins. Since a,, < Qy(m,_y), A will win the
short game (ay, ,, f; B, A) with Last(A) < apm,_,. Then A and B will
continue playing the short game {a,,, f; B, A). Last(A) from the previous
short game {4, ,, f, B, A) is < myyys 50 flast(A)) < flam,,) < ;s
i =(r—2),(r —3),...,1 Thus, using Case 1, we have proven Case 2.

Case 3:  Again we have two possibilities: (a) U < ap,or{b)u > a,.

(a) A first takes t; = u coins. A and B then continue to play the game {a,,, f;

¥

B, A} since f(u) < f(am) < ay. Case 1 implies that A will win the game
{n, fi A, B) with Last(A) < a,,.

(b) Letus write n = kan + r where | < r < a,,. A will first take #; = r
coins. Then A and B will play the short game {(a,,, f; B, A}k times since
f{r) < flam) < am. So Case 3 follows from Case 1 as well,

The following corollaries are obvious from the description of the algorithm in
theorem 2.1, -

COROLLARY 2.1.  Let Ty, u(k) and Sy be defined as above. The Sfollowing
statements are equivalent.

(1) The set T, # 0.
(i) (k) is well defined.
(i) The set Sy contains at least k + 1 elements.

Furthermore, u(n) < n for all n such that p(n) is well defined.

COROLLARY 2.2, If f(x) is an increasing function and f(n) < n for n
sufficiently large, then Sy is a finite set.

EXAMPLE 2. If f(x) = 2x, then Sy is the set of all Fibonacci numbers, i.e.,
Sr=1{1,2,3,5,8,13,...}

EXAMPLE 3. If f(x) = x, then S = {2" | n € NU {0}).
EXAMPLE4. If f(x) =3 + 1, then §f = {1, 2,4).

In the following theorem, we study the set Sy when f(x) is a decreasing
function. B

THEOREM 2.2.  Let f(x) be a decreasing function and let U = {s + f(s) |
s € NY. Then Sy = (1,2, ...,1), where t = min U. '

Proof: 'We consider the following two cases: (i) t =n;(l)n >t [ ]
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Case 1: Suppose A first takes #; coins from the pile where 1 <y <n—1.
B can remove all of the remaining coins, since f(#) >t —# > n — 1.

Case2: LetV ={s|{s+ f(s)=1t}andletk = minV, sok+ f(k) =t¢.
Let n = ¢ + w where @ € N. Supopse that player A first takes & + w — 1
coins. Then B's first play on the short game {t —k + 1, f; B, A) cannot take all
remaining coins because t — k +1 = fk) + 1 > Flk+w— 1) (since f(x)
is a decreasing function). So players A and B continue to play the short game

{(t —k+1, f; B, A). As proven in Case 1, A will win the game (n, fi A, B).

3. The limit value of n — u(n)

We now study the asymptotic behavior of the sequence n — w(n) when Sris an
infinite set. Let f(x) = ax + 8 where eithero < 1,ora = 1 and 8 < 0. From
Corollary 2.2, we know that the set Sy must be finite, so we do not discuss this
case further. That is, we consider a linear function f(x) = ax + B; it should be
assumed that eitheror > lore = 1 and 8 = 0.

If £(1), f(2) <2, then S = {1, 2} since the first player A will win the game
by taking either 1 or 2 coins in his first move, depending on whether n is odd or
even. Only f(x) with f(2) > 2 is discussed in the rest of this pgiier.

In this section we prove that integers ng and m exist such thata, .} = a,+a,_n,
forn > no when the functions f(x) is linear, and we give upper and lower bounds
for m. We study the set Sy in the following two cases separately: (i) « = 1 and
B = 0; and (i) & > 1. The following fact is used in the proof for case (i):

Fact 1:  For a linear function f(x) = ax + B, w(n) is well defined for all #
and

lim a, = o0 and Iim p(n) = oc.
nH—r 00 nN—=00

PROPOSITION 3.1. Let f(x) = x + B where 8 > 0. Then lim, ,oo(n —
un)) = 0. '

Proof:  Fact 1tells us that a sufficiently large N > Qexists such thata mn—1) >
B for all n > N. This implies that

An = Ap—| + Aun-1) > aAn-1 + B = flan—)).

Since f(a,_1) < ay, it follows from the definition of . (n) that un) >n—1,
sou(n) =nforalln > N. ‘ [ |

To study case (ii), we need the following definition and facts:

DEFINITION 3.1.  The sequence p(i, n) is defined as follows: Let p(1,n) =
m(n) — Land p(i + 1,n) = p(1, p(i,n)) = p(pG,n)) — 1 if p(i,n) is well
defined and > 1.
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Fact2: 1If i, n are such that p(i 4+ 1, n) is well defined, then

Apimy+1 = Gp(in) + Ap+1m+1 0 Gu(piin)) = Au(pi+1.m) + Ap(i+1,n)-

Fact 3: FPoranyi € N, there exists M; such that p(i; n) is well defined for
all » > M;. Furthermore, for any fixed i, we have

fim p(i, n) = .

=00

For any fixed n, p(i, n) is a strictly decreasing function of #, since p(i + 1, n) <
w(p(i, n)) < p(i, n).

LEMMA 3.1. Let f(x) = ax + B where ¢ > 1. Then

L{e) = lim [n — p(n)] < n@[n — u(n)] = U(a),

n—oc

where L(e) = (logat/ log ;%7) ~ 1 and U (@) = (log)/(log 2£1).

Proof: Since p(1, n) = p(n) — 1, Fact 1 implies that given any € > 0 there
exists N > 0 such that

18] < €ap,my < €@uim) (3.1)

form > N. By the definition of j1(m), we have an < f(d,om)) = auem + B.
This implies that

E(am —8) < Ay (m).

Therefore,

1
+ am + =(a, — 1
Am+1 Qm + Quim) > m QE( m— B) > 1 c.
Am A /- o

Now we choose 7 such that u(n) > N. By (3.1) and the definition of u(n),

a, = f(ap.(n)) =oaum) + B =< Adyn) + €Qu(n),

so consequently

a dn 4 a i n—pln)
o+e> n n "o u(n)+12(1+__6)
Quiny  Gn-10Gn-2 Quin) o
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for i(n) > N. It follows easily that
— 1
lim (n — u(n)) <loga/log (E_j‘_) .
n—00 o

Now let us turn to the other inequality. We first have f @pi,m)) < ay if
p(1, m) is well defined; this fact, taken along with (3.1), implies that

I 1
Aplm) < — (@ — B) < ap, (— + e)
o o

for sufficiently Iafge m. Since p(i +1, n) = p(p(i, n)) — 1, we have by induction

1 i
Qpiny < dp (E + 6) . (32)

Since o > 1, we can choose ¢ sufficiently small so that % + € < 1. Then

there exists & > 0 such that (% + €)* < e. Using Fact 3, we can also choose n
sufficiently large such that p(k, n) is well defined and p(k, n) > N. Then using
Fact 2, we have

an+l/an = (an, + ap(l,n)+l)/an
= (a, + ap(l,n) + ap(2,n)+l)/an
= =@+ apam t -+ A—1,n) + Apk.n)+1)/Cn.

Since apm41 < 2a,, for all m, using (3.2), we have
any1/an < (G + Aptny + -+ ap—1,n) + zap(k,n))/an

1 1 k—1 1 k
<1+(-+e)+---+(—+6) +2(—-+e)
4 (14 (14

: +(1+)k —
< — € -~ —— €.
I—(tre) \a a(l—e)—1

By (3.1), we have |8| < €xay,» < eaay,, hence

Aap(1,n) — €4p(1,n)

o —€ =
Gp(l,n)
«a + a
< p(l,n) ﬁ < "
ap(1,n) Ap(l,n)
dn Qn—1 . Qyi(n)

Ap—1 Ap-2 Qy(ny—1

o A\ n—u(n)+l
——— E .
< (a(l—e)—_1+ )
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Thus we have proven that

fim (v a(n) > (logar/log — ) 1.

H— 00

COROLLARY 3.1. lim,,o(n — p(n)) = O when f(x) = ax + B with1 <
a < (14 4/5)/2. ]

Proof: Ula) = (loga)/(og®H) < 1ifa < &t je ifa? —a—1 < 0.
Since n — p(n) is always a non-negative integer, it follows that the limit is 0 for
15&<(1—|—\/§)/2. [ |

EXAMPLE 4. The following table provides the limit value of n — u(n) when
fX)=ax+ B, wherea =2,3,...,10and B = —1,0, 1, 2, and 3.

o= 2 3 45 6 7 8 9 10
B=-1 0 2 5 7 10 13 15 19 22
B=0 1 3 5 7 10 13 16 19 22
B=1 1 3 6 8 10 13 16 19 22
B=2 1 3 6 8 11 14 16 19 22
B=3 1 3 6 8 11 14 17 20 23

DEFINITION 3.2, The sequences g(i, n) and Aux(n) are defined as follows:

(1) Let Aux(n) = aaum) + B — an = flaum)) — an.
(2) Letg(1,n) = u(n). If g(i, n) is well defined and > 2, then

gl +1,n) =p(gl,n)—1).

Fact 4: For any i € N, there exists M; such that g(i, n) is well defined for
all n > M;. Furthermore, for any fixed i, we have lim,_, o, g(i, n) = oco. For any
fixed n > M;, g(i, n) is a strictly decreasing function of i, since g(i + 1,n) =
n(gl,n)—1) < gli,n) -1 < gQ,n).

Fact5: Fori, n such that g( + 1, n) is well defined, we have

Ag(i+1,n) = Qg(i,n) — Ag(i,n)—1-

PROPOSITION 3.2. Let f(x) = ax+p wherea > 1. Thenim,_, o (n — (1))
exists.

Proof: 'We consider two cases separately: (1) 8 > 0,and (2) 8 < 0. L

31
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Case 1: Suppose u(n) < u(n + 1) for any sufficiently large n. Then the
proposition holds, since n — u(n) is a decreasing and bounded function.
Otherwise, u(n) = p(n + 1) for some arbitrarily large ». Let

L= mﬁ{(n —un)+1land M = max Aux(n).

n l<n<l+L
< Using Fact 4, there must exist{ > 2M/B and N such that
) (@ w(N)=u(N +1);
0. (b) g, N) is well defined with g(I, N) < 1+ L.
or
n Let ¢ = Aux(N). We show that
en Aux(g(, N)) z c+ 18 = 2M, (3.3)

which contradicts the definition of M and thereby proves Case 1.

The proof is by induction. In fact, we prove two statements: Aux(g(k, N)) >
c+kB,and g(k 4+ 1, N) = u(g(k, N) forall k > 1.
If £k = 1, then by Fact 5 we have
fagem) = aaon + 8
= a(aga,n) — agn-1) + B
= flaga,n) — oagi.n-1.

152

We know that ¢ = f(a,v+1)) — an+1, so by the definition of x and the fact that

w(N + 1) = u(N), we have

¢+ an+1 = flapwv+n) = flauwy) = flaga.m)-

Therefore
1 for
Lany flage,ny) = ¢+ ang1 — adea,ny-1
1) = = c+auw + (ay — Q[ag(l,N)_ﬂ

= ¢+ ag,n + (av —aauwy-1)

> ¢+ aga,n + B,

since ay > ad,n)-1 + B. This implies flaga.ny) > Qg(1,N), Which in turn
implies g(2, N) > p(g(1, N)), whichimplies g(2, N) = w(g(l, N)). Therefore
) Aux(g(1, N)) = flauea n) —a0.8 = flage.m) — dea.n = ¢ + B, so the
two statements are true for the case k = 1.
Now suppose that the temma holds fork = 1, ..., m — 1. The proof fork = m
] is very similar to the proof for 1.
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By Fact S we have

flagm+1.My)) = Cdgm+iny + B
&(agom, Ny — Ag(m,N)—1) + B
Flagon,Ny) — dg(m, N)—1- (3.4)

il

By the induction hypothesis for m — 1, we know that

Flagmny = flaugm-1,8))
= Aux(gim — 1, N)) + agim—1,n)-
> c+(m— DB+ agm-1,n)-

From (3.4) and Fact 5, we obtain

c+(m— 1B+ agm-1,n8) — €Ag(m N)~1
¢+ 0n— DB+ agemn) + dgm-1.N)-1 — &ag(m N)-1
c+mB+ agem,N). (3.5)

f(ag{m+l,N))

VIV IV

By the definitions of x and g, we have

Agin—1,N—1 = f@gm,N)—1) = Q8gm,N)—1 + B.

This implies f(@gm+1,7)) > Qg(m,n), Which in turn implies g(m + 1, N} =
p(g(m, N)), which implies g(m + 1, N) = u(g(m, N)). Using (3.5), we have

Aux(g(m, N)) = faugem,ny) — agmny = fl@gem+1,8)) — agem,Ny > ¢ +mpB,
and (3.3) is proved.

Case 2: We only have to prove that n — p(r) is an increasing function, since
n — w(n) is a bounded function by Lemma 3.1. We have ap1 = a, + gy for
all n, and § < 0, then

flapm+1) = aaumy+1 + B

a{umy + aumy) + B
@Gy + B+ aaupm) + B
an + Auny = An+1-

v ol

v

This implies that (n) + 1 > w(n + 1). Therefore, n — 1(n) is an increasing
function. :
The following theorem summarizes the results established in this section.
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THEOREM 3.1. Let f(x) = ax + B. Then

(i) fa=1,and B > 0, then lim,_, o, (n — un)) =90;
(i) fo > 1, thenlim, ,(n — u(n)) exists and

L(e) = lim (n — p(n)) < U(e)
where L() = loga/log(;%1) — 1 and U(a) = loga/ log(%L).

4. Duality

In this section, let p, g > 1 denote two positive real numbers that satisfy

+-=1

1
q

-

LEMMA 4.1. Let

f(n) = (n+1)2—n?—gni! and  gn) = (n+1)7—n?—(1—¢) 1gni~!
where 0 < ¢ < 1. Then

(@ f(n)y=0foralln >0, and
(b) there exists m > O such that g(n) < O foralln > m.

Proof: (a) f(n) = (n+1)9—n?—gn?~! > Oforalln > 0, since n?+qni!
is the sum of the first two terms in the binomial expansion of (n + 1)4.

()0 <1—e€<1,50(1—€)"! > 1. Consequently, (n + 1) —n? — (1 —
€)~1gn?-! is a polynomial of degree g — 1 with negative leading coefficient
1—(1-¢)L, "~

The following lemma is straightforward but useful later. We omit the proof.

LEMMA 4.2. Let f > Obeanincreasing integer function. Let (dp,di,da, .. ),

(bo, b1, b2, .. .), and (co, c1, €2, .. .) be the sequences that satisfy the following
conditions:

d}’l+1 - dﬂ. + f(dﬂ)s
bn+1 2 bﬂ + f(bﬂ)s
Cntt = Cn+ f(cn).

Forall, n > 0. If b, > d; = ¢, for some nonnegative r, s, t, then buir > dpys >
Cnit foralln > 0.
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LEMMA 4.3. Choose @ > 0,0 < ¢ < 1, and ag > 0. Let the sequence No
(ao, a1, aa, .. .) be defined by the relation
Ap1 = Gy + ya;/p
forall n > 0. Then there exists k > 0 such that ]
q | g
An-f < (Z) n?  and  appe = (1—e) (Z) n?
* q q
The
Joralln > k.
Proof: Foranyn > 0,a,,) —a, = yal/? > yay'®. Consequently {a,} is a
strictly increasing sequence and lim,_, o, a, = oo.
Let
for
fr) = (n+1)? —n? —gn?!, 1
g(n) = (n+ 1) —n? — (1 —e)"'gn?,
q (a)
by = (Z) ‘nf, ®)
q
y\9 : (c)
¢ = (1—¢€)?. (—~) (n+m)?,
q The
where m is such that g(n) < 0 for n < m. One can verify that -
defi
1/ AN
busr = n = y01” = (L)' 0o
for
and
q
Cnyl — Cy ~— yc;fp =(1-¢). (J—;) gn+m).
1
B
of ¢
Then from Lemma 4.1 we have ]
bpy1 > by + yb;lg/p and Cntl1 = Cp + ‘.Vc,yp- ;-(:
4

Given an integer k, let
Sn = an—k and tn == an+k VH Z k.
Then since apq | = a, + ya,!,/ P for all 1, we have

Sl =Sp+ysy/P and  fyy =1, + ytl? yp >k




Dynamic Recurrence Relations in Nim 225

Now choose an integer & large enough that
Y \4
bk=(—) k9 > a9 = sy and o =a; > 0=cy.
q

Lemma 4.2 then implies that
by > sy and th > cy Yn > k.

That is equivalent to

Y \? 7 \?
(——) n? >a,_, and Anik = (1 —€)9 . (_) n9
q q

foralln > k.

DEFINITION 4.1,

(@ f(n) ~ g(n) means that lim,_, o, f(n)/g(n) = 1.
(b) f(n) ~ o(g(n)) means that lim,,_, o, f(n)/gn)y=0.
(¢} The asymptotic order of a sequence {a,} is pif ay ~ an? where o > Q.

Theorem 4.1 follows immediately from Definition 4.1 and Lemma 4.3.

THEOREM 4.1. Lety > 0, ay > O, and let the sequence (ag, a;,...) be
defined by the relation

1
apny1 = ap + yan/P

q
n~ (Z) n.
q

Now we can establish a relation between the asymptotic order of the sequence
of elements in Sy and the degree of the function F0.

foralln > 0. Then

THEOREM 4.2. Let f be an increasing function such that fx) = x for all
x > 0. Let all the elements of Sy be listed {ay, as; ...} in increasing order. If
f(n) ~ an? for some a > 0, then

1N /191
(Y
q o
Proof: According to the definition of u, we have

an = flaum)) and an > flaum-1) = f@pa,n)



226 B. B. Gan and Y. N. Yeh

for all n, so
a a
mmzl and 1im&_(1ﬂ51.
n—-00 ap n—o0 an
Since f(n) ~ an?, we have
P P
aa aa
lim —* > 1 > lim —2&m (4.1)
n—oo g, oo an

The second inequality implies that there exists some M such that forn > M
( az) P > ayq p. It follows from this that ap1,n) ™~ ofa,) since 1/p < 1.
Subsmutmg p(l, n) for n, we find

2

Ap(i,p(1,n)) = Qp2.ny ~ Ap(1,n))- 4.2)

Since apt ny < (%an)lfp forn > M, we have ap.n) ~ o((2a,)!/?).
Consequently for n > M, using the fact that ¢,, < 24g,,_,, we know that

Auiny = Qumy—1 Haum-1)
< @um—1 + 2a8uum-1-1
= Qp(im) + 2Qp2.n)

1 1/p
(aan) —+ 2ap(2,n).

=

This implies that
Gy _ 2ap02.n)
(Za)p = (Layiir

50 liMy_, o0 @y (my/(1/@ay)!/? < 1. Combining with the first inequality of (3.6),
we have a,n) ~ (l/a)lfp(an)”p.

Since ap11 = an + au), this implies that for any two numbers s, ¢ where
0 <t < (1/)!/? < s, there exists k > 0 such that

an + ta;"‘p = Qpel S ap + sa,ifp

for all n > k. Lemma 4.3 then implies that

t\? s\
(—) < lim (a,/n?) < (—) .
q R0 q
Hence, we have

. (/) /P\* 1 q(l)q-‘
N=f L _} =|= bl
nl_l_’n(;;o(an/n ) ( q ) (q) o '

is

1§

di

RO ]
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5. Dynamic recurrence relation

For a numeric function (ag, a), ay, .. .), an equation relating a,, for any n, to
{a1, ..., a,} is called a recurrence relation. Consider the Fibonacci sequence
{1,1,2,3,5,8,...}. This sequence can be described by the relation a,,| =
an + ap—1 for n > 1, together with the conditions that gy = 1 and ¢; = 1. The
coefficients of each term are always constants. A recurrence relation

Qpr] = Clap + C28n—-1 + - -+ + Cha 4.3)

is called a regular recurrence relation (RRR) if all ¢; are eventually constants; it
‘is called a dynamic recurrence relation (DRR) if some ¢; are not constants but
depend on the value of n.

Let f(x) be an increasing polynomial and f(x) > x for all x > 0. While
playing the game {n, f; A, B}, all the elements of Sy = {a,a3,...} can be
constructed in an increasing order. According to Theorem 2.1, the sequence
{an]} satisfies the dynamic recurrence relation (4.1) where ¢; = 1, ¢; = 1 if
i=n—pum)+1,andc; = 0ifi # n — u(n) + 1. These coefficients are not
constants but depend on the value of #. A necessary and sufficient condition for
the sequence (ag, ay, az, ...) of elements in Sy to satisfy a regular recurrence
relation is described in the following theorem.

THEOREM 5.1.  Suppose f(x) is an increasing polynomial and f(x) > x for
all x > 0. The following statements are equivalent:

(@) The sequence (ag, ai, a2, ...) of elements in Sy satisfies an RRR.

(b) The sequence (ag, a1, a, . ..) of elements in Sy grows exponentially.
(¢} limp_oo(n — w(n)) exists.

d) f(x)=ax+Bwherea >lorea=1andp = 0.
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