數學研究所
You are here:   首頁   ⇒   人員   ⇒   研究人員及研究技師   ⇒   蕭欽玉

研究員 |   蕭欽玉

 



聯絡資訊
  • Email : chsiao$\color{red}{@}$math.sinica.edu.tw
  • Phone:+886 2 2368-5999 ext. 633
  • Fax:    +886 2 2368-9771
  相關連結

學歷
  • Ph.D. in Mathematics 法國巴黎綜合理工學院 (2005/10 - 2008/07)
  • M.S. in Mathematics 台灣大學 (2001/9 - 2004/6)
  • B.S. in Mathematics 台灣大學 (1996/9 - 2001/6)
  研究專長
  • 微局部分析
  • 複幾何及柯西黎曼幾何

經歷
  • Research Fellow Institute of Mathematics, Academia Sinica, Taiwan 2017/5-
  • Associate Research Fellow Institute of Mathematics, Academia Sinica, Taiwan 2015/5-2017/5
  • Assistant Professor Institute of Mathematics, Academia Sinica, Taiwan 2013/8-2015/5
  • Postdoctoral Universität zu Köln, Mathematisches Institut 2010/12 - 2013/7
  • Postdoctoral Chalmers University of Technology 2009/7 - 2010/11
  • Postdoctoral Chalmers University of Technology 2008/11 - 2009/6

獲獎
  • 金玉學者獎http://www.kenda.org.tw/GoldenJade/Young/2014/%E8%95%AD%E6%AC%BD%E7%8E%89/%E5%BE%97%E7%8D%8E%E8%AA%AA%E6%98%8E.pdf, 2014-12
  • Post-doctoral fellowship of the Royal Swedish research council, 2008
  • École polytechnique Excellence Post-doctoral fellowship, 2008
  • École polytechnique Excellence Scholarship, 2005
  • Dean of the Faculty of Science Award, National Taiwan University, 2000

研究簡介

My domain of research is Microlocal Analysis, Complex Geometry and CR(Cauchy-Riemann) Geometry. Mcrolocal Analysis is a term used to describe a technique developed from the 1950s by Kohn-Nirenberg, H\"{o}rmander, Sato, Boutet de Monvel, Sj\"{o}strand, Guillemin, Melrose, and others, based on Fourier transforms related to the study of variable coefficients linear and nonlinear partial differential operators. This includes pseudodifferential operators, wave front sets, Fourier integral operators and WKB constructions. The term Microlocal implies localisation not just at a point, but in terms of contangent space directions at a given point. This gains in importance on manifolds. Microlocal Analysis is a powerful analytic tool in Complex Geometry, CR Geometry, Spectral Theory and Theoretical Physics. Complex Geometry is the study of complex manifolds and functions of many complex variables. Complex Geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research. CR Geometry is the study of manifolds equipped with a system of CR type. CR Geometry is a relatively young and nowadays intensively studied research area having interconnections with many other areas of mathematics and its applications. It deals with restrictions and boundary values of holomorphic functions) and of holomorphic mappings (CR mappings) to real submanifolds. A phenomenon arising in dimension higher than one is the rich intrinsic structure that leads to the existence of real submanifolds of different non-equivalent types. The systems of tangential Cauchy-Riemann equations for functions and mappings present important examples of systems of partial differential equations. A celebrated example of a system of this kind due to Hans Lewy played a crucial role in the development of the solvability theory for more general classes of PDEs.


部分著作目錄 List ↓

中央研究院數學研究所版權所有 隱私權及安全政策     |  與我們聯絡  |    Latest Update:2017-11-21
(台大院區)總機:886-2-23685999  傳真機:02-23689771 (行政室) 數學所同仁 電話分機 總表  
Skype Account : mathvoip        地址:台北市10617羅斯福路四段1號 天文數學館6樓 (中央研究院數學所)
建議使用 Chrome, Firefox, Microsoft IE 10.0 以上版本觀看,並設定 1024X768 解析度以獲最佳瀏覽效果。