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Abstract

Cycloidal subgrups of the modular group are studied in

[8]. Here cycloidal free normal subgroups of Hecke groups are

considered. It is found that when q ≡ 2 (mod 4), H(λq) has no such

subgroups. In all other cases the signatures of these subgroups are

constructed by means of q-gons and their signatures are given.

1. Introduction

Hecke groups H(λq) are the discrete subgroups of PSL(2,R) generated

by the linear fractional transformations

R(z) = −1

z
and T (z) = z + λq,

where λq = 2cos π
q
, q ∈ N, q > 3. We put S = RT , i.e.

S(z) = − 1

z + λq

.

For q = 3, the obtained group is the modular group Γ = PSL(2,Z).
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Other well-known Hecke groups are H(
√
2), H(1+

√
5

2
) and H(

√
3), obtained

for q = 4, 5 and 6, respectively.

H(λq) is isomorphic to the free product of two cyclic groups of orders

2 and q, [1]. It has signature (0; 2, q,∞) as a Fuchsian group of the first

kind. That is, it acts on a Riemann surface of genus 0, and generated by

two elliptic elements R and S of order 2 and q with their product T , being

parabolic, is of infinite order. All parabolic elements in H(λq) are conjugate

to T , so that the parabolic class number of H(λq) is one.

A subgroup N of H(λq) having only one parabolic conjugacy class is

called cycloidal. Cycloidal subgroups of the modular group are studied in

[8] by Millington. Cycloidal normal subgroups of H(λq) of finite index are

studied in [3], and a formula for the number of them was given.

Here we give a constructive method of obtaining cycloidal free normal

subgroups of H(
√
2) and we prove that H(

√
3) has no such subgroups.

2. Background

Let N be a normal cycloidal free subgroup of H(λq) with finite index

µ. Let the genus of N be g. g is also the genus of the underlying Riemann

surface H(λq)/N .

By the Riemann-Hurwitz formula, we have

g =
1

2
(1 + µ

q − 2

2q
).

As g depends only on q and µ, and q is a given fixed number, we need to

determine the values of µ by means of the above equation. In this way, we

find the possible N ’s. Then we give permutation representation of N to

guarantee its existence. This representation is obtained by means of µ/q q-

gons.

The following result which we recall from [9] will be referred as the

permutation method during the paper.

Lemma 2.1. Let Γ be a Fuchsian group of the first kind with signature

(g;m1, . . . ,mk). Let Λ be a normal subgroup of Γ with finite index µ and let
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the exponent of xi modulo Λ be li. Then the signature of Λ is

(g′;

(

m1

l1

)
µ

l1

, . . . ,

(

mk

lk

)
µ

lk

)

where
(

mi

li

)
µ

li means that the period
(

mi

li

)

occurs µ/li times. Here, periods

equal to 1 are omitted and the genus g′ can be computed by the Riemann-

Hurwitz formula.

The idea of this result is to map the given group onto a finite subgroup

of the symmetric group on µ symbols, and then to obtain the periods of the

subgroup by dividing the orders of the generators to the length of each cycle

in the permutation representation of this generator. When a generator is

of infinite order, then there will be as many infinities, corresponding to this

generator as the number of cycles in the permutation representation.

The number of cycloidal free subgroups N of H(λq) with finite quotient

H(λq) /N ∼= G, is equal to the number of homomorphisms from H(λq) onto

G. Different homomorphisms are obtained by taking different cycles. To

have a normal subgroup one must have cycles of equal length. As a result

of this, the cycle length of the cycles in the image of H(λq) must divide the

index µ of N in H(λq).

3. Cycloidal Free Normal Subgroups of H(
√

2) of Finite Index

Let N be a cycloidal free normal subgroup of H(
√
2) of finite index µ.

It is well-known that µ = n.t where t denotes the parabolic class number of

N and n is the level, which is the least positive integer so that T n belongs

to N. Since N is free, 2 | µ and 4 | µ implying µ = 4k, k ∈ N. Also N

has no element of finite order and as it is cycloidal, t = 1. Therefore N

has the signature (g;∞). We only need to determine the genus g. By the

Riemann-Hurwitz formula,

g =
1

8
(µ+ 4) =

1

8
(4k + 4) =

k + 1

2
.

Then for even values of k, we cannot find integer values of g; hence k must

be odd.
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We are now in a state to know for which values of µ, we can have

a cycloidal free normal subgroup of H(
√
2). It then remains to construct

these subgroups.

Theorem 3.1. Let µ = 4(2m+1), m ∈ N. Then H(
√
2) has a cycloidal

free normal subgroup N of index µ given by the signature (m+ 1,∞).

Proof. We already know that N has genus m+1. We only need to show

the existence of such a subgroup. Let Θ be the homomorphism from H(
√
2)

onto the image group G induced by taking R to a product of transformations

and S to a product of 4-cycles (note that R is of of order 2 and S is fo order 4).

Then G acts transitively on µ = 8m+4 objects. We define the permutations

corresponding to R as follows:

R −→
(µ

2

µ

2
− 2

)(µ

2
+ 1

µ

2
+ 3

)

(2k 2k + 3) (modµ)

for k = 1, 2, . . . , µ
4
− 2, µ

4
+ 1, . . . , µ

2
. Also S goes to the following product:

S −→ (1 2 3 4)(5 6 7 8) . . . (µ − 3 µ− 2 µ− 1 µ)

Then, after some calculations, one finds that R.S = T goes to one µ−cycles,

implying the subgroup obtained is cycloidal. �

Example 3.1. Let µ = 20. Then we have the following permutations:

R → (8 10)(11 13)(2 5)(4 7)(6 9)(12 15)(14 17)(16 19)(18 1)(20 3)

S → (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)

T → (1 19 13 12 16 20 4 8 11 14 18 2 6 10 5 3 17 15 9 7)

We choose the transformations for R by means of µ
4
4-gons(squares)

each having vertices coresponding to the numbers in the permutations of S

as shown in Figure 1. To give a general formula for the permutations of

R, we choose the lines connecting the vertices as symmetrical as possible.

There are many other choices for these permutations. Each will give another

isomorphism of H(
√
2) onto a group of order 20.

4. Cycloidal Free Normal Subgroups of H(
√

3) of Finite Index

Because of the similarity between the underlying fields of H(
√
2) and
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H(
√
3), one may expect to have a similar result about the cycloidal free

subgroups of H(
√
3). But we show that the situation is quite different:

Theorem 4.1. H(
√
3) has no cycloidal free normal subgroups of finite

index.

Proof. Let us suppose that N is a cycloidal free normal subgroup of

H(
√
3) with index µ. As R goes to transpositions and S goes to 6-cycles, µ

must be a multiple of 6. Let us put µ = 6k, k ∈ N. If the genus of N is g,

by the Riemann-Hurwitz formula,

2g − 2 + 1 = 6k(−2 +
1

2
+

5

6
+ 1) (4.1)

and hence

g =
1 + 2k

2
(4.2)

is obtained. But this can not be an integer implying the result. �

5. Cycloidal Free Normal Subgroups of H(λ5) of Finite Index

Let N be a cycloidal free normal subgroup of H(λ5) with finite index

µ. Since R goes to µ/2 2-cycles and S goes to µ/5 5-cycles, µ is divisible by

10. Let µ = 10k, k ∈ N. By the Riemann-Hurwitz formula

2g − 2 + 1 = 10k(−2 +
1

2
+

4

5
+ 1) (5.1)

and therefore

g =
1 + 3k

2
, (5.2)

where g is the genus of N. Hence k must be odd. Then we have

Theorem 5.1. Let µ = 10k with k ∈ N odd. Then H(λ5) has a cycloidal

free normal subgroup N of index µ given by the signature

(

1 + 3k

2
; ∞

)

. (5.3)

Proof. We have just found the genus g of N to be g = 1+3k
2

. Therefore
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it only remains to prove the existence of N. We define the permutations as

follows:

We map every number between 1 and µ/2 to the number µ/2 bigger

than itself except the following two cases:

(2 + 10n 7 + 10n) n = 0, 1, . . . , k − 1,

(6 + 10n 11 + 10n) n = 0, 1, . . . ,
k − 3

2
,

(1 + 10n 6 + 10n) n =
k + 1

2
, . . . , k − 1.

In this way we obtain all the permutations for R. Define the permutation for

S as (1 2 3 4 5), (6 7 8 9 10), and so on. Then one can find the permutation

corresponding to T = R.S as a unique µ-cycle proving that we got a cycloidal

normal subgroup. �

Example 5.1. Let µ = 50. We define

R → (1 26)(2 7)(3 28)(4 29)(5 30)(6 11)(8 33)(9 34)(10 35)

(12 17)(13 38)(14 39)(15 40)(16 21)(18 43)(19 44)(20 45)

(22 27)(23 48)(24 49)(25 50)(31 36)(32 37)(41 46)(42 47) (5.4)

S → (1 2 3 4 5)(6 7 8 9 10) · · · · · · (46 47 48 49 50). (5.5)

Then

T → (1 27 23 49 25 46 42 48 24 50 21 17 13 39 15 36

32 38 14 40 11 7 3 29 5 26 2 8 34 10 31 37 33 9

35 6 12 18 44 20 41 47 43 19 45 16 22 28 4 30). (5.6)

6. Cycloidal Free Subgroups of H(λq) of Finite Index

We now consider the general case. Let N be as usual. Again R will go

to µ/2 transformations and S to µ/q q-cycles. Hence µ must be divisible by

2 and q. Therefore, if q is odd µ must have the form µ = 2qk with k ∈ N,

whereas when q is even µ = qk with k ∈ N.
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We are going to determine whether H(λq) may have a cycloidal free

normal subgroup of finite index µ or not. Let, first, q be odd. By the

Riemann-Hurwitz formula

g =
1 + k(q − 2)

2
. (6.1)

Hence k must be odd. In other words, µ = (4n + 2)q for n ∈ N.

Secondly, let q = 2m, m ∈ N. Similarly

g =
1 + k

2
(q − 2)

2
=

1 + k(m− 1)

2
.

Hence to have a non-negative integer g, we must have k(m− 1) odd, i.e.

k is odd and m is even. These imply that q is divisible by 4. We therefore

have

Theorem 6.1. If q ≡ 2 (mod 4), then H(λq) can not have any cycloidal

free subgroups of finite index.

For the modular group these subgroups are studied by Millington in

detail, [8]. For larger values of q, it is difficult to study cycloidal free normal

subgroups by means of q-gons.
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