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Abstract

This paper deals with a monotone empirical Bayes test δ∗n

for a truncation parameter distribution using the linex loss. The

asymptotic optimality of δ∗n is investigated. Under very mild con-

ditions, it is shown that δ∗n is asymptotically optimal with a rate

of order n
−2/3. This rate improves the empirical Bayes test δ

XS
n

of Xu and Shi (2004) in the sense that faster convergence rate is

achieved under conditions relatively weaker than that assumed in

Xu and Shi (2004).

1. Introduction

Let X be a random variable arising from a truncation parameter distri-

bution with a pdf f(x|θ) of the following form

f(x|θ) = u(x)A(θ)I[θ ≤ x ≤ mθ], (1.1)

where m > 1 is a constant, u(x) ≥ B1 > 0 for some constant B1, and

integrable over [a, b] for every 0 < a < b < ∞ and A(θ) = [
∫mθ
θ u(x)dx]−1.

Let θ0 be a known positive constant. We are interested in testing H0 : θ ≤ θ0

against H1 : θ > θ0. Let di denote the action deciding in favor ofHi, i = 0, 1.

Received December 23, 2004 and in revised form June 21, 2005.

AMS Subject Classification: 62C12.

Key words and phrases: Asymptotic optimality, Bayes risk, linex loss, rate of conver-
gence, regret.

397



398 TACHEN LIANG [September

The following asymmetric linex loss function is employed:

L(θ, d0) = l(θ)I(θ > θ0) and L(θ, d1) = l(θ)I(θ ≤ θ0) (1.2)

where l(θ) = eb(θ0−θ) − b(θ0 − θ)− 1, b 6= 0. The constant b determines the

shape of the loss function. Varian (1975) and Zellner (1986) have discussed

the behavior of the loss function and their various applications. Huang

(1995) studied empirical Bayes tests for a one-sided truncation parameter

distribution using an asymmetric loss, and Huang and Liang (1997) investi-

gated empirical Bayes estimation problem based on linex error loss. In this

paper, we consider the case that b = 1.

Assume that the parameter θ is a realization of a positive random vari-

able Θ having a pdf g over (0,∞) and satisfies that

0 < c0 ≤ g(θ) ≤ c1 <∞ for θ in [θ0/m, 2mθ0]. (1.3)

Thus, X has a marginal pdf fG(x)=
∫∞
0 f(x|θ)g(θ)dθ=u(x)

∫ x
x/mA(θ)g(θ)dθ

= u(x)vG(x) where vG(x) =
∫ x
x/mA(θ)g(θ)dθ.

Let χ be the sample space of X. A test δ is defined to be a mapping

from χ into [0, 1] such that δ(x) = P{acceptingH0|X = x} is the probability

of accepting H0 when X = x is observed. Let R(G, δ) denote the Bayes risk

of a test δ. Thus,

R(G, δ) =

∫

θ

∫

x
{L(θ, d0)δ(x) + [1− δ(x)]L(θ, d1)}f(x|θ)dG(θ)dx

=

∫ ∞

0
u(x)δ(x)QG(x)dx+ cG, (1.4)

where cG =
∫

l(θ)I(θ < θ0)dG(θ),

QG(x) =

∫

l(θ)I(θ>θ0)I[θ,mθ](x)A(θ)g(θ)dθ

−

∫

l(θ)I(θ<θ0)I[θ,mθ](x)A(θ)g(θ)dθ

≡ QG1(x)−QG2(x).

For x≤θ0, I(θ>θ0)I[θ,mθ](x)=0. Thus QG1(x)=0. So, QG(x)=−QG2(x)≤0.

For x≥mθ0, I(θ<θ0)I[θ,mθ](x)=0. Thus QG2(x)=0. So, QG(x)=QG1(x)≥0.
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For θ0 < x < mθ0, under condition (1.3), QG(x) =
∫ x
θ0
l(θ)A(θ)g(θ)dθ −

∫ θ0
θx/m

l(θ)A(θ)g(θ)dθ is strictly increasing in x. Hence, we see that: QG(x) ≤

0 for x ≤ θ0, QG(x) ≥ 0 for x ≥ mθ0, and QG(x) is continuous and strictly

increasing in [θ0/m, 2mθ0]. Thus, there exists a point, say aG, between θ0

and mθ0 such that QG(aG) = 0, and QG(x) < 0 for x < aG and QG(x) > 0

for x > aG. Therefore, a Bayes test δG, which minimizes the Bayes risks

among all tests, can be obtained as follows:

δG(x) = I[x < aG]. (1.5)

Thus, δG is a monotone test and aG is called a critical point of the Bayes

test δG. The minimum Bayes risk of this testing problem is:

R(G, δG) =

∫ ∞

0
u(x)δG(x)QG(x)dx+ cG. (1.6)

Note that the Bayes test δG heavily depends on the prior distribution

G. When G is unknown, it is impossible to implement the Bayes test δG.

Assuming a sequence of past data is available, Xu and Shi (2004) treated

this testing problem via the empirical Bayes approach. They proposed an

empirical Bayes test δXS
n for this testing problem. However, they imposed

too strong assumptions on the unknown prior distribution G, and the ob-

tainable rate of convergence is relatively slow. Also, their paper contains

certain errors.

In this paper, we shall study this testing problem through the empirical

Bayes approach. The paper is organized as follows. In Section 2, a monotone

empirical Bayes test δ∗n is constructed. We study the asymptotic optimal-

ity of δ∗n in Section 3. It is shown that under certain mild conditions, δ∗n
achieves a rate of convergence of order n−2/3, where n is the number of past

data available when the current testing problem is studied. Examples are

provided for demonstrating the performance of δ∗n. Comparison between the

performance of δ∗n and δXS
n is also made. The theoretic proof of asymptotic

optimality is given in Appendix.

2. Construction of A Monotone Empirical Bayes Test

In the empirical Bayes framework, we let (Xj ,Θj), j = 1, 2, . . . be iid
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copies of the random vector (X,Θ), where Xj are observable, but Θj are not

observable. At the present stage, say stage n+ 1, let X(n) = (X1, . . . ,Xn)

denote the n past data and X = Xn+1 stands for the present random obser-

vation. Let θn+1 be a realized value of the present random parameter Θn+1.

We are interested in testing H0 : θn+1 ≤ θ0 against H1 : θn+1 > θ0 using the

linex loss L(θn+1, di) of (1.2).

An empirical Bayes test δn is a probability function defined on the

presently observed value X ≡ Xn+1 = x and the past data X(n) , such

that δn(x) ≡ δn((x,X(n)) is the probability of accepting H0 : θn+1 ≤ θ0.

Let R(G, δn|X(n)) denote the Bayes risk of an empirical Bayes test δn con-

ditioning on X(n), and R(G, δn) = En R(G, δn|X(n)) the Bayes risk of δn,

where the expectation En is taken with respect to the probability measure

generated by X(n).

The minimum Bayes risk R(G, δG) would be achieved if the prior dis-

tribution G were known and the Bayes test δG had been applied. Thus,

D(G, δn) = R(G, δn) − R(G, δG) ≥ 0 for all n. This non-negative difference

D(G, δn), called as the regret of the empirical Bayes test δn, is often used as

a measure of performance of δn. δn is said to be asymptotically optimal, rel-

ative to the prior distribution G, at a rate O(εn) if D(G, δn) = O(εn) where

{εn} is a sequence of positive, decreasing numbers such that limn→∞ εn = 0.

Note that as the concerned testing problem is a monotonic decision

problem, the class of monotone tests is essentially complete. Thus, one

desires that the concerned empirical Bayes tests be monotone. For this

purpose, we need an estimator for the critical point aG. Assume an is an

estimator of aG. Then we may define a monotone test δn as follows:

δn(x) = I(x < an). (2.1)

Note that aG is the point such that QG(aG) = 0. Also, aG can be

expressed as:

aG = θ0 +

∫ mθ0

θ0

I[QG(x) < 0]dx. (2.2)

The form (2.2) provides us a motivation for the construction of an estimator

for aG. Thus, we need to find an estimator for QG(x) first. For this purpose,

we consider an alternative expression of QG(x).
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An Alternative Expression of QG(x)

From Xu and Shi (2004), A(θ)G(θ) = −
∑∞

j=1 dvG(m
jθ)/dθ. For θ0 <

x < mθ0, substituting this relation into QG1(x) and QG2(x), and applying

the integration by part technique, we can obtain:

QG1(x) =

∫ x

θ0

[eθ0−θ − (θ0 − θ)− 1]
[

−
∞
∑

j=1

d

dθ
vG(m

jθ)
]

dθ

=
∞
∑

j=1

∫ mjx

mjθ0

[1− eθ0−t/mj
]

u(t)mj
fG(t)dt

−

∞
∑

j=1

[eθ0−x − (θ0 − x)− 1]vG(m
jx)

≡

∞
∑

j=1

ψj(x)−

∞
∑

j=1

βj(x);

QG2(x) =

∫ θ0

x/m
[eθ0−θ − (θ0 − θ)− 1]

[

−

∞
∑

j=1

d

dθ
vG(m

jθ)
]

dθ

=

∞
∑

j=1

∫ mjθ0

mj−1x

[1− eθ0−t/mj
]

u(t)mj
fG(t)dt

+
∞
∑

j=1

[eθ0−x/m − (θ0 − x/m)− 1]vG(m
j−1x)

≡

∞
∑

j=1

αj(x) +

∞
∑

j=1

ηj(x),

where

ψj(x) =

∫ mjx

mjθ0

[1− eθ0−t/mj
]

u(t)mj
fG(t)dt,

(2.3)

αj(x) =

∫ mjθ0

mj−1x

[1− eθ0−t/mj
]

u(t)mj
fG(t)dt,

βj(x) = [eθ0−x − (θ0 − x)− 1]vG(m
jx),

ηj(x) = [eθ0−x/m − (θ0 − x/m)− 1]vG(m
j−1x).
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Thus,

QG(x) =

∞
∑

j=1

ψj(x)−

∞
∑

j=1

αj(x)−

∞
∑

j=1

βj(x)−

∞
∑

j=1

ηj(x)

≡ ψG(x)− αG(x)− βG(x)− ηG(x). (2.4)

Empirical Bayes estimation of QG(x)

Let h = n−1/3. For each l = 1, . . . , n, j = 1, 2, . . . and x in [θ0,mθ0],

define

ψnlj(x) =
[1− eθ0−Xl/m

j
]

mju(Xl)
I[mjθ0 < Xl ≤ mjx],

αnlj(x) =
[1− eθ0−Xl/m

j
]

mju(Xl)
I[mj−1x < Xl ≤ mjθ0],

βnlj(x) = [eθ0−x − (θ0 − x)− 1]/(u(Xl)h)I[m
jx < Xl ≤ mjx+ h],

ηnlj(x) = [eθ0−x/m − (θ0 − x/m)− 1]

/(u(Xl)h)I[m
j−1x < Xl ≤ mj−1x+ h].

ψn(x) =

∞
∑

j=1

1

n

n
∑

l=1

ψnlj(x),

αn(x) =

∞
∑

j=1

1

n

n
∑

l=1

αnlj(x),

βn(x) =
∞
∑

j=1

1

n

n
∑

l=1

βnlj(x),

ηn(x) =

∞
∑

j=1

1

n

n
∑

l=1

ηnlj(x),

Qn(x) = ψn(x)− αn(x)− βn(x)− ηn(x). (2.5)

We use Qn(x) to estimate QG(x).

Monotone empirical Bayes test δ∗
n

Motivated by the form (2.2) and based on Qn(x). we define an estimate
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a∗n for aG as follows:

a∗n = θ0 +

∫ mθ0

θ0

I[Qn(x) < 0]dx. (2.6)

Accordingly, we propose a monotone empirical Bayes test δ∗n as follows:

δ∗n(x) = I[x < a∗n]. (2.7)

The Bayes risk of δ∗n is:

R(G, δ∗n) =

∫ ∞

0
u(x)Enδ

∗
n(x)QG(x)dx+ cG. (2.8)

3. Asymptotic Optimality

We assume the following assumptions hold:

[A1] u(x) ≥ B1 for all x > 0, and u(x) ≤ B2 for x in [θ0,mθ0].

[A2] The prior pdf g satisfies 0 < c0 ≤ g(θ) ≤ c1 <∞ for θ in [θ0/m, 2mθ0].

[A3]
∑∞

j=0 v
∗
G(m

jx) ≤ M < ∞ and
∑∞

j=0 v
(1)∗

G (mjx)≤M <∞ for all x in

[θ0,mθ0].

where v∗G(x)=sup0≤y≤1 vG(x+hy), and v
(1)∗

G (x)=sup0≤y≤1 |v
(1)
G (x+hy)|.

We shall investigate the asymptotic optimality of the empirical Bayes

test δ∗n under the [A1]−[A3] conditions. By (1.5)−(1.6) and (2.7)−(2.8), the

regret of δ∗n can be written as

D(G, δ∗n) = En

[

∫ a∗n

aG

u(x)QG(x)dx
]

. (3.1)

By [A1],

B1

∫ a∗n

aG

QG(x)dx ≤

∫ a∗n

aG

u(x)QG(x)dx ≤ B2

∫ a∗n

aG

QG(x)dx. (3.2)

Since QG(aG) = 0, by taking Taylor’s series expansion of order 2,

∫ a∗n

aG

QG(x)dx = Q
(1)
G (x∗)(a∗n − aG)

2/2 (3.3)
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for some value x∗ between a∗n and aG, where

Q
(1)
G (x) = l(x)A(x)g(x) + l(x/m)A(x/m)g(x/m)/m.

Under assumptions [A1]-[A2],

Q
(1)
G∗ = inf{Q

(1)
G (x)|θ0 ≤ x ≤ mθ0} > 0 and

(3.4)
Q

(1)∗

G = sup{Q
(1)
G (x)|θ0 ≤ x ≤ mθ0} <∞.

Combining (3.1)−(3.4) yields that

B1Q
(1)
G∗En(a

∗
n − aG)

2/2 ≤ D(G, δ∗n) ≤ B2Q
(1)∗

G En(a
∗
n − aG)

2/2. (3.5)

The inequality of (3.5) provides an equivalence in convergence rates be-

tween the empirical Bayes testing problem and the problem of estimating

the critical point aG. Thus, it suffices to study the asymptotic behavior of

En(a
∗
n − aG)

2.

We have the following theorem.

Theorem 3.1. Suppose that assumptions [A1]−[A3] hold. Then

(a) En(a
∗
n − aG)

2 = O(n−2/3), and

(b) The empirical Bayes test δ∗n is asymptotically optimal and D(G, δ∗n) =

O(n−2/3).

Proof. Under [A2], QG(θ0) < 0 = QG(aG) < QG(mθ0). So, for suffi-

ciently large n, there exist points aG1(n) and aG2(n) such that θ0 < aG1(n) <

aG < aG2(n) < mθ0, and QG(aG1(n)) = −4hc4 and QG(aG2(n)) = 4hc4,

where c4 = 2eθ0M . From (2.2) and (2.6), the difference a∗n − aG can be

expressed as:

a∗n − aG = −

∫ aG1(n)

θ0

I[Qn(x) ≥ 0]dx−

∫ aG

aG1(n)
I[Qn(x) ≥ 0]dx

+

∫ aG2(n)

aG

I[Qn(x) < 0]dx+

∫ mθ0

aG2(n)
I[Qn(x) < 0]dx

≡ −A1(n)−A2(n) +A3(n) +A4(n).
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Thus,

En(a
∗
n − aG)

2 ≤ 4

4
∑

i=1

EnA
2
i (n). (3.6)

Hence, we need to evaluate EnA
2
j (n) for each j = 1, 2, 3 and 4. From Ap-

pendix, we have:

EnA
2
1(n) ≤

d1
n2h4

, (3.7)

EnA
2
2(n) ≤ d2h

2, (3.8)

EnA
2
3(n) ≤ d2h

2, (3.9)

EnA
2
4(n) ≤

d1
n2h4

, (3.10)

where d1 and d2 are some finite positive values defined in Appendix. Com-

bining (3.6)−(3.10) leads to

En(a
∗
n − aG)

2 ≤
2d1
n2h4

+ 2d2h
2 = O(n−2/3) since h = n−1/3.

The result of part (b) also follows immediately. �

4. Examples and Comparison

We use the following examples to demonstrate the performance of the

empirical Bayes test δ∗n.

Example 4.1. Let f(x|θ) = θ−1I[θ ≤ x ≤ 2θ], g(θ) = θe−θI[θ > 0].

Thus, u(x) = 1, A(θ) = θ−1, θ > 0. Then, vG(x) = e−x/2 − e−x, |v
(1)
G (x)| ≤

2e−x/2. We can verify that for each θ0 > 0, assumptions [A1]-[A3] hold.

Thus, by Theorem 3.1, the empirical Bayes test δ∗n is asymptotically optimal

and D(G, δ∗n) = O(n−2/3).

Example 4.2. Let f(x|θ) = u(x)A(θ)I[θ ≤ x ≤ 2θ], where B1 = u(0) >

0 and u(x) is an increasing function of x for x > 0. g(θ) = θ−2I[θ ≥ 1]. Thus,

A(θ) = [
∫ 2θ
θ u(x)dx]−1 ≤ 1

B1θ
.

vG(x) =

∫ x

x/m
A(θ)g(θ)dθ ≤

∫ x

x/m

1

B1θ3
dθ =

1.5

B1x2
.
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|v
(1)
G (x)| ≤ A(X)g(X) +A(X/2)g(X/2)/2 ≤

1.5

B1x3
.

It is easy to verify that for each θ0 > 0, assumptions [Al]-[A3] hold. Thus.

by Theorem 3.1, the empirical Bayes test δ∗n is asymptotically optimal and

D(G, δ∗n) = O(n−2/3).

Example 4.3. f(x|θ) = u(x)A(θ)I[θ ≤ x ≤ mθ], where u(x) = [x+ 1]

and [y] denotes the largest integer not greater than y. For each θ0 > 0, the

prior pdf g satisfies that 0 < c0 ≤ g(θ) ≤ c1 < ∞ for θ in [θ0/m, 2mθ0]

and g(θ) = 0 for θ > kθ0 for some k > 2m. Thus, vG(x) = 0 for x > kθ0.

Hence, we see that assumptions [A1]-[A3] hold. Thus, by Theorem 3.1, the

empirical Bayes test δ∗n is asymptotically optimal and D(G, δ∗n) = O(n−2/3).

Xu and Shi (2004) have studied the same testing problem via the em-

pirical Bayes approach. They proposed an empirical Bayes test δXS
n and

studied its associated asymptotic optimality. Under certain stronger con-

ditions, they showed that δXS
n is asymptotically optimal at a rate of order

O(n−εs/(2s+1)) where 0 < ε < 1 and s in an integer pertaining to their as-

sumptions. It should be noted that δXS
n is not a monotone test. When s

is small, the obtainable rate of δXS
n is slow, and the best possible rate is

O(n−ε/2), which is obtained when s tends to ∞. Therefore, we see that our

proposed empirical Bayes test δ∗n improves δXS
n in the sense of a faster rate

O(n−2/3) under weaker conditions.

One of the assumptions required in Xu and Shi (2004) is that the

marginal pdf fG(x) be s-times differentiable. In Example 4.3, the marginal

pdf fG(x) is not a continuous function. Thus, the condition that “fG(x) is

s-times differentiable” is not satisfied. Therefore, the empirical Bayes test

δXS
n cannot be applied. However, in such a situation, our proposed empirical

Bayes test δ∗n remains working well.

Appendix

We first investigate certain properties relating to the estimator Qn(x).

For each l = 1, . . . , n, let

Qnl(x) =

∞
∑

j=1

[ψnlj(x)− αnlj(x)− βnlj(x)− ηnlj(x)].
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Note that Qnl(x) is a random function of the random variable Xl. Thus,

Qnl(x) are iid. We have:

Qn(x) =
1

n

n
∑

l=1

Qnl(x). (A.1)

Since

ψnlj(x) =
[1− eθ0−Xl/m

j
]

mju(Xl)
I[mjθ0 < Xl ≤ mjx],

αnlj(x) =
[1− eθ0−Xl/m

j
]

mju(Xl)
I[mj−1x < Xl ≤ mjθ0],

βnlj(x) = [eθ0−x − (θ0 − x)− 1]/(u(Xl)h)I[m
jx < Xl ≤ mjx+ h],

ηnlj(x) = [eθ0−x/m − (θ0 − x/m)− 1]

/(u(Xl)h)I[m
j−1x < Xl ≤ mj−1x+ h],

we can obtain:

|
∑∞

j=1 ψnlj(x)|≤ 1/B1, |
∑∞

j=1 αnlj(x)|≤ e
θ0/B1, |

∑∞
j=1 βnlj(x)|≤ e

θ0/[hB1]

and |
∑∞

j=1 ηnlj(x)| ≤ eθ0/[hB1]. Thus, |Qnl(x)| ≤ 4eθ0/[hB1] and

|Qnl(x)− EnQnl(x)| ≤ 8eθ0/[hB1] = c3/h, (A.2)

where c3 = 8eθ0/B1.

Lemma A.1. Under assumptions [A1]-[A3], the following results hold.

(a) Enψnlj(x) = ψj(x).

(b) Enαnlj(x) = αj(x).

(c) |Enβnlj(x)− βj(x)| ≤ heθ0v
(1)∗

G (mjx), where v
(1)∗

G (y) = sup{|v
(1)
G (t)|;

y ≤ t < y + h}.

(d) |Enηnlj(x)− ηj(x)| ≤ heθ0v
(1)∗

G (mj−1x).

(e) |EnQnl(x)−QG(x)| ≤ 2heθ0
∑∞

j=1 v
(1)∗

G (mj−1x) ≤ 2heθ0M = hc4, where

c4 = 2eθ0M .

(f) |EnQn(x)−QG(x)| ≤ hc4.

Proof. We provide proof for part (c) only. Parts (e) and (f) are the

results of parts (a)−(d) and an application of [A3].
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By the definition of βnlj(x) and βj(x),

|Enβnlj(x)− βj(x)| ≤ eθ0
∣

∣

∣

∫ mjx+h

mjx

[vG(t)− vG(x)]

h
dt
∣

∣

∣

≤ eθ0
∫ mjx+h

mjx

∣

∣

∣

(t− x)v
(1)
G (t∗)

h

∣

∣

∣
dt ≤ heθ0v

(1)∗

G (mjx)

where t∗ is some value between x and t. �

Lemma A.2. Under assumptions [A1]−[A3], the following results hold.

(a) En[ψ
2
nlj(x)] ≤ 1/[m2jB2

1 ].

(b) En[α
2
nlj(x)] ≤ e2θ0/[m2jB2

1 ],

(c) En[β
2
nlj(x)] ≤ e2θ0v∗G(m

jx)/[hB1], where v
∗
G(y) = sup{vG(t);

y ≤ t < y + h}.

(d) En[η
2
nlj(x)] ≤ e2θ0v∗G(m

j−1x)/[hB1],

(e) Var (Qnl(x)) ≤ c5/h, where c5 =
2e2θ0M

B1
+ 8e2θ0

B2

1

∑∞
j=1

1
m2j .

(f) Var (Qn(x)) ≤ c5/(nh).

Proof. We provide proof for part (e) only. Let pnlj and qnlk be any two

of the functions ψnlj, αnlj, βnlj and ηnlj . We see that pnlj(x)qnlk(x) = 0 if

j 6= k. Thus,

Q2
nl(x) =

∞
∑

j=1

[ψnlj(x)− αnlj(x)− βnlj(x)− ηnlj(x)]
2

≤ 4

∞
∑

j=1

[ψ2
nlj(x) + α2

nlj(x) + β2nlj(x) + η2nlj(x)].

Hence,

Var (Qnl(x)) ≤ En[Q
2
nl(x)]

≤ 4
∞
∑

j=1

[Enψ
2
nlj(x) + Enα

2
nlj(x) + Enβ

2
nlj(x) + Enη

2
nlj(x)]

≤ 4

∞
∑

j=1

1

m2jB2
1

+ 4

∞
∑

j=1

e2θ0

m2jB2
1

+
2e2θ0

hB1

∞
∑

j=0

v∗G(m
jx)
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≤ 8

∞
∑

j=1

e2eθ0

m2jB2
1

+
2e2θ0M

hB1

≤ c5/h, where c5 =
2e2θ0M

B1
+

8e2θ0

B2
1

∞
∑

j=1

1

m2j
.

�

Lemma A.3.

(a) aG − aG1(n) ≤ 4hc4/Q
(1)
G∗ ; (b) aG2(n)− aG ≤ 4hc4/Q

(1)
G∗ ,

where Q
(1)
G∗ = inf{Q

(1)
G (x)|θ0 ≤ x ≤ mθ0} > 0.

Proof. We provide proof for part (a) only.

By the definitions of the points aG and aG1(n), and an application

of mean-value theorem, 4hc4 = QG(aG) − QG(aG1(n)) = Q
(1)
G (x∗)(aG −

aG1(n)) for some value x∗ between aG and aG1(n). Thus, aG − aG1(n) =

4hc4/Q
(1)
G (x∗) ≤ 4hc4/Q

(1)
G∗ . �

Lemma A.4.

(a) For x in [θ0, aG1(n)], EnQn(x) < QG(x)/2 < 0.

(b) For x in [aG2(n),mθ0], EnQn(x) > QG(x)/2 > 0.

Proof. We provide proof for part (a) only. From (A.1), QG(x) − hc4 ≤

EnQn(x) ≤ QG(x) + hc4. Since QG(x) is increasing in x and QG(aG1(n)) =

−4hc4, for x in [θ0, aG1(n)],

EnQn(x) ≤ QG(x)/2 +QG(x)/2 + hc4 ≤ QG(x)/2 +QG(aG1(n))/2 + hc4

= QG(x)/2 − 4hc4 + hc4 < QG(x)/2 < 0.

�

Proof of (3.7). By Hölder inequality,

A1(n) ≤
{

∫ aG1(n)

θ0

I[Qn(x)≥0]

[−Q3
G(x)]Q

(1)
G (x)

dx
}1/2

×
{

∫ aG1(n)

θ0

I[Qn(x)≥0][−Q3
G(x)]Q

(1)
G (x)dx

}1/2
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where

∫ aG1(n)

θ0

I[Qn(x) ≥ 0]

[−Q3
G(x)]Q

(1)
G (x)

dx ≤
1

[Q
(1)
G∗ ]2

∫ aG1(n)

θ0

Q
(1)
G (x)

[−Q3
G(x)]

dx

≤
1

[Q
(1)
G∗ ]2Q2

G(aG1(n))
≤

1

[Q
(1)
G∗ ]216c24h

2
.

Thus,

EnA
2
1(n) ≤

1

[Q
(1)
G∗ ]216c24h

2

∫ aG1(n)

θ0

Pn{Qn(x) ≥ 0}[−Q3
G(x)]dQG(x).

By Lemma A.4, (A.1)−(A.2), an application of Bernstein’s inequality

and Lemma A.2(e), we can obtain: for each x in [θ0, aG1(n)],

Pn{Qn(x) ≥ 0} ≤ Pn{Qn(x)− EnQn(x) ≥ −QG(x)/2}

≤ exp
{

−
n[QG(x)/2]

2/2

Var (Qnl(x)) +
c3
3h × |QG(x)

2 |

}

= exp
{

−
6nh

8
×

Q2
G(x)

6hVar (Qnl(x)) + c3|QG(x)|

}

≤ exp
{

−
6nh

8

Q2
G(x)

6h× c5
h + c3|QG(x)|

}

≤ exp
{

−
6nh

8
×

Q2
G(x)

6c5 + c3|QG(θ0)|

}

≤ exp{−nhτQ2
G(x)}

where τ = 6
8 ×

1
6c5+c3max(|QG(θ0)|,QG(mθ0))

.

Therefore,

∫ aG1(n)

θ0

Pn{Qn(x) ≥ 0}[−Q3
G(x)]dQG(x)

≤

∫ aG1(n)

θ0

exp{−nhτQ2
G(x)}[−Q

3
G(x)]dQG(x) ≤

1

n2h2τ2
.
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Hence,

EnA
2
1(n) ≤

1

[Q
(1)
G∗ ]216c24h

2
×

1

n2h2τ2
=

d1
n2h4

where d1 =
1

[Q
(1)
G∗ ]216τ2c24

.

�

Proof of (3.8). By Lemma A.3(a), A2(n) =
∫ aG
aG1(n)

I[Qn(x) ≥ O]dx ≤

aG−aG1(n)≤4hc4/Q
(1)
G∗ . Hence, EnA

2
2(n)≤d2h

2, where d2=16c24/[Q
(1)
G∗ ]2. �

Proofs of (3.9) and (3.10). The proofs of (3.9) and (3.10) are similar to

that of (3.8) and (3.7), respectively. The details are thus omitted. �
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