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8 1 Axiomatization of geometries,

Projective geomgtry was long known to be a geometry of in-

» cldence relations — a point is on a line or a line passes through
\ .

a point. The routine procedures of this geometry are to construct
a line through two distrinct points and to take the intersection
of twe iines or combinations of these two operations (for example,
a projection); i.e., Joining and interSecting of &ements. For
this reason, K. Menger started in 1928 to develop this geometry
from aigebraic postﬂiates concernihg these two operations, These
two operations are“actually the two operations U and N in
lattice‘theory, and G. Birkhoff also characterized in 1935 the in-

cidence relations among linear subspace of pProjective space lattice-

tueoretically. K. Menger also has done this tndependenuly and

s
moreover carried out corresponding study for affine geometry with

Alt and Schreiber in 1936. Since then, K. Menger and his school
have also set up the foundation of hyperbolic geometry upcn alge-
braic postulates concerning these two operations. Mean-while the
corresponding problem for inversise geonmetry (conformal geometry i
Oor circle and sphere geometry) has been stadied by S. Inumi (1940)
and A. J. Hoffmann (1951).

These geometries were assumed to be of finite dimen51onal
but O. Frink (1946) has studied the characterjation of projective
geometry of infinjte dimen51on. W. Prenorvitz (1948) has studied

/
’

that of perspective geometry of infinite dimensiqﬁs, Then U, Sasaki
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(1952) has bktudied the corresponding case of affine geomctry (in-

gi}l finite dimehsional) and also studied the ufified treatment of pro-
fective and affine geometry of infinite dimension, fFinal}y+R,%"Wille
i

(1967) has given the unified theory of all projective, affine and

g inversive geometries infinite dimension.
i—l ‘ On the other hand F. Maeda gave formulation of an abstract
g%} geometry and studied its properties (1951). And Jonnson (1959)
gave the definition of geometry which is most ciosely related to
i ; the one glven in the book of Crapo and Rota (1970).

| In fhe discussien of thede materials, there are two aspects
E closely related: one ig the geometrical part and the other .is the

; lattice theoretical one.

For the geometrical part. let us examine the axioms of geome-
| tries which deal with only incidence relations.
) Following Veblen and Young, a projective geometry consists

of a set S of elements called points and a family of subsets

i

|

E ' (called lines) of S which satisfy_the following pastulates:
Pi. Two distinct points are on one and only one line

a P2. If the points P, Q and R are not collinear while

the points P, Q, X are collinéar;

a points Q, R, Y 5re collinear;

and X % Y,

then there is a point 2Z such that

points P, R, Z are collinear

and points X, Y, Z are collinear.
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The following set of postulates given by Sasaki is said to be
equivalent to the set of postulateéh Iy = Is of connection given
by D. Hilbert:

Al. For any pair of distinct points p, q, there exists a

line containing P, 9 and two q1st1hbt points on a line determine

the 1line. ’ o

A2. For any triple of points Py, 9, r which are not on a
line, there is a plane containing these points, and three non-
collinear points on a plane determine the plane,

A2', Tre line through two distinct points on 2 plane is

contained in the plane.

Aly. If two planes contained in a 3-space have a point in
common, then they have at least one more point in, common.
But actually this set of pastulates in not'duite equivalent

to the set of axioms of conncection given by Hilbert.

The set of 4 points, 7 lines and

%

L pianes given in the figure satis<ics
fies A1, A2, A2’ and A4, but it
does not satisfy the following axiom
in the set of axioms of connection:

I3 Every line contains at .least two

points., R

Thus, to get an equivalent system, we have to change A1 to

A1’ as follows: T




A1’. Any two distinct points are contained in exactly a line,
and each line contains at least 2 points,

These postulates are common to prajective and affine geometry.
The postulate which is special to affine geometry is the following
one:

A3. If p, q, r are non-collinear points, then there exists
one and anly one line through r wwhich is parallel to the line de-
termined Sy Py Qe

Here two lines pq, rs are c¢alled 'to be parallel to eachcther
(denoted by pq || rs) if they dre-contained in the same plane and
have ne. point in common.

-iﬁlihe axiomatic foundation of -2-dimensional inversivebgeometry
given by Van der Waerden and higher dimensional one given by Hoffman,
the postulates were choscn by taking inte acount the fact (or its
two dimensional version) that a three dimensional inversive geometry
over an ordered field V in which every non negative number is a
square may be defined as a set 7 of objects called points, circles,
sphaes and.inversive space with the properties:

(i) if p 1is any point, then there is an affine geometry
whose "points", "lines", "planes" and "3-space" are respective by
the points of w7 other than p, the circle containing p, the
sphars containing p, and the inversive space,

(11) the underlying field of this affine geometry is V,

(iii) this affine geometry can be made a euclidean geometry
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in such a way that the "circles" and "sphares" 6f:the  euéltdean
geometry, are respectively the circles of 7 not containing P,
and the spheres~dr »® unotcoontainings.p,

Taking (i) into acount, and consider the corresponding affine
geometry, we can get some foundamental propositions for inversive
geometry.

A=l of affine geometry inplies the following for inversive
geometry:

If two spheres throughithe.péoints pp'uaeeccontitnéditnaan
1nveréive sphae space and bave one more point in common, then they
have at least another point in com@on.

Since p 1is an arbitrarily selected point, so this statement
can.alsa ﬁe put as follows:

Sh. If two shperes in g 3-dimensional inversive space have

two distinct points in common, they have at least one more point

in common,

By similar argument, from A1/, A2, A2’ we get respectively

the followings:

St. These distinct points on a circle determine the circle,

and each circle contains at least three distinct points.

S2., Four noints which are not on a circle determine a sphere.
S3. If three distinct points are contained in a sphere then

the circle cetermined by these three points is consgined in the

sphere,
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To include all the above mentioned gecmetries, R. Wille
(1967) set up the following postulates:

In a set S of points, a family cf subsets of S, each of
which is called a curve, and another family of subsets of S, each
of which is called a sukface are specified out such that the fol-
lowing postulates are satisfied:

Wi. n 4+ 1 distinct points are contained in exactly one
curve, and each curve contains at least n + 1 distinct points.

W2, n + 2 distinct points which are not contained in a
curve, are contained in exactly one surface, and in each surface,
there are at least n + 2 points which are not contained in a curve.

W3, Along with the (n+1) distinct points;contained in a
surface, the curve which is determined by these points is alsg con-
tained in the surface.

To formulate the fourth postulate, we give the following
definitions:

Def. A point set is called a subspace (or a flat) if it
contains the curves nnd surfaces determined by W1 and W2 with
n+1 or N+ 2 points contained in the set.

Def. The intersection of all subspace which contain a set
A 1s said the subspace.generated by A,

W4, The iptersegtion'of two surfaces which are contained in
the subspace generated by n + 3 points, will never consists of

o REN TSN o e sensd
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exactly n distinct points.‘)
Def. The family of points S and the curves and sutrfaces

which satisfies the postulates W{ -~ W, 1is called a (an incideace)

geometry (Wille geometry) of gfade i (n:: 0,1,"‘,1-) on a set . 8,:

Examples. a) The geometries of grade O are projective
geometries, provided that céurves and surfaces are intupreted as
points and lines (Métyer, Birghoftf, Tring, Prenowitz, Mheda).

b.) For n =1 we get fhe so-celled strongly planar geome= i~y
tries (Sasaki, Jonnson).

A geometry is called planar if a subspace is defind by requirs
ing that the blahe is contained in the set"whenever the three non-

collinear poinfs defining it are contained ;n—thé set, A geometry

is called strongly planar if it is planar gnd the;postulate Al
is satisfied. Note that in the difinition of subspaces of a pro-
Jective geometry, we only require thdt a line is contained in the
set if the two points’détermining the line are contained in the set.
bz) If we also assume the parallel axiom, then we get affine
geometries (Mbnyer, Alt, Schreiber, Sasalki).
c) The geometrses of grade 2Z are, for examples, the inver-
sive geometries (Izum&, Hoftman);

d) I guess it might also be considered the set-af all ellipses

#) It can contain less than n points, as two parallel -
Planes in an zffine 3~space show,
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and ellipsoids (or parabalas and paraboloids) in projective (or
affine) gpace.

It is interesting now to observe that if we consider a set
of points (consisting of n++ 1 or more points) and a family of
subsets called blocks which satisfies only the first of the above
mentioned 4 postulates, that is;

Pa1 Any n + 1 distinct elements (points) of S are con-
tained in exactly one block and every block contains at least
(n + 1) distinct elements.

Def. Such a collection of subsets (blocks) of S 4is called

a partition'gi type n+1 (n2 0) on the set S.

Thus every Wille geometry of grade n 1is a partition of
type n + 1. A partition of type 1 is an equivalence relation on
S, The lattice of such parfitions was extensively studied by
0. Ore (1942) and later by DQFSnchs (1961).‘ Partitions of type n
(n > 2) were studied by J, Hartmanis 1951 - 61,

It is intended to give a kind of combined treatment of par-

titions and geometries in the following.




§ 2 Geometries in terms of closure operations.

In the discussion of the incidqnce relations of the simplest
figures ; linear subgpaces = otAgeometries, we have to deal with a
function which assign a subspace to a subset of points., For example,
A1 assigns a line to a set of points consisting-of'fwo distinct
points, and A2 assigns a plane to a set'of points conéiSéing of
three distinct points which are not on a line. Sinée the set unien
of two subspaces 1is not.a subspace, éo ye also have.to'aésigh a:sub-
space to it. Thus:.we assign,to‘a_gusséé “A'ﬂége smallest Subsbdce
A which contains A.. .This fgnction sétisfies oﬁﬁi;ﬁsly

1) ack
and A2’ jirstifies to 1ntrodqqe5the fqllowing postulate:

2') AcB implies A < B.

‘.ThGSe two postulates imply the following:

2) ASB implies ASTH

3) A =a.

Thus the operation A - A is a'‘closure operation, since 1),
2), 3) are satisfied.

For finite dimensional'geometries,'we”cah add as in the book
of Crapo and Rota, the followingvpostuiatg on finite baeis:

Any subset A €S has a finite subset Af<= A such that

Af=Ac

But, since we want to study geometries without the ‘restriction
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of finite dimension, we have to replace the postulate on finite

basis Ly a weaker one.

To formulate such a postulate for geometries, we need some

more difinitions:
Def. A property of subsets of a set S is called a closure
property if (i) S has fhe property.
(ii) Any intersectiqn_of subsets having the given pro-
perty itself has this property.

Def. The property of the subset A that“ A=A is a closure

property which is called the closure property associated with a

closure operation.

Def. A closure property & associated with a closure opera—
tion A=> A on the subsets of a set S is called finitary when
the condition A ¢ & is equivalent to the condition that K SA
and K finite implly Ec_g. |

Prop. The condition that the closure property ¢ associated
with the closure operation is finitary is equivalent to the condi—.

tion that § =U'I-C'y 'is the set union of the closure K& of the

finite subsets Ky of S.

This can be proved by using the following lemma 1:

Lemma 1. For any finitary Closure operation, if a set D of

closwedesubsets Sg 1is directed by set-inclusion, then their set-

unien UDS5 is closed.
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Here a directed set is defined by

Def. A directed set is a poset in which any two elecments,
and hence any finite subset of elements has an uppef bound in the
scte.

Thesfollowing lemma is alse useful:

Lemma 2. If for any directed set D of closed subsets Sg
(directed by set-inclusion) the set union. UDSS is ¢losed,; then

$ is finitary.
Examples (of finitary closure property): (1) Being a sub-
algebra of a (finitary) algebra A. Here an algebra A 1is a pair

[S,F] where S 1is a non-empty set of elements and F 1is a speci-~

£i0c X ations + " F
$129 5SSt oF dperations 2z, each mapping a power Sn(a) of S

(Il

tnto S, for some appropriate non-negative finite integer. n(a).

Th s - y es o
at is, fa assigns to every n(a) ple (x', mxn(a)) of

elements fo S a value f£ (x1,"°,x ) in S.

n(a)
By a subalgebra of an abstract algebra A = [S,F], it is

mcant a subset T (passibly void, but if A contains a least non-

void subalgebra the void set is:'nat considered to.be a subalgebra)

of S which is closed under the operations of F, or F-closed.

That is if f_€F and x,, €T, then f (x,,° Y €T

.’xn(a) "X n(a)

That being a subalgebra of an algebra A is a finitary closure

Droperty follows from lemma 2.
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(2) Being a SUbreiative ot a relativb. A'subset R of

k-tuples Of M is called a re&&tion. For <Xy,°* ,xk> €R we

y ’ ecs - f -
writewsieply g*i}ff?k .(**ff ka v's{and }n the relation R).

M’ M 1is sdid to be ciesed4ﬁithiréé206t,£g g¢(k+f);pieces

reldtiohm R, if x,,--‘,xk'e*u! ‘ahld R .,_xkx in M then
x € My

A relative is B set m with a well-ordered set of retations

-Ra which'are of n(a) place; A subrelative is defined to be a

Conversely, to each (k+1)-p1nce5~re1afion R we can “assign

: A S o T L S

a k—arguments operation ¢ as follows. ‘ .

‘ n. 1f R (XX
-¢('¥§:;\" s k)_“ { f % kT

3y otherwise.

Then e sybset is closed with rcspect to ¢ if and" only if
it is cloeedfwith,respect to R« ‘

E. Masda had defined (n95i) tbe déeffﬁéingeometgx with
finitagz ogeration as follows? B |

Qgg. Let G be a set of points..‘ix for aﬂ& Iihiée‘peihts

"'.3‘.4:.

pi,-f‘)Pn, Of G, there exists—a subset Pq SSREE P, °f G

PR I I

Finveragie

Iyt fomT
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containing Py (1 = 1,2,+++,n) which satisfies

(1 °) Pg = p2 1mplies p1+p2+"'+pn = p2+o-o+pn,

(20) for any permutation - pi,?:'.!pi of p"...,b.

p +. '.+pn= pi I.. .+p1n,

(3°) q; € psi)+"°+p£1)' (1 = 1,%**,m) imply
. i

q1+0 .o+qm g pf' )4_. .'+p§: )+p“: )+- . c+p$m)+. . .+pl(lm)
m

Then G 1is called an abstract geometry with finitary ggeration.

. Def. A subset B of G is called a subgeometgz if

_pi’...,pn € H imply‘p‘.'_ooo_’_pn c H‘

It follows that p§+°“+pn is a sﬁbgébﬂefry.

In an abstract geometry G with finite operation, wé éan

define a closure operation as follows:

Let B be any subset of G, then define B to be the

smallest‘subgeometry containing B, Then B—»B ig a clasure

P> o

operation. Its asspciated Cclosure property is finitary, since -

i Fmﬂ""ti TR e PRSP e ¢ oy s e Sant

R

B=8 means that B is a subgeometry, and B is a subgeometry

if and onl.y if K = {p',.--,pn}'cs implies K = p +"'+pnsB.

This definition has an embiguity that if the number of points ,%
p,,"‘,ph of G réduées to only one point (i.e.,‘n = 1)' then - . ’§ 3
\

| Ia—— |-
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L whether the subset p, assigi}iéd'to {p',} is .{p‘} or not? ‘*
It may be natural to assume so. If we understand so, then

L - ‘ . (L e . e s P
Py = {p} or writing simply p = p. But we can not ptove p = p f{

; Just from oxily the gi—vén conditions for ah absltract georetry.
l§ If we conside: the set G of all vectors in a vector space iy
L ) v{',(-,notinécessqri'ly be finite dimeqsipna_l), ,1.:l3ex; for a ‘set of vectors L
‘-‘{w;-;,,-""*",vk},' it is quite mFurél to define v, +-."°+'.1"r'k to be

the linear Stibsgap? spanned by '{v' ,"-.-.’vk}. 'fhen hattirally,_ for f

k=1, vy should represent tt_xe,_._linearA_s'ub“spa‘q_‘e;x gpanned by . 2 é

L Then 'obvi".usly-'(1'°), (2°) and (3°) are safis_fied. Thus G is ;
an abstract geometry with- finitary operation. This shows that k

{p} =" {p} can bot be proved only from the conditions of an abs §

abstract geometry. Actually, in this case, a subgeometry i a R 4

- ‘,.- . . %‘:

linear subspé.ce', and {;}: (the vectot space spanned by v) £ [v}

i v£0 but {5} = {Q} And the least lincar subsp#ce contain-

ing ¢ 15_{0}'?5 3:{0}# é.

l ) Conversely, if {;} = {p} 1is not assumed for an abstract

Rl 1 T E A o (et

i “Q’\;ﬁ;,.
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; geometry, a set m with a closure operation whose associated -
E ‘ closure property is finitary i{s an abstrdct geomgtry with finitary
E j operation. |
:,3 Jonnson (1959) gave the definitiqﬁ ofzggométry in terms of
E j closure operation as follows:
E : | Def. éy 4 geometry we mean an ordered pair <S,C> consiting
E of #lset_ S (whqse glements are called points) and a function C -
i E (called the glosuré)’which'assoéiates with every subset X of S
$
2 ? ~ &nother subset C(X) of S in such a way that the following con-
E dition are.satisfied: o
? (1) xcc(x) = cle(x)) for every subset X of s, _ d )
E ,‘ (11) ‘C(P) = Py. i.e., C({p}) = {p} for §very point of S',. §
: 3 , X
i (111) c(9) = 4 | | |
j (iv) For every subset' X of S, ¢(X) 1is the unionfot*aiiA : ’%
E ‘subsets of the form c(Y) with Y o finite subset of X, '
; ~ From (iv) it folldws that i
(1v?) 1z X €Y<cX, then c(x) = c(y). _ | _ ¥
a v The condition (i) and (iv*) show that C: X—> c(J{) is
acthally a closure operation. So wec will also use X instead of:
; c(X) in the sequel. (1v) means, by above proposition, that the §
i*‘ closure pfopgrty associated with- this closure operation is finitary, §
Obviously (iv) is weaker than the postulate of finite basis. This _;
“ s mice difinition of geometry, beéause it is related to so many "%

topics in other branches mathematics,

mpisthe o
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Def. Suppose <5,C> 1is a geometry.

(1) An elecment of S is called a point of the geometry <S,C>.

(11) A set of the form c(Xx) with X <s is called a sub-
Space of <5,C>. If Y = C(X) then Y 1s said to be spanned by X.

(iii) A subspace of <S,C> is said tc be n-dimensional if it

is spanned by a set with n+1 elements but is.not spanned by any
set with fewer than n+1 elements.

We are now. in the position to show that Wille geometry is a
geometry_in this sense.

For any subset " A in the Wille geometry, féke A to"be the
least subsggce which contains A. It is obvious that A —> A is

a closure operation. The closure property assocfated with this %

closure operation can be _shown to be finitary by lemma 2;

PR

Suppose that D is any directed family of subspaces - Sa; then

it is easy to see that: their ser-union 85 is also a subspace,
Thus (iv) is satisfied by the above proposition. Since any set
of k (0 €k < n) .distinct points can be seen as a subspace in
Wille geoaetry, - the set.of a single point is in particular a sub-
space so p = P. And obviously E = ¢

It can be shown similarly that a partition of type n + 1_

on a set S is also a geometry in this sense. We define a sub-

[ S T

Space to be subset with the prcperty that if n + 1 distinct ..

points are contained in the set, the Dblock détermined by them is

4 '-‘,*ff?*-""f' EEY
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contained in the set. Then define closure as in Wille geometry,

8 3. Tieing up of geometries and lattices.

We are now interested in the set L£(c(s)) of a11 subspaces
of a geometry which is obviously a poset with fespect to'sét in-
clusion. It is a complete lattice since every subset A of
i(G(s)) has an inf A (that is the set intersection NA). .-

Def. A subset A of a complete lattice V 4ig called a
hull-system in V, 1if for each subset M of A ‘the inf M
formed in V is also an element of A,

Hull-system is a complete lattice and the universe element
of V also belongstto the hull-system,

Suppose that .G = <S§,C> is a -geometry, ‘gince the power
sét P(S) of S is a complete lattice with respect to set-
inclusion and set-union, and for any subset M of (L(G(s)) the
inf M =NM (set-intersection) which is also a subspace, so
I(G(S)) is a hull-system in the complecte lattice P(S).

For any two posets Hjq, Hz, a mapping ¢ : H; — H, is
called an order homomorphism if & < b inplies ¢(a) 3 ¢(b)._

An endomorphism is an order homomorphism from 2 poset into itself.
Def. An endomorphism T : V — Vv of a complete lattice V

is called a hull-operation if for each element x € V the follow-

ing two conditions are satisfied:

x € 7(x),
T(T(x))is T(x).
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Cor.  These two conditions simply that v(x) = 7(r(x)).
M& x €y dimplies 7(x) € v{(y), sihce T 1i5 an
endomorphism,

Thus a hull-operation bf the complkte lattice P(S) is
dctunlly e closure operatior,

Theorem 3.1. The set of dll clements of a complete lattice
v (with operation °* and -+) which are closed with respect to
a hull-operation (i.e., T(x) =rx) is a hull-system which is a
comBleté lattice having T(Zxa) as its lattice union. Cohversely,
to every hui;-system A in a-complete lattice V, -there corres-
ponds a hull—operation such that the given system is the set of
all closéd'elements with respect to the hull—gperation.obtained.

Proof of Theorem 3.1. f

i1st part. Let A be the set of elements x of V '(with
operations * and +) such that X = T(x). It is to be shown
first that A is a hull system. Let M be any subset of A,

and 'x_ € M. Since M¥q $Xg SO -f(ﬂhx g s ;(§

=X _.for
M Y =

a*

~’
o

every X of M. Thus “T(nﬁxa).s ﬂhxd, from which and
T(ﬂhxa)b? "ﬁxa it follows that T(ﬂmxa) = nh*a' ITo show that
T(Ean) is the lattice join of the complete lattice A, ‘let y
be any upper bound of M 1in A. Then x, €y, so Euxa €.y and
r(Ean) s (y) = y. 0@ the other hand, x_ ¢ zM*a’ ‘hence

4 .;y;::.‘”éf
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xg = 7(x,) € 7(Zyx ) which 1s in A. So T(Z,x ) 1is the least

upper bound of M in A.

2nd part. Let A be a hull-system. For any x € V, define
T(x) =7y forall y €A any y > x. Then T(x) €A, s&ince A
is a hull-system. Define the mapping x —> 7(x) of V into itself.
Obviously x < T(x) and r(r(x)) = T(x) (since T(x) € A) so the
mapping x —> 7(x) 1is a hull-operation. By the definition of
r(x), X = T(x) if and only if x € A. Thus A is the set of all
closed element under the hull-operation x — T(x). Q. E. D.

.Seeing L(G(S)) as-d hull-svstem of P(S), the‘cérréébbnding
hull-operation asserted in the above theorem is just the closﬁre'
operation defined in the previous section.

It is now obvious that lemmas 1 and 2,of"?he previous section
can be put together to give the following: !

Theorem 3.2. Let A be a hull-system of P(S). Then the
following two conditions are equivalent: '

a)x The closure property associated with the closure-
operation (hull—operation) corresponding to A (as asserted in
previous theorem) is finitary.

b). For each directed set M contained in A, the set
union UM is also contained in- A.

In this theorem it is characterized when the closure property

associated with a closure operation is finitary. To charactrize a
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hull-system A of P(S) with such "finitary property" lattice
theoretically we read some more definitions:

1"

Def. An element a" of a poset H 1is said to be accessible

if there is a directed subset A of H such that a /'A and

ZA = a. Otherwise "a" is called inaccessible.

Theorem 3.3. The following three qonditions for a lattice
V are necessary and sufficient for the existence of a set S
and a huli-operation on .P(S) whose associate closure property is
finitary so that V is isomorphic to the lattice A of all sub-
sets of S which are closed under the-inll?operation:

(1) V is complete.

(2) x(Zyp) =Enyp for each x € ¥V and every directed set
. }
{yp} of elements of V.

(3) Every element of V is the (lattice) join of a set of
inaccessible elements.

_ Def. A complete lattice satisfying the condition (2) of the

above theorem is said to be ypper-continuous (or meet-continuoué).

Proof of Theorem 3.3. Suppose first that V is isomorphic

to the.lattice A of all subsets of S which are closed under
the hullvoperation of P(S) whose associate closure property is
finitary.

As shown in the first paft of Theorem 3.1., A is a BuXl®

system, so it is a complete lattice. Thus (1) is proved.
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By Theorem 3.2., for each directed set McC A, the set union

UM 1is also contained in A, that is, UM is closed. Thus UM

b 4 . e oo = a5 . .
Aoihe loveice ol i o

IM the lattice join obtained in A. Let M = {yp}, then -ZMyp

; UMy » Let a €S, and x be any element of A. Since A is a
p . ;

hu11¥system of P(S), each element of A is a subset of s and

the operation * in A is actually the set-intersection .

Thus
a € x(EMyp) > eexandacBy = Yy

—> a €xXx and a € yp for a certain yp

Xy

> a€xn
@ p

= G) = B0,

since {(xyp)} is also a direcfed set contained in A, so

UM(xyp) = EM(xyp) by Theorem 3.2 again. Thus x(EMyp) S Xu(xyp),
hence x(ZMyp) < ZM(xyp), since in A order relation <€ is

actually the set-inclusion. On the other hand, for any complete

latti < :
attice A, yp < EMyp and hence xyp < x(ZMyp), form which it

follows "EM(xyp) € x(ZMyp). Thus x(EMyp) = XM(xyp) and hence

( (2) is proved,

e

To show (3),'cons1der the set {a}{ where ; denotes the
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smallest element of A which contains y € P(S). It can be shown

that for any element x of A, x = E{a} for all «a contained

in X: For each @ €x, a & x and {a} $x= X, hence E{a} £ X

On the other hand, Zg_z, as a set, contains every point of x,

thus Za 2 X, that is, a} 2 Xe Thus x = 8{ }. It remains

. —_ /

oy S e sihiewa W

‘now to bhe. shown that {a} is inaccessible. Assume that {a = Ly

J p
-for.a directed set of elements yp € A. As shown above Eyp = pr.

‘Now  a -€ {a} implies that a ¢ pr, so’there'qis ‘a yp such that

a-€ yp, i.ee, a < yp. Then {a} s;- = yp. On - the other hand

inaccessible.
Conversely, suppose that a lattice V satisfies the condi-
tions (1), (2), (5). Define S to be the set of all inaccessible

elements u in V, For any subset M < S, define M =

{u : inaccessible luSZM]. Then M —> M is a hull-operation:
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€1) If u eM, then u <M, Hence u ¢M and ME< M

#

(11) If Mg M, then My < IM,. Hence My S Me.
(iii) Be definition ﬁ = {v:inacccssible vsiﬁ}. But, if

u € ﬁ, then u < IM, hence IM € IM, On the other hand N 2 M,
- - = -
so IM 2 ZIM. Thus IM=IM and M= M.

It can be shown further that the closure property asseciated

with the closure operation M —» M is finitary.

For this, it suffices to show that if K = {;,,‘°',nn}<:M

J implies K < M, then M= M. That is, to show that if u < ug¢+

"'+un implies u € M for Ugs®*yu € M, then M = M. To show

M =M we need only to show M 2 M. Let u @‘ﬁ i.es, u € IM,
: .
It suffices now to show that there exist u.,'”,un in M such

that u < b R (then u €M by the assumption that K € M).

Consider the set {&p} of all lattice joins yp of finite elements

1
Jﬁ T

o hle  Thicn

of M. Then the set [;p} is a directed set, and since yp = Eui

<€ IM, so Eyp € IM. On the other hand, each element u of M
is contained in a yp (iee., u < yp), so IM < Zyp, Thus

IM = sz. Since u < IM, we have u = u-(ZN) §’u~(2yp) = Z(yyp)

by (2). Since {;yp

} is also a directed set and u is inaccessible,
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there is a (uyp) such that u = uyp that is, u < yp. This means

that there exist Ugy®*°,u such that u € u+***+u_=y
n n

Let A be the sct of all subsets of S which are closed
under the above hu;l-operation M — ﬁ. Now, to each element

a €V we assign a set ¢(a) of inaccessible elements by _¢(a) =
{;:inaccessibleIUSa}. We claim that this correspondence ¢ is an

isomorphism between V and A. For this it suffices to show:

(a) & 1is one-to-one, |

(b) @#(ab) = ¢(a) ¢(b),

(c) for each a, ¢(a) is a closed subset of S with res-
pect to the hull-operation M — ﬁ,

(d)‘ to each closed subset ﬁ’ of. S, tﬁgré is an element
a €v such that ¢(a) = M‘,

(e) If M{ M4 are closed, then ¢"(M{) < ¢ ‘(M)

(c) Since ¢(a) = {;]usa}, Z¢(a) € a which imélies that
EZZT = {;,usz¢(a)§a} ¢(a). Thus ¢(a) = EIZT.

(a) Since a 1is a lattice join of some inaccessible elements
under a which are actually contained in ¢(a), we have a < 8¢€a).

Now, if ¢(a) = ¢(b), then a = ¢(a) = ¢(b) = b,

Y 8 -t - 5 .
Vel @iy X LTUe L S
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(b) In eny lattice, u <ab =% U €a ahd u & b
<> u € Ha) and u e Hb)
«> u ¢ $a)n ¢b).
That is, u € ¢(ab) if and only if u € ¢a) n ¢(b). Hence
¢(ab) = #a)n ¢(b).

(d) Let M’ be any closed subset of S, and let a = IM’,

Then M’ = M’ = {#,uSEM’:a} = ¢(a) by definition of P

(e) vLet M{, M? by clesed subsets of S with M} ¢ M.
¢(az)
by d). Then ¢r'(M$) = ay = IM{ < IMi = a, = ¢r'(Mé), i.e.,

¢>-'(M_1) ¢ '"(M5)s  Q.E.D.

Let ay = EM{ and a, = Iwg,, then M| = ¢(a,) and M}

This theorem can be seen as a versiop 1dfabstract geometry
of the following Birkhoff-Frink's theorem on lattige of subalgebras.

Theorem. A lattice L 1is isomorphic with a suba;gebra-
lattice if and only if L is complete, meet continuous, and every
element of L is a join of Join-inaccessible elements,

Apply the kbove version (Thcorcm 3.3.) of Birkhooff-Frink's
theorem to a geometry in the sense of Jonnson's defiﬁition (also
called merely finitary geomctry) by taking ; ; p into acount,
we get the following:

Coroliary. Tha lattice of flats (A = X) of a merely fini-

tary geometry «<mC> is compleie, upper-continuous and atomistic.
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“oi Def. A ldttice L 1is said to be atomistic (or point, or
relatively atomic) if L has O and every element a (# 0) of
L is the join of its contained points.

Conversely, if a lattice L is conplete, upper-continuous
and atomistic, then since an atom in such a lattice is inaccessible,

it is isomorphic to the lattice £’ of subsets of m’ consisting

|33 IR B Tcrh

RN Y Suz p—
cldsure operation C’ : B— B’ = {;lu:inaccessible and usEB} with

finitary closure property.

If u is inaccessible and B = {u?, then B’ = v,v:inacces—
J

oo . .
Luccerssible and veii=u . Thus iY u is not an atom, then It is
sible and VGZB_ }. Thug if u 1is not an atom, then it is possible
Possibie tast 5 .

- - i
that B’ #B (f.c., u £ u). For example, if £ is the lattice

of subspaces (flats) of a projetive geometry and u is a line (it

is obviously inaccessible), then for B = {u}, B’ = the set of all

points on the line plus the line itself, so B § E'. But if

= {;,v:inacqessible and vsu} then B’ = {;lv:accessible and

stB:u}, so B = B’. Thus <m‘C’> is not a merely finitary geometry.

If m is the set of all atoms in L and C:A— A= {b,p:

atom and pszA} for Acm, then «C> isa merely finitary geometry,
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This can be easily seen if in the corresponding part of the
proof of Theorem 3.3 we make the folioWing changes:

m = the set of 411 atems p in

s

n

_{ﬁlp:atom and psES} for s m

and replace inaccessible elements u, u,,"',un everywhere by p

.peints p,'»p‘,'“,pn respectively, It is obvious from this defi-

nition of 5 that

[&[q:atom and QSEP=P} = {E}

{p Ip:atom and p$8¢=¢»} = ¢

)

and E

1]

Captinuing,the same changes and also changeing ¢(a) as
¢(a) & {%[p:atom and psa} in the part of proof of isomerphism in

Theorem 3., we can obtain the following:

Thecrem delie A lattice is geometric 1f and only if it is
complete, upper-continuous and atomigtic.

In the statement of this theorem, a geometric lattice means
the lattice which is isomorphic to the lattice of all subspaces of
some merely finitary geometry,

Remark: F, Maeda has proved the following:

Theorem: The set of all subgeometries of an ap;tract geometryy
G with finitary opération, is a "Eelative&yyatomﬂeﬂﬁ,uppprv—

continuous lattice.
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In this proof ef the fact that the lattice is "relatively
atomic", a point p 1is considered to be a subgeometry, but this
is not always the case as the_above;exnmple (p.z1&) showse..
Actually this theofem'muSt be modified as.the Theorem ‘3.3.
Remark. Befofe“éi%igg an example, we note the following fact
which will be used in the ekﬁmpie andqalsog:fequently in the:sequel:
If <aC’> is another merely finitary geométry, -then
anC’> = anC> 1f and only 'if c(x) = ct(K) for all fiirite subscts
K of m. Since «<mC> is. a metely finitary geometry, so C(S)

UC(K ) for all finite subset Ky -of'fs, ‘but ‘since C(K )

c’ (x ) so c(s) = Uc(x ) = UC'(Ky) =c’(8). This fact will be

e

used often in the sequel. ‘ - k]

Examples. Modifying ‘the linear -geometry  of Prenowttz,:Mqéaé_
defined the generalized linear geometry as follows:

Let G be a set qf poinfs,'in»which a 3-term relation (pqr)
called order is defined such that

1. If (p,é,r) then p, q, r are distinct.

2. If (pqr) then (rqp).

3. If x € y+r and y € p+q, then there exists a point =z
such that x € p+z énd zZ € g+r. |

Then G is called a generarized linear geometry.

In the postulate 3, we denote

 fxecl(pxa)} 1£ p £ -
p+q = { ‘

p if p = q.




}
|
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Cor. Postulate (3) implies that if (qu) and (pyq) then
(pxa).

From the above definition we have

1° p+p = p and

2° p+q = q+p. xmw

Def. Let X, Y be aﬁy two subsets of G, then we define
iS5 o U{x+y point x € X and point y € Y} if X£ ¢, v4 ¢

X+Y = X if Y

o

¢, and
Y if X = R

3° X+Y = Y+X.

ke p+(q+r) = (p+q)+r.

Proof. If x ¢ (p+q)+r, then there“éxist§ Yy € p+q such
that x ¢ y}r. Then, by postﬁlate 3, there exiéLs-a poinf' z such
that x € p+z and z € q+r. Thus x € p+'q+r), hence (p+q)+rg
p+(q+r); Similarly, (r+q)+p c r;(q+p) ‘and hence p+(q+r) = (p+q)+r.

5° For any subsets X, Y, Z of G

X+(Y+2) = (X+Y)+2.
Qgg. A subset A of G 1is called a convex set or an

additively closed set of G if P, 9 € A implies p+q c A.

6° X 1is a convex set if and only if X+X = X.
7° If both X and Y are convex, then X + Y is also convex.

Since p+p = p, so p is convex, thus p + q is convex by 7°.

If for any subset B of G, we define B to be the least
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convex set which contains B, then B —~ B is a closure operation
and the closure property associated with this closure operation is

finitnry,'since the set union of any directed family of convex sets

S 2lso a convex Sct. Since {p} is a.convex set so ; = p and
obviously $= . l

Thus, by fhe theorem 3.4, the set of all convex subsets of.
a generalized linear geometry is a complete,4upper-cont1nuous and

atomistic lattice which is also linear in the following sense:

Def. A lattice L with O is called a linear lattice

when a point p < a+b,. then there exist points q €a sand r < b
sﬁch-tﬁnt» P € g+r.

BY Cor. 7°, for any two convex sets - x vY, X+Y is convex so

[

X + Y is the least convex set containiné> X, ;. Thus X+ Y is
the "lattice Jjoin" of X and Y, from which it follows that the
lattice éf convex sefs is linear.

Converscly, let the lattice L be a complete, relatively
atomic, upper-continuous and linear. Denote by GL the set of
all atoms of L.

Then by Theorem 3o, L is isoniorphic to the lattice of

flats B =B of the merely finitdry geometry <GLC> where

C:B—B-= {;,p:atom and psZB}.

On the other hand, if we define in GL the order relation

(p,q,r) to mean thifwmq'<'§4a_ (the lattice join) and p} q, r
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are distinct, then GL is a generalized linear geométny

. 0, , o . A

Poktulate 1 follows from tHe definition of (p,q;r)4
Postulate 2 follows from the definition of (p,q,¥) and the fhet
that p+q = q+p (the lattice Join). To show that postulate 3
holds; we note first that the lattice join

fal(p,a,2)}if p £ r, by the detinition of (p,q,r)}
p+r={
p if p=r.

. l! X E o . .

Thud the lattice join p + r coindcides with the definitibn of
p + r used in the statement of postulate 3.

For the lattice join, from x € y+r and y € p+q, it follows
that x € (p+q)+r = p+(q+r). Since L 1is linear, x < p+(q+r)
implies that there is a point 2z € q+r such that x < p+z. Thus

= L \t

2
postulate (3) holds.

Since qL is a generalized linear geometry with respect to

the order relation defined above, if the‘closure operation Cf is
defined by
C’ : B —> B’ = the least convex sct of the generalized
linear geometry containing the s;t B,

then <GLC’> is a merely finitary geometry as shown above.

T ocan
f can be shown now that <GLC'> = <GLC> by using the remark

of page 28. For this aim, we need only to show that C’({?1,‘°°,pn})

= C<{%1""s9n}>, that is, the lcast convex set containing p1,77:.pn

i
-l

B o il S S
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is the set of atom p such that P < .p'+"°+pn.

C<{P' ° '5pn}> (= C'({P, P ,pn}> is shown by induction:

The least convex set C‘({pi,pz}) contains p¢ +p> which is itself

a convex set, since pf, P2 € p1+P2 (1.e. pj’. < pi1+p2) imply

Pi+p2 € pitpz (ise. pi+pic pitpz)e Thus C({Pupz}>= Cf({zp«pz:D

énd_‘the inclusion relation holds for n = 2,
Assuming that the inclusion relation holds for n - 1. Let

p < P+ ;.ﬂ)n' If 'p é»p'+‘"+pn»_1, -then by induction .assumption,

p € C'/\{p‘,' .o ,pn._i}> = Sf({p_‘,:::,pm’;gn}>; , I pfpencesp L
e Y ,;Jn'__ pn { ) ’ i

1?7

1

: § /("
and hence q ¢ C’<[p'.,---,pn_-'}> < C'({pq,"',pn_‘,pn}> by indpc-
tion assumption. Thus p eC’({p.i,"',pn}) and (_ﬁ({p‘,--'-",pn}>
: \

< c’({p',-.-,lﬁn}> » On the other hand, since pq + p2 +°°*°+ pn

then since L is linear, p < q+pn with a point q <€ p,+"°+p“_

is a convex set containing {p',"',pn} (since q,r € p'i.‘.‘f'.._,,’pn

implies q+r € p,+*°**+p which means q+r € p.+°*°+p
_ 1 n 1 m’?

C<{Pl,',' . ,pn}> 2 C’<{p-1 ,:;'_,ph_})_.b}uthc definition of C’.

seate -,
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Thus the lattice of flats of the merely finitafy geometry
<GLC> consists of all the convex sets of the genefalizéd iinear
geometry defined above, so by Theorem 3.4, we obtain the fdlilowing:

Thdorem 3.5. For a lattice L to be isomorphic to the lattice
of all convex subsets of a generalized linear geometry, it is neces-
sary and sufficient that the lattice L' is complete, upper-continuous,
atomistic and linear.

Remark. In z vector space V over the field of real numbers

(not necessarily be finite dimen§ional), for-ény two elements
i P TURLT s Fiioe ’ g
p,q €V, 1let us détine p+q = [xéle:ap+ﬁq with a+ﬁ=1;0sa,ps1}

and define (pxq) to mean that x < p+q and p, q, x are distinct.
Then postulate 1 and 2 are easily seen to holdl-§For'postu1ate 3,

let x = ay+fr with af =1, y = a'p+ﬁ'q with a’+8" = 1. Then

= g Pl = f{ ape(1- a’)q}oﬁ ~a)r = aa’pe(1-aar){L1=a) ﬁ_aaﬂ}

1~ aa'

, .
if aa’-1 £ 0, Thus z = o(1-a’) makes postulate 3 (if : CT T

1=qa’ ¥ 1-aa"

aa’ = 1, any point z = a’g+fr, with a”+8” = 1 wili do) hold.

In such a generalized linear geometry, an additively closed set is
actually a convex set in the usual sense. Thus for distinct points
a, b, ¢, dy, a+b is a segment, a+b+c is a triangulgr region and

a+b+c+d 1is a solid tetrahedron.

As shown in the figure, let a, b, c, d be vertices of a

tetrahedron, p be a point on the edge ab, q be on the edge cd
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and p, q, r are collinear,

Then
a*b =0
(a+b)'c = 0
(a+b+c)*d = O
(a+biced)r = O
but

(r+a+b)*(c+d) = q # 0
where + and ¢ are lattice
operations. This shows that the lattice of convex sets of such a

generalized linear geometry is not semi;modular. (By a theorem

stated later).
Prenositz has put some addifionai pdstﬁlates to characterize
the lattice of convex sets of a descriptive geometry of arbitrary

dimension, finite or infinte, and’later, Bénnett has char;cterized

the lattice of convex suhscts of aﬁfeax vector spdce. Both the

works of Maeda and Bennett depend quite heavily on that of 8:?3°¥1t3°
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§ 4. Partition lattices.

‘As define before, a partition of type n (n > 1) - is a set
S of points (consisting of at least n + 1 points) with a family
of subsets called blocks such that any n distinct points of S

are contained in one and only.one block, and every block contains

at least n distinct points.

It is also shown fhat 2 partition of type n .on a set §
can also be seen as a geometry in the sense of Honnsonﬂé.dgfinition,

so it is sometimes also called a partition geometry-orlgype n.

Def. A block of a partition .of type n is said te be non-

trivial if it consists of at least n + 1 distinct elements.
Otherwise it ;s called trivial.- -

We shall represent a partition P by the set of its non- : :

trivial biocks, P = {éa}’

Let us now consider the sect LPn(S) of all partitions of

type n on the same set 8.

If Py, P, GLPn(S) are two partitions of type n on s,

then we define . Py € P, if and only if every hlock of Py is

contained (set inclusion) in a blocks of P,.

Then LP&(S) ~1s a parti#ldy ordered set with respect to

l"ﬂ

» but we can prove furthepmore:

Theorem. LP (S) is a complete, atomistic lattice. T T T

s
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Proof. Let {Palad\.}.. be any set of partitions of type n
on S. Then, for any n distinct points x,,'r’,xn, let

B(x §**0 X ) = NnB (x',"',x ) (set intersection), where
1 n weh a*t n

Ba(x',°'°,xn) is the block of P determined by xX;,°"",% e -

Obviously {x','",xn}'c-a(x,,-_-'.gxn), ‘and 1t is uniquely deter-

mined by {X‘,"°’;xn}. Thus, the family of -B(x,,"",xh),_;__ is a

partifion P of type n on S, and P s~Pa.tor,all e € A If
Q <P, and s,(*',---,xn)' is the block of Q determined by
[x‘,"' ,x'n}, Htyeni B;(x,,"‘,xn) c :B'a(;*?-:_'"‘" ;_xn) ‘_bi'ftot all- aq,
hence B, (x,,*<" ,xn) (= nBa(x‘-,"’,xn)’.__. Hence Bgy(x.g"°* ,xn) <
B.(xj:'"’xn)’ tl:a.t is, Qo £ P. Thus .P...—. {Pa[qe)\} and LPn(s)v
is a complete lattice.

P = {S}, the parfitibgiwzth»only one non-trivial block S
itself, is the universal element of LPn(S), and .the partition

with no non-trivial block (i.e., every block is trivial) is the

O of the lattice LP“(S).

An atom in this lattice LPh(S) is a:partition with only
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one non~tr1vi&1 block which confains n+ 1 distin&t poinfs.
Now if P £ 0, then P has bhas at least one non-trivial

block which contains at lecast n + 1 disttbctipoints Xga™ " aX .

So, if P, is the atom with the only one non-trivial block

{¥’,°",xn+'}, then Pn € P. Suppose next thatv Py A P2y Then

there is a block of Pp : Bz(x1,"°,xn) F B.(xq,--*,xn), ‘a block

S

of Piy. Thus there is an element y ¢ Bg(Xq,"‘.xn) ﬁﬁt y Z

== By (xf,‘o-’xn)o If Pa = {(x‘-’..c.*hy')} 18 &n a.tom, then pn < P‘z,
but P £ Pye Then P+ P has the family of mon-trivial blocks

of P, except B,(x,,°**,x ) 1is respect by B.(x,"‘r,"".xn) u {y}

Thus Pe < PysP_ < Pa.

In the above proof we used the fact“thAt.a'iittice with O

is atomistic if and only if a <b dimplies a < n+p;£ b for

‘some point p.

Theorem. Theﬁlattice LPn(S). is complemented.

Ihggﬁgm- LPn(S) is isomorphic to the lattice of subspaces
of some partition geomefr& of ffpe.Z. |

Proof. Let us call "blocks" of a partition geometry of type

2 "lines". Let S’ be the set of all atoms of the lattice LPn(S).

t
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Define a parfition geometry égd(S’) of type;z.over 8’ as follows:
Let X = {(gi’-oo;xn,xn+1)}, Y = {(y ’.."yn’yn+€)}. be two atoms

in LP (S). Define the line [(X,¥) in P2G(S’)’ determined by

X, Y to be the set of all atoms of LPg(s) where are € X+Y.

Since

o {(x"..l.’xn’x.xu-"yn+i-)} if ‘{x',"',xn,x '}ﬂ{y’)"'syn m‘}
= {*,i""xn} = {?;:"'.Yh}
ALY = .
X+Y = s g
{kx"°"’xn:x“+’)’(y‘"°’;Ynoyn+‘)} it

{X, »r .xn.xn;‘} n{y, PR ,y“’.ym;}}

contains less thnn n points.
So, in the former case I(X,Y) 'is non-trivial, and in the latter
case 1t 1: trivial. '

It l(X,Y) is non-trivial and X), Y" € Z(X,Y), then
:l - ¢ Q.' 2 see ; : .
X! = {(x‘,A 1 Xg xnxn+'yn+‘)} (Qi means that the element xg

is deleted) y &
{(x',f"§3'°°x ‘yn+’)}. Thus

{¥‘, ,xi xn+'yn+'}(\{¥,, .Xj xn+.¥n+!} contains n::distinct

points. Hence X’'+Y’ =‘{(x;,°°-,x iX ‘.yn*;)} = .X+Y.
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Thus P.G(S’) is actually a partition geometry of t&pe 2..~
We want to show that LPn(S) is isomorphic to tSe lattice
(P2G(S')) of subspaces of P.G(S’). Consider the correspondence:

LPn(S) o (pP2G(s’))

w _
P p———————> get of 2ll atoms under P.

The set of all atoms under P 1is a subspace. Let the atoms
X, Y € P, then X+Y < P,- so every atom under X + Y is under P.

Since LPn(S) is atomistic, this mapping is one-one and order

preserving.
It remains now only to show that it is onto. Let T € I(PzG(S’))
that is;, T is any subspace of PzG(S'). We want to show that there

.o . ¢
. 3
is a partition P ¢ LPn(S) such that P> T under the above

cdrre'spondence.
Let U be any subset of S such that {x’,'",xm_‘} cvu
implies that {("1"" ,xn_“)] €T. Let F be the family of all

such subsets U.

We can now define a partition of type n on .8 as follows:

" ‘Given any. n distinct elements X(p°**,x  of S, let

'{x,:"",'xn} & 4 there is no Uce F such that
. A2 PR i :

L U RN 2

%._B(.x','"‘,x'n) = o .-.{"t,.:",xn]'c--li. B s e s
U

e set union [U I{x‘ st ,xn}cu} otherwise,




 ae————
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Then B(x','“,xn) is a maximal set in the family F, if

B(x ,"',xn) € F, To show that B(xq‘,"',xn) is an element of the

family F, let y ,**+,y ,y

atln.g € B(x,,"',xn). ¥e want to show

that {(y,,---,yn,yn;')}*c'r, A €B(x1’.'._-_’xl‘1) imply that there
exist U:l such that {x,,“',xn,yi}cUi, hence {(x',"',xn,yi)]

€ T« From this, it follows that {(x','°',:_:n___~',y’,yj)} ¢ T for
(J = 2,"',n+1), since T .is a subspace, so every atom under

( N ,

\

[(x,.-" n,y')}{(;“...,xn,yj)} e {(x”---,xny'yj)} is contaiixeé

in T. By continuing similar arguments, we can conclude that

{(x;;"',xn'_z’)",yz“,yk)} €T, (k"'—' .3)"'9‘“‘1): "':[".,:Y’,’"'syn_,“}'g)}

€T (f£=n,n+1) and finally, {(y'tjj_ynym_')} €iT. Thus _B(:g',"',xn‘)

€ F. It is obvious that B(x‘,".',xn) is a maximal element in F.

With all such blocks D(x,,---~-,xn), P 1is a partition of type. n.

Let z';"-",zn eB(x","',xn)‘ be distinct. n elements. Since

B(xi,’",xn) is an element of F, by definition, 'B(z',"',zn) 2

D(x(,-,o-’xn) ) {x,b‘ -,q,xn},_ --SO conversely we have
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- D(z,,'“,zn) c B(x',"',xn)-, thus ’B(z',"',zh) N B(x','ff,xn).

Now we can prove that {(x,,"',xm')} €T if and only if

) I € Fo. Thus x".."xn’xmi € B(x',..-’xn), hence [(x1,00~’xn¥xn+')}

] < P, Convefsely, ir {(x',"',xn,xn“)} € P, then there is a block

] D(x',"’,xn)E{x‘,"',xn,xm_'}. Since B(x,,"',xn) €F, it

follows from the difinition of F that {(x‘,"',xn,x ')} €T.

Since LPn(S) is atomistic, IT(lattice union) = P!

As ;ﬂ(PzG(S’)) is cdmplete, upbercontinuous and atomistic,

we will get the following result whose direct proof will be given

below:

Theorem. LPn(S) is upper-continuous.
Proof, Let {pa} be a direct familw in LPn(S), then

P = UP, 1s constructed as follows: Let {Ua } be the family of
a i

all non-trivial blocks of Pa’ and let F be the family of all

U‘z for all a.

— i

For any n distinct points xi,"-,xn, define

' {(x,,'",xm')} € P. Since {(x.,---,xn“)} €T, U= {{c,,"',xn_H} |
i
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L2
{x_','“,xn} if there is no U in F which contains
!
{x',"' ,xn} » Otherwise.
D&y, v 3353) )=
\J . UeF | either {x’,"',x }C U or there
n
set unio

is a V such that {x',"'_,xn}c v
and VAU contains at least n

di étinct elements}

‘4

Then the collection of all B(x,,** ,xn) is a partition of type n.

If {y',“',yn}c B(x',"',xh), then either there is a U such
T
that {x',"',xnyi] €U or there exist V and U such that

{x,,"',xn}C'V: unv = {z"".’zn] and y¢ € U, In the_ latter:
case, let U, V be respectively a non-trivial block of Pa and

Pﬁ’ then since [Pa} is a directed set, there is a partition PV

such that PY > Pa, Pp. Thus, among the non-trivial blocks of P_,

there isone U 2 v and another one U =2 U, S8Since U U
vy« ! Y2 Y1’ vz

2 LZ,," . ,zn}, Uy, = Uyz = vy which contaips PR ,xnz‘ ," i ,zny, .

Thus in bqth cases, there is a partition Py" one of its
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non-trivial block UY containsg {x.,-",xnyq}. Similarly there
1

exist P -, eee p such that P has a block U which contains
y2* * Yn Yi Yy

{x',-f-,xn,yi}v By same argument we get that there is g partition

Pg such that one of its block 062 {x',*“_,xn,)f':"’:l'n}o

‘Now 1f {y‘,"',yn} c.'lL{', thon eince [’N ‘.{6 2 {y,,"',yn}
so U & B(x,,'“,xn). Suppose next that there is a non-~trivial

V/ belonging to Pg, and a U’ such that U/0V/ 2'{",“':",,}’

then we can conclude similarly that there is a part‘rition P e One

of its non-trivial block u.2 {x1 RRAFT I MR AN ALl "n} .

Thus Ued U’ = {w‘,"',wn} so W< B(x,,'!',xn). Thus it is shown

that if [y‘,‘“,yn}gn(x','",xn) then B(y,,--‘u,yn) S'B(x,,"',xn).

Conversely, since {x‘,"',xn,y',"',yn} c Ug, 80 Ug = B(Y's"'ayn)

and {x‘,-oo’in} = B(y‘l’.'.’yn). Hence B(x‘,' oo ’xn) o B(yp!.'. ’yn

).

Thus B(x','",xn) =»B(y1,°°°,yn), and . P .1is a partition of type n.

For any n distinct points {x,,"',xn} the bolock of T-Pa
y a
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It is obvious that A(xy,***,x)) 0 B(x1,"**,x ) 1is the block of

43!

Thus it is proved that if Y1s°°°,y } & B(x, s.0 X ) then
s n » 3 n

J

B(y,,---,yh) = B(x,,-'°,xn) and it is proved that the collection
of B(x,,--',xn)'s form a partition P of type n.

From the definition of B(x,,"',xn) it is obvious that

B(xi',"‘,'xn) > B (x4,°**,x ) that is P > Py Thus P 3 IP .

Let C(x,’..-,xn) be the block of EPa determined by n distinct

“oiati

points [;',"',xn}. Since EPa Z Pa, so C(x,,"’,xn):>Ba(x15"',xn)

for all @, Hence C(x,,"°,xn):DlJBa(xq,°",xn) = B(kg,f",xn).

" Thus ZPa > P and consequently P = ZPd.

Let A(x,,"‘,xn), D(x1,°",xn) be respectiVely the blocks

of the partftion Q and Q‘(ZPa) determined by {#15"',xn}. Then
: ; ¥ : :

-, |
D(x1~""’:xn) A(xia"':xn) ﬁB(Xq,"',X'n)

A(xi,. o ’xn) n (%Ba(xi:' '.sxh))

g(A(x1:° o ’xn) nBa(x1 ;' . ,Xn)).

Q'Pa determined by {;1,'5;,xn]; Since the collection of Q'Pa is
also a dirécted‘set, the block of - IQ*P, determined by {#,,"',xn}
. o«

is U(A(x1,'f’,xn) n Ba(x1,°",x )). Thus the blocks of Q- (Zry)
a I A a

and Q*P, determined by {#1,"f,xn} coincide., Thus Q’(EPa) =
o B ' a

EQ'PQ is proved, and LPh(S) is upper-continuous.

ARSI e e

g
« B
£
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determined by [x‘,“',xn} must satisfy the same condition for the

defivenion of f‘-‘(x AR
definition of n(x,,-'-,x;),- so P = ZP.
a

Now suppose that {(xi,”',x

n’xm-')'} ) ip“' Let B(x','°°,x )

n

be the block of Zpa = P which contains {xi,“f,‘xg,xﬁ*_{}g._ny
o .

the difinition of D(x1,°",xn),' cither there is a. P, such that

one of its nom-trivial block U, 2 {x',"-,xn',xm‘}, that is

Pa ; {x"""xn”‘M1}’ ‘'or there is a non-trivial block .YB of a

partition Pﬁ such that Vﬁ > {x’,_"',xn} and a non-tivial block
i
t

Uy of Py such that Vﬁ n UY 2 at least n distinct points

and Uy 3 X +¢° Since [Pa} is a directed set, there is a partition

Pa' with P, 2 Pﬁ, Py and one of its non-trivial block u,2 [x,,

"‘,xn,xn+1}, thus p-a 2 {(ﬁ;‘,"',xm_‘-)_} « Thus we have show.above
that if {:(xi,"',xxi,xn“)} € gpa where {Pa} is a directgd

f 5 oece .
amily, then ther is P, 1in the family with P_ > {(x‘, ’xn-u)}'

By using this fact, the upper-continuity can be proved easily:
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Suppose that {(x','-',xm_')} € Q{ZPa}, then {(x,,"',xx”)} <Q

and {(xi’...'xn-l»()} € ZP  which implies in trun that there is a
& .

P, with {(x',"-,xn“)} € P_. Thus {(x',"',xm_')} € QP and

hence {(x',"',xm_’)} < EQPQ. That is, Q(il’a) < iQPa. Since

Q(L’Pa) E.ZQPa is obvious, we have < z cz) = XQP(z and sppore
a a - a a

continuity is proved.

As LPn(s) is a complete, wpper-continuous and atomistic

lattice, the theorem in p. also tells us that it is isomorphic
to the lattice of all subspaces of sonme mei‘ely finj,tz::ry geometry.
Actually, it can also be shown that this merely finitary geometry
is a partition geometry of type 2. For the purpose, we show first

‘that if P ¢ LP (S) 1is a lattice join of finite number of atoms

P, (a=1,000k) ¢ LP_(S), then the subspace K generated by
K = {P',“',Pk} In P,G(S’) 4is the set of all atoms under P.

Obviously {Pa:a.tom lPa&EPa}?_ K. We want to show that for any
a

Pa s P, P € K Dy induction on ks This proposition holds for

kK = 2 Dby the definition of 1line in PzG(S'). Assume now that {t - - - —

e
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a a a
holds for k - 1. Let PC = [(x"xz,oco’xn+')}’ (a = 1,'."k)

and Pa = {(yi,“',yn‘_')}.

If P contains more than one non-trivial blocks, then

{}';":,yn¥‘} is contained in one of them, so Pa € lattice Join

of less than k atoms in {ba}’ and the proposition holds by induc-

tion nssumption; Thus we can assume that P has only one non-

trivial block which contains all elements xfz a= 1,°°*,k and

i =1,0°°,n41. Suppése that the only one non-trivial block of

k-1 ¢
Z P, does not contain xk {xk is the only one.%lement in
B=1 B n+1 n+1t )

( k> k

k
in’...’xn’xn+1} which is not contained in the non~trivial block

k-1 K k-1
.ﬁ£1pﬂ>. I x ¢ y.;"'.yn+1}, then P < pf{p“ and

the proposition holds by induction assumption. Suppose now that

of

k : k
*ner € {&1’ ’yn+1}’ S8Y  Ype¢ = X, Suppose moreover that

k — k LN ) k - k LK ] k e oo
x£+1 = Ve »X, = ¥, Then, pk = {(x' --_,xl_,)'“‘,. Yo Vni e }

2°
k k k=1
€ K. e ece oo . ] i
8inc z(x', ,xzykt‘,i ,yn,y£‘ € 81Pﬁ by. induction

'l'
U
[}
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asswnption {(xl:’o X ’xi(’yz-'.',o.uo ’ynyz)} € H’ the Subspace genemted

1 k k )
i by H= {51,-~c,pk_1} in P,G(S8’). Hence {(x'."',xjyyl+,"'yn iﬁ)}

€ K, since ;{-ci. As Pk ¢ X, and -IE is a subspace, so every

' k K k k Bk
atom under Pk+{(x1, ,xn YZ-H” yn yl)} = {(x‘, ,XR,YQYE_H: }'n:}'m.‘

- k k . -
is contained in K, especially [(xi, ,xz_'y£y£+1 ynyn“)} € Ke

i
; 8y contioujus stailor crowacny, ve. v )
! iy Gontiauing sFeiisF af‘g’t;n}e;{fi we get {(x‘f,"',x;_zyl_'ylyzﬂ"'

ym')}‘e K, *+*, and finitally {(y','",ynyn“)} € Ko

Now let T be any subspace in P.G(s’), then it can be. shown

that T = [fn:gtom’paszT}. Suppose that P_ < IT, then by upper-
: k

continuity there exist atoms Pyy***,Pp € T such that P < I P,
=1

then Pa' €K € T. Thus the merely finitary gecometry is a partition

geometry of type 2 (see also remark given in p. ).

Pt edisnmiin’
JILEI AR of

RemArR, in kﬁ:(s;,if {(ab)};é? and B(e), B(b) are

respectively the block of the partition P € LP,(S) determined by

a and b, then B(a)NDB(b) = ¢ In the partition P + {(ab)}

the block containing {ab} ‘is B’(a,b) = B(a)u B(b). Obviously,

J




P
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there 1s no block B“?(a) (or B”(b)) such that B(a) ? B”(a) ;

B'(a,b) (or B(b) ; 3%(b) g B'(a,b))s Thus P < P+{(nb)} provided

[(n,b)}‘é P, This shows that LP(S) is semi-mcdular (seef8-5).

But LPn(S) is not semi-modular in general as the following examples

shows: (See B 5)

If S contains elements a, b, c, d, £ then LP,(S) contains

the following chain:

| , {(apc fief) }
| .. _{(abé) (adc; (bdt) (cef)}

| - |
E ’1 | , [(abc)(nde)(bdf)}

K

{(abc)(ade)}
;
{(abc)}
|

o

It is easily seen that

{(cef)} < {(ubc),(ade),(bdf)} +{(abd)}

j

1

I = {(abcd‘e.:)]_ s
i

!
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and

T

{(cef)} £ {(abc),(‘ade),(bdf)},

but

{(abd)} £ {(abc),(ade),(bdf)}+{(Cef)} |

= {(abc)(ade)(bdf)(cef)};

Similarly for LPn(S) (n : general), where S {:x',"',xm_‘}

{(xsxsxsx,,- . °xn+‘)} < {(mxzx;xr - 'xm-_l) s (x2xaxexye 4xn+‘) &

n+4

(X1X4XSXj’ ° ’-xm‘)} + {(Xi Xa2Xq4X7°°°X )}

= {(x,x:‘ ‘T XeXye® 'xn“)}

{(xsxsxsx.,' . 'xa‘)} £ {:(xixzxs'x—?' . 'xm_‘) s (x'x4x5x7' . 'xm_‘) 5 (xzx4x6x7' . 'xm_‘)}

.4

L e W s \ .
{(*1":"4"7' ) 'xm-l} A {(xixzx,x; Ty a)s (Rxxx e .,xn"")’

.

5 A}
1 o . - L"?.- : .
}? | (x2x4x6x7"°xn_"_4)]+{(x3xsx6x7"'xm4)}

od
[=
ot

) {(xi X X% .xn+4) 2 (x1x4xsx7f K)o

n+4

(xzx4x6x7° . '.xn+4) s (xsxsxsx; . 'xn+4)}.
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§ 5 'Matroid lattices

It 18 obvious from the above discussion that complete upper-
continuous, atomistic lattices play an important role in hte foun-
dation of geometries. DBut in many cases of geometries we are inte-
rested in, hte corresponding lattices have another distinguished
property (the exchange property) appearing in the following defi-
nition:

Definition 5.1, DBy a matroid lattice we mean a geometric

lattice (i.e. a complete, upper-continuous, atomistic_lattice) L
with the following "exchange property":
.(O) for any atoms p and q and any element x in L,
the conditions p € g+x and p £ x jointly imply that q < p+x.
Matroid lattices have been extensively inégstigated, and there
are numerous equivalent characterijations of this class of lattices:
Theorem 5.1. In any matroid lattice the following conditions

hold for all element a, b, ¢, d and all atoms Py Q5 Pgs***sP_¢
- : n

(1) 12 a < a+p € a+q, then a+pv= a+q.
(11) If ap =0, then a+p covers a.
(111) If (a+b)p = 0, then (a+p)b = ab.

(iv) 1f (p°+"'+pk_')pk =0 for k=1,""*,n, then the

system pi, (i = 0,0",n) is independent.

(v) If a and b covers ab, tken a+b covers a and b.

(vi) 1f o eovers ab, then a+b covers b,
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(vit) If b covers bc, then M(b,c).

(viii) If bec <a < c < b+c, then there exists an element

N

such that bc < x € b and a = (a+x)c.

(ix) If bc <a <c < b+c, then there exists an element

/A

such that Dbc < x € b and (a+x)c < ce

(x) If bc <a <c < b+a, then there exists an element
such that bc < x £ b and a = (a+x)c.

FConverseiy, any geometric lattice which satisfies one of the
conditions (i) — (x) 1is a matroid lattice.

In the stutemént of the theorcm we used the following
definitions: o

Def, 5¢2. A system of elements X5 i €I in a complete

lattice is said to be independent if . it

(57) ()= 0

whenever J and K are disjoint subsets of I.
Def. 5.3. Two elements b and c are said to form a

modular pair - in symbol M(b,c) - if

(x+b)c = x+bc whenever x <€ c.

Def. 5.4. If M(b,c) holds for any two clements b and C5

then the lattice is said to be modular.

Def. 5.5. If the relation M is symonstric, that is, if

(xi)- for any two elements b and c

M(b,c) 7> H(c,b)
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(i.e. M(b,c) and M(c,b) are equivulent)

then the lattice is said to be semi-modular.

Theorem 5.2. - In order for a lattice to Le a matroid lattice,
it is necessary and sufficient that the lattice is complete, ato-
mistic, upper-continuous and semi-modular.

Proof of Theorem 5¢1. is carried out by showing each.of the
implications:

(viit) = (x) = (ix) = (vii) = (vi)

- (v) — (ii)f — (111)f — (iv)

- (0), 7,—,5?(0)—7-61)-(3’ (i1)
— (1i1) NGO (viit).
In this diagram, (i1), (i11), and (o)ffi mean that these

conditions are stated only for elements generated by finite number
of atoms. And (*) means that in the proof of the implication we
need to use the atomisticity, and (*f) means that we need to use
theatomisticity and upper-continuitye.

We brake the proof into several lemmas:

Lemma 5.0. M(b,c) holds if and only if bec < a € ¢ implies
(a+b)c = a.

Proof. k(b,c) implies (a+b)c = a+bc = a for be < a < Ce

Conversely, assume that bc < a < c implies (a+b)c = a, ‘and let

a’ <c, and put a = a’+bc. Then bec € a = a’+bc € c. Thus
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. ”(a+b)c = a, that is (a’+bc+b)c = & which means that (a'+b)c =
L ]

a’+be,” - that is M(b,c).

. Lemma 5.1. 1In a lattice L, we have the following implications:

(yiii) - (x) - (ix) - (vii).
Proofs: (viii) —>,(x). Let bc <a <c < a+h, then

a+b € b+c and bc <a <c <bt+tc. Thus by (viii) there is an

element x such that bec < x < b and a = (a+x)c.

(x)v—* (ix). Suppose that be < a < ¢ < b+c. " Then b #'c

and - b £ bec, that is, b > be. Put ¢’/ = (a+b)c, then c > o,

If e>c’''= (a+b)c thenn(ik) holds for x = b. If c= ¢! tHen

c = (a+b)c, hence ¢ € a+b. Since b fec, we have c £ a+b,

hence ¢ < a+b. Then be < 8 <c <a+b, soby {x) there is an

X such that bc < x € b and (a+x)c = a < c. That is (ix) holds. -

(1x) 49.(vii). Suppose that b'é bc (that is, b covers be),

| e R oy

i
- i 3
RSt
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~thenr blﬁ ce Suppose bc < a € c. Obviously (a+b)e > a. But-it
is shown as follows that (a+b)c > a 1is impassible, SO a = (a+b)c.
Thus by Lemma 5.0., M(b,c), since if bc = a, (a+b)c = (be+b)c
= bc = a.
Assume that c’ = (a+b)c > a. Then since ¢’ < c and b £ c,
it follows that b £ ¢/ and b+é’ > ¢’. Furthermore bc’ = b(a+b)c
= bec. Thﬁs bc = bc’ <'a < ¢’ < b+c!., Thus by (ix) there is an
x such that bc’k= bc <x €b and (a+x)c’ <c’. Since b ¥ bec,
SO X = b- and (n+b)c’ < c’s On the other hand (a+b)e’ =
(a+b)(a+b)c.= (a+b)c = ¢! contradict;ng the last inequality.
Lemma 2;_. In a lattice L, we have the following implications:
. b(vii) - (VI) o (v). ¢
Egggg. (vii) o (vi); Suppose that c a b+p, then
bc < ab <-(b+c)b = b. Since b ¢ bc  this inequality implies that
either b = ab or bq = ab. If b = ab, then b € a., But c < a,
SO b+c € a, hence a = B+c since a < b+c as aSsumeds If
"bc = ab, then b ¥ ab, thus M(b,a) by (vii). Then by Lemma
5.0., _(b+c)a = ¢ since ab = bc € c € a. But since a < b+c
it follows (b+c)a = 2. Consequently a = c. Thus we have shown
that ¢ € a € b+c implies either a = b+c or a = c. That is
(o { b+c.
(vi) = (v). From the assumptions a ¢ ab and b § ab, we

hove respectively a+b $ b and a+b $a by (vi).
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| Lemma 5.3. In a lattice with O, conditions (ii) and (1ii)
are equivalent. '
' Proof. (1ii) — (ii). Suppose ap = O and a+p 2 b > a.

Then a+'p > a, a+b = b and (a+b)p=bp. Since p ¥ 0, either

| S S

bp =0 or bp = p. In the first case (g.+p)p = 0, so by (iii)
v 3

v .

(a+p)b = ab = a. But since (a+p)b = b, hence a = b. In the

s

second case b 2 p and (a+p) 2 b 2> a+p. Hence a+p = b.

‘ | (i1) = (1ii). Suppose that (a+b)p = O. Then ap = 0,
hence ‘a+p 4 a ‘by ’(ii). Let b’ = (a+p)b, then bf > ab.
Suppose that b’ > ab. If b’ >a then a+p 2 b’ > a. Thus

a+p = b = (a+p)p ‘since  a+p > Qe Then. b > a+p 2 p contradicténg
ing (a+b)p = d. If b/ <a then a 2b’ = (a‘+p)5 > db. This
leads to a con\trg_:L:_tion ab > (atp)b > ab. T'hus: b!.>ab is

impassible and b’ = (a+p)b = ab.
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(v) = (_11).f — (111)f'—, (iv) e (o)f.
Proof. (11)f — (111)f by Lemma 5.3.

(iv) — (O)f. Suppose that p < (a,+-'°+ar)+q but p K ajg

1"°+ar. We are showing'that q < (81+"‘+ar)+P- By deleting re-

dundant elements we can assume that (a1-+"'+as )’as =0 for

-1

s = 2,***,r. Assume that q £ (a‘+°‘°+ar)+p,‘ then (a|+~'°+ar+p)q = 0.
Sincg (a +"'+ar)p = 0, by (iv) we have that a1,°",ar,p,q are
independent, so (a,f"'+ar+q)p = O contradicting the hypothesis

P < (agtnesta )+q.

n
(v) = (ii)f where (ii)f asserts that if p £ E1pi then
. . - (". i= :

n n o

p+ I p1 covers z pi. We prove this implication by induction on
i=1 i=1

n. For n=1 if p A'pi then p°py = 04 p,pt. Then by (v)

P+Po & p.  and p+pg g’p1. Thus (ii)f holds for n = 1.

Assume now that '(1i)f holds for n. We are showing that

if p £ ;:1 Py+p, ., ‘then ; P,+p . +P covers g Py +pP, o If
i=1 i=1 i=1
n n n n n

P, € if1p1 then 1f1p1+pn+’ = 15191. Thus 1f1p1fpn+1+9 = 1f1pi+P
n n n n o\

covers if1pi+pn+t = 131131. If Poey A 1f;pi t@en_ (i:1pi>pn+1 =0
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n . n
and L p, #op. covers Lp by induction assumptien. If
i "o+t i .
i=1 i=1
n n'
pA Ip+P then p£ £ p s S0 by induction assumption
1=1 1 "n+t §=1 i .

i=1 i=1 i=1 i=1

n n n n ’ n
- >
z P; + P covers Z'pi. ( Z pi+p> z< Z pi+pm‘><if1pi+p> 2

n n n n
-2 Py» so either I Py+p = ( z p1+pn+1><if1pi+p> er

i=1 i=1 1=1

n. n n
Z p,+p Ip+pPp )= I p,e Since the former identity implies
1 “n+t i i
i=1. i=1 i=1

n . n

- Py+p 2 I p.+p 2 p contradicting the hypothesis, so
n=t - Mg g1

n n n
Z p,+p )( Tp +p> = p, holds. Then by (v)
g=1 1 g g 1=1 1

n n n n+1
( z plfpn+')+( z P1+p>= f Py+P, . P = f Py+p covers

i=1 . i=1 i=1 J=1
n n+1 n

Z p.+p = Zp, and I p,+p.
i=1 1 " n+s J=1 i i=1‘i

(iii)f — (iv). Let h Dbe the number of terms in the sum

of the first factor, and k the number of the terms in the sum of

the second factor. Let k,h 21 and let h+k = J.

(1) If h=k =1 then PysPy; = 0» since 1f J¢ > 14 (say)

then Pisqu < (p"#“.tpj{'-?i-)-pd'i = 0,
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n _ n
and I p, +op. covers I p, by induction assumptien. If
i "ot i
i=1 i=1
n n
P ;é Z p,+P then p ,4 Z p,, so by induction assumption
1=1 i n+t i=1 i

n n n n n
I p, +p covers Z P, <Zp+p> (2p+p )(2p+p)
1=1 1 1=1 & \goq & i=1 3B 4 g

n n n
z Py, so either 8 Py+p = ( z Py+p, . >< z Pi+P> or
1=1 i=1 " i=1 i=1

=1 i=1

n. n n
< Z Py+p .. >< z p1+p> z Pje Since the former identity implies
i=1.

n . n

) P4+p 2 I p.+p 2 p contradicting the hypothesis, so
n=t 1T g gl

n .
( z Pi-!-pn“)( z pi+p> . 191. holds. Then by (v)

n n+1
< z pi+pn“>+( Zp +p) z Py+P ., P = z p1+p covers
i=1 J=1
n n+1 n
I p.+p = IZp, and I p,+p.
1=1 1M g g=q 2
(1:!.1.)r — (iv). Let h De the number of terms in the sum

of the first factor, and k the number of the terms in the sum of

the second factor. Let k,h >1 and let h+k =J.

(1) If h=k=1 then pi-ip;i; = 0, since if jy > i, (say)

then‘ piquc < (p“;h..*pj{.-'-i-—)'p,j's = 0,
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0 for

! S I RN
(2) Suppese that <p1‘+‘_ +p1h>(pj,1+,. +ij>

h+k = =1 > 2. ¥e shall show that it holds for h+k = f.

Without loss of generality we can assume that there is an m

N
such that 1 € m < h and im > 1"'“’im"".'ih"j"“""jk' Then

Py +°°94D, +° 4D, 4D, +17+ < <p1+"'+13 - >P =0,
( i, i 1h»53 b ‘+53§>"1m 11 P

Thus by '(111)‘f

’

/

i i
\p +ot-+p )(p +.0'o+p >

( i4 i Js Iy

= [Py #°t"+p, +°**4p, +p \(p. +24p >
(1' tn R VAN I

Vi
p +0n0+p_ +--.+p ><p. +0-o+p )
( 1t Ty Th/\'3 Iy

=0

by induction assumption.

Lemma 5.2. In an atomistic and upper-continuous lattice the

conditions (0) aiid"(O)f are equivalent.
Proof. (0) — (O):f is obvious.

(o)f — (0). Since p € q+a, p < {ubS_  where S; is
finite and Sf SAU {q} in whi¢h A 1is the set of atoms contained

in a. - If Sf does not contain q then feu*bS_ < a contradicting

b 4
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the fact that p £ a. Thus S, = {ﬁ} UA, with finite A£ A.

~

Thus p < q+g where a < a is the union of finite points. And
P ;{ a since p ,é a. Thus by (O)f q < :1‘+p and q < a+p.

Lemma 5.6. In a lattice with 0, (0) — (1);

Proof. Suppose that a < a+p € a+qe. Since z;.< a+p, p )é a
holdse And a+p < a+q implies p < a+qe Thus p < a+q and p /é a,
se by (O) q € a+p and so a+q € a+p. Thus with a+p € a+q give
a+p = a+q.

Lemma 5.7. Ih an atomistic lattice (i) —> (ii) and
(1ii) — (viii), o

Proof. (i)—> (ii). Suppose that . ap = O and a+p 2 z 2 a,

-~

If z4a (i.e-. z > a), then there exists q such that q < z
but a/ a. Then Z 2 a+q > a and a+p > a+q > a. Thus by (i)
8+pP = a+q &ad hence a+p = z.

(i;‘.i)_'f_-a'_ _(viii). Suppose that bc < a < ¢ < b+c.
Siﬁce &< b+c, we have b,,é c hence bc ;é b. Then there exists
P <b, p £Abc hence p A c that is pc = 0. Let x = Dbc+p.
Since ((a+bc)+c)'p =cp =0, by (4ii) we have

( a+x)c (a+besp)e = (a+be)c

And (viii) is proved.-
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ot the proof of Thugrem 5.2., we can show (xi) - (vit)
easily and _(vii) - (0) by theorem 541.. Hence (xi) (O),
To show (0) — (xi) we need fhe following lemmas atid definition.
Lemma 5,8. In an upper-continuous lattice L, a set. S of
elements of L 1is an independent system, i: and only if every finite
subset of S is en 1hdependept system. |
Lemma 2_2 Ir' P is an 1ndepehdent system of points (atoms)

in a motroid lattice and if q is 2 point with (z:p)q 0, then
P U_{e}.f(set-unigg)Ais an independent system.

ﬂef. 5 6 An 1gdependent syetem P of points-with ZIP =
is called a Qggig of the element a of L. |

ggggg 5.10. 1If L is enmotroid lattice, an% if P is any
1ndependentesyéfem of points with IP < a, then_there is a set e

Q @ P which is a basis of a.

Corollary 5.1. Every elemént of L (of Lemma 5;10) has a basis..

(xt) = (vi1). 1f b“}bc then M(cb). Since if x € b’
then either x €bc or bec <x £b, and the latteb casev;mpiiesi
=b Dby b } bce If x <bc then (c+x)b ¢ (c+bc)‘s bc. DBut
(c+x)b_; be, hence (c+x)b = be = x+bc. If x = b then (c+x)b
= (b+e)b = b = b+bc = x+bc. Thus M(cb). Then by, (g;): we have'.

M(b,c).

' Prgof of pemma_é. . We need~me:e1¥ show that if every finite

sybset of S ;fs'an 1ndependent.sjstem then S 1sA35_§E§ependent

:
{
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systetiy Let 8, and S¢ be any two Hilshoint subsets of 8, vy
any fiti{te subset of Sy, v, any riilte subset of Ss.

put 8, * E(Vij, av; = I(v2), then =(s¢) = E(nv') an&
and E(Sz)‘=.8(ay2). Bince; by assutiption the diit sum Ve is

an indépendéht system, we have ap"avz = 0 for all v,. t being

upper continuous, we have av'(z(sz)) = Z(nv'auz) = O, Similarly

2(5¢)*2(S2) =0 ‘and S is an independent system.

Proof of Lemma 5.9. Let wu be ény»finite subset of P Yy {é}.
If v does.not contain q then v is independent. If-v conting
q, then“vjé‘v'k’{a}- (set union) with vyc P, so v, 1is inde-

: :-.'. - .' | V p. 5 . ? . .o : . A; - 'v o :
pendent, - Now av1 = 2(v,) < 2(P), hence q'a.v1 € q*2(P) =.0. Thus e
by (iv)- v is independent. Thus by the above Lemma 558, P U‘{A}

is indepéddenf.

Proof of Lemma 5.10. Let S be the set of all points con-

tained in a, then a = 2(8) since 'L is atomistic; §énce__

z(p) < g,  if p €P then p s 5(P) <a. Hence p €8 and P € s.
Let DB be.the family of independént subsets of S which_cgntain_ P,.
then B is non-empty since P € B. Let K be a chain in B under
sct 1n¢19519n, theﬁ U(K), the set union of all sets in K, is an

upper bound of K which can be shown to be independent. Let v be

- any finite subset of U(K). Since U(K) 1s the set mnion thore 18
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-~

a subset KU in the chain such that v = KG. Then v 1is indepen-

dent since Kd is independent. Then by the above Lemma 5.8. U(K)

is independent and U(K) belongs to the family B, By Zorn's lemma

there exists a maximal independent subset Q of S with Q2pP,

If there éxists a point p €S such that p- E(Q) O then by Lemma

529. 'Q v {o} (set union) is an independent subset of S such that

~

Qu p} SPp whichioontradicts the property of Q. Hehqe P < E(Q)

for all p €S and a = 2(S) < 2(Q). But 2(Q) < =(S) since Q € S.

Therefore E(Q) =
Proof of corollagx. If O<a there is a point p < a,
' z
Then {o} = P 1is an independent subset such that T(P) =p <€ a.

Then Lemma 5 10 leads to the corollary.

Tb complete the proof of the Theorem 5.2., we are showing that
in a matroid lattice M(bc) implies M(cb), that is (0) — (xi).

Let d be any element with d £b. If d < bc then

(c+o)b

/Y

b(c+bc) € bc = d+be. Dut obviously (c+d)b 2 d+bc, hence

(c+d)b = debe, that is M(c,b). Now let d be any element with

bc < d € b, Let p be any point such that p < (d%c)b. Then by
Lemma 5,10 and Corollary 5.1 there exist point sets P, Q and R

such that Q, PUQ and: QUR are respectively bases of be,.

d and c. Since Z(PUQ)

N\

ZP+IQ, p < d+c = Z(P)+I(Q)+Z(R).
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Therefore, by upper-condiinuity p ¢ p,+"'+ph+q,+"'+qm+r(+"°+r .

Deleting the redundant elements from the above expression we can

assume without loss of generality that (p,,'f',pl,Q1."’sqm,r1,"',rn)

is an independent set. If n=0 for every p < (d+c)b then

(d+c)b € d and M(cb) holds. If n > 1 then r.> P A P+ +

gb+q1+"'+qm+r1+'~'+rn_’. Thus by (C) T S Pattic4p,+qe+cco4

es e < - ® e ® e
Q¥+ .+rn_'+p € b+a where b = p,+ +Py +Q1+ +q and

a = r'¢°°'+rn_1. Since r < c, r. < (b+a)c = a+bc Dby M(b,c).

Thus rn < q1+...+qm+r1+---+rn_1 contradicting that the set QUR

is independent. If n = 1 then ry, o £ PQ+"'+f2+Q1+"'+qm- By
_ 3

(0) again, we have ry < p+p,+"‘+pZ+Q1+"‘+qm hence ry < b.

Since ry ¢ it follows that r; < be contradicting the fact

that Q U R is independent. o

Ekamglest“I:‘ A geometric linear lattice is not necessarily

semi-modular. This is shown by the example given in P. 34 as a

condequence of Theorem 5.1, (iv).

2. Dy Theorem 5.1, (ii) we set that LP((S) is semi-

modular, but in general LPn(S) (n > 2) is not. See the examples

civen in p. 48,

Let us now list some properties of matroid lattices,

Theorem 2.2. Every matroid lattice is relatively comnlemented.




] -

Proof. Let x be.any element such that s € x € t, we want

- to show that there is an element y such that x+y = t and xy = s.

Let Y be the set of all element 'y such that Xy = s and

ﬂ y st Y is a non void poset, since s € Y.
1 It is easy to predict that a maximal element Yo of Y is a
relative complement of x in [s t]. To show this we need to show

X+yo = t. »

Suppose that x+y, z t, ‘then since the lattice is atomistic

j thefe is a point p £t but p A X+Yo (so of course p ﬁ X5 P K yo). A
o Then yo‘g'y°+p and y;+p < t. VBy the maximalify of Yo, Yo+tP £ Y,
therefore x(y°+p) # S = XY¥oe Hénce there is a point q < x(yo+p)
and q K se Then q £ x and q < y°+p. It is o?vious that q K Yo
(otherwise, q £Xx and q €yo imply q € Xyo =&s, a contradiction).
Since the laffice is semi-modular, from q € yo+p, q ﬁ y it follows
that p <€ yo+qe Then p € yo+q Syo+X (: q < x) contradicting
p K,x+yoyunThus X+yo = t.

Now we have still to show that Y hasrat least a maximal
element. For this we need to show fhat the hypothesis of Zorn's
lemma is setisfied for Y. Thus we want to show that every chain
K of Y has an upper bound in Y.

As one of such upper bound, we can take the element <u.bkK,
the existence of this follows from the fact that the lattice is

complete,

i ade fdemsy
e fiede i,

We must now show that k = f.u.bK is an element of Ye

FHimy
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Sincé'each element of XK < t, so k= *u'bK € t. To show that
sk = s, let’ k, take all the elements of K (ieI). Then since
the lattice is upper-continuous
xk = x< z:'ki>-_- DIEC
iel i=I

Since lc1 €K Y, so xki = s for all i e I. Thus

z XKi = S Thérefore xk = s and %k € Y.
iel

The abgve proof is a modification of that of "complementedness™
for the lattice of subspaces of a projective geometry.

For the lattice of subspaceé of a projective éeometry, it can _
be proved to be A direct union of irreducibie sﬁé&attices; This can
bé'generalized to any matroid laftice.

. Def. 5.7. 1In a lattice L with 0, if P, q are points

.such that

qQ €p+x, qx =0
for some element X €L, we say that p 1is Eersgeéfiveljg gy and
use the sypbol P ~q to denote ite.
Def: 5.8. In a lattice L with O, by a Vb it is meant
that ab = 0
and (a+x)b = xb for every x € L.
Lemma 5.11. In a geometric lattice L the following_ two

properties are equivalent:

(a) a Vb,

S e G

2t 10 W
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(ﬁ) ab = 0 and there exist no points P, @ such that
p < 8 qQ<b and p is pergpective to q.
Corollagx 2;2' In an atomistic, upper-continuous lattice L,
a Vb, a g 4, by €b together imply that a4 Vv b,;
Proof of Lemma 2.11. (a) —» (B). ab =0 is evident. Next,

assume that therec exist points P, @ such that P €a, q¢<gb and

P 1is perspective to 9. Then there exists an element X € L such

that 9 € p+x, qx = 0. Hence (p+x)§ =q>0 = xq which means

that p V q is falee. On the other hand a Vb implies that for

every x of L and a1+ $a, by £b we have (a}+x)b1 — (af+x)°
(a4x) bby = (a14x)- (xeb) by = (((a14x)°x)+b) by = (xB)-by =

t

x‘(b~b§)'= x*by which is contradicfory'to (p+x)'d~> x*q for

ay = p, by = q.

B) - (a). It is evident when a =0 6r b=20

can assume that a,b £ 0.

If (a) is false, there exists X = 0 such that (a+x)°b'>
X.b. Since L isg atomistic, there exists a point gq such that
(a+x)*b » (a'b)+q > Xeb. Then q < b since (a+x)'b 2 q. And

also (x.b)+q = 0 sincé otherwise (x.b)+q = q and (x.b)+q S X*'b,

Furthermore 94*'x = 0 since otherwise X‘Q =q and x > qQ, hence

0}

b*x > q' and (x.b)'q = q. Since d € a+X, we have q < E(p;psa)

+ (q;qu) by atomisticity. Hence, by upper-continuity,'there exist ¢
points

p,,"',pn contained in ‘a and points q,,-'°,qn contained
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in x such that q ¢ p1+°"+ph+q1+‘°‘+qm g p4+-°°+pn+x. Suppose
that all superfluous elements were alrcady deleted from' p1+"'+pm+x.
Then q ﬁ (pz+"'+§n)+b, that is q(pz+"'+pn+x) =0, but gq €
p1+(p2+°"+pn+b). This means that py is perspective to q con-

tradictry (ﬁ)._

Proof of Corollary 5.2. The corollary is obvious from the

last part of the proof of (a) - (ﬁ) is Lemma 5.11.
ﬁéf..é.?. If S is any subset of L, -we denote by Sv the

set of a such that a Vb for all b € S.

N

Def; 510. Let {éa;ael} be a family ofysubsets with O  of '

an upper—éontinuou5'1attice L. We say that L is a direct sum of

7

S, (@ €I) and.write L = 3( ®S ; a€l) if

_ _
(1 ) every a €L is expressible in the form

a = Z(aa;ael) vhere a €5 (a€1),

(2°) af B implies Sﬁ < SZ.

Sa is called a component of the direct sum.

Def. 5.11. If p, q are points such that there exists a

sequence p = p,,pz,--°,pn_1, pn = q of points where pi

~ pi+1

or pi*; ~PBy for i=1,++,n~1, then we say that p and g are

connected,
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L which are cxpressible as the Jjoin of points in Ba' Obviously,
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Theoren 2.&. A geometric lattice L 1is a direct sum of sub-

lattices Sa of L, that is L = Z(@Sa,GEI), and any two points

in the same Sa are connected, and two points which are contained

in different Sa and S are not connected.

B

Proo? of Theorem 5ik. Since the connectedness is obviously

an equivalence relation, we can form equivalence ¢lasses ba (a € I)

with respect to connectedness. Thus any two points in the same ba
are connected and two points which are contained in different Ba
and Pﬁ respectively are not connectede.

Let Sd be the set which consists-of O and all elements of

S,y is a sublattice of L.

To show that L = E(@Sa;aeI) we show first that (2°) « £ B

v

implies S_ < S,. : €
p e 5 Lef: a, €8 bﬁ esﬁ (a #8), and let p a,

a’

and q < bﬁ' Then by ﬁpper—contiuuity

o} < p1+.oo+pn’ where pj_ €p (i = 1’-0.’h),

a

4 < qi+°°°+q_, where q, € Pﬁ (3 =1,°,m).

J
It is supposed here that all the superfluous points were alrealy

deleted. Then p é (p’+..'+pn) that is p(pz+"'+ﬁa)_=—0~—but-——

p < p1+(pz+"'+pn). Thus py ~pe. Since py € Py Similarly q € pp.

.3 .:,,,;.’_;

oy

ol B,
S A Wt f P
1-2;‘.’-.',:«‘ o7
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Therefore p is not perspective to ¢ (p % q). Noy a’ 3 =
since otherwise aa'bﬁ % 0, so tﬁere exists r ¢ 8. T < bﬂ .ond
r € pat]pp. contradicting pa(]pﬂ = ¢. Thus by Definition a, v bﬁ’
that is Sa S;. To show thdt (1°) every a € L 1is expressible
in the form: a = E(aa:deI) with a €S/ (a €1), 1et a, be

the join of al1 points p such that p €a and p € pa.' Then by

atomisticity a = E(aa,ael) where a ¢ 8, (aer1) and consequently

L = E(QSa;at'I).

Theorem 2;2. Let p, q and r be points of a matroid lattice
L, then the fol'lowir;g statements hold: | i
(I) P~q imﬁlies q ~ p.
-(II) P~q and q ~r imply p ~ r;
That is, in a matroid lattice the concepts of perspectvity

and connectedness are equivalent,  ~

In the proof of the theorem, we need the following:

Lemma 5,11, Let {;1,"',pn} be independent, and let

_p1 =p +...+p1-1+p1+1+.'.+pn (1 = Ts**esn), +then we have

b o
?Pi = Pr+1+"'+pn for r = 1,:++,n,

Proof of - the Lemma. Py = pz+°"+pn, SO lemma is true for

r = 1. Suppose that it is true for r = m, then we have
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q+1 m '
i Pi = np%>'pm+’ = (pm+1*i..+pn)fpn+1

by: induction assumption., By putting a = pm+1+'°'+pn and b = pm+1

we have’

a+b

(pm+z+...+pn)+(p1+’.'+pm+pm+z+‘..+pn)

ece cse < b
(p1 + +pn+pm+z+ +pn> since a e

} pm+1 since pi,;",pn}‘ is independent.

N

Thus; (a+b)°pm+' = O, hence by (iii) of Theorem 5.1., (a+pm+')'b

= a*b. Then

m+1

- . - . - . 2 'T'- ’ A
?'pi - (pm+‘+a)'b = BB & Pr ot "¥Pps -

and the lemma is proved;

" Proof of Theorem D.5. (I) P ~ q means that there exists
X such that q < P+X, q*x =0 and p°x = O, Then by semi- R e
modulafity P € gq+x which together with p*'x = Q gives q ~ p.

(Ii) If any two of P, 9 and r are coincidént, then this
is obvious. Hence we may suppose that p, q and r are distinct.

Since P ~ q there exists an element a € L such that q < p+a

and p*a = g*a = 0, By upper—continuity there exist xi (1 =1, -

*+,m) such that

ST R S X e o S = caoe g ."{:
(1) q S p+xq e+ +x, where x, <a (1 15022 ,m) y %

q K'px1+-°'+xm, since qg*a =0 | /

vl
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-~ —it-follows that q £ r+Y < X+Y Dby semi-modularity. Similarly
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and we may assume that the redundant clements are already dedated
in (1), Hence {;,x1,"',xm} is independent by (iv) of Theorem 5:1.
Now put X = x'+"‘+xm, then since gq*X =0 by (iv) of Theorem 5.1.

lagain [g,xi,"'xm} is also independent.
Put X1 = x‘+'"+x1_‘+xi+1+'*'+gm,' i=1,"**,m, then
p'X1_= O since pP*a = O, Since p'Xi Z q by the irredundancy of

xi (1 - 1,:"‘,11!), {p’q’x1’...’xi-f’xj_+|’...’xm} 1‘5' independent

for 1 = 1,ee0 ) 'by’(iv) of theorem 5.1, again.

Now q < p+X and q'Xx =0 (by (1)] imply that X < q+X € p+X
which is turn implies a+X = p+X by (i) of~Th§§§cm 5.5. Moreover

q € p+X = (p+Xi)fxi and q A'p+Xi, hence P+X, < q+(p+xi) < Tt
xif(p+xi) = p+xv which implies q+(p+Xi) = p+X by (1) of Theorem

5.5 again, Thus we have proved

(2) P+X = q+X = p+q+Xi for i = Ty %> omy
Now since q ~ r, there exist ¥ (i = 15%*,n) such that
(3) s q+¥, q°*Y = r-vY = O and Y = y'+“.+yn'

By (1) and (3) we nave r < p+X+Y. Eence if f(X+Y) = 0, then

P ~r and (II) 1; proved.

RAER

Thus we assume now that r < X+v. Since r < q+Y, r K'Y

o0, R e

&
2
2




72
qQ s p+X and q K X imply p < q+X < X+Y. Hence

X+Y = p+X+Y !

+x +...+x+ +...+
P+X4 - Y1 Ym-

Since the sét {ﬁ,xi,"°,xm} is independent, there exist y; €
J

{;,:“f,yn} for j =1,°+,k such that

T = p+x1+f..+xm+yi1+.f.+yik

by deleting all redundant elements in {;1,°f°,yn} and hence the

set {p,x 2°%X .y §*vey is independent. Now put Y'=
- 1 m’7 i, . ik ® §

Yy +"'+yi then by (2)
! k

(L)  X+Y = pexey’ = P+a+X +Y/ for i = 1,--+,m,

Since {;,x‘,f",xm,yi1,"',yik} and [A,xi,"',xm}_ are both

indepgndent and p+X = g+X, we have by (iv) of Theorem 5.5 that

{q:xg:'.' ':xm:)’:h { it “’yik

= (p+X1+"'+xm)'y1, = 0:""(q+x1+'f'+xm+yi1+...+y1 ).yi£+1 )

+ *ee oo L] — ® o0 . ® e 0
(p+x + XY, +yil) y12+‘ =0 as {;,x', XYy s ,yik}

is independent]. Hence by Lemma 5.11 we have

} is independent. (Since (q+x,+"'+xm)'yi
t

R

TR ke Ay s

H
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{3

m
(X+Y')°H(q+X1+YY) =Y,
: 1

gince (Q,X¢y°°°,X ,¥y ,'?',y- is independent. Now since ry <
m’7iq ik

(o} and

- yeY.= - m :
rY=0 and Y’ ='(X+Y)'ﬂ(q+x1+Y') at least one of X + Y’ and
1
Q+xi+Yf (1 = 1;"°,m) does not contain r.

We have by (L) that r < X+Y =.p+(X+Y’) p+(q+xi+Y’). If

O, that is p ~ r.

]

r £ (X+Y’) then r € p+(X+Y’) but re (X+¥’)

1+Y’ for an i, then r < p+(q+Xi+Y’) but r'(q+Xi+Y’)
= 0 that is p ~ r. Thus the theorem is proved.

Combine Theorem 5.4 and 5.5., we have the ¥ollowing:

v

o~

Thm. 5.6. A matroid lattice L is a direct union of sub-

lattice L, (0 €I) of L, that is L= Z(@La,ael), and any two

points in the same La are perspective, two points which are con-

tained in different La and Lﬂ are nof»perspective.
Moreover, we have
Theorem 5.7. In a matriod lattice L, the following two
statements are equivalent:
(a) L is irreducible,

(ﬂ) any ‘two points of L are perspective to each other,

Proof of Theorem 5.6. By Theorem 5.5, in a matroid lattice

the perspectivity and the connectedncss are equiValent, and therefore i

3
‘l b
&
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this theorem follows immediately from Thcorenm Selye

Proof of Theorem 5.7. (a) = (ﬁ) Suppose that the statemenf

(B) is false, then there éxist at least two points of L which are
not perspective. Then by~Theorem 5¢, L .is a direct ﬁnion'of at
least two Sublattice and so L is reducible since L has 0. This
ccntr;dicts (a). ,

() — (a). 'Suppose that L is reducible. Then since L

ﬁas..O, L is a direct union of sublattice La of L, that is

L

E(GLa,qu), where L, s EZ provided a £ B. Thus a €L,

satisfies a Vb for all b ¢ Lﬁ' Let pp €'L and q € Eﬁ

(a‘£ ﬁ) be two points there p Vaq and by Lemma 5, 11 ?p'q =0
and p f q which contradicts (ﬁ)~~saying that any two points of
L are perspcétive fo“ecch other. Q. E. D.

" Theorem 5.6 and 5.7 lead immediately the foIloﬁingi

Theorem 5.8. Any matroid lattice is a directed union of
1ﬁfeduc1b1e matroid lattices.

Following theorems for matroid matroid lattices with finit
basis are often.very useful:

Theorem 5.9. Let L be a lattice satisfying (v) of Theorem
5.1 and having ho infinite chains, and let X, y be any two elements

in L such that x < ¥s Then all maximal chains from x to y

have the same length,

24
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Definition 5.12. A finite chain x = aq > ap >*°**> a =y

is a maximal chain (or a compasition chain) for [y,x] if a, covers

its success or a .
i+1

Proof of Theorem 2.2. Let X =.sp. < 594 <*** < sn =y and

b
"

“to < tg << tm = y be two maximal chains from x to y. If

n

O or n=1 then x=y or y covers x respectively, hence

the chains coincide and the theorem holds.‘ Now AQSume the truth of

the theorem for all pairs x’ ! between which there is a maximal
. : s s Y

chain of length less than n. From x = so. < sy and X = to < tg
it follows that X € sy*ty € sq. Since sy covers either x = s;°tq

or si°ty = sy.
(i) Suppoéé first that sq°t, =‘s{.  Then t4 2 s¢ > X, and

it follows that tj-

8f 'since ty covers x. Then sy < 82 <<

e g sn =y and s¢ ty < t2-<"f<%tm'= y are two maximal chains,

ofvwhich the first one is of length n - 1. Hence by induction
hypothisis }n-1 =-m41, that is° n =-m.

(i1) If syty = x then since sy, ti ocovers s¢ty = X,
Sy + ty covers both sy and ty by covering property. Select a
maximal chain sq+t; < u, <**°< up = y. Then s{ < sq+tq < Up <*°
'<<up =y 1is also a maximal chain. Compare this with thgﬁmaximal

chain sy < 52 <***< s. =y and apply the .induction:assumption we

have p = n. Comparing the maximal chain with length p-1 = n-1:

(2%

2 e acy
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f”} e < setty cuy g Uy =¥ and ty < tp < veg t =y we get
i
- similarly that P-1 = n-1 = m-1, Thus we have n = n,
i .

Definition 2.12. In a latticesatisfying (v) of Thm. 5.1 and

havinf no infinite chains, the rank X(x)

-y

of an element x is the

Conunon length of the maximal chains from 0 to x,

Tty

Theorem 2.10. Let L be any atomistic lattice satisfying

(v) of Thm. 2 and having no infinite chains,

Iy

then the rank function
a A in L satisfies the inequalify:

.K(X+y)+K(xy) € R(x)+k(y).

Tabssiehgy

! Theqrem 2.11. Consider the following statements concérning

2 pair x, y of elements of a lattice L:

. T £
(a) M(y,x), that is, for all element g g x

ity

(z+y)x = zixy,

(b) X 1is a minimal relative complement of Y 4in the interval

Dy

[xy x+y], -
(c) X(xy)+l(x+y) = l(x)+k(y).

[T

(a) and (b) are equivalent in any relatively complemented

| g

lattice.

(a)

infinite chains,

and (c) are equivalent in any matroid lattice with no

And al} three statements are equivalent in a matroid lattice.

Proof of Theorem 5:101

‘Let x, y be any two element in L.

Choose a maximal chain from. x-

y to x;
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X'y = Xg < Xy <*°°< xn = Xe
Let yi = X +Ye Since xi covers X, . it can be shown that
Yy = Xgty covers y, = X4y OT ¥; TVy . SimgE ¥ 2 %
Bl 37 e U=

there exists a point p such that x, 2 xi_‘+p > X which implies

i j—-1

X.-= X

i « Then y+x,= (y+xi_')+p.

-*P by the fact that Xy éx

i i-t

< : —
If p < y+xi then y+x, = yEX, e _If P A y+xi_1 th?n p(y+xi_')

:§

| . . ,
=0, they by Thm. 5.1 (11) (See Lemma 5.k.) Y+ = (y+xi_,)+p

govers y + X Thus except for possible repetition of some

i-1°
elements

Y=Y Syy Syz sy =yt

is a. maximal chain from y to x + ye. Thus

Mxey)=A(¥)y¥ 6 2(xx)x[x-y),
that is .
Mxey)+rlxey) € Mx)+M(y).

Proof gg'Thebrem 5.11. Assume first that L is relatively

complemented. We shall prove that (a) == (b).

(a) = (b). Let z be a relative complement of y in the

.interval [x'y,x+y] with z < x, that is we assume that (b) does

not hold. T:en z°'y = x*y and z+y = z+y. Thus (x‘y)¥z = (z'y)+z

=z and x'(y+z) = x*(x+y) = x. Hence (x.y)+z = z <.x = x* (y+z)

‘whigh is the negatien of (a). | §

)
3
<
H
H
)




m—
L]

78

(b) = (a). Assume that (a) does not hold, that is

(x.y)+z < X'(y+z) striqtly.

Le?ythe element t < x be a relative complement of the element
x(y+z). in the interval [(x'y)+z,x]. Now sinée t 2 xy+z, .«
y+t 2 y+(x°y+z) = (y+x'y)+z = y+ze Thus t+y 2 y+z 2 x'(y+z) and
t+y 2 t imply t+y 2 t+(x'(y+z)) = X since t 1is a complement of
x(y+z) in [x'y+z,x]. Thus .t+y 2 X+y (since t+y42 x) which
together with t+y <€ x+y imply t+y = x+Y. |

On the_other hand, t 2> x*y+z 2 x°y hence x'y €t < x.
Thus x°y = (x‘y)'y < try.< Repee Hénge= Eye= ihyi Thusx tig x

is a relative complement’of y in the interval [x*y,x+y], and

(b) " does not hold. Thus (b)'—? (a) 1is proved.

Now assume that L 1is atomistic, satisfies covering property
and has no infinite.chains. We shall prove that (a) 2(c).
- (a) g (c). To prove this choose a maximal chain from x*y

to x: x°y = Xo < Xy << X = Xe As in the proof of Theorem 5.10

X(x+y)-l(y) < k(x)-k(x°y) if and only if there is an index 1 such

that x1_1+y = X;+y. If such an index i exists, then

XY, = Xo+X =X, <X € x'(y+xi) = x’(y+x1_1).

i i-y

That is ’x'y+xi_'_< x'ﬁy+x1_1) with z = LI < x. This shows

that (a) 1is not satisfied and we have proved that (a) = (c).

Conversely, if the statementw¢Ga}-—iS~net,satisfied'f0r some

iy

iy
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element =z < X; then s = X y+z < x‘(y+z) = t. OBViously Xy € s

and t € x, Choose a maximal chain:

X'y = Xg <***< x = ceel X, = cee = X,
y 0 1 s < < 5 t < < xn X

Then. X+y = sby = (x'y+z)+y = z+y and xj+y = t+y = (X'(y+z))+y

< (y+z)+y = Z+y. Thus Z+y = ki+y < xj+y € z+y, hence xi+y = xJ+y,

Thus yo = y < Y1 S°o0g yn = X+y (with y; = xi+y) which is a

maximal chain éxCept for possible repetition of elements actually

has repetition Y=y

N

« Hence

J

AMx+y)-A(y) <'l(x)-k(x'y)

\

and the statement (c) is not satisfied. That 15q'(c) — (a).
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8 6. Matroids
Consider the sét M whose elements are all thé columns of
a matrix. On the linear dependence and linear independence of any
subsets (of columns) of M the foliowing two propositions hold:
(11) Any subset of an independent set is independent,

(14) it Nﬁ and Nb+1 are independent sets of p &and
p + 1 columns respectively, then Nb together with some element

of Nb+1 forms on independent sct of P + 1 clements.

There are many intefesting system obeying“these two condi-
tions. Such systems are called matroids accordipg to H. Whitney
in his investigations~reiated to matrices andiékaphs.

Several equiva;eht définitions Qf matroids are known,»some

of -which are suggested.by graphs which offen remarkable examples

of matroids.

Investigation of matroid from a_léf%ggé:;g;gretic point of
view supplies an important example of matroid lattices as we shall

sSeée soon.

Definition 6.1. A matroid M = (E,B) consists of a non-

empty finite set E, together with a non-empty collection B of
subsets of E called bases satisfying the following properties:
(B,) No base properly contains another base,

(Bz) If By and B, arc bases, and x is an element of

By, then there exists an element y of Bz with the property

RS
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, that <B1-{X}> {y} is also a basis.

Corollary 6.1. Any two bases of a matroid contain the same

number of elements.

=1

]

Definition 6.2. A matroid M = (E,I) consists of a non-

=

i

empty finite set E, together with a non-empty collection I of

L

subsets of E called‘independent sets satisfying the'following

Jj

properties:

(I,) Any subset of an independent set is an independent set.
/
(Iz) If I and J are independent sets, and [J] > II,,

then there exists an element x belonging to J but not to I

T

S ey Bl

=X

with the ﬁ%opé§%§-fﬁdf I U‘{;} is an independenti set. Here I;f
denotes the number of elements in the set I.

Remark. Condition (Iz) can be replaced by the following

v condition:

(I) If N={e1’.”’ep} and N’ ={e:s”.’e;;+.i} are two

independent sets, then for some i such that ei is not in N,

) ks iy

=3

3 .
L1 N U.{;{J is independent.

Definition 6.3. A matroid M = (E,r) consists of a non-

empty finite set E, togefher with an integer-valued function r

called its rank function which is defined on the set of subsets of

: 1 E and which satisfies the following:
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(r,) For each subset 4 of E, O g r(A) < ’A,.

(r2) If AcBe E, then r(A) < r(B).

(rs) For any A, B <E, r(AUB)+r(An B) < r(A)+r(B)

It is not difficult to show that these three condition put

together are equivalent to the followings:
(Ry) r(¢) =

(Rz) For any subset N and any element e not in N,

r(NU{ }): r(N)+k, (k =0 or 1).

(R;) For any subset N and -elements" €1, €2 not in N,

it ;(Nu[e, J> ,<NU {D- *(N), then r(NU {e} {ez}>=r(N).

All the above definitions (i.e. Def. 6,1 Def. 6.3.) are

equivalent. For example we shall show tHat Def. 6.2 and Def. 6.3

are equivalent in the following:

Proof. Def. 6.2, = Def. 6.3. Assume first that M = (E,I)

is a matroid defined in terms of its independent sets. We define
the rank of A to be the size of the largest independent set con-

tained in A apg denote it by r(A) Then a subset of E is in-

dependent if ang Oonly if r(A) = ,A[. We shall prove pProperties

(rg), (rz), (;3). (r,) and (rz) are obvious from the definition

of the rank function r, To prove (r;), let X be a bass (that
is, the maximal independent subset) of A N B. Since X is an

independent subset of A, by applying (Iz) repeatedly, X can

K0 iR T SRR

AR T
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Je extended to a base .Y of A and then Y extended to a base
> of AV B. Then 2Z - Y, hés no point in common with A, since
otherwise Y would not be a maximal independent ih A. Since
X v (Z—Y) is an independent subsetvof B, i% folléws that
r(8) » r(xu(z-v)) = [x|+(|z|-|¥])
= r(AnB)+r(AUB)-r(a).

Def. 6.3. =4-Def. 6.2, Converseiy, let M= (E;r) bea
‘atroid defined in terms of a rank functidh r. Define a subset
A of .E to be independent if and only if r(A) = IA,. Td show
that (I,) holds, let lJl < II’. Since i is an independent -
sot ,|I.l = r(1). Let [1|-|0]=%. If k=1 then I = JU{e},

2 ﬁ~J and by (r;) we have '

(o0 H) <x@e{ o (a0 o))
r(J);r([e}>r(¢) - r(J)+|<{e}>
Since .({eD < le]=1, -({e}): 0 or 1. Thus r(J) < r(1)

s r(J)+L with £ =0 or 1. Suppose now that r(J) < |[7{. Then

r(I)

(1) < |J'+ N lJ,+1 = II,-1+1 = lI] contradicting the assumption
that I is indepepdent. Thus r(J) = [J| and J is independent.

Suppose that (I4) holds for k, and let II!~IJ, = k+1. Let

2 I and e ¢ J;, then [Il—l&il{e}l = k. Then by induction

gy
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assumption J y {e} is independent. Hence J is also independent

2s shown above for the case k = 1.
To prove (Iz), suppose that I and J are two independent

sets and 'Il = K, IJ, = k+1. Suppose that for every element e

0 (10 fo]) 0. men s e, {rofo o))
(oD R oo et
wen (sofe (o fe )= o 1 e o 1 ot
1) < {10fo,Jofo,]) v v (oo

By using induction we can conclude then that r(ILJJ) =k 2 r(J)

i

which contradicts thé fact that J is independent. Hence there

exisfs an element f € J with r(IlJ{f}):: k+i, that is I v {f}
is independent. - o

Remark. In a matroid M = (E,B) we define a subset A of
E to be an independent set if A is contained in some base of M.
And in a matroid M = (E,I) we define a base to be -any maximal
independent set. Since A 1is independent if and only if .r(A) =
[A] it follows that B is a base if and only if [B| = r(B) = r(E)

(to mean a maximal independent set).

Exampie 1. (Matrix). Let E be a finite set of vectors

" some vector .space V over a field F. We can define d matroid __

Nrmaa g et
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M on E by taking as independent sets of the matroid those sub-

. sets of E which are lineary.independent in V. The bases of M

are then precisely those subsets of E which span the same sub-
Space as E. The rank of any subsets A of E ig 8imply the
dimension of the subspace of Vv Spanned by A. The set of columns
of a matrix belongs to such class of matroids and the rank of the
matroid is the rank of the matrix,

Given a matroid M on a set E, we shall say that - is

over F and a map p from E to V with the prOperty that a
Subset A of E is independent in M if and only if 3& is one—b
one on A and ¢(A) 1is linealy independent in v, '
Examg;e 2. (Graphs). A graph is defined to be a pair
(V(G),E(G)) consisting of a finite non-empty set V(G) of elements
called vert;ces and another finite-family E(G) of unordered pairs ‘ \

of elements of VQG) called edge « Edge of a graph is used to be

denoted by its unordered pair of vertices like [ } or {; v}.

The edge {v,v} is called a loop, and tow edges represénted by the

Same pair {;,W} of vertices are called multiple edpges. Any graph

—ﬂ containing no loops or multiple edges is called a simple graph. A
graph, each of whose vertices bg;ongs to V(G) and each of whose ;

cdges belongs to E(G), is called a subpraph of G. Two graphs
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G and G’ are-said to be isomorphic if there-isbaione-one corres-
pondence between their sets of vertices with thelpfoperty that the
number of edges joining any two vertices of G is equal to the
number of edges joining the corresponding vertices of ‘Q'.

A path in a graph G 1is a finite sequence of distinet’edges

of the form {to,v,},{t‘,vé§,°°°,{t ,v.}. A graph is connected
\ - m=-1°'m : | ———

if, given any twoAvertices v and Wy there is a path connecting
v and w. Any graph which is not connected.muy be Split up_into
‘a finite number of connected subéraphs, called*comgonent .

A non-empty path in which all vertices are distinct except

for v, and v which are the same, is called a circuit. If
m T

vo £ vp it is called a chain. A cutset of a graph - G is:a set

of edges whose removal»increases the number of components of G,

and ﬁhich is mimimalrwith/respect to this property, any such set

without minimal property is called a disconnecting set.

A graph which contains no c1rcuits is called a forest, and
a connected forest is called a tree. For a tree there are following
equivalent statements: -
(1) T is a tree with n .veftices (i.e. T 1is connected,
and contains notcircuits)
(11) T - contains‘no circuits and has ‘n"'=- 1 edges.

(111) T is connected and has n -1 edges.v

et - G TN
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(iv) T is connected, and every edge is an isthmus, where
an isthmus is an edge which itself forms a cutset.
(V) Any two vertices of T are connected by exactly one chain

(vi) T contains no circuits, but the addition of any newfedge

creates exactly one circuit.

If G 1is a connected graph, then a spanning tree T of G
is a tree which contains every verteiiof G and aii of whose edges
are edges of G, Given any connected graph we can take a circuit
e, and remove one of its- edges, 53y e, the resulting graph remains

connected, since the vertices of thc removed edge are connected by

a path C - { } Repeat this procedure with one of the remaining

r -

circu1ts, continuing until there are no circuits 1eft.‘ The'graph

which remains will be a spanning tree of G.

If G denotes an arbitrary graph with n vertices,g m edges

and k components, we can carry out the above procedure on each

component of G and obtain a’ sgannigg forest.z The number of - edges

removed in the process is called the circuit rank of G and it 1s

denoted by y(G) The number of edges in a spanning forest is.

called the cutset rank and it is denoted by K(G) )
Since a tree with h vertices has h - 1 edges, the cutset

rank of G (with n vertices, m edges and k components) is

n-k = (D1-1)+<n2-1)+"'+(nk;1) vnere n1 is the number of vertices

of the i-th component, hence n = Eni.

Hence the circuit rank
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s . _
- { y(G) = m—(n—k) = m-n+k.
.

] For any graph, it can be shown that
_J‘ (GB,) no spanning forest of G contains another spanning
2 forest as a proper subgraph,

)

. (6B,) 1if T, and T, are two spanning forests of G, and

) ;

o e is an edge of Ty, then there exists an edge f of Tz with

J "

- i - '
a8 the property that <T1-{e}> U {f} (the graph obtained from T; on
- | _

i
- replacing e by f) is also a spamning forest-of G. .

- i Thus a matroid can be associated in a2 natural way with any
= G by letting E 'be the set of edges of G and taking as bases
?J} the sets of edges of the spanning forest of .G. .This matroid is

; . . . |

i) ‘ called the circuit matroid of G and is denoted by M(G).

gJ The independent sets of M(G) are simply those set of edges
= - which contains no circuits, in other words the edge-sets of the
.3 h -

‘ forests contained in G. Since a subset of M(G) which is not
_,Z independent is called'dependent, circuits of: G 1is a: dependent
L set of M(G) and evéry depehdent set contains a circuit. Thus a
s . circuit of G is a minimal dependent set of M(G). Since M(G)

! is also defined by 1ndependent sets which are in turns determined
I

by dependent sets, so circuits of G determines independent sets
N of M(G).  Thus the properties of circuits of G would suggest
. the definition of a matroid in terms of circuits. For any.graph
= » G it can be shown that
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(GC,) no circuit-properiy contains another circuit,:
(GCz) if Cy and C, are distinct circuit of a graph G,
each containing an'cdge e, then there exists a circuit in CivcC,

which does not contain e.

These properties‘suggest the following definition of a matroids:

Definition 6.4. A matroid M = (E,c) consists of . a non-eﬁpty
finite set E, together with a collection C of non-empty  subsets
of E ,callea circuits satiSfying the following properties:

(Cq)A No circuit~contains”énofher‘circuit.

(Cz) if Cy and C, are distinét circuits edch:cputaining
an element x, then there exists a circuit in Cy U C, which does -

not contain x; - §

This definition is also equivalent to all definitions given

above. In N = (E I), a minimal dependent set is called a c1rcuit

and in M = (E C) a set which éoes not contain a circuit is called

independent. . V : . T

By the equivalénce of these definitions, we see that C 4is -

a circuit if and Oonly if }(C) = ,C’-1. Thus in M(E,r), can give

the following definitions: A loop of a matroid M = (E,r) is an

Etenent e of 'E"sbtisfying“'q<{§}>:= O, and a pair of parallel

&éYcments of M is a pair {;,f} of elcments of E which are not

lobps and which satisfy 4({;,f}> = 1. A matroid which contains




A
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1. ] no loops or pairs of parallel elements is called a simple matrpid.

~ Two manifolds M1_=-(E1;T1) and Mz = (Ez,I;) are said fo
be isomorphic if there is a one-one correspondence between the sets
Eq aﬁd E2 which:preserves independence.
Although matroid isomdrphism preééfvéé circpit;, cutsets and
4 the number of edges in a graph, it does not in general preserve
o . connectedness, the number of vertices or their degrees.
Given a matroid M, if there exists a ‘graph G‘ such that

M is isomorphic to M(G), then M 1is called a graphic matroid.

1 Example 3. Given a graph G, the circuit matroid M(G)' is
- not the only matroid which'can be defined on the set of edges of G.

MY N

Since a cutset is a disconnecting set, it follpw from this

] minimal property the following:

'(GC1) No cutset property contains another cutset.

It can also be shown the following:

(6ct) 1f cf and C¥ are distihct cutsets of G, each

Rt
AP

: containing an edge e, then there exists a cutset in C% VU C%
which does not contain e.

Thus tke set of ail cutsets of a graph satisfies the two
_}. conditions of Definition 6.4. of a matroid M = (E,c) by taking

} circuits of the matroid the cutsets of G.

FERT LR e e e,

This matroid is called the cutset matroid of G and is

denoted by M*(G). A set of edges of G. is independent on M*(G)

§ApN et
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. 1if and only if it contains no cutsets of G.
A matroid M 1is called cographic if M is isomorphic to

the cutset matroid of some graph G,

In order to give 1attice~the6retic investigation of matroids
we give a definition of matroid in terms of closure operation as

follows:

Definition 6.5. A matroid M = (E,c) consist of a non~

empty finite set E, together with a function c : P(E) — P(E)»
(power set of -E), Satisfying the following properties:
(c4) Por each subset A of E, Ac<c(A) = c(q(A)).

(c2) If AcB€< E, then c(A) ¢ c(B).

() 1t x e davfy]) xfc) ten y < {hofs]).

The first two of_thésé_conditions express-the fact that ¢
is a closure bperat;qn on é and the third says that c¢ satisfies
the so;cailed exchange condition.

A ma%roid‘definediinAterms of its closure operation is some;
times called a pregeometry. |

Def. 6.3. = Def. 6.5. If M= (E,r) 4is a matroid on.E
ﬂef;ned in ;eggs of its rank function r théﬁ the closuxe.(or
span) c(A) of a subset A of E 1is defined to be thé §et of

all those elements x of E which depend on A, that is

o) = [xfg,r@u[x}) - r(A)}. S

s s,

229 ,.
ot

i e
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. 1f and only if it contains no cutsets of G.

A matroid M is called cographic if M 1is isomorphic to

the cutset matroid of some graph G.

In order td‘give lattice theéretic investigation of matroids

we give a definition of matroid in terms of closure operation as

follows:

Definition 6.5. A matroid M = (E,c) consist of a non=

empty finite set E, together with a function c : P(E) =% P(E)-
(power set of .E), Satisfying the following properties: |
(c.) For each subset A of E, A C c(A) = c(q(A)).

(c2) If AcB<E, then c(a) < c(B).

(cs) If x € c(A‘u {y}) x & c(a) then ly € c(ﬁd{x})

The first two of_thésé_conditions express.the fact that ¢
is a closure bperat;qn on é and the third says that c¢ satisfies
the so4cai1ed exchange condition.

A matroid defined:inrterms of its closure operation is some;
times called a pregeometry. |

Def. 6.3. = Def. 6.5. 'If M= (E,r) is a matroid on . E
ﬂef;ned in ﬁegpé of its rank functién r théﬁ the closuxe.(or
span) c(A) of a subset A of E 1is defined to be the get of

all those elements x of E which»dépend on A, that is

) = [sesn(nu[x]) =2 0], S

R ]

(O IR R TR
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Then we can show that (cy), (c2), (c;)_ hold:

(c;). ASC(A) is obwious. Let x Ec(c(A)), then

o o) U;[x}>=.r(c(A)). tee o(x =" N
(a0, Jofx]) {wofx]) ou ;<Au_{x, s x} of+))

= r(c(A)j and it can be shown that r(c(A)) = r(a) < r(Au{xD,

Therefore [(AU{X}): r(ﬁﬁ) and x € c(A). That is c,(“c(A‘)l__)‘Sc(A).

Now r(c(A)) = r(A) can be shown with respect to s of the '

number of point such that c(a) = AU'{X,,"" ,.xs}. sgim;e.

W= wofrrn) @ = {sofe])- (ofe])e men

v, o0 fxm] = <. -sUppqse' that .-(Au{x,,---,xtD:rcA).
O Ty RO A, A
TR VR PR

!»Au{xt } = r(A) since Xis A€ q(A). Obviously

{
(o[ Jofon]) <0, e o{ofs e, )

r-( A) .
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(c2). Let xe&c(A) and A< B - Au{yi-,"',yn}. Since
x € c(A), we bave z(Au {x})_: r(A). Now suppose  x £ B, then
(o[- {nefroom) (WARCIERNEE).
~x{A) = r(ﬁ)+r(A)-r(1}) = r(B). Obviously -(Bv{x}) > r(8), which

together with the above inequality implies 1<Bu{x}> '= 1‘(}3)', that

is x € ¢(B). Thus c(A) & c(B).

(c3). x <C<Au{y}> inplies that ‘..<Au{y} { }) r(Au{ })
And x £ c(A) implies that .(Au{ 5) = r(A)+1,; since r(AU{x "
40 s (10, o{nafe])
o () ol
fact that 1<Au{x} ;,H)= ,<Au{y}> < r(a)st.

r(A)+2 which contradicts: the

Remark. If a matroid M- is a simple matroid then c(¢)

and c<{ }) { } since fo x satistics (&D 0,

hence ({x}): 1 for évery X € E. Moreover, no y Z x satisfies

r(A)+1. Now if y 4 {AU{} -
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M is a geametry as defined in Crapo and. lLota's book.

It is also to be noted that a subset A of E is independent

in M= (E,c) if and only if x £ {A—[x}) for each x € A.’ Since

() o “;(A.H) ot emy 12 {ife]) = =0

But A 1is independent if and only if r(A) = lAl, and for this

relation to hold it is necessary and sufficient that

r(B—{x}): [B|-1 holds for every subset B of A. _ '

Ii: M = (E,c) | is a matroid in terms of closuq;.'e operation_' c
on E defined in.l..)ef.' 6.5, it can be show the followings:

Theorem 6.1. For any two subsets A, B of E:,

(i) c(Aﬂ B) E‘c(A)(\c(B), and

(11) c(auB) = c(c(a) Ue(B)).

Proof. Ffom A< c(A), D < c(D) it foilows t'ha_t
AnB<c(a)ne(B) and Acv B < c(A) u ¢(B). Then it follows

that c(ANnB) € c(c(A)nc(B)) and c(AuB) < c(c(a) ue(B)). Since

O(Hc(Aa)> = Hc(Aa) holds generally, from the former inclusion
a a ’

rclation we obtain (1) c(an D) 3 c(A) N c(B-). To obtain (ii),, v

we note that A, B< AuDB imply c(A), c(D) = c(A UB.), and hence

c(A) u c(D) c c(AUB). Thus c(c(A) Uc(D)) < c(c(AUB)) = c(AU B)
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which together with c(AvuD) € c(c(A) ve(B)) implies (Ii).

Lemma 6.2. For x €E, .c<{X}>:= c(¢b holds if_énd only if

\

x € c(¢). | ) | ' 5 N -

Proof. If. {{x}): c(¢) "thgp_ X € c:_(sb) s:if\ce {x}g c({x})-

‘

Cox;ver;ely,‘ if x € c(¢) then c({x}) < c(c(¢)) ;; c(¢). On th.e';v

other hand, since ¢ = A for any subset A;l,c(¢) <€ c(A). Thﬁs

especially c({xD 2 c(¢). Hence c({x}): c(¢)|. :

For lattice-thoretic investigatign of M= (E,c), we define
a subset of- E ta be a closed set (or subggace) if q(A) = A .as
in § 2. Tﬁe set of all closeq subsets of E forms a lattice L(M)
with respect to set ipclusion. Since c(¢)‘g c(A) for every
c(A) eL(M), c(¢>) is the null-element of the lattice L(M). Im

L(M), c(a)+c(B) = c(c(A) uc(B)) and c(a)-c(B) = c(a)an c(B):

Lemma 6.3. An element p € L(M) is an-atom if and only if

p 1is represented.as p = c({%}) with x £ c(d).

Proof. Suppose x £ c(¢), then c(¢) § °<{XD

Suppose c(¢) € c(‘A) < {{x}) and c(¢) # c(A), then there exists.

an clement y € c(A), y £ e(4). Then c(¢)§ {{yb/_c_ci:)'s{{xb
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o oo D 4D

y £e(g) vy (e3) ire\l:.:ive :fu(c(qs)u{}) <{ }). Thus _~

L) <Ap)) momoms (G- (fe)pmrene )

oo e <08 ) o (e

and it is an atom in L(M). e

ConVérSely,, suppose tixz_xt .p is an.atom in L(M).. -Let

= &% c(A) and A \{x, ] Then () = ‘({xi}uu{"mb | : |
<<{ Proend () er{al) s wh o <o
tabgw dnan e TR ‘({ﬂ}) # 0 (nence x A o(@)). ey

C<L }) O. Since p covers O, it follows that p = C({’ﬁ})' A

Lemma 6. 6.4. The lattice L(M) satlsfles the- exchange property.

-~ Proof. Suppose‘tha.t p, @ are two atoms, then there exist

elements x,y € E such that );,y,é c(¢) and p = <{x3>’ q.= {{);;}

Suppose now that p < a+q and p)( a. Let a = c(A).. Then L -

L)) ‘{SSW {:])- ‘(“’m> ana {[x]) gt pro,',,fthe*

lattice it follows that x ,é c(A), and from the former we have
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. @U s oy (o), “{M{D:{qnu(@,

i
.

hen;e c{{: J> c c<c(A)U c<fﬂ> That is q € a+p//.

As shown above, every element a = c(a) of L(M) can be ‘ ;

i represented by ; = c<{x1}>+"'+b<(xm1> where A = {x',{".xm}.
(G K

: Each <i{x.1> is either an atom or 0 of the lattipe L(M). Thu;f

b

J

each Iement a € L(M) is the lattice -join of:atoﬁs qontained in

every chain from O = c(¢)

| S

it. Since a+p = 2 or a + p covers a,

to a = c(A) = ({x,}}u{{xm}) is of fini'fe lgn?th.

exchange property is equivalent to covering

: In such lattice,

5¢1.. Then by Thm. 5.9. and Thm. 5.10., there

property by Thm.

- exists a rank function l(x) on L(M) which satisfies

; X(x+y)+k(x'y) < X(x)+k(y) for x, y € L(M).

Thus far it is proved'that given a matroid on a set” E we

can define a matroid lattice L(M) whose elements are the closed-

P L SRy . B
A e AP s e Tl e . Qi -
3 - - —
Hua

- e i g — S W

subscets of Ev

-

By The. 3.L4., we know that given a matroid lattice:ofiiinijei

a M(L) defmed on the- ~sz’_t of

rank we can olbtain a simple matroi

points of L, by defining a subsct A of E to be independent

in M(L) 4f and cnly if the join of points in A has (1attice)

rank cqual to [Al.
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Def. 6.5. => Def. 6.3. Now in a matroid M = (E,c). we define
a rank function r on subsets A of E by r(A) = X(C(A.).). Then
it can be shown that this function r satisfies (r,), (rz) and

(r3) 1in the Det. 6.3. (ry): Since O < X(c(A)), 0 < r(A).

SRR () S (I PO S, R

b + c<{xj}> is either equal to b or it covers b, r(A) = A(c(A))

< |al. (r2): If A€BeE then c(a) € ¢(B), nence A(c(a)) <
l(c(B)) and r(A) < r(D) (rs): For any A, B€E, let x = c(A),
y - c(B) then r(AnB) AMc(aaB)) < A(e(a) 0 c(B)) = AM(x*y) and
r(AuB) ='7\.(c(AUB)) = Melc(a)ve(B))) = A(xty). Then r(AaB)s+
r(AUB) < N(x=y)sh(xsy) € A(x)sA(y) = e(a)er(m)e |
Remark. As remarked above, since Def. 6.3. =z Def. 6.5.,
M 1is a simple matroid if and only if c(¢) = ¢ and c({x}): {x}
for X < E, | ' |
We have only 'given an introduction to i:he theory of matroids
defined on finite sets. For the theory of matroids defined on

infinte sets one should refer to papers of Rado or Brualdi and

Scrimger.
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ig & 7¢ Linear geometiy and deSCriptive.geqmetry
"J} In § 3 we gave an example-genetalized linear ‘geometry —
:J; wHode associated lattice does not neéessariiy sutisfy the exchange
_ ; : property, Sinés 'it:-cqntains a remarknble geoﬁtetry == descriptive
'Jf geometfy, we are now diécussing it in details. |

)

- A generalirved 1inear geometry was defined there to be a set
ng G of points, in which a 3~term relation (p,q,r) called order is
L]; defined such that |

; ' 01. 1If (p,q,r) then p, g, r are distinct.
" 02, 1f (p Q:r) then (r,Q:p)

| 06’. If X € y+r and Y € p+q, then there exists.a point

o % such that x € p+z and z € a+r. 'S
] j Here we denote

o [xfﬁl(p,x;q)}u{g,'q} it p £ q,

] if p = q.

| — L=

Definifion Tots

If a#Zb the set consisting of a, b and

) all x for which (x a b) or (a,x,b) or _(a,b,x) is called a

line _ab or simply a line, and is denoted ab,

; We shall concern with a generalized linear geometry which
also satisfies the following postulate:

- 03. If a Zb there is a unique line contalning a and b,

Definition 7.2,

Any sustem which satisfies 01, 02, 06/, 03

and another postulate oL’

Oon connected point pair is called a
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linear geometry, but in this section we are only discussing a

generalized linear geometry satisfying 03, and we will call it

simply linear gggmetry (not in the original sense)

The linear geometry can be divided into two different kinds
of geometries according as it satisfies which one of the .followimg
two conditions.

07%. There exist points a, b, ¢ such that (q,b,e) is
true and (b,c,a) is false.

O72.A If (a,b,c) then (c,b,a).

These two conditicns are mutually exclusive.

'.Definition 7 3. We shall call the 11near gebmetry which

satisfies .07, a descriptive geometry and the one which satisfies

072 a Q_pjective ngmetry.

I: G 1s'projective and " a # b, the line ab = ‘a+b), (b,a;c)
and--(c;b,d).

Definition 7.4. In a linear geometry G, a set of points

is said to be ndditively closed (or convcx) if it contains with ‘

a2, b their join a + b,

Definition 7.5. In a linear geomctry G, let S be'a set

of Doints such that a,t € S (a { b) implies § > ab (1ine).

Then we say S is linearly closed or a 11near set. If a ,***,a

n

are points of G then A, the linearvset generalized or spanned

by a','°’,an denotes the least linear set in G- which conth}ns

T e o P - e

RIN
1“
1

e LR N & utee B

e L S R I St cee 2 B3R R L
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ai.,'--,an. We alsq say a,,‘",an is a system of generators of ' A.

Coroilarz. Any linearly closed sct is additively closed,

since if a £ b, 1line ab > asb.
As shown in § 3, the set of all addifively closed sets of a
linear geometry is a complete, upper-continuous (denoted as property

(II)) and atomistic (denoted as property (I)) lattice LG which is

also linear, that is

'(fV’) (Linea_r). If- a point p < atb, a,b £ O-, then there
exist q s's. and r £b such fhat P € Q+r. .
Futthermore, it also fo}.iqws from § 3 that tl(ze set of all

linear sets forms a complefé, upper-continuous and atomistic lattice

L. which is a (*)-subband of the lattice L; by the above corollary.

Let pyY-r-- Vpn be the linear set generated by p,,"',pn.

Then a,v"'Van 2 a‘+"'+an. For n = 2, this is true since line

Pqd = PVYQq > p+q. Assume that this is true for - k. Let p€ P+

+pk+pk+'.‘ Then by (IVI) there exists q € p’_,_..._,_pk .such that
Cc 2 ey i . -
Pe€pP .+E qQvp, .. € 1.71\!4: ‘ Pky pk+1, since q ¢ Pytet4py €

p1iY- "'\'pk by induction assumption. Thus Py+*®°+p <€ pyve: Yp .

Now if G 1is projective then Py +°°°+ pk is a linear set,

since p,q € p‘+"'+pk 1_m_p1‘1es pV‘q = p+q ¢ p1+"'+pk«'." Then

p‘v -‘. .v'pk.

by the definition of pyVv se-y P, we have p +4-- *+p,
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Thus if G ig proJective, its linear sets comprise LG

(that is, f& = LG). If G 1is descriptive its linear sets does

not comprise LG.

In order to study more properties of LG’ we recall first

that in an arbitrary lattice L, a sequence p‘,"',pn is called

i independent if Py, +°*°4p P, +*°°4p = 0 for every choice
i, i, \ Js Js

of 11,'*',ir, j',"',Js as distinct integers in the range 1,

*sN. In the contrary case we use the term dependent.

3 N T TS
r 1 r
|

Definition 2.6. If p, p,,"‘,pn are points of "L such that

<D+P1‘+"'+Pi )(pd +tap, )# o,
r S

e Py #+°°*4p P; +°* 4 =0
( 1y ir)( 4 Js)

for some choice of 1y9%°,1

i

r? j,.’a',qjs in the range 1,oon’n,

we say p is dependent on o oie .

By this definition with n = 2, we see that p ig dependent
on pe, pp, if and only if P € line pyp, = P1 v p2, since ifr P

is dependent on p4, p> then either p(p1+p2) =0 or (p+p1)pz = 0

>
Pi°pa = O, or (p+p2)p, = 0, P1*'p2 = 0, that is either P = py

°F P =p2 or (py,p,ps) or (Psp25p1) or (psp1,p2), hence

P € line P1P 2, conversely if P € line Pi1P2, by reversing the

M Garad e o T P Wt TR et

o b ey e e
‘ w SB35 35 NSRBI Y
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above argument we see that p 1is dependent on py, p2.

Lemma 7.1. In a linear geometry G, LG_'satisfies the

following:

(III’) p 1is dependent on pq,"',Pn if and only if

p €p,Y "'y/pn the linear set generated by pq,"‘,pn.

Proof. Suppose p dependent on p,,“',pn in LG. Then

there exist integers ii’...’ir’ Ji’...’Js in the range 1,*°*,n

p+p, + c4+p. |[(p, +*cc4p, )£ O
<p1 +ordpy ><pj +0004p >= 0.
Sy r 1 Is

From the first relation weé have

such that

X € 'p+pi 000+,
! r

X €p, +°°°4p

J

S

Ji

for some point x. If x=p then p €p, +°*-4p. < p,V**Vp. ,
J Jg Jg - “dg

sinse the last inclusion relation was proved before,

Suppose x % p. Then Py +° 4Py % 0, since otherwise X € p.
r

Then x € p+pi +°--+pi implies that x p+y with y € pi1+"'+pi S
1 .
r r

S LR ) + l...
ince x € pj + +pjs, y € pi + +pir

and . +'o.-+
pJ pJS’
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Py 4TIy € BB, Uhe Mne Xy o= vy Yt = P

We shall show now that p 1line x ys From ® ¢ pJ‘+*“+pJ )
LR A | L o L A B . AR T I f 1 : s

and jpi +0‘f+pi V(p +*°*4p =Q it follows that x { ¥+ Then
1 ¥ Js s/

from x € p+y it follows that (p,x,y), since if p = y then
P+y = p = X eontradictory to p 4 ¥+ Thus p & lipe x vy follows
Trom the definition of lines

To prave the sufficiengy we treat the projecotive and descrip-

tive cases geparatelyy; S8uppose G 1s projective, then P = PV VP
= p’+09!+pn‘ Hence p € P inplies p ¢ Py#***+p  so that p is
depondent on p,,"',pn in LG.

Now let G be a descriptive geometry, then the sufficiency
follows immediately from:

Lemma 7.2. In a descriptive geometry G, let p1"..’pt

form a minimal system of generators of a linear set A. Then p €A
implies that | is dependent on p,,f",ptv in LG.

From a minimal system of generators Py »***sP of P by
1 t

deleting superfluous elements from pi,"',pn one by one. Then
Ly the above lemma 7.2., p € P = p1v"'Vp“ implies that p is

dependent on pk1,--".pk and so on p,,"‘,pn-

e ot
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The proof of Lemma 7.2., will be given later.

Definition 7.7. Suppose a is an element of an arbitrary

lattice such that the relation "p is dependent on Pys*"*sp € a”

always imply p < a. Then we say a is a linearly closed element
of L.

" Since ia L the meet of closed elements is closed, if a5

i €I is a system of elements of L, there exists in L a unique
least closed element containing the ai.

Definition 7.8. The least closed elcment containing Pys

i €I 1is called the closure of the system Pss i €I; fora

finite system Pys 1 €1i<n, it is denoted by {51,"',pn}}

.'Since p 1is dependent on P1, P2 1if and only if p € 1lin pyp,

= P1V p2, any closed element of LG is a linear set of G, that
is an element of E&. Let a be a closed element and let P1, P2

be two points with py, p € a., Let p be a point on the line p4pa,
then p 1is dependent on P1, P2 sO p <£a. Thus a is a linear

set of G. Conversely, if A is a linear set of G and in LG’

P 1s dependent on Py;"" 5P € A. Then by Lemma 7.1., p € 08

‘VPn € A. Thus A 1is a closed element of LG. Thus we have shown:

Lemma 7;5.  The clcsed elements of LG are identical with

e e a0 - Hrma : T O L R TR ¥ - .
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~ the linear gets of G; hence they arc identical with elements of

4 ] bebn ] i G oo :

This yields the following:

Corollary. If G 1is projective, (VIi) evsry element of Lq

closed, If G 1is descriptive, {VI;! not every element of L

G

=2
is closed.

In view of Lemma 7i1%s and Lemma 7.3: we have

Lemma 7.4. In a linear geometry G; LG ~satisfies :gHe
fallowing:

(111*) p 1s dependent on .p1,9'9,pn if and only if

' i
P < [p,,"".pn]- -

Lemma 7.5. In a complete, upper-continuous; atomistic lattice,

two conditions (III) and (III”) are equivalent, where

(III) If p 1is dependent on q1,°'°,qm and q”...,qm are
dependent on LEE RS then p 1is dependent on Tys®* T e

Proof, (III%) = (.;11). By (I11%) p < {q,,"‘,qm) and
. - o i J

q"!"’qm < {r1€9°’,rn}- Hence {qi’.."qm] < {;1’0-v’rn} and

P < {;1,"‘,rn}, By (III”) again, p 1is dependent on Tys® " T o

(111) = (111#). In L, 1et
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a= {p ¢ point l‘p is dependent o ﬁi;*‘i,pn};

(A) Iz p 1is o point; p 1is dependent i py**'yp, L
} : and only if p & sup a

If p is dependent on pg,'°‘;pn, then p € @ and p € sup &

.Conversely, suppose that p € sup Q. Then by (II) upper—continui;y,
, P <qutt+a with q €a, 1= j,s++,mj Thus by the definition

of dependence 6f p oh a system of points; p 1is dependent on

a,9}**,q,6 Each d, belng in a, 1s dependent on Bijttéyp, SO

that by property (III)A p 1s dependent on p‘,"',ph,

¢
i

Now we show that sup a = [ﬁ',"',pn}. Since bi;;",pn € a,

— A

p,,“',pn € sup Q. “If x 1is closed‘and Pyt P, € x then p £ Xx

for all p.- dependent of p,,f",pn; Thus x > p for all element

p in @ Hence x > sup @ Thus to infer sup a = {%""?,pn},

it suffices to show sup @ closed. To prove this, suppose q

dependent on T,,?*?,r, < sup o Then by (A) each ry is dependent

on p,*1*,p . Hence by (1II1) q is dependent on p,,!'z,p“' apd

(A) implies q € sup a. Thus by Def. 777,, .sup a 1is closed gnd

sup a = {E""f’pn} is verified. Conbining (A) and sup a = {P"

"‘,pn} we have the desired result.
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Lemma 7.6. 1In a complete, upper-continuous, atomigtie lattice
satisfying (Iii), the twa conditions (IV) ana (1v/) nbg equivalent,
whete |

(-IV). Let ¢ be closed. Then a € c¢ implies (a+b) = a+bc,
that.is M(bc) provided that ¢ is closed: -

Proof. (IV )= (Iv)i (IV) is trivial if & or b = 0.
Suppose a, b ;4 0v clearly asbe < (a+b)dc. To prove the converse
inclusion we show that t < (a-i-b):‘vc' implies t < a+bcéi Since
t &€ a+d;, by (IV’) t < b+q with p <sa; q <DL} Obviﬁ_usly p §c
also holdss If t = py theh obviously t = p € a+bci Suppose

t ;! p. Then by defihition q 1is _d'epexidcnt on p, t (since (‘p+q)'t

0, p*t =0), Hence p,t £c and c is closed lrso q € ce Thus | :
q € be so that p+q a+bc and t < a+bflc. _ |
Before showing the iﬁplicgﬁidn (1v) = (1v’), we show the
following:
Lemma 7.7. Ina complete, upper—contiimous, atomistic lattice
satisfying (iII") and (IV)? if p, q, r, s are points and r ;é s
then pv q z2r, s implies PVa=rvs.
Proof. Since r £ sy one of r, s 1is distinct from p,
say r. We show _ﬁ.rst_ that in view of Pvyq2r and p ;! r we
say "exchnnge" q foxf r getting py_g = pvre. Clearly pvyq 2pvVr
(pvag >r implies pvgq var).- By (III”) pvgq 2r implies that

r 1is dependent on p, qe Thus either g;)_r(p+q) ;( 0O or -(ii)

(r+p)'q =0 and p*q=0 or (iii) (r+q)'p ;! O and p°q = O.
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For the case (1), we have (pta)r = ry By (1V) we have
(p+q)(rvp) = p+.q(r‘Vp) isnce r vp 1is closed, If q(rv p) =0
tﬁen (p+q)(;ﬁyp) = p contradictory to p+q 2 ry, rYP r and

r £ py Thus q(rv Pl =d end (p+a)(rvp) = pege Hewee rvp 3
P¥d >q S0 rvp >pva and consequently pygq = rvps

Case (11)1 We have r+p 2 qj Then FYR 2 r+p 2 q. Hence
rvp 2pvq. t.ma consequently rvp = pvyq.

Case (iii)s (x‘+q)p Z 0. Since r Zp so this means that
q is dependent on P, r and q Spvr, hence’ PVqQ €pvr and
TYyp =pvas

Hence pryp = PYQ 2 s ﬁnd r ;! §, we may, by the above
argument "exchange" p for s in rvop ' gett%ng VD = ryse.

Thus pvgq = rvs and the proof is complete,

Proof of Lemma 7.6 (contnued) (1v) = (1v’). rLet P € a+b
gnd a,b ;.( 0. | First consi&er --t_he case in which a2 1is a point.
If p=a or p<b the result is trivial, since each non;zem T
clement contains a point by (1) the atomisticity, Suppose p £ a,

P ;f bs Then we have by (IV)
P § (a+b)(a vp) = a+b(avp) = a+b’,
where b/ = b(?‘YP) and {g,p} is also denoted by a v Py

Let a be the set of points contained in b’, and a; be

the set formed by adjoining a to a. Then Ly (I), b/ = sup a

. so that p < a+b = a+sup @ = sup a4. Hence by (II), p 1is
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contained in the join of a finite subset of ay: Since p K'b;
this finite subset of @i must cantain a (assume that o 1is not
cantained in this set, then P 1is containdd ip b’y th_z;t is

p <b(av ?) so it is also contained in b contradictory to the
supposition p A:b). Thus

1 ‘ P S at+r +°*°°+r
(1) e,

where r, are points, r 6 ¢ b', 1 <1 €m¢ In (1), m 21 since

i
athe:wise p = a contradictory to our supposition. ¥We may assume

>that superfluous r's have been deleted in (1). Thus the r,

are diséincto

‘We show m = 1. S8uppose m > 1. Then there are ﬁtbleast-two
ry, rs <-bf €.2 p.. Since r, # rz, DLy Lemma 7.7. we have ryvr,
= avp > a. Thus by (III”) a 1s dependent on ry, r,. Then
either a(ry+r,) Z0 or (a+r1)£zlf 6 or (a+rz)ry £ 0; that is
one of the points a, rqy, rp |is containéﬁﬂih'fhé Jo;n of the other
two. This is*no£ true for a (that is, a X r1+r;), #ince
a2 S ry+r, implies the redundance of a in (1) so that p <b
contradictory to our suppos;tioqg Hence"(a+r,)rz { 0O or
(a+r2)r, { O, that is r, or ry |is superfluous in (1). This
contradiction implies m = 1, and the‘proposition holds with q = a

and r = r,

Now consider the general case with no restriction on a.
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By (1) and (II) as used to derive (1), we can show

(2) p s q1+"‘+qn+r,+"'+rm = q,f"'+qn+b,

are points q €8, 1 €1 <€n; n21; r, <b,

J J

1 €3 €<m. Applying to (2) the "restrioted” result with q; playing

where 9, T

the role of a, we have

(3) P S Qi#+Pis Py € Qa+t 4G +b
for some pg. Similarly, if n > 1 the second relation in (3)
implies

Pt € Qa+Pa2y D2 <LQ:+"'+qn+b

for some pbint pz2. Continuing in this way we obtain a sequence

of poidts Po .= P, p,,-",pn such that .
i
© Py S, MPyy (0 <1 n-1), Ph i

Eliﬁinnting’ P¢s°°°P

n-; Successively from these relations we have

(&) : P € Q+*°°+q 4D .
Applying to (4) "restricted" result with p playing the role of
a, wé have p ¢ q+pn for some point q < q1+"'+qh € a and the

proof is complete.
We now summarize the results of the above discussion con-

cering L as

G

Theorgm {+1. For any linear geometry, L is complete and

G

.

-
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satisties (I),+++,(IV). If G is projoctive (dg,g;e;g'Q;gg) L,

satistiey lo gdditien (vry) ((v1s)),

Given a complete lattice L which satisties (1), (11), (1v')
we have constructed an “associated" geometry QL Whiéh is genera-
lized linear geomotry such that L is isomorphie to the lattice

of additively c¢losed sets of the geometry G, ¢ If L satisfies

(111), we shall now prove that GL

aim we need only show 03 (01, 02; 06’ were proved in § 3), To

'is a linear goemtry. For this

pid in the verification of Q3 we deduce a crite¥ien that a point
belong to a line, in GL: line in GL being determined Ly Def,

Te41e in ferms of order, i
i

Lemma 7.8.  Suppose a, b, p are points of GL and a £ b.

Then P € line ab - if and only if in L, p =.{;,b}.

- Proof. By Def, 7.1s, Def. 7.6. and the definition of 3-term
order relation in 'GL; P € line g§ is eqUivalent in L to "p

is dependent on a, b". By (III”), this is cquivalent to p < {;,b}.-

Proof of 03 in G . To show this {t suffices to prove: if
P, 9, r, s are points of GL% r.{ s and line pq ? r,s then
line pq = line rs. Assume the hypothesis of this proposition.

Then in L, by Lemma 7.8., {;,q} 2 rys and the lemna 7‘7. implies

2

{;,s}. Hence by Lemma 7.8. each point in 1ine pq 1is in
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ersa, Thus }ine pa 3 ifie ¥4 and 03 holds

1n_ GL‘

Thus we have

Theorem z_g. Let L be a qomplete 1attiqa Batistying (I),

,(IV). Then its 9559919t¢9 ggg@etry QL i§ a 1inenr geometry.

By Theorem 3.4 and Theorem ).5, we also have

Theorem 7 2 Let L Le a couwplete lattice satisiying (I),

,(IV). Let L* Dbe the associated lattice of the linear geometry

G,. Then L is isomorphic to L*,

L
We impose further restrictions on. L in order to distinguish
the cases in which GL is projective and descriptive. Sﬁppose L
: o,

~

satisfies (VI,) that every element is closed. Then by Thiie 73

L‘, the associated lattice of GL also satisfies (VI,) This is

ct that the isomorphism preserves the dependence of a

due to the fa

point on a sequence of points, and hence maps closed element into

closed elcmente Thus GL must be projective, since otherwise it

would be descriptive and L* would satisfy (VIz), the contradictory

of (VI,)? Similarly, if L satisfies (Vi) instead of (VI1): GL

must be descriptive. Thus we have

‘Theorem 7.4. The lattice of linear spaces (convex sets) of

a projective (descriptive) geometry is charaoterijed by the pro-

(non modularity)

perties (I),"‘,(IV) completeness and modularity
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In the above disctsion we have assumed the validity of Lemnia
7.2. 1If it would be abie to prove it using only 01, 02, 06’ aﬂd.
03 then Thm. 741, Thm. 7:2 and Thr. 7.3 would give the chﬁrabfer-
Jation of the lattide of additively c1osed sets of the generalized
lineat geohmetry satisfying 03. It might bb done, but iﬁ ihe paper

of Prenowitz its proof depends also dn the foilowiﬁg pnstuidte.

oL’ 1f 'd, b ‘are péiﬂts; then 4 1is projective to b.

s N\
In the statement of this postulate we have used the

‘Definitiod 7.9. If a, b are points such thdt (abd) for

some € of 4= b, we say & is petrspective to b. If. a, a’

are points such that there exists a sequence a = a,,az,"f,an = a

in which each term is perspective to its success 6b,vwe say a is

Erolective to a’.
Then corresponding to .Thm. 7.1, Thm. 7.2 and Thm. 7.3,’we

have the followings.

Theorem 7 1’ For any linear geometry (o1, 02, 06’, 03, 04’)

'L is complcte and satisfies (I),'-°,(IV) and

G
(V) There exist only trivial’ complete congruence relations. .
If G 1is proJective (descriptive) LG satisfies in addition

(VI1)((V12))-

Definition 7.10. Let = be an equivalence relation ih lattice

L such that a =a’, b =b’ implies a+b = a’4+b’ dnd a*W = a’-b’,

Then we call = a congruence relation in L. Suppose in addition
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that a, = a!, whefe 1 ranges over an arbitrary set I, implies

i 1’
Ziai = Eia{ whenever the members of this relation exist, and like--
wise for Hia1 = ﬁiai° Then = is a tomplete congruence relation

in L. Any lattice L admits the trivial congruence relatigns
(which are complete) defined by (1) a =b if a = b; (2) a=0o
if a, b are in L. L 1is smiple if it admits only trivial con-
gruence relations.

Lemma 7.8. LG admits only trivial complete congruence

relations.

Proof. Let = be a non-trivial congruence relation in LG'

A ‘
hen there exist A, B .in LG such that A =B and A¥ B,

Hence there exists a point p which is contained in just one of

A, B, say A. (that is p €A, p £ LC). Then p=0, p=p*A

=p*'B = 0., We show x =0, for each x of L,. First subpose

3¢ # P and p is perspective to x. Then in G we havé (p X y)

for.some point y. Thus X # y and X € p+y. (hence p+Xx € p+y).

Since p =0 we have p+x =x and p+y = y. Hence x = p+x =

l

(p+x)(p+y) x*y = O, By induction we see that x =0 merely if
p 1is projective to x. Hence by 04’ x =0 for each point x.

Now suppcse = 1is a non-trivial complete congruence relation

in L Since each element dg LG is expressible as join of points, =

GQ
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= annihilates in LG every join of points and so every element.
This contradicts the supposition that = 1is non-trivial.

Theorem 7.2, Let L be a complete lattice satisfying (I),

*++,(IV) and €(V);- Then its-associated geometry GL is a linear

geometry (satisfying 01, 02,'06', 03, o4’).

Lemma 7,9. If a, b are points of GL then ~“a 1is’'projec-

tive to b.

Proof. Let a be an arbitrary ghosen point of GL,' and

let a be the set of points of GL

to which a is projective,
In L we define x = Y to mean that any point which is contained
in exactly one of X; ¥ 1s an elemént of a. Wé show that = is
a complete congruence- relation in L. It is easily seen that =

is an equivalence. Obviously x = X, since no point is- contained

in exactly one side of =, It i8 also obviocus that x =y implies

y X. Suppose that x = Yy and y = z, and suppose that a point

4%

P £x but p £z, If p £y then P € @ since x = yo If p <y,

-

since p K Z, P €a as y =z,

We suppose x = x’y, y =y’ and we infer x+y = x'+y’.
To do this, we assume P € x+ty, p A x'+y’ for an arbitrary point
P, and we show that P € a. First consider the case P § x. Dy

definition x = x’/  implies P <x' or p € a. The former con-

tradicts p £ x’4y’ and so the latter holds. Likewise p <y
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implies p < a. Now suppose p ﬁ'x,y. This with p € .x+y implies
X,y % O. Since L is linear, p < x+y implies P € q+r where

9, ¥ are points and q € X, r € y. Since x = x’, ysy',

Q9 <x’ or qea, and r<y’ or r € a. If q £x/ and r <‘y'
then p < q+r € x’+y’ contradicts p £ x’+y’s Hence one of q, r
let us say q is in a. If qQ=r thenby p < gq+r we have
P=q €a If p=r then p=r <y’ contrary to supposition

p K x’+y’. Thus we. need consiQer only the case P, q, r distinct.
In this case we have from P € g+r (qpr) by definition. Since

q € a, a- is projective to q. DBy (q,p,r), 'q is perspective

to p. Hence a is projective to p, dnd b € a. An identical
-\ arglmedt holds if we interchange x, y ahd x’, y’ respectively
and assume p £ x+y, p < x'+y’. Thus Ly definition x+y = x’'+y’.

i " An easy induction shows that xi = x{, 1 €4 <n, implig;
Xy+tot4X = x{4cccax!, e
- n n .

Now Suppose xi:s xi for each i in I, an arbitrary set

f indi . W = < = !
o ndices e show Eixi Eixi, I'Iix1 Hixi Suppose point

p < Eixi' By (1) ana (1I) we have P < x, +°cc+x,  where 1i's
1
n

Il

| are in I. X = ’ DR 7 e e e ’ -
1 x1 implies xi‘+ +xim xi'+ +x1m so that

P € a or p g Ki +"'+x£ < Zixi. Similarly point p < Zixi |
1 m A

implie < . = v .
plies p € a or p Zixi and Eixi Xixi is verified
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= ! j - <
To Jusfify Hixi Hixi suppose point p < Hixi then p x1 for

each i of I, Suppose P not in a, Then p g xi for each i

: ] = ’ =
of I and p < Hixi. Thus Hixi I'Iix1 follows, and is a

complete congruence relation in L.

Observe that point p =0 if and only if p is i a,

Since a 1is in a, a =0, By (V) this relation is trivial
and annihilates every element gz (l.e. z = O). Especihlly every

point point p =0. Thus « ‘contains all point of GL' Thus a

is projective to every point of GL'

Theorem Z.:’.- Let L be a complete lattice satisfying (I),

x . T 1

***,(IV) and (V). Let L* be the associated lattice of the
linear geometry G (o1, o2, 06’,03, O4’). Then L is isomorphic
to L¥*,

Descriptive geometry.,

We have defined above a linear geonmetry to be a system G
which satisfies 01, 02, 03, O4’, 06’ and called a linear geometry
which satisfies 07{ a descriptive geometry.

Veblen's classical postulate system for descriptive géometry
is in a slightly modified form 01, 03, Ok, 05, 06, 074 to which
it is equivalent, The postulafeé-not yet appeared before are listed

in the followings,

Oke If a, b are points, then a is perspective to b.
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05. There exist distrinct points a, b, ¢ which do not
colline.

06. If a, b, ¢ do not cdlline and if (bed), (cea) then
there exists f such that (def) and (afp).

074« If (abc) then (bca) 1is false (this postulate is
denoted by 02 in Veblen's original notation).

It is proved by Prenowitz that in the face of 05, our
definition of descriptive geometry (01, 02, 03, 04’, 06/,07¢) 1is
equivalent to that of Veblen (01, 03, Ok, 05, 06, 074):

We are now giving some. postulates which are convenient
calculation:

In a descriptive geometry we define

. =‘{ {xl(axb)} 1if afb

a if a = b.

Here we agree to identify element a _and the set {; whose only
. .

one element is a. There si no inconsistency in the definition,
since in the familiar formula of elementary analytic geometry for
the point which divides segment Aab in a given ratio r,

O<r <1, if weset a=b, we get point a itself. The agrec-
ment that a%a = a is essential for the unrestricted validity of
the following J3.

From the axiom system of Veblen, the following posfulates.

O S i T VL DA
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can be obtained.

J1. If a, b €G, a+ b is a uniquely determined non- -
empty subset of G, [See H. G. Forder, The foundations of ecuclidean
geometry. Cambridge Univ. Press. (1927) p. 50 Theorem 7].

J2. If a, b €G, atb = bia. [Forder p. 45, Theorem 2].

Definition 7.11. Let A, B be non—eﬁpty subsets of G,

then 5 $+ B is the set union leaeA,beB(a;b)' For an arbitrary
subset A of G we define A+0 = O+A = A.
| J3. If a, b, c €G, (aib)ic = ai(bic). [(a4b)iq = a¥(bid)

is a restatement of 06]. _

Jy. If a €G, ata = a. [above definition].

Jb. 'If a, b €86, the relation bix > a has a solution
x in G. [restatement of O4 for the éxistence of x such that
(bax) ]

Definition 7.12. Suppose a, b € G. Then a - b 1is the

set of x for which bix > a.
J6. If a €G, aa = a. [This signifies that a segment
a +" b does not contains its end points and is essentially a
form of O1. (That is, afx ® a implies x = a, since otherwise.
aix 7 a)] |

Definition 7.13. Let A, B be subsets of G. Then A ®B

means that A and B have common element, that is the set product

ANnB £ 0.

e D At i wos o < N et
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J7. Suébose a, byc, d € G. Then a‘b ® c2d implies
atd ® bic. [Forder p.55, Thm. 11.6. f2a ™ c2d implies that thete
is a point b € (f2a) N (c*d) whcih in turn implies that (a+b)
and (bed). If a, b; ¢ do not colline then by Thm. 11.6 thcre
is a point e such that (cea) and (det). Thus cta = gif.
If a, b, ¢ are collinear, then c}a ®-dif holds in descriétive
geometry].

It can be shown that postulate 03 1is independent of J1,
+++ . J7 and that T1,%++,J7 together iﬁply- 01, 074, O4, 06 |

[Prenowitz]. Thus the system J1,°",J7 plus 03 ahd 05 is

equivalent to 01, 07, O4, 06, 03, 05, fge postulate system of
Veblen for descriptive geometry.
From the above postulates and definitions, we can derive
the following algebraic formulas and formal propert;es éonstantly
used in the sequel:
(7.2.1). sSuppose © ZAc A and O # B'c B, Then A’3B/< a%B,
(7.2.3). a) AiB = 8ia, b) (atB)ic = ai(Bic), c) Ac Ak,

Definition 7.14. If A, BZ O, then A > B denotes the set

union UgeA’beB(a-b). Fo? arbitrary A, we define A%0 = A,

0=A = 0.
(7.2.4). A*B ™ cC implies A = BiC. Conversely, A % BiC
implies A®B ® C provided C £ O.

Proof. Suppose A*B X C. If B =0, then A= A% (= 0) = C
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so certainly A R B (= 0)40 = C. Suppose B { 0. Let ¢ ¢ ALB,C.

Then A Z O (since otherwise A(= 0)2B = 0) and by definition

c €a*b where a € A, b € B. Hence a ¢ blc c BIiC so that
A % BiC. Conversely suppose A X BiC and c £ 0, If B=0
then A ~B(= 0)iC=C and A*B(= 0) = AR C is trivial. Suppose
b#ZO. Let a €A, B+ C then a €bic with b €B, c €C.
Hence c € a~b ¢ A*B so that A%B = C.

(7.2.5). A°B ™ ¢*D implies A}D % BicC.

1]

Proof. If B=D=0 then A*B = A, C-D

turns out to be A ®C, This together with AiD = A; Bic=_C

imply A4D ™ BiC. Suppose only one of B, D=0, say B = O.

Theq from the assumption A ® C=D so that by (7,2.#) AYD ® c
= B¥C and the theorem hélds. Now suppose B, D £ 0. Let

x € A*B, C*D. Certainly A,C # O since otherwise A=0, C=0

0. Hence by definition x € ab, c>d

implies A*B-'= 0, ‘C-'-D
where a, b, ¢, d € A;'B, C, D respectively. Thus by definition
a*b ® c=d and by J7 a+d ® bic. The conclusion is immediate
since A+D D aid and DBIC > bic.

(7.2.6). a>(bic) = (a2b)2c; A=(BiC)

(a*B)*c = (a=c)=B.
(7.2.7).  ax(bic) € (afe)®b; a2(Bic) ¢ (Aic):B. -
{7.2.8). a+(b—-c5 < (a+b)-c; A+(B-C) < (A+B)-C provided

B £ o. |

(7.2.9). a-(a=b) 2 b; A=(A-B) > B provided A £ O.

P e v ™
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(7.2.9’). az(a%b) o éib;- A~(A%B) > AIB provided A# O.
(7.2.10). Suppose A,B Z O. Then (AlJB)iC = (Aic) U(BEC)

and c=(avB) = (c=a) u(c=B).

We can also define the additively closed (crwconvex) set S

to be the set having the property that a, b € S implies a+b < S,
Then we have

(7.&.1).- A is additiveiy closed (convexP if and only if
a). A>AIA or b). A= A}A.

(7.4+4')s Let ADB wﬁere A is additively closed. Then
A > AiB..

(7.4.2). Let A, B be additively closed. Then AN B,
A$B, A*B are g1so additively closed (convex). V

Proof. (A<B)i(A*B) c ((A*B)$A)=B by (7.2.8)

= (A+(A%B))2B by (7.2.3)

c ((a%a):B)B by (7.2.8)
= (A*B)B by (7.4.1)
= A=(B$B) - vy (7.2.6)
= A*B by (7.4.1)’

and the conclusion by (7.4.1).

(7.4.2%) a1i'°°lan is additively closed.
(7.4.3') Let [Ss] be the additively closed set generated
Ly S. Then [a,,”’,an] = a,%"';an\)azl"'lanu n,ia;l'°'lanu

"'Uagu"'Ua .
n
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Proof. [ay,a»] = as+a, = aglaz(J01LL&.) hence the formula
holds for n = 2, Assume that the formula holds for n -. 1. Let

ple [a,,"',an] = (a1+("+an_')+an, then p ¢ q+a.n with q € aq+

"°+an_1. Then either p = q or p = an or p ¢ Q+an, p % q, an'

If p=gq then p ¢ a,+°"4an_‘ Ue-o Uan_i. "If p e q+a , p £ aq, a,

then p ¢ (aql"'ian_i)lan U(azi"'ian_i)lanU *e*Ua ian. Thus

n-1

) ea,-f-"'-ianU"'Uan. Thus [a,,'-',an]'CaH--"-ianU-'~Uan.
Obviously [a,,"',an] :>a1l°-°$anlJ°-'l)ad. Thus the proof is
complete.

(7.#.3). [S] ts the set union of all expressions of the

form a,$°"$an where the a's are in S

Proof. Due to the property (II) of LG [S] is the set union
of [d{,°'°,an], a; €8, i=1,""*,n. Thus by (7.4.5') [s] is

the set union of the forms ,aql"'lan.

(7ebek.) Let a be additively closed set which has a minimal
set of additive generators. Then A has a unique minimal set of
additive generators.,

(7.4,4’). An additively closed set with a finite set of
additive generators has a unigue minimal set of additive generators.

If A has a fiﬁite set of additivevgenerators,‘>é’, we can

delet redundant element in S’, ope by one eventually yielding

Pheiasiantits et e s Ly A i et g e sy DRI 8 <o P e el
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a minimal set of additive generators of A.
(7.4+5). Let A Z O be additively closed. Then A~(=B)
= (A%B)-'»A. |

¥We have defined the linear set or linear subspace to be the

set S having the property that if a,b € S then line ab c 8.
Since line ab can be represented by the set {;}\){S-ZUaib\/aib

- UDb=A, the linear subspace cau also be defined by the condition
that a,b €S implies aib c S and a‘b < §. By this reason, if
we call an abstract system (G,%) satisfying J1,¢°*,J7 a multi-

group, then a linear subspace can also be called a subgroup. By

the linear subspace of G determined by S, denoted {é}, we
mean the least linear subspace of G which contains S. If

-

i J = A we say S is a set of generators of the linear subspace

A. Similarly, if S,,"',Sn <€ G, we define the linear subspace

of G generted by S,,“',Sn to be the least linear subspace
which contains S,,"',Sn and we denote it {51,"',Sn}.

(7.5.1). A is a linear subspace of G if and only if a)
A is closed under . or b) A DA%A, or c) A= A%A.

Proof. The necessity of c) is trivial. To prove its suffi--

ciency, suppose A = AA.- We need show merely that A is closed

e LTI YR v v, g e e o e pe——res
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X ‘ under 4. By (7.2.9’) AiA c A*(A%A) = A*A = A, and the result
. j follows by (7.4.1).
| (7.5.2"). x € {é} if and only if x € {;',"',an} where
-
_— a, € S, 1 <i <n., [Due to the upper~continuity of the lattice ﬁg
- | ) ,
| (745:3)s [s}: [s}[s].
- .
} . Proof. Any linear subspace of G which contain S contains
3 o [s], hence also contains. [s]1% [s]. Moreover, Ly (7.2.3) c)
‘_} g [SF[s] >[s] >s. Thus we have to show that [s]-[s] isa
o lineat subspace of G. Letting A = [S] we have
1
1 (a2a)2(A%A) = (a2(a%A))2A by (7.2.6)
i < (@A) by (7.2.7)
IR = (Ata)2a by (7.4.1)
4] | - a2(ath) by (7.2.6)
A | ‘ = ASA by (7.%.1)
. and the result follows by (7.5.1).
J .
- | (7.523;). {S} is the set union of all expressions of the
J.,
) form (a,l“‘ian) = (b1£'°'$bm), involving elements of S. [Since
4 [S] is the set union of the expressions of the form a,i"'ian
; by (7.4.3) 1.

’
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(7s5elt)e {S,T} = {sl'r}

Proof. If S or T =0 the theorem is trivial. Suppose

-

S,T # 0. Clearly {S,Tj'j SiT, so that (S,T} > {élT}. Thus ‘we
L

need prove mcrely -S+T} > S,T. We have

[si'r} > (8+T)=(siT)

= ((stT)2s)2T by (7.2.6)

> (ss(sir))ar By (7-2.7), (7.2.1)

S TAT by (7.2.9), (7.2.1)

‘:)T by (7.2.3) e).

By symmetry {él}.: S and the proof is complete.
(7.5.4%). Let S,,"',Sn be additively closed. Then
r b . . . - s
tS,,"‘,S = (S44°--18 )—(S1+--'+S ). Especially
n n _ n
{51,"7,an} = (a,i"'ian)l(aql"'ian).

By (7.4.2), S,i"'isn is additively closed. By (7.5.4)

{51,"',Sn} = {S,i"'isn} which is equal to (S1%°"$Sn) =

(514‘-"'4‘-811) by (7;5.3)0
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(7.5.5.). Let A, B be linear sutspaces of G, ANB

# 0. Then {A,B} = A-B. Especially {S,T} = {{S}t{T}} = {S}:[T}
provided {s} {T} Z 0.

Proof . [A,B} = {A&B} = (aiB)2(A3B) vy (7.5.4),(7.4.2),(7.5.3)

= ((aiB)=a)=B by (7.2.6)

= (a*(aB))-B by (7.4.5)

= (a*B)=(a%B) vy (7.2.6)

é.((A;B)is):A by (7.2.7)

c (aA*B)=A by (7.4.1)), since A % B
is additively closed and
A*B > B

c (A*A)B by (7.2.6)

- A8 by (7.5.1).

F
Thus )A,B} < A-B.

It is obvious that rA,B] > AB. Hence \(A,B} = A=3. It remains

to show that ASB 5-B. Since B = BD3DA-E®B and A D A'B, we
nave A-DB>A'B-(A'B=B) o8 by (7.2.9) as A*B £ O.
(7.5.5’). If A, B are linear sulspaces and A°B #Z 0. Then

A*B = B*A and A*(A%D) = A%B.

Proof. A®B = (A,B}DAl(AlB) = A;{t\:B}DA;B since

L
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EA,B} = A*BoB. Hence A-B = A~(A%B).

(7.5.6). Let A, B, C be linear subspaces of G, A'B Z O.

Then A < C implies {A,B}'C = [A,B‘C}.

Proof. Obviously {A,B}'C > {A,B'C} or (A*B)+C > AB-C.

To establish the converse inclusion, let x ¢ (AlB)'C. Then since
O # A'B ©€ A,B we have x € a*b with point a € A, point b € B
by definition, in addition x € C. Now x € a-b means x ™ alﬁ,
hence xib ™ a by (7.2.4). By (7.2.4) again we have b ® ax
that is, b € a*x « C, since AcC and C is a linear subspace.

Thus b € B*C so that x € a<b implies x € A~B*C. Hence

(A*B)-C ¢ A*B*C. Since A'B £ O, {A,B} = A-B. Furthermore

A+(B-C) = (A*B)*C = A'B £ 0, since A*BCACC, hence
P

LA,B'Cj A*B~C. Thus {A,B}: < {A,D'C}

(7.5.6"). Let A, B, C Dbe linear subspaces of G, B-<C £ O.

Then A € C implies (B2A)°C = B-C2A.
Let A, B be linear subspaces of G. Then we say that A

covers B if in LP A covers B.
'J

(7.5.7). Let A, B, C be linear subspaces of G such that

A and B cover CZ O and A # B. Then {A,B} covers A, B.
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Proof. We show {A,B} covers A. Obviously {A,B}:A.

Juppose ((A,B} = A. Then A > B 5C which implies, since A
C
covers C, that B = A or B =C. contrary to the hypothesis.

Hence {A,B};{ A. Let X bLe a linear subspace satisfying

: )

;A,DJ > X > A. It sufficies to show that X = {A,B} or X = A.
| - 5

~

Now B

B'{A,B}DB'XDB'ADC implies that B*X =B or B*X = C
since 5 covers C. Suppose B*X = B. Then X > B. Now since

X is a linear subspace containing A and B; XS {A,B} which

together with {A,B} DX gives X = {A,B}. Next, if B*X = C

tien C £ O implies BX = BA=C £ O. Then

X = X‘{A,B] since {A,B} >X

= {A,B-X} by (7.5.6) since B-A £ 0

= A,C? since BX =C
J

= A since A > C.

~us X = A and the proof is complete.

(7.9.0). If points a,b € G and a;{b, then {a,b} covers

B T B e R S PR -
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This can be seen as the case C = O not covered by (7.5.7).
For this case the hypothesis of (?.5.7) reduces to: A, B are
distinct elements of G.

Since cvery linear subspace containing a, b (a { b) con-

R I S S [ M

tains Iine ab; 1line ab C.{;’b }¢  On the other hand line ab™ is-
J

a linear subspace. Let c,d € line ab then line cd also contains

§ —

=
‘J c, d so by 03 1line al) = line cd. Thus 1line ab = {;,b].

Now obviously a % {a,b3, Let a2 € x ¢ {a,b} for a linear
. C

i subspace x. If a # x then there is a point c # a such that

cC £ Xx. Then a < {a,c} <£x < {a,b}. S5y 03 we have {;,c} — {;,b}

so that x = {a,b}. This shows that {a,b} covers a.

(7.9.1’). Let A, B be lineur subspaces and A, B cover

—J A*E  ‘then {A,B} covers A, D. That is the lattice EG satisfies

] j condition (V) of Theorem 5.1.

- ; Proof. If linear subspaces A, B cover C # O then

AU ODC and A'B>5C. Hence ADA'C >C and B 2 A'B o C,

Jj . Now if A # A°B then A*B = C since A covers C. If A = A*B
then B > A. Since BZA, B#ZDB'A= A. Hence A'DB = C since

1 B covers . Then from (7.5.7) and (7.9.0) we get (7.9.17).

Prepes g
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(7.9.1). If A is a linear subspace of G and b £ A

then {A,b} covers A. Thus EG is a matroid lattice.

(7.9.1’) is equivalent to (7.9.1) as asserted in Theorem H5ela

Definition 7.16. Let N Z O ULe a linear subspace. Then

N2(N2a) = (a)N is called the half-space with edge N determined
Ly a. For any set A, let (A), = !(a), |aerl
? N ‘N

(7.7.1). Let N # 0O e a linear subspace of ‘G. Then ?he
half-spaces with edge N are convex, disjoint andAexhaust G.

(TeTs1%)s (a)N >a, b e (a)N implies (a)N = (b)N, and
(a)N = (b)-N if and only if N%a = NobL.

Definition 7.17. 1If (a)N (b)N we write a = b(mod N).

In general. if for each a € A there is a b € B such that

B(mod N). Clearly

il

a = b(mod N) and vice vessa, we write A
e . _ \
this is equivalent to (A/N = (B)N.

(7.7.2). The relation congruence modulo N has the follow-

ing properties: (a) a = a(mod N); (b) a = b(mod N) implies

1]
I

b a(mod N); (e¢) a E(mod N), b == c(mod N) imply a = c(mod N),
(a) a =a’(nod N), b =b’(mod N) imply aib = a’ib’(mod N);
(e) ain = a(mod N) for n € N.

Definition 7.18. Let Q/N denote the set of all half-spaces

(cosets) with edge N dectermined Ly elements of G. We define

D IR T e T O N P
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addition in G/N thus (a)NI(b)N = (aib) . We call G/N with

addition so defined the factor group of G with respect to N.

7 The order of the factor group Q/N is the cardinal number of the
set G/N.

(7.7.27). Addition of half-spaces (cosets) in G/N is

4 independent of the elements of G which determine the cosets.
| s )

It is easily seen that + in G/N is associative, commu-

— >
| S—

tative, idempotent. In regard to substruction, Q/N is exactly
- analoguous to an abelian group and is conveniently studied in the
] E familiar manner.
. Definition 7.19. Let I be an element of G/N such that
Jfl ATT = I+A = A for each A in G/N. Then we say that I is an

; identity element of G/N.

(7.7.3). G/N has a unique identity element, namely, N.

If n € N then (n)N = HN.

(7.7.#). In G/N, f£6r cach clement A there exists a
ﬁnique element X -satisfying A¥X > N.

Definition 7.20. 1In q/N the unique solution of the relation

A¥X SN is called the inverse of A or the half-space opnositive

I to A, and is denoted by = A Similarly if a is a subset of G/N,

~

- a denotes the set of inverses of the clements in a.

(7.7.4’). In G/N, :(:h) = A. :(a)N = (a )N if and only

P E
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if (1). e+a’ ® N or (2) a’ € N%a. =(a), = N*a and ala’ ~N
- implieé (a)N = N=a’,

(7.7.5). In o/N, Z(a3B) = (“A)T(%h).

By (-

I

(7.7.6). In G/N, A%B = aT(CB).

L

(7.7.7). Let N # 0 be a proper subgroup of G. Then the

N

order of Q/N "is greater than or equal to 3.

Definition 7.29. Let A, B be linear subspaces of G such

|

that the order of A/B is 3. Then we say DB separates A.

(7.7.8). Let B separate A. Then A is decomposed into

(S—

, B, S, S’ where S, S8’ are mutually inverse cosets of B.
(7.7.8’). Let B separate A. Suppose a € A, a £ B,
a+a’ ¥ B, Then A = BUB2aUBa’, where the addends are disjoint.

If G is a descriptive space of finite dimension and let

GRS

N % O, G bLe a linear space. Then the elements of Q/N are half-
spaces with edge N. Let (a)N,_(b)N be half-space which forms

an angle aNb. Then sum as elements of q/N, is the set of half-

| CEES S| E

spaces in the angle aNb [see Fader pp. 69-72].

(|

Now we relate definition 7.21., to the more familiar idea of

separation in the foundations of geometry. Suppose B separates

ke

A. Then A 1is decomposed into B, S, S’ where S, S’ are mutually

inverse cosets of B. Hence the following properties hold:"

| S—

(1) A=BUSUS’ and B, S, S’ are disjoint; (2) s,8’ £ 0 are

R |
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convex sets (7.7.1); (3) the join. of any element of é to any
element of 8’ meets B. (7.7.4'). Properties (1), (2), (3) are
essentially the criteria of the foundations of geometry for the
= separation of a linear space A by a linear subspace B.
Conversely suppose that A, 5 are linear spaces for which

sets S, 8’ exist satisfying (1), (2), (3) above. Suppose a € S.

J Then by (3), X € 8’ implies x+a ® 5 and x ¢ B2a. Thus
7
. j' §’< B-a., Similarly § c B=a’, where a’ € 8’. By (3), ata’ =B
= and we can apply (7.7.4’), getting DB%a’ = (a)D, B-a = (a’)B.
|
] Hence in view of (1), A = B\J(a)BtJ(a')B. The cosets B, (a)n,
i)
|

(a’)B are distinct since B, S, S’ are distinct and (a)B, (a’)B

i

are mutually inverse by (7.7.#’). Hence A/B has order 5 and

3 separates A 1in the sense of Def. 7.21. Thus our definition

| -

- is equivalent to the familiar geometric notion of separation of

linear spaces.,

'-J (7.7.9). n separate the 1line na,

J Proof. Ey (7.7.7) {;,a}/; has order greater than or equal

to 3. Thus {Q,a] > (n%a)u n u(nza), where ata’ ® n that is

AW L e E L U o« el

(ana’). On the other hand {h,a} = HEQELE(JE\Jniaﬁ)a;QA Obviously

—

(a’na), so that n-a’ 3 a. From which we obtain (nla’)in > a<n.
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Since (n%a’)<n = (n*n)2a’ = n%a’, we have na’ > a*n. Furthermore

ni(n%a’) > nia. Since ni(na’) ¢ (nin)2a’ = n%a’ we also obtain

nfa’ 5 nia. Thus {n,a} < (n*a) unvu(n®a’), hence {n,ﬂ}= (n*a)

un u(nla'). Thus {n,h}/; has order 3, that is n separates
the line na.

(7.82). Let A, B be linear subspaces of G; A*B £ O.

Then {A,B} = UbeB(b)A'

(7.8.3). Let A, B be subgroups (linear subspaces) of G,
A*B £ 0. Then {A,B}/A is isomorphic to B/A¢B.
(7.10.1). Any factor group A/B is isomorphic to a factor

group of the form A’/b.

Proof of £7.10211. By the property of relative complemen-

tation valid in any matroid lattice, for given b € B < A there

"BRTEtE a 1lilear subspace A’ such that {A’,B} = A and A’*B = L.

Hence by (7.£.3)

A/B = (A"B}/E g A'/A"B = A'/b,
C
and the proof is complete.

Definition /.22. A subgroup of a factor group is a non-empty

subsystenm closed under + and =. It casily follows that the

R e T
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identity element constitutes a subgroup of every factor group. If

the only proper subgroup of a factor groups is the identity group,

we say it is siwmple.
(7.10.2). A/B is simple if and only if A covers B and
: B £ 0.

I (7.10.2'). Let A/B be simple. Then AB & {;,b}/g where

a # be

] (7.10,3). Suppose B £ O is a subgroup of A and x £ A.

’ Then {A,x}/iﬁ,x} = A/B.

't (7.10.4). All simple groups A/B are isomorphic (05 1is

assumed). Thus all simple factor groups A/B have the same order.
) Since {h,a]/; has order 3, every simple factor group has

order.---3. Thus
(7.10.5). A/B is simple if and only if it has order 3.

, Proof of (7.10.5). Suppose A/B has order 3. Any subgroups

of A/B distinct from the dentity group must contain the identity
I and element X # I and -X, the inverse of X. Since there
arc distinct the subgroup is identical with A/B (as A/B has

order 3) and A/B is simple. The converse is easily proved.
Since for the line [n,b}/g has order 3, it is simple as we

have just seen. Since 05 1is assumed all simple factor groups

—

——
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have the same order, hence all simple factor group has order 3.
(7.10.6). B separates A if and only if A covers J¥
and B £ O.
(7.10.6’) In G let A cover B. Supposec a € A, a £ B,
ata’ ® B, Then A = BYBa uUBa’, and the addends are disjoint.

(7.10.6”\. Let B Dbe a subgroup of G. Suppose ata’ = B.

Then {a,B} = BUB=auB=a’ = BV B2auB2(3a).
Moreover the addends are disjoint provided a K B.

Proof of (7.10.6”). If a2 € B then B%°a €3, B>(B*a) c B

since B 1is a linear subspace. Hence ‘{a,B} = B = BuB*auDB=a’,

L

holds trivially. If a,éB then \ra,B} covers B. Since
e

a € {a,B}, a € 3B, ava’m B by (7.10.6’) we have (a,B} = BUB2a

J L
UB%a’ = BUB2auB=(B%a) where the addends are disjoint.
(7.11:27). a=(a%b) = biav baub; and a=(a2B) = BiaUB%auB.

Proof. If a = b1, this is trivial. Suppose a £ L. By

(7.10.6”), {a,b} = avVa-bUa>(a*b) where the addends are disjoint-

On the other hand, Ly definition (‘(a,b} = avabUbUb2aubia and
C

the addends are also disjoint, since the contrary supposition implies

a = be For example, a=b = b}a implies a = (bia)ib = (bib)¥a = bia,

e T AT e s T W AP YT I N AT U A
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hence a*a X b bnd a ~b that is a = b. Comparing these two
expressions for {a,b} we obtain a>(a2b) = bfaUb%aub. This is

easily generalized to yield another identity.
(7.11.8). (aiB)2(aic) = (aiB)>cUB=(aic)uB=sc.
Proof. (a+b)=(aic) = ((aiB)*a)2C by (7.2.6)

(a=(aB))2c by (7.5.5)

(BtauBavuB):Cc by (7.11.27)

(BfasC) U(B%a):CUBC by (7.2.10)

(aiB)cUB=(atc)v BiC by (7.2.6)

(7.11.3). {;1,'°',an} is the set union of all expressions

: - °..L2 - ® el < i <
of the form /ai{p +a1r> (air+'+ +ais> s where 1 i n,

and 1, A1, 12 34k
Proof. By (7.5.4')
[a“'...’an}= (a';...;an):(m;...;an).

We apply (7.11.1) to the right member in order to eliminate re-

petition of the tetter a, getting
{;1,"',an} = (a{;";lan);(a,l"°lan)
U(azi"';an)l(a?l°"lan)

U(azl'"ian)l(azi"'lan).
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Similarly we eliminate repetitions of the letter a> in each

addend of this set union, for example we reduce

(a1$"'$an) Z (azi"'ian)

to (a,+"'+an) = (a,+"'+an)
U(a,ia;i"'lan)l(azl'"lan)
U (a1 3-8.3-:-‘ * °-T»an)-'-(a3i~' ¢ 'lan) .

Continuing to eliminate repeated letters in this way we eventually

get an expression for {;1,"-,an} in which all addends have the

desired form. Hence, since {;1,"‘,an} contains every expression
of this form, it is the set union of all such expressions.
We have given a definition of linear dependence earlier in

this section., Now we are giving a second defihifiénﬁ

Second definition of linear independence. Suppose S < G,

and suppose {S—x} # X for each x € S. Then we say S 1is linearly

independent or simply independent.
Then we can show easily the followings.
7(1) Any subset of an independent set is also independent.
(2) A set is independent sroveded each of its finite subsets
is independent. (By the upper—continuity).

(3) Let S be a set of generators of linear subspace G,
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| then S 1s independent if and only if S 1is a minimal set of
. ’ generators of G,
: Theorem 7.5. S 1is independent if and only if the sets

! a,l'°'lan, where the a's are in S and a, £ a, for i #£ j,

are disjoint.
b Proof. Suppose s independent. Let a,i"'ian, a‘l'°°la;
-1 . . .
; be sets of type described, satisfying
i
a¥*ccla majie-cia’,
n m

If a letter appears in only one member of the above relation, we
1 can solve this relation for this letter, which is therefore
"dependent™ on the other letters in the relation. Suppose a;

appears in only one member, then by (7.2.4) a,$(azl'°'ian) =~
{ v n(i"'iaé implies a; ® (a,l-"lam)l(azl'°'lan) < {é-aq},,.since

a{l"‘iaé, azi'°°$an < S-ay. This contradict our supposition.

Hence the members of the above relation are identical except
v posssibly for the order of the letters, and the necessity of the
condition is established.

To prove its sufficiency, suppose S satisfies the given
condition. Assume S not independert. Then a & {845} for some

a €S, By (7-5¢2I) and (7'5'1"/)

LTI UI $5y e i T L
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a € {;1,~",an} =-(a,i"'lan)l(a,l'-°lan),

where a1 € S-a. Hence

L] L ) e
a+a,+°°**+a =R aq+°°°+a
1
n n

contrary to our supposition. Thus S is independcnt and the probf

is complete.

Theorem 7.6. {;‘,"',an} is the set union of all expression

of the form (ai l°--iai ) 2 <ai i--'lai >, where 1 <1, <an,
' r r+1 s :
and ij £ ik if 3 { k. Furthermore if a',“',an are distinct

and form an independent set the addends are disjoint.
Proof. The proof of the first part of the theorem is given

in (7.11.3).. To prove the second part, let 81,°",an be distinct

and form an independent set. Suppose

<ai1'+¢-o+ai >_<a1 +-.o+ai )
r r+1 s
~ <a. Feeela, )F (a. $ee-3a. )
J1 Jt Js+1 Js

. holds, wherc the i's are distinct and the j's are distinct.
¥e show the member of this relation identical. By (7.25), this

relation implies

e e S T i N ABTem, T atew



| SRS—

|

TRt gae e .

143

By Thcorem 7.5, this latter relation is an equality and the same
letters are bresent in both membérs of this relation. Sihce i's

are distinct, each éi s 1 <p <r is an sy 1T€$q<t and
P q

vice versai Thus a_ f-++fa, = a_ fe-efg . Similarly
. 14 » J Jt

> so that the fobrmer relations
r+1 s t+1 u

becomes an equalffy. Hence the addends in the expansion of
{;,,"',ar} are disjoint.

- Using these theorems, we can prove the equivlence of the two

definitions of lineat dependence.

If S is linearly independent in the sccond definition,

then it i linearly independent in the first definition.

Proof. Suppose the contrary, *hen there exist diéjoint sub-

\
sets I, J of K such that a, +*°*+4a a, +***+a, £ 0.
i, ir Ji Jg

By deleting the redundant elements we can assume that (ai ,---,ai >
1
r

is a minimal set of generators of ai +°°*+a, and similarly
1 1
r

<a‘j"'-‘\a\j >‘ is a minimal set of enerators of aJ +°*°+a .,
s .

J

S

1

"~ Then by property (1) of the linear independence in the second
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definition, a ,";a, and /a_ s* "t ,a, are indepéndent sets
i¢ i \ J1 d

respectively. Then the addends of [ai s tv,a, ] = ay #rrva, =
: r ! r
a +*°**4a U""Ua U-..Ua.
11 i i 1
r r

a, +°++4a a, +*+*+a_ )£ 0 iwplies that a €a, i-++ia,
i4 i Jt J i
r s r, r

aj +"'+aj wvhich contradicts the Theorem 7.6 as we assumed

S1 Sl{

that S 1is independent,

If S is independent under the first definition, then it is

also independent under the second definition.

Assume the contrary, then there is a point x such that

X € {é-x} then x ¢ {;1,-",an} where a, € S-x, 1 <€£i € n.

Without loss of generality, we can assume that the set (a,,'~‘,an)

is 1incariy independent under the second definition.

Since x ¢ {;,,°°',an}, by the theorem 7.6 we have

r+1 S

ai1+"'+ai > that is <x~x~ai +"'-4-ai )(a_i +'“+:1i >% 0.
b o - r+14 s r

/
Hence | x+a, +orra, ay +oretay £ 0, On the other hand,
\ r+1 s ! r

- Ll \.
X ce = ) e s e ee ~
: €-<a1 + +ai / ai. + 4ai « Hecnce x+ai 3 1ai ~
r/ r+1 s

e N T AT IR B o WA ot v A Pt et e
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since (a,,"',nn) is linearly independent under the second defi-

nition it is linearly independent under the first definition,

\
<a1 +'°'+ui /><aiq+°"+ai > = O,
r+1 s r

Thus x is dependent on (a1,"',an)

hence

under the first definition,

hence x is dependent on S - X. Thus S ig dependent under the

first definition contradictory to our assumption.,

Thus the two definitions of linear independence are equivalent.

In the above proof, it is also shown at the same time that

if

X € (aq,*°*°*.a and aqy*ee .4 is the minimal set of genera-
= [ 15 3 n} 2o ( 1 2 n) —- —_— E___m_

tors of

5 of {;,,°",an}, then x is dependent on (31,"',an) under
J

the first definition,
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§ 8. Projective geometry

In 8 7 a projective geometlry is defined to be a system
satisfying 01, 02, 03, C4’, 06’ and 07,. It is proved by
Prenowitz that such a system is equivalent to a system sutisfying
the following set of postulates by Veblen and Young:

Al. If A and B are distinct points, there is at least
one line on both A and B.

A2. If A and B are distinct points, there is not more
than on line on both A and B.

A3. If A, B, C are points ﬁot all on the same line, and
D and E (D % E) are points such that B, C; D are on "“ne and
C, E, A are on a line, there is a point F such that A, B, F
are on a lire and also E, E, F
are on a lire.

EO. There are at least three

points on cvery line.

It is also proved that the lattice
of linear spaces of a projective gcométry is characterized by the
properties of completeness, atomisticity, upper-continuity and
modularity.

Since the lattice-theoretic treatments of geometry started
with projective geometry and it is a model to the analoguous inves-

tigation for other geometries and also for its generalization,
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we like to discuss this lattice again starting from the set of
axioms of Veblen and Young. We shall call the axioms A1 and A2
put together as axiom P1, axiom A3 as p2 and EO as P3,

Thus we understand a generalized projective geometry to

consist of a set m of elements called points and another set of
elements called lines each of which 1s a set of points such that
P1 and P2 are satisfied. A subset A of m is called a sub-
space if P, Q € A implies that P& © A, where PQ 1is the line
determined by P, Q. fFor any subset B < m, we define as usual

B to be the least Subspace containing B, then C : B -~ B is

a closure operation and anC> is easily seen to wve a merely fini-

tary geometry as defined berore. Thus by the Theorem 3.4, the

set of all Subspace of a generalized Rrojective geometry G forms

4 complete, upper-continuous, atomistic lattice I(G).

This lattice i(G) has several more special properties:

By (P1), it is obvious that the subspace {E,Q} i8 the line PQ

determined by two distinct points P, Q. Thus if P, @ are dis-

tinct points in ‘f(G), P + g 1is the line determined by the two

points.

Theorem €.1. (The join theorem) The lattice 2(G) is 1inear

>

that is, for any non-~zero element x,y € andg point r € x+y-

there exis- point p < x ang 9 $y such that r < P+q.
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Proof.

it is trivial. Let S be the point set defined by 8§

"
p<x and qSyJ. By definition x + y

X and vy,

considering
(1)
(2) «x
(3) s

(1), (2) are

B )]

SO it is sufficient to show the follow

It is assumed that

X+y, X, ¥y as point scts:
S X+y,
£8S, yc<s

is a linear subspace.

obvious, we need merely show (5), that

S contains every point u of the line (that is u

with two distinct points s, t of §.

Special case. At least one of s, t

or y, say

such that ¢

S # t; ¢ < p+g,

that v < p+s

Case 1. Now if P =s, then u < p+t < p+(ﬁ+q) = p+q,
u € S,

Case &, If p £ s, then v $ p+s € X since
Now, if v z q, then from v < u+q we have u < v+q

and g < y.

Hence

is cont
S § X. For t ¢ S, there exist p <

P #£q
P £q

and v g u+q.

<€ p+q, by definition of s, s

there exists, by (PZ):

ue€S. If v =15 then q < x,

=

x£0, y#£no. If'x:y={D}

i

{rspw I

is the least linear subspace

ing three items

is, show that

< s+t) along

ained in x
X and q <y

ince u ¢ s+t,

a point v such

hence

P, s < x.
where v < x

hence
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t $p+g £ x and x is a subspace so t < x. Hence u < s+t

X

N

X

General situation. Neither s nor t are contained in x
—_=_-c- =situation

or y. For t in S there exist points p < X, @ €y such that

t < p+q and o) % 9. Then from t < P+gq, u € s+t, s=t it
follows by (2) that there exists a point v such that v < p+s
andv € g+u. From v < p+s it follows that v € S by the above

spacial case, since p < X, s K X and hence p £ S. Again, by

the above special case we have w < g+v and

u € S provided
q # ve If g = Vv, then t < p+q, e # q and gq s'b+s implies
S € p+q. Thus we have t,s < p+q and s+t = p+q by (P1).
Hence u < s+t = p+q hence u € S,

“heorem 8.2. The lattice L(c) is modular.

Proof. Since (a+b)c 2 a+bc  holds in general lattice, we

need only to show that if a € ¢ then (a+b)c S a+bec. It is

trivial when a = 0 or b=0 or a=nb.

Now let point r < (a+b)c, then r < a+b and r < C.

By

thejoin theorem, there exist P $a, g <€Db such that r < P+Qq.

If r=p then r fa and r < a+be. If r # P, then q <€ p+r

§$c since p €a <c and r <€ c. Hence "q £ bc and r < pP+q

A

at+bc  what ig tqo be proved.

Since a complete, upper-continuous, atomistic modular lattice

1s a matroid lattice by Theoremn 5.1, we have by “heorem 5.3:
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Corollary 8l £(G) is relatively complemented.

Definition 8.1. A lattice is said to be (general) projective

if and only if it is isomorphic to the lattice of all subspaces of
a (gcneral) projictive gecmetry.

Definition &.2. A projective gecometry is a general projective

geometry which also satisfies

(PO) On each line lie at least two distinct points.

Theorem §;é. In the lattice IXG) of a projective geometry
G the hyperatom (that is an element which covers an atom) coincide

with the point set [g] (the set of points on the line g).

Proof. We show first that to cach hyperatom x there is a
line g such that [g] = x. For this .¢ need not use (PO).

l.et p, q Le any two distinct poitits we claim first that

'/
{p?+{q3 = [pq] +the set of point on the line pq. [pq] is obvi-
oo )

ously a linear subspace which contains {p} and q ), sincé if
C 2

r,s € [pq] r # s then 1line pg = line rs hence [rs] = [pql.

It remains to be shown that [pq] is contained in every subspace

X wiich contains {p}, (q}, but this follows from the definition
.

of a 1linear subspace. Thus we have snown that (p}+ q} = [PQ].
: L J

-
By definition a hyperatom x covers an atom ’p},

C
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= [pq] € x. Since x covers fp}, we have x = [pq],
C

that is each hyperatom can be written in the form [g]. We shall
show now that [g] is a hyperatom. On each line g there are at
least two distinct points by (PO). Therefore [g] is neither

the zero element nor an atom. Thus it suffices to show that there

1s no linear subspace x such that {p} ; x $ gl If x is

such an élement, then x contains a second point q (% p). By
. T TR (s X r ( 7
(P1) 1t follows that g=prq and {g]= [pq]= q )Sx

which contradicts x £ [g].

We can assign a geometry Gf to a given geometric lattice
I. 1f L is modular, then qt is generalized projective gecometry.
We take atoms of L as points of qi and hyperatoms of I, as

lines of qt and say that a point p 1lies on a line g if p < g

I

in L. For the proof of (P1) and (PZ) we shall use the dimension
concept. We have already obtained that an atom of a modular lattice
has dimension 1 and a hyperatom has dimiension 2.

(P1) Two distinct points p ond q always lie on a unique

line.
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Proof. Since p, q are distinct p'g =0 so b covers
P-q, by Theorem 5.1, p + q covers go Thus p + q is of dimen-
sion 2 hence a line. Since P,4 € p+q, p, q be on the line p+ qg.
e need moreover to show that every line on which p, q lie coin-
cides with p + q, that is the uniqueness property. Since p < (< P
qQ £ g it follows that p+q < g. Since they have the same dimensiou
2, p+q = g.

/

For the proof of (PZ) we start from points P, 9, r, p’, g

for which there exist lines g and h so that p’, q and r are

/

on g3 p, ¢’ and r are on h. We need to show that there is a

7

points r’ such that p, q and r lie on a lines; and p’, q’,

r’ lie on c line.
Case 112. q =q’ (no matter if P =9 or not). Let us take
r’ = r. Siice p, q', r are on'a line h and g =4q’, r =r’,

it follows that p, g, r’ are on the line h. Since p’, q, r

are on a line g and g =q’, r=r’ it follows that p’, q’/, r
are on the line g.

géég igl. q % a’, p =gq. It follows from these assumption
that p £ q’! Take r’ = q’. Since p = q, obviously p, q; r’
are on a line. fiipreover gq’ = ¢! implies that p’, q’, r’ are

/

on a line. The case p’ = q can be shown similarily.

Case (3). q#£q', p Z q and p’ #q’. 1In this case both

/ /

P+ aq and p’ + g are lines. Thus we necd merely show that
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k((p+q)'(p’+q’)) 2 1, since this implies the existence of a poine
r’ which lies on both P+ q and p’ + q’, Since p', q, r lie
on the line g, p’+q+r < g, hence X(p’+q+r) € 2. Similarly

(p+q +r) € 2. Then

AMp’+q+r+p+q/+r) = Mp +a+r)+n(p+a’+r)-A((p +q+r) (req/+r)) € 2421

=3, Since r £ (p’+a+r)(p+a’+r) and A(p’+q+r)(p+q’+r)) > Alr)

= 1. Then M(p+a)(p’+a’)) = Mp+q)+A(p’+a’)-A(p+qsp’+q’) > 2423 =1y

since A(p+q) = Mp’+q’) = 2 and X(p+q+p’+q') < k(p’+q+r+p+q’+r) <3

If the modular lattice $ is complemented the corresponding

geometry qﬁ also satisfies the axion (PO). Thus we have to show

that there are af least two points on each line.

Since g 1is a hyper;tom, it covers a point p. Thus we have
a point p on g. Since any complemented modular lattice is rela-
tively complemented, p has a relative complement q in [Og].
Then q < g, hence AMaq) € 2. Now K(q) £ O, since otherwise
K(q) =.0 implies q = O and p+q = p £ q. K(q) £ 2, since other-
Wise g =g and p-q £ 0. Therefore AMq) = 1, hence q 1is a
point on g and p % q, hence p+q = g. Thus g has at least
two points.

Theorem QLE. If £ isa complqupted modular lattice the
associated geometry Qf, is a projegtive geometry.

Theorem €.5. A lattice £ is (general) projective if and

only if it is complete, upper-continuous, atomistic and modular.
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Proof. It js shown before that L is isomorphic to the

lattice of subspaces of a merely finitary geometry, so we need

merely show that this merely finitary gcometry is a (generalized)

projective geometry and the subspaces of this merely finitary

geometry is the subspaces of the projective geometry. We define

the points uand lines of associated geometry as above, as shiown above

(P1), (PZ) are satisfied. Since L is atomistic every hyperatom

contains at least two atoms, hence (PO) is satisfied.

As remarked in Pe 28, to show that the subspaces of the merely

finitary geometry coincide with subspaces of the projective geometry,

Ve need merely show that the point set Dy +*° 4 P is actually the

subspace in projcc?ive gcometry generated by these points. This

can be done by induction on m. For m= 2, by definition p, + P2

is the line determined by py and P2e Obviously p1 +cey pm is

a subspace, SO it contains the subspace x

generated by Pys***,p

Assume that the p1+°"+pm X holds for m - 1, then for cvery

< o . e \ . . . . 5 < .
p (p1+p2+ +pm—1/+pm there is a point g p, .+ +pm_.1 such

that p < q+pm. Thus by induction assumption q is contained in

te subspace Y gcnerated by p1,"',pm_1. Since q < Yy € x and

< q+pm < y+pm € X. Thus p,+"'+pm § X. This together

A
»
o

m -

0

2 mensioned above give x = p‘+"'+pm.

with >
p,+ +pn X
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Thus we have proved that L(4(L)) =~ L. We have also

%(&(G ) 2 G for a projective geometry G, where the isomorphism

of two gecometries is deflined by:

Definition 8.3. Two projectivc geometrjes are said to be

isomorphic if there is a one-valued invertible mapping 9§ of the
set of points of one geometry to the set of points of another
geometry, and also a one-valued invertible mapping © of the set
of lines of one geometry to the set of lines of another geometry
so that a lies on g if 3(a) 1lies on O(g).

To prove that if G 1is a projective geometry then ‘?GI(G))

is isomorphic to G, for point p and line g of G we define

‘s r
3tp) = sp? and ©(g) = [g). As we have seen before 3 is a one-

L)

one invertible mapping between the set of points of G and the
set of atoms of i(G) and therefore between the set of points of
G and the set of points of %(i(G)}. By Theorem 8.3., hyperatoms
is $(G) coincide with point sets [g] of lines of G. Thus ©
is a one-one invertible mapping of the set of line of G onto the
set of hyperatoms of i(G) and hence onto the set of lines of
&(E(G)). Ana finally

‘ point p or line g <> p ¢ [g] (definition of [9])

< [g] (inclusion in £(G))

]
J
-— {p} on [g] (definition of‘%(L>)
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<« 3(p) on o(g) (definition of 3 and Q).

Thus the isomorphism between G and <%(£(G)) is established.
Since xi(G) of a projective geometry is modular, hence it is
a matroid lattice. Thus i(G) is irreducible if and only if any
two points of L are perspective to each other. Now point p is
perspective to point q if there exists an element x € i(G) such
that g < p+x and qx = 0. Let o} { g then x { O. Thus by
Theorem 8.1., there exists a point r € x such that q < p+r.
From qx = O it follows that q # r. TFurthermore p { r since
otherwise q < p+r = p controdictory to p f qg. Thus on the line
Pq there exist at least three distinct points. Conversely, if
every line has at least three distinct points, then for cvery pair
of distinct points P, q, they are perspective to each other.
Thus i(G) is irreducible if and only if the prbjective geometry
G satisfies
(PB). There exist at least thgee distinct points on each line.
3y Theorem 5.8., any projective lattice is a direct union of
irreducibie sublattices. Let G be a projective geometry, then
each sublattice of LG is also »rojective, since for the set of
atoms in a sublattice (PO), (91), (r2) and also (P}) (for, any
two points of a sublattice are pcrspcctive). Thus each sﬁblattice

is the projective lattice of an irroducible'projective space which

is defined as follows:
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Definition 8.4. If a line contains only two points, it well

be called degenerate. If a projective space contains any degerie-

rated lines it will be called reducible, otherwise it will be called

irreducible.

Definition 8.5. By the direct union D of any given collec-

tion K of mutually disjoint ﬁrojective spaces, we mean a projec-
tive space who§e points are all the points of the different spaces
that make up the collection; the lines of D consists of all the
lines of these spaces, and in additicn all degenerate lines which
can be formed by taking two points, one from each of two distinct,
and hence disjoint, spaces of the colléction K. That D 1is a
projective space can be easily shown by cheaking (P1), (P2) and
(r0).

Then from the above argument it follows

Theorem §;§. Every projectivevspace is either irreducible
or is the direct union in a unique way, of irreducible‘projecfive

spaces.

We shall now construct an irreducible projective space PS(a,D)

of dimension a which is any cardinal number, with coordinates
from an arbitrary division ring D. Let T be a set of elcments
of cardinal number a, apd let t be a variable ranging over the

sct T.

We shall call a function d(t) a coordinate function if

L]
T SN NI S R S A A LT W R g TR O o T T et



L

I

158
(1) The function d(t) is definéd over the set T.
(2) The function values of d(t) are in the ring D,
(3) - The function d(t) is not identically zero, but d(t) =0
except for a finite set of values of e
Here the symbol O stgnds for e zero element of the ring D. If
d(t) is a coordinate function, and r is any non-zero element of
the ring D, then rd(t),. obtained uy multiplying all the function
values of vd(t) on the left by r is also a coordinate function.
If d(t) is a coordinate function, we define the point P
of the space PS(a,D) belonging to the function d(t) to be the
set of all coordinate functions rd(t)} where r €D and r {bo.
Since D 1is a ring, it is clear that P belong likewise to all
the other coordinate functions of the set P, and that P is
deteriined by any one of its coordinate functioqstm__m.mﬂ_
Three distinct P, P/, P” of PS(a,D) will be called
collinear if they have coordinate functions d(t), a’(t), d”(t)
respectively such that d(t)+d’(t)+a”(t) = o.
‘Theorem §;Z. The space PS(a,D) is an irreducible projective:

space.

Proof. If we define a line Xo be the set of all points

collinear with two distinct points, it is easy to see that (p1)

is satisfied. Actually rd(t)+r’d’(t) for r,r’ €D is the line
through P(d(t)) and P/(d’(t)). Let the line prpm s pugn(t)

+r”d"(t) be any line through P, P’ then da(t) = réd”(t)+r “(¢)
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and d~(t) = r# “(t)+r#d“(t) therefore rd(f)+rfd'(t) =.(rrg+r’r¥)d(t)
+(:r@4r’rf)d (t). From these two equations we have that line pp’
S line p“p”, Sn the other hand, from the expressions of d(t) and
d’(t) we have r?d(t)-rgd’(t) = (r?r@-r@r?)d”(t) where
(r#r@—rgr?) #Z 0 since otherwise rfd(t)-rKd{ﬁi)%:ﬁD contradictory
to p#Zp’. Similarly r?d(t)-r@d’(t) = (rfrg-rgrf)d”(t) and
(r?rgQrgrf) % O. Thus p” and P” are also contained in the
line pp’, hence 1line p”p” < line pp’. Therefore 1line pp’ = line php m,

To show that the postulate (P2) is satisfied, let p, p’, p”
be three non collinear points with coordihate functions d(t),-d’(t),
d”(t) respectively, and let Q with coordinate function rd(t)+
r’d’(t) be on the 1line pp',. Q’ with coordinate function
r'd’(t) + r”d”(t) be on 1line p’p”e If Q and Q' are distinct,
then ir And r” are not both zero. Then rd(t) - f”d”(t) is not
identically zero and is therefore the coordinate function of a point
2” which is on the line pp” and also on the line Q' (since
rd(t)-roan(t] -z rd(t)+r/d’(t)-(r’a’ (t)+ra”(t))

The projective space PS(a,D) is irroducible? since the line
Joining the distinct points p and p’ with coordinate functions
d(t) and d’(t) always contains at lcast a third point p” with
coordinate function d(t) - d’(t).

We now consider a sort of converse of this theorem. 1Is every

irreducible projective space isomorphic to a coordinate space PS(a,D)?

il . e, . o~ P T N T el T TR A, SSM AR Y ATl et e Pk g Do e ke L
s TNy UGt o LA PO wr L P £ e # s *



IR WG TN SR

I T ARV e e ey e
; o

160

Obviously not, since it is well known that there exist projective
planes which can not be coordinatized by rings (M. Hall; Projective
plane, Trans. Amer. Math. Soc. 54 (1943) pp. 229-277).

With this single éxception, however, a converse of the above
theorem can be proved:

Theorem §;§. Every irreducible projective space is either a
.projective plane, or is isomorphic to a projective coordinate space
pPs(a,D).

Suppose S is an irreducible projective épace which is not
a projective plane. In order to cohstruct a coordihate system in
S we need to have a maximal independent set of points of S, to
éerve as tke vertices of a coordinate simplex.

It fcllqws form Zorn's lemma that such a maximal independent
set of points of S exists. For consider the collection K of
all independent sets of S. The set union of any linearly ordered
subcollection H of the collcctionb K is clearly An independent
set (every finite subset of the set union of H 1is contained in a
set of H, hence is indcpendent and is therefore in K. Since
every finite subset is indcpendent, the set union of H ;s inde-
pgndent). The hypothesis of Zorn's lemma is verified, hence there
exists a maximal set T in K, that is, a maximal indcpendent set
T__of points of §.

Let a be the cardinal number of the set T. Ye shall call
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a the projective dimension of the space S. If a if finite, it
is one greater than the ordinary dimension of S. Select a par-

ticular point t, of T. The set complement T - t, ‘has a Jjoin
He in the lattice of subspaces of S. It is easily verified that

Hy 1is a complement of the subspace t, in this lattice. (Ho =

1]
3

Z(T—to), to ﬁ E(T-to) since T 1is independent, hence to*H,
Obviously tq+H, = every point of S, hence ty+Hq = ES.)
Furthermore, H, is a maximal element of the lattice, and is called
a hyperplane, Since the points of T are to be the vertices of a

coordinate simplex, wc wish the line to + ta Joining t, to the

other point ta of T to be coordinate axis.
Hence it is necessary to set up a scale on each such lines.

e first select arbitrarily on each line t, + ta a third point
t& distinct from t, and ta. This is possible since the space
S is irreducible. Call t; the unit point of the line to + ta.

Let t; be a particular point of T distinct from tg. The plan
is to set up a scale on line to + ty+ and then to project this
scale onto the lines to + ta so that unit points correspond and

so that t4y corresponus to point ta. Let t{ Dbe the unit point
of line ty + t4. We may now define a division ring D whose
elements are dlI-fhe points of the line t, + t, except point t,

in such a way that t, 1is the zero clemcint of D, t{ is the unit
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element of D, whije ty 1is the "infinite point" of the line.

This can be done by the mecthod of von Staudt (Veblen-& Young,

Projective geometry, vol, 1, pp. 141-167) Provided S.__contains g

Projective three-space Ss containing the line to + t,. Except

in the trivial cases where § consist of a single line or of a

single point, § will contain such a thrce-space, since by assump-

tion S g irreducible and is not a Projective plane. Thisg divi-

sion ring is the ring D of the space PS(a,D) we are to construct

It determines 4 coordinate System on the line t, + ty, whereby

to each point p of the line to + t, other than t1 there is

assigned as coordinates the point P it self, considerecq as an

element of the ring D,

and hence the clements of the ring D,

onto the points of the line t, 4 ta SO that the point t1 goes

into the point ta

while the unit point t{ goes into the unit

pp$nt t;. This perspec-
tivily hag its center at

the point (¢ i+t ) (tist!)
which is in the hyperplane

Ho. Now let p be any

point of S pot in H,,
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By the merely fiﬁitary property, P 1is in the Join of a finite

minimal indcpendent“subset Th of the points of T which we wshall

call the points to, t,,"',td. We wish to aSsign=a coordinate

function d(t) to the point P, where ¢t ranges over the set T,

and the function d(t) takes values in the ring D. We define

d(t) to be zero if t ig not one of the points toyo o ,t and

n’

define d(to) = 1, the unit element of the ring D, If i is

one of the subscripts 1, Dyt iy we' define d(ti) to be the

§. - i . i e e e g0
coordinates on o + ti of the point (t,+tz+ +ti_1+p+t1+1+ +tn)

'(to+t1) (x((t1+"'+ti_'+p+ti+1+'f'+tn)‘(to+ti) = A(ty+ero st +p

=1

+ti+1+"’+tn)+X(t°+ti)—l(t,+°'j+ti_1+p+ti+1+'"+tn+t°+ti) = n+2-(n+1)

=1 since P 1is not in Hy so to,+2 04t

j-¢Ps t "’tn are

i+1

independent so that ti+eo ottt ] } &=
nt, A(ty+eces i_1+p+t1+1¢ _+tn n and

/7 =

t,+ e e — 3 ° e
1 +ti—1+p+t1+1+ +tn+t°+t1 = to+t+ +tn so that

K ® .0 e e e - \ 3
(t,+ +ti—1+p+ti+1+ +tn+t°+t1) = n+1). In other word, we assign

to each point in the finite-dimensional projective space determined

by the finite set Tn a set of coordinates in the usual way.

On the other hand, if p ig any point of the hyperplane Ho,

then P is in the Jjoin of a finite independent set of points ty,

“’,tn of 7 other than f;. Let ¢ be any point: of the line

to + p othe: than to or P. Since Q' ig not in Hy, a
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coordiuatg function d(t) hdas already Been assigﬁgq to it. In term
of thig cgo;q;nate function d(t) of the poiiit Q; we derine a
coordinate fimction d’(t) for the point p &5 that d’(to) = O
while d’/(t) = d(t) if t is didtinct from to: In this wdy every
point of S has a coordinate functicn hs&igned to it. By multiplyipg
each such coordinate function d(t) ‘on the left by all non zero
element r of the ring D; we get a set of coordinate functions
of the form rd(t), which set is by definiton a point of the pro-
Jjective coordinate space PS(a,D): Thus eath point of the space
S has been set into correpéndence with a-point of the space ps(a,D).
It remains to show that this correspondence between projectivc
spaces is an isomorphism.

To show this, let P, Q and R be three distinct points of
the space S They lie in the join J of a finite number of points

t‘,"',tn of the maximal independent set T. This subspace J is

an ordinary projective space of finite projective dimension n,

and our coordinate functions were assigned to point of J in the
same manner that ordinary projective coordinates would be assigned
to these points, considered as points cf J rather than of S.
Hence the condition, in terms of coordinates, that the thrce points
P, @ and R be collinear in S is the same as the condition that
the corresnonding points of PS(a,D) be collinear. Likewise dis-

tinct points of J have linearly independent coordinates in J
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and hehce h:ive disjoint sets .ot coordinaic functions assigned to
them in PS{a,D). This shows that the spaces S and PS(a,D) are
isomorphism, and cbmplgfe the proofif the theorem.

Let us now study if ‘the duality principle holds. Here we are
concerned with the lattice-theoretic_formulation of the axioms as
given above. Some of the assumption of such lattice L are self-
dual. For exanple, fhe completencss assumption and the nodularity

and the compiementedness are self-dual ones. The modularity is

self-dual, since if replace the duzl concept in the vroposition
. . \ ) N .
"a € ¢ implies (a+b}c = a+be" we have "a > ¢ implies :i*b+c =

a(b+c)" which is again the modularity.

- The dual of atomiéitx is anti-atomicity, which say that to

each a % 1 there is an anti-atom Xo which satisfies a < Xge
An anti-atom is an element which is covered by 1. ‘e shall show
that L is also anti-atomic. Let a £ 1, then & nas-a comple-

ment b { O since a £ 1. Since b £ G, there is an atonm p € b.
. ) : .
Let A =. xeLlagx.and'p'x=OJ, then A £ ¢ since a € A, i3y using

Zorn's lemma we see that there is a meximal eclement Xo in A and
that x, is a complement of p. Since P <overs p°xe = 0, so
1 = p+x, covers Xo by treorem 5.1. Thus Xo is an anti-atom

and x4, 2 a.

f

The upper-continuity is stated as follows: For any set {QQY
)
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GLrect Locve, 4ad e crowenit of RS x(Eya/ = E(x'ya)s The dual
PYCPOSITica 01 Ll oo DO rYe.o.u Lo Yulilows: For any set {&aj

directed bealow, ung 2uy aisaeent of L, x+(nya) = ﬂ(x+ya). we shall

show that ir I L.c Lol Qilugke;”QthiEHiix does not hold. ilet

- = &

T , P i . .

X S 2 eficed and M = PG,,8, ",n,"'j. Consider PS(wh) as
\ .

a00vie  Uslag: @ o ddenove. Fhe aoint represented by the coordinate

funcyiion G- loz the

¥, and x are defined as follows:

G
For a= J,i,., PR 33
v
o5y syl - og *<*= #{r) = 0 and

it .
F €x <> % ¢(mi - O.

MN==O
It ie easy to-zee thal these definitions are independent of the

representatica. Since L ¥y, the set of all ¥s is a set
o= i

directed below. Ciearly ny“ = C since there is no point whose

Tépresentatii: hins ail 0O COMDYLAINg, It follows that x+77yn = X,

=

If % is decfined by 93(0) = 1 aic ﬂz(m) =0 for m >1, then

G, £ x+ﬂyn = X ut 1t ocan he shown (nat Po € ﬁ(x+yn). Actually

- . . s ; . \
< X+3 for everv .. oY, B is defined b n+1,) .= -1
P < In + ? “rid s y 9n+1( /
and (9 0 = N ihedie s J 4 <ok @ < . If » is
vn+1( ) : ! 9n+1 S Yh 9n+1

defined b % 0F = o, Poptd) - A and * m) = 0 for
y Titsd S B O ’ ?n+1( )




167
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m#ZO0, n:t o L7 < ¥ since I 9*_ (m) = 0. Moreover
Zoae 6 n+1

r ey e dietinet i * = C 5e, 0*
$opr oud ol are distinet. Since 9%+9%+1+9n+1 0, %o, 97,

= . - e P x i
nd 57 S Gl TR ihie '~ < g : < +X for every n).
and g, ¥- jh+1t?n+1 S Yn ( y n)

Thus x+my # ﬁ(x+v‘/‘ shus in the »rojective geometry introduced
“n n

above thc duality wrincipjic does no* hold.

Consider a comelete, woduiar, caﬁplemcnted lattice of finite
1éngth (that 2%, cvery chein connecting two elements'is of finite
length). Since C € 1. cvery element of 1. has a finite dimension,

there dimensions ore ocuiuea, that is AMx) < A(1) for every X € L.

Thus we can sey suc: . laitice a finite dimensional coumplete, modular
complementea izttice. ‘e cali a srojective geometry finite dimen-

sional if LG is iiualve dimensional. In a finite dimensional pro-

Jective geometry ithe princisic of duzlity holds.

We have shown above that tue decomposition of LG corresponds
to a partitioning of S into subspaces Si in such a way that two

distinct points belong tu the same subspace if and only if they
determine a.non-degenerate line. Some of these components may be
trivial, consisting of Just one point or of just one line and others
may bc non-.irguesian planes.  ¥ith these exceptions, we can associate

with each component S, a division ring and introduce coordinates

in the manncr ol chawical Greltry, with the sole difference that

’
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number of coordinates may be infinite. This bring us to the sub-

ject of Desargue's law:

Definit;oﬁ 8;6. A projective geometry is said to be Arguesian
if for any points po; Py, P2, Qo, 91, Q2 the condition
£(pisa1) N £(p2,a2) € £(po,q0)
implies that
2(p1;p2) N L(a1,a2) = L((2(pospi) N £(ag,a1)) U (R(popsd N Aaoaz))),

where ﬂ(p°5q°) denotes the linear subspace determined by points

Po, Qoe

Definition 8.7. A lattice is said to be Arguesian if and.

only if it is isomorphic to the lattice of all subspaces of an
Arguesian projective gebmetry.

| The formU}atipn of Desargues' law in Def. 8.6 diffefs from
c;assical versibn in that no restriction is plaped on the six points

involved (such as that they be distinct, or that the three pairs

' Pi’ qy i =0,1,2, 1lie on three distinct but concunent lines).

llowever, the two formulations are actually equivalent, for some of
the épecial.cuses that are normally excluded are actﬁally valid in
all projective geometries, while the remaining cases follows:
from‘thc classical Desargues’ law.

Theorcm 8.9. If A. is a geometric lattice, then the following

conditions are equivalent:

(i) A 1is Augusian.

i
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(ii) A is modular and, for any atoms po, P1, P2, Qo 91, G2
of A, the condition (p,+q,)(pz+qz) € po+Qo implies that
(p1+p2)(a1+az) € (po+p1)(ao+as)+(po+p2)(ao+aa).

(iii) For any element a,, a;, a2, bo, by, ba € A, the
condition (a°+b°)(a,+b,) < ay+b, implies that (a°+a,)(bo+b1) <
(ag+a2) (bot+bz)+(as+az)(by+b2).

(iv) For any eléments ag, a3, a2z, bg, by, by € A, if

y = (ao+ay)(bo+by) [(ao+az) (botb2)+(as+az) (by+b2) ]

then (ac+bo)(ay+by) (az+bz) € agla+y)+bo(by+y).

*

Observe that in (1ii) and (iv) we do not assume the modular
law, it turns out to be a conseguence of the givenzconditions. In
fact, in any lattice A, (iv) implies (iii) and (iii) in turn %
implies that A 1is modular.

In terms of the decomposition discussed above; a projective
latticeA A is Arguesian if and only if none of its indecomposable
factors is isomorphic to the lattice of all subspaces of a non

Arguesian projective space.
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