0-TIGHT COMPLETELY 0-SIMPLE SEMIGROUPS

BY

HSING Y. WU

Abstract

A semigroup is 0-*tight* if each of its congruences is uniquely determined by each of the congruence classes which do not contain zero. We classify finite 0-tight rectangular 0-bands, and characterize 0-tight completely 0-simple semigroups. Finally, we obtain corresponding results about tight completely simple semigroups.

1. Introduction

Throughout this paper we shall use the terminology and notation of Howie [2]. We recall several definitions: a semigroup S is called *0-simple* if, for any $a, b \in S \setminus \{0\}$, there exist $x, y \in S$ such that xay = b. A completely 0simple semigroup S is a 0-simple semigroup such that every idempotent z of S has the property that $zf = fz = f \neq 0$ implies z = f. The following result is due to Rees [6]. Every completely 0-simple semigroup is isomorphic to a certain Rees matrix semigroup. This construction has led to an extensive study of congruences on completely 0-simple semigroups (see [3], [5]).

We begin with an analysis of congruences on a particular finite completely 0-simple semigroup. The result turns out to be the structure theorem for finite 0-tight rectangular 0-bands (see Theorem 2.3 in [8]). We recall that a rectangular 0-band is a semigroup $(I \times \Lambda) \cup \{0\}$ whose product is given in

Received September 19, 2005 and in revised form January 3, 2006.

AMS Subject Classification: Primary 20M20; Secondary 08A35.

Key words and phrases: Completely 0-simple, semigroups, tight.

The results of this paper are due to [8].

HSING Y. WU

terms of a $\Lambda \times I$ matrix $P = (p_{\lambda i})$ with entries in $\{0, 1\}$ as follows:

$$(i,\lambda)(j,\mu) = \begin{cases} (i,\mu) & \text{if } p_{\lambda j} = 1\\ 0 & \text{if } p_{\lambda j} = 0 \end{cases}$$
$$(i,\lambda)0 = 0(i,\lambda) = 00 = 0,$$

where P is regular, in the sense that no row or column of P consists entirely of zeros. The term *tight* was introduced by Schein [7]. A semigroup is called 0-*tight* if each of its congruences is uniquely determined by each of the congruence classes which do not contain zero. Using this structure theorem we then describe a characterization of 0-tight rectangular 0-bands.

The main aim of Section 3 is to characterize 0-tight completely 0-simple semigroups. A completely 0-simple semigroup $\mathcal{M}^0[G; I, \Lambda; P]$ is 0-tight if and only if the rectangular 0-band $(I \times \Lambda) \cup \{0\}$ is 0-tight. For the notation $\mathcal{M}^0[G; I, \Lambda; P]$, see p. 88 in [1].

By a similar approach to the study of 0-tight completely 0-simple semigroups, we investigate further tight completely simple semigroups. We recall that a semigroup S is called *completely simple* if S has no proper ideals and every idempotent z of S has the property that zf = fz = f implies z = f. A semigroup is called *tight* if each of its congruences is uniquely determined by each of the congruence classes (see [7]). Our last result of Section 3 is a characterization of tight completely simple semigroups.

2. 0-Tight Rectangular 0-Bands

Every semigroup S with zero has exactly one of the following properties:

- (1) S is 0-tight.
- (2) No congruence on S except $S \times S$ is uniquely determined by each of its congruence classes which do not contain zero.
- (3) There exists a congruence $\rho \neq S \times S$ on S such that ρ is uniquely determined by each of its congruence classes which do not contain zero. Also, there exist two congruences on S which have the same congruence class that does not contain zero.

A semigroup with the property in (2) is called 0-*tight-free*. A semigroup with the property in (3) is of the *third type*.

Now we proceed to the classification of finite rectangular 0-bands. Suppose S is a rectangular 0-band with $I = \{1, \ldots, m\}$ and $\Lambda = \{1, \ldots, n\}$. In [2] an equivalence relation \mathcal{E}_I on I is defined by the rule that

$$(i,j) \in \mathcal{E}_I$$
 if $\{\lambda \in \Lambda : p_{\lambda i} = 0\} = \{\lambda \in \Lambda : p_{\lambda j} = 0\}$

The relation \mathcal{E}_I is related to a unique partition of m in the following way: there are $r \mathcal{E}_I$ -equivalence classes and m_i -element \mathcal{E}_I -classes for $0 \leq i \leq r \leq |I|$ if

$$m = m_1 + \dots + m_r,\tag{1}$$

where $m_1, \ldots, m_r \in \mathbb{N}$ and $m_1 \geq \cdots \geq m_r$.

Similarly, an equivalence relation an \mathcal{E}_{Λ} on Λ is given by the rule that

$$(\lambda,\mu) \in \mathcal{E}_{\Lambda}$$
 if $\{i \in I : p_{\lambda i} = 0\} = \{i \in I : p_{\mu i} = 0\}$

Also, the relation \mathcal{E}_{Λ} is related to a unique partition of n in the following: there are $s \mathcal{E}_{\Lambda}$ -equivalence classes and n_j -element \mathcal{E}_{Λ} -classes for $0 \leq j \leq s \leq |\Lambda|$ if

$$n = n_1 + \dots + n_s, \tag{2}$$

where $n_1, \ldots, n_s \in \mathbb{N}$ and $n_1 \geq \cdots \geq n_s$.

We recall that a proper congruence ρ on a completely 0-simple semigroup is defined by $0 \rho = \{0\}$. Suppose ρ is a relation on $S \setminus \{0\}$. According to Lemma 3.5.6 in [2], every proper congruence $\rho \cup \{(0,0)\}$ on S is defined by the rule that

$$(i,\lambda) \ \rho \ (j,\mu) \Leftrightarrow (i,j) \in \mathcal{S} \text{ and } (\lambda,\mu) \in \mathcal{T},$$
 (3)

where S and T are equivalences such that $S \subseteq \mathcal{E}_I$ and $T \subseteq \mathcal{E}_\Lambda$.

Note that partitions of m and n do not always give the equivalences \mathcal{E}_I and \mathcal{E}_{Λ} , respectively. In fact, \mathcal{E}_I and \mathcal{E}_{Λ} are determined by the existence of a regular matrix P (see Example 2.1). Now we investigate the cases where proper congruences are not uniquely determined by each of their congruence classes which do not contain zero.

Case 1. Let $P = (p_{\lambda i})$. Suppose the equivalence relations \mathcal{E}_I and \mathcal{E}_{Λ} correspond to partitions of m and n, respectively, as follows:

$$m = m_1 + \dots + m_r$$
 and $n = n_1 + \dots + n_s$,

where $r, s \geq 2$.

We look at the case where |I| > 2 or $|\Lambda| > 2$. For |I| > 2, suppose m_1, \ldots, m_r are not all equal to 1. Clearly, for every equivalence $S_1 \neq I \times I$, there exists an equivalence $S_2 \neq S_1$ such that $iS_1 = iS_2$ for some $i \in I$ according to the selection rules for the counting problems.

Similarly, for $|\Lambda| > 2$, suppose n_1, \ldots, n_s are not all equal to 1. For every equivalence $\mathcal{T}_1 \neq \Lambda \times \Lambda$, there exists an equivalence $\mathcal{T}_2 \neq \mathcal{T}_1$, and $\lambda \mathcal{T}_1 = \lambda \mathcal{T}_2$ for some $\lambda \in \Lambda$. Let ρ_t correspond to $(\mathcal{S}_t, \mathcal{T}_t)$ for $1 \leq t \leq 2$. We have

$$(i,\lambda)\rho_1 = (i,\lambda)\rho_2,$$

for some $(i, \lambda) \in I \times \Lambda$.

When $iS_1 = \{i\}$ and $\lambda T_1 = \{\lambda\}$, a one-element S_1 -class and a oneelement T_1 -class give the existence of a one-element ρ_1 -class (see Example 2.2).

Case 2. Suppose r = 1 = s in case 1. Then there exists a proper congruence ρ which corresponds to $(I \times I, 1_{\Lambda})$ and ρ is uniquely determined by each of its congruence classes which do not contain zero. However, there exists a congruence which has a one-element class that is not equal to $\{0\}$. Hence such a finite rectangular 0-bands is of the third type.

Remark. Suppose $n \ge |\Lambda| \ge 2$ and $m \ge |I| \ge 2$. When r = 1 and $s \ge 2$, or $r \ge 2$ and s = 1, we cannot find a regular matrix P. In other words, in each of these cases we cannot find a rectangular 0-band whose multiplication is in terms some regular matrix P. Now suppose $n \ge |\Lambda| \ge 2$ and $m \ge |I| \ge 2^{|\Lambda|}$. When $m_1 = \cdots = m_r = 1$ and $n_1 = \cdots = n_s = 1$, again we cannot find a regular matrix P.

So far we have discussed the main part of the following classification.

(1) If $|\Lambda| = 1$ and |I| = 1 or 2, then S is 0-tight.

- (2) If $|\Lambda| = 1$ and $m \ge |I| \ge 3$, then S is of the third type.
- (3) If $|\Lambda| = 2$ and |I| = 2, then S is 0-tight.
- (4) If $|\Lambda| = 2$ and |I| = 3, then S can be 0-tight or 0-tight-free or of the third type.
- (5) If $|\Lambda| = 2$ and $m \ge |I| \ge 4$, then S is either 0-tight-free or of the third type.
- (6) If $|\Lambda| = n \ge 3$ and $|I| = n, ..., 2^n 1$, then S can be 0-tight or 0-tight-free or of the third type.
- (7) If $|\Lambda| = n \ge 3$ and $m \ge |I| \ge 2^n$, then S is either 0-tight-free or of the third type.

Note that there is a duality between $|\Lambda|$ and |I|. For example, in order to know in which category a rectangular 0-band with $|\Lambda| = 4$ and |I| = 3is, we simply check the rectangular 0-band with $|\Lambda| = 3$ and |I| = 4. Here we point out the number $2^n - 1$ coincides with that in Corollary 2.2 in [4]. Next, we recall the Green's equivalence \mathcal{H} .

$$(a,b) \in \mathcal{H} \Leftrightarrow xa = b, yb = a, au = b, bv = a$$
 for some $x, y, u, v \in S^1$. (4)

Also, a semigroup S is called *congruence-free* if S has no congruences other than 1_S and $S \times S$. [2] is a reference for the classification of finite congruencefree semigroups. The following theorem is the structure theorem for finite 0-tight rectangular 0-bands.

Theorem 2.1. Suppose $I = \{1, \ldots, m\}$ and $\Lambda = \{1, \ldots, n\}$ are finite sets. If $|I| \leq 2$ and $|\Lambda| \leq 2$, then a rectangular 0-band is 0-tight. In other cases a rectangular 0-band is 0-tight if and only if it is congruence-free with zero. Conversely, every finite 0-tight semigroup S with $\mathcal{H} = 1_S$ is isomorphic to one of this kind.

Proof. First every congruence-free semigroup with zero is 0-tight. We show other cases apart from $|I| \leq 2$ and $|\Lambda| \leq 2$ by verifying the following equivalent statements on a finite rectangular 0-band S:

- (1) The finite rectangular 0-band S is 0-tight.
- (2) $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = 1_{\Lambda}$.
- (3) No two columns and no two rows of the matrix P are identical.

2006]

We shall show that $(1) \Leftrightarrow (2) \Leftrightarrow (3)$.

 $(1) \Rightarrow (2)$. Suppose $\mathcal{E}_I \neq 1_I$ or $\mathcal{E}_\Lambda \neq 1_\Lambda$. From (1) and (2) on page 3, it follows that m_1, \ldots, m_r are not all equal to 1 or n_1, \ldots, n_s are not all equal to 1. By case 1 on page 4, there exists a proper congruence which is not uniquely determined by each of its congruence classes that do not contain zero. It is a contradiction.

(2) \Rightarrow (1). If $\mathcal{E}_I = 1_I$, then $\mathcal{S} = 1_I$. Also, $\mathcal{E}_{\Lambda} = 1_{\Lambda}$ implies that $\mathcal{T} = 1_{\Lambda}$. By (3) on page 3, S has only one proper congruence, and hence S is 0-tight.

 $(2) \Rightarrow (3).$ Suppose column i and column j of the regular matrix P are identical. Then

$$\{\lambda \in \Lambda : p_{\lambda i} = 0\} = \{\lambda \in \Lambda : p_{\lambda i} = 0\}.$$

This gives $(i, j) \in \mathcal{E}_I$. It is a contradiction. Similarly, if $\mathcal{E}_{\Lambda} = 1_{\Lambda}$, then no two rows of the matrix P are identical.

 $(3) \Rightarrow (2)$. Suppose no two columns of the matrix P are identical. Since P has entries in $\{0, 1\}$, we have $\mathcal{E}_I = 1_I$. Similarly, Suppose no two rows of the matrix P are identical. Since P has entries in $\{0, 1\}$, we have $\mathcal{E}_{\Lambda} = 1_{\Lambda}$. We are done. Conversely, first every 0-tight semigroup is 0-simple. Also, it is known that every finite 0-simple semigroup S with $\mathcal{H} = 1_S$ is isomorphic to a finite rectangular 0-band. The remaining part of the proof follows the classification of finite 0-tight rectangular 0-bands.

Now we apply Theorem 2.1 to arbitrary rectangular 0-bands.

Theorem 2.2. Suppose S is a rectangular 0-band. If $|I| \leq 2$ and $|\Lambda| \leq 2$, then S is 0-tight. If $|I| \geq 3$ or $|\Lambda| \geq 3$, then the following statements are equivalent:

- (1) S is 0-tight.
- (2) 1_S is uniquely determined by each of its congruence classes which do not contain zero.
- (3) $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = 1_{\Lambda}$.
- (4) S is congruence-free with zero.

Proof. It suffices to show that (2) implies (3). Let us assume that $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} \neq 1_{\Lambda}$. Let *i* and λ be fixed elements in *I* and Λ , respectively. We consider \mathcal{T} -classes $\{\lambda\}$ and $\Lambda \setminus \{\lambda\}$. Suppose the congruence ρ corresponds to $(1_I, \mathcal{T})$. Then ρ and 1_S have the same congruence class $\{(i, \lambda)\}$. We are done.

Example 2.2. Let $|I| = 2 = |\Lambda|$. We find out the reason why partitions of m and n do not always give the equivalences \mathcal{E}_I and \mathcal{E}_{Λ} , respectively.

Since P is regular, there are only 7 possible P's. Let P_1 be a 2 × 2 matrix which consists of all 1's. Suppose each of P_2 to P_5 is a 2 × 2 matrix which consists of one 0 and three 1's. Suppose each of P_6 to P_7 is a 2 × 2 matrix which consists of two 0's and two 1's with either 0's or 1's on the main diagonal.

We check the rectangular 0-band whose multiplication is in terms of P_1 . Now $\mathcal{E}_I = I \times I = \{1, 2\} \times \{1, 2\}$ and $\mathcal{E}_{\Lambda} = \Lambda \times \Lambda = \{1, 2\} \times \{1, 2\}$. In this case, m = 2 = n. Let $\mathcal{S}_1 = 1_I$, and $\mathcal{S}_2 = I \times I$, and $\mathcal{T}_1 = 1_{\Lambda}$, and $\mathcal{T}_2 = \Lambda \times \Lambda$. Suppose ρ_{kt} corresponds to $(\mathcal{S}_k, \mathcal{T}_t)$, where $1 \leq k \leq 2$ and $1 \leq t \leq 2$. Then we obtain the following proper congruences which are uniquely determined by each of their congruence classes that do not contain zero.

(1) $\rho_{11} \cup \{(0,0)\}$, the identity congruence.

2006]

- (2) $\rho_{12} \cup \{(0,0)\}$ has classes $\{0\}, \{(1,1), (1,2)\}, \{(2,1), (2,2)\}.$
- (3) $\rho_{21} \cup \{(0,0)\}$ has classes $\{0\}, \{(1,1), (2,1)\}, \{(1,2), (2,2)\}.$
- (4) $\rho_{22} \cup \{(0,0)\}$ has classes $\{0\}, \{(1,1), (1,2), (2,1), (2,2)\},\$

Next, we look at the rectangular 0-band whose multiplication is in terms of some P_f , where $2 \leq f \leq 7$. Then $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = 1_{\Lambda}$. Now m = 1 + 1 = n. For each $2 \leq f \leq 7$, we obtain one proper congruence which is uniquely determined by each of its congruence classes that do not contain zero. When m = 1 + 1 and n = 2, we cannot say $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = \Lambda \times \Lambda$. In other words, if $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = \Lambda \times \Lambda$, then we cannot find a regular matrix equal to some P_f for $1 \leq f \leq 7$.

Example 2.2. Let m = 2 + 2 = n. We give an example of a 0-tight-free rectangular 0-band. Now there are 2 two-element \mathcal{E}_I -classes and 2 two-element \mathcal{E}_Λ -classes. Here we only discuss one possible arrangement of elements of each class selected from the sets I and Λ .

Suppose S_1 -classes are $\{1, 2\}, \{3, 4\}$, and S_2 -classes are $\{1, 2\}, \{3\}, \{4\}$, and S_3 -classes are $\{1\}, \{2\}, \{3\}, \{4\}$. Suppose \mathcal{T}_1 -classes are $\{1, 3\}, \{2, 4\}$, and \mathcal{T}_2 -classes are $\{1, 3\}, \{2\}, \{4\}$, and \mathcal{T}_3 -classes are $\{1\}, \{2\}, \{3\}, \{4\}$. HSING Y. WU

Also, let ρ_{kt} correspond to $(\mathcal{S}_k, \mathcal{T}_t)$, where $1 \leq k \leq 3$ and $1 \leq t \leq 3$. We obtain the following result:

- (1) (1,3) $\rho_{11} = (1,3) \rho_{12} = (1,3) \rho_{21} = (1,3) \rho_{22} = \{(1,1), (1,3), (2,1), (2,3)\}.$
- (2) $(1,1) \rho_{13} = (1,1) \rho_{23} = \{(1,1), (2,1)\}.$
- (3) $(1,1) \rho_{31} = (1,1) \rho_{32} = \{(1,1), (1,3)\}.$
- (4) (4,4) $\rho_{23} = (4,4) \rho_{33} = \{(4,4)\}.$

3. 0-Tight Completely 0-Simple Semigroups

The Green's equivalence \mathcal{H} (see (4) on page 5) plays a major role in analyzing 0-tight completely 0-simple semigroups. Notice that \mathcal{H} is a congruence on a completely 0-simple semigroup. We consider a morphism which maps a rectangular 0-band Y into the quotient semigroup S/\mathcal{H} by sending (i, λ) into \mathcal{H} -class $H_{i\lambda}$, where $H_{i\lambda}$ is either a group or $H_{i\lambda}^2 = 0$

We can show that Y is isomorphic to S/\mathcal{H} . In other words, a completely 0-simple semigroup S is a rectangular 0-band Y of \mathcal{H} -classes, where an \mathcal{H} class H is either a group or $H^2 = 0$. Conversely, suppose S is a rectangular 0-band Y of sets H_{α} with $\alpha \in Y$. Here H_{α} is either a group or $H_{\alpha}^2 = 0$. We can show that S is a completely 0-simple semigroup.

Theorem 3.1. A completely 0-simple semigroup $\mathcal{M}^0[G; I, \Lambda; P]$ is 0tight if and only if the rectangular 0-band $(I \times \Lambda) \cup \{0\}$ whose multiplication is in terms of P with entries in G^0 is 0-tight.

Proof. Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, and let $Y = (I \times \Lambda) \cup \{0\}$. Suppose that Y is 0-tight. By Theorem 2.2 there are cases of equivalences \mathcal{E}_I and \mathcal{E}_{Λ} . We only verify the case where $\mathcal{E}_I = 1_I$ and $\mathcal{E}_{\Lambda} = 1_{\Lambda}$. In this case, $\mathcal{S} = 1_I$ and $\mathcal{T} = 1_{\Lambda}$.

Let ρ be a proper congruence on S. To show that ρ is uniquely determined by each of its congruence classes that do not contain zero, it suffices to verify the following:

$$(i, a, \lambda) \rho = \{(i, ga, \lambda) : g \in N\}.$$

If $(i, a, \lambda) \rho$ (i, b, λ) , then we deduce that $(p_{\xi i})ab^{-1}(p_{\xi i})^{-1} \in N$ for some $\xi \in \Lambda$ such that $p_{\xi i} \neq 0$ (see p. 88 in [2]). Since N is a normal subgroup of G, we have $ab^{-1} \in N$. It follows that b = ga for $g \in N$.

To show the converse, if $g \in N$, then $(p_{\xi i})(ga)a^{-1}(p_{\xi i})^{-1} = (p_{\xi i})g(p_{\xi i})^{-1}$ in N for every $\xi \in \Lambda$ such that $p_{\xi i} \neq 0$. Hence $(i, a, \lambda) \rho(i, b, \lambda)$.

Notice that now every congruence on S is uniquely determined by each of the congruence classes that do not contain zero. So S is a 0-tight semigroup. Conversely, suppose S is 0-tight. Since Y is a homomorphic image of S, Y is 0-tight.

Unlike completely 0-simple semigroups, we do not need equivalences \mathcal{E}_I and \mathcal{E}_{Λ} to investigate congruences on completely simple semigroups. We only have to discuss the equivalence relations \mathcal{S} and \mathcal{T} on I and Λ , respectively (see p. 90 in [2]). This makes our classification a lot easier.

To classify finite tight rectangular bands, we consider various partitions of m and n. There is a specific difference between the classification of finite rectangular 0-bands and that of finite rectangular bands. Let S be a finite rectangular band. We adopt similar terminology in Section 2.

- (1) If $|\Lambda| = 1$ and |I| = 1 or 2, then S is tight.
- (2) If $|\Lambda| = 1$ and $m \ge |I| \ge 3$, then S is tight-free.
- (3) If $|\Lambda| = 2$ and |I| = 2, then S is tight.
- (4) If $|\Lambda| = 2$ and $m \ge |I| \ge 3$, then S is of the third type.
- (5) If $|\Lambda| = n \ge 3$ and $m \ge |I| \ge n$, then S is tight-free.

Again there is a duality between finite sets I and Λ . As proved in Theorem 1.1.3 in [2], a semigroup is a rectangular band if and only if it is isomorphic to the direct product of a left zero semigroup A and a right zero semigroup B. The proof of Corollary 3.2 follows the proof of Theorem 2.2.

Corollary 3.2. Let S be a rectangular band. Then the following statements are equivalent:

- (1) S is tight.
- (2) 1_S is uniquely determined by each of its congruence classes.
- (3) $|A| \le 2$ and $|B| \le 2$.

We recall that a completely simple semigroup is a rectangular band of groups, and, conversely, a rectangular band of groups is completely simple (see p. 80 in [1]). The next corollary follows Theorem 3.1.

Corollary 3.2. A completely simple semigroup $\mathcal{M}[G; I, \Lambda; P]$ is tight if and only if the rectangular band $I \times \Lambda$ is tight.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I (1961), Math. Surveys of the Amer. Math. Soc., 7, Providence.

2. J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

3. G. Lallement, A note on congruences on Rees matrix semigroups, *Semigroup Forum*, 8(1974), 89-92.

4. W. D. Munn, Embedding semigroups in congruence-free semigroups, *Semigroup Forum*, 4(1972), 46-60.

5. G. B. Preston, Congruences on completely 0-simple semigroups, *Proc. London Math. Soc.* (3), **11** (1961), 557-576.

6. D. Rees, On semi-groups, Math. Proc. Cambridge Philos. Soc., 36(1940), 387-400.

7. B. M. Schein, A remark concerning congruences on [0-] bisimple inverse semigroups, *Semigroup Forum*, **3**(1971), 80-83.

8. Hsing Y. Wu, Tight congruences on semigroups, Doctoral Dissertation, Univ. of Arkansas, Fayetteville, 2004, 11-18.

Chung Jen Junior College of Nursing, Health Science and Management, # 217, Hung Mao Pi, Jia Yi City, Taiwan 60077.

E-mail: m105@mail.cjns.cy.edu.tw