OSCILLATION OF SEMILINEAR ELLIPTIC EQUATIONS WITH INTEGRABLE COEFFICIENTS

BY

ZHITING XU

Abstract

Some oscillation criteria for the second order semilinear elliptic differential equation $$
\begin{equation*} \sum_{i, j=1}^{N} D_{i}\left[a_{i j}(x) D_{j} y\right]+p(x) f(y)=0, \quad x \in \Omega\left(r_{0}\right), \tag{E} \end{equation*}
$$ are established. Particularly, Hille's theorem [Trans. Amer. Math. Soc. 64, 234-252(1948)] is extended to (E).

1. Introduction and Preliminaries

In this paper we treat the oscillation problem of the second order semilinear elliptic differential equation of the form

$$
\begin{equation*}
\sum_{i, j=1}^{N} D_{i}\left[a_{i j}(x) D_{j} y\right]+p(x) f(y)=0 \tag{1.1}
\end{equation*}
$$

in an exterior domain $\Omega\left(r_{0}\right) \subseteq \mathbb{R}^{N}$, where $x=\left(x_{1}, \cdots, x_{N}\right) \in \Omega\left(r_{0}\right), N \geq 2$, $D_{i} y=\partial y / \partial x_{i}$ for all $i, \Omega\left(r_{0}\right)=\left\{x \in \mathbb{R}^{N}:|x| \geq r_{0}\right\}$ for some $r_{0}>0,|\cdot|$ is the usual Euclidean norm in \mathbb{R}^{N}.

Throughout this paper, we assume that the following conditions hold.

Received October 6, 2004.
AMS Subject Classification: 35B05, 35J60, 34C10.
Key words and phrases: Oscillation, semilinear elliptic equations, second order, integrable coefficient.
(A1) $A=\left(a_{i j}\right)$ is a real symmetric positive definite matrix function with $a_{i j} \in C_{l o c}^{1+\nu}\left(\Omega\left(r_{0}\right), \mathbb{R}\right)$ for all i, j, and $\nu \in(0,1)$.
Denote by $\lambda_{\max }(x) \in C\left(\Omega\left(r_{0}\right), \mathbb{R}^{+}\right)$the largest eigenvalue of the matrix A. We suppose that there exists a function $\lambda \in C\left(\left[r_{0}, \infty\right), \mathbb{R}^{+}\right)$such that

$$
\lambda(r) \geq \max _{|x|=r} \lambda_{\max }(x) \quad \text { for } \quad r \geq r_{0}, \quad \text { and } \quad \int_{r_{0}}^{\infty} \frac{s^{1-N}}{\lambda(s)} d s=\infty
$$

(A2) $p \in C_{l o c}^{\nu}\left(\Omega\left(r_{0}\right), \mathbb{R}\right), p(x)$ does not eventually vanish;
(A3) $f \in C(\mathbb{R}, \mathbb{R}) \cup C^{1}(\mathbb{R}-\{0\}, \mathbb{R}), y f(y)>0$ and $f^{\prime}(y) \geq k>0$ for all $y \neq 0$.

As usual, a function $y \in C_{l o c}^{2+\nu}\left(\Omega\left(r_{0}\right), \mathbb{R}\right)$ is called a solution of (1.1) if $y(x)$ satisfies (1.1) for all $x \in \Omega\left(r_{0}\right)$. We restrict our attention only the nontrivial solution of (1.1), i.e., to the solution $y(x)$ satisfying $\sup \{|y(x)|$: $x \in \Omega(r)\}>0$ for every $r \geq r_{0}$. Regarding the question of existence of solution of (1.1) we refer the reader to the monograph [2]. A nontrivial solution $y(x)$ of (1.1) is said to be oscillatory in $\Omega\left(r_{0}\right)$ if the set $\left\{x \in \Omega\left(r_{0}\right)\right.$: $y(x)=0\}$ is unbounded, otherwise it is said to be nonoscillatory. (1.1) called oscillatory if all its nontrivial solutions are oscillatory.

For many years, a great deal of attention has been paid to the oscillation of (1.1) with variable coefficient $p(x)$, and various approaches have evolved. One of the most effective methods of procedure is that which seeks to reduce the problem to the one-dimensional Riccati inequality. Particularly, with outstanding contributions from Noussair and Swanson [7], some classical oscillation theorems (such as Fite [1], Kamenev [5, 6] and others) for second order linear ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y(t)=0, \quad p \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right) \tag{1.2}
\end{equation*}
$$

have been extended to (1.1) (see, for example, [7, 9-15] and the references cited therein). However, as we know, the oscillatory theory for (1.1) has not yet been elaborated unlike that of (1.2) (see, [8]). In view of this fact, it is therefore of interest to find new oscillation results for the semilinear elliptic equation (1.1).

In [7], Noussair and Swanson discussed the oscillation of (1.1) and gave some oscillation theorems, one of which is as follows.

Theorem 1.1. If

$$
\int_{\Omega\left(r_{0}\right)} p(x) d x=\infty
$$

then (1.1) is oscillatory.

This result is given in [7] in a more general form. But the above particular form of Noussair and Swanson's theorem is base one.

The case

$$
\int_{\Omega\left(r_{0}\right)} p(x) d x<\infty
$$

remains of interest and can produce either oscillatory or nonoscillatory behavior for (1.1).

The motivation for present work has come chiefly from the idea due to Hille [4] and Noussair and Swanson [7]. The aim of this paper is to study oscillation properties of (1.1) via Riccati technique and derive new oscillation criteria for this equation under the assumption

$$
\begin{equation*}
0<\int_{\Omega(r)} p(x) d x<\infty, \quad \text { for } r \geq r_{0} \tag{1.3}
\end{equation*}
$$

Especially, thereby extending Hille's Theorem to (1.1).
The following notations will be used throughout this paper.

$$
P_{M}(r)=\int_{S_{r}} p(x) d \sigma, \quad P(r)=\int_{\Omega(r)} p(x) d x
$$

and

$$
\varphi(r)=\frac{k r^{1-N}}{\omega_{N} \lambda(r)}, \quad \Psi(r)=\int_{r_{0}}^{r} \varphi(s) d s
$$

where $S_{r}=\left\{x \in \mathbb{R}^{N}:|x|=r\right\}$ for $r>0, d \sigma$ and ω_{N} denote the spherical integral element in \mathbb{R}^{N} and the surface of the N-dimensional unit sphere, respectively.

The following Lemma will be useful for establishing oscillation criteria for (1.1). It is similar to Hartman's Lemma [3].

Lemma 1.1. Let (1.3) hold. Suppose that (1.1) has a nonoscillatory solution $y(x) \neq 0$ for $x \in \Omega\left(r_{1}\right)$, $\left(r_{1} \geq r_{0}\right)$, and let

$$
W(x)=\frac{1}{f(y)}(A \nabla y)(x), \quad \text { and } \quad Z(r)=\int_{S_{r}} W(x) \cdot \mu(x) d \sigma
$$

then $Z(r)>0$, and satisfies

$$
\begin{equation*}
Z^{\prime}(r)+\varphi(r) Z^{2}(r)+P_{M}(r) \leq 0 \quad \text { for } \quad r \geq r_{1} \tag{1.4}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
Z(r) & =\int_{\Omega(r)} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma+P(r) \tag{1.5}\\
& \geq \int_{r}^{\infty} \varphi(s) Z^{2}(s) d s+P(r) \tag{1.6}
\end{align*}
$$

where $\nabla y=\left(D_{1} y, \cdots, D_{N} y\right)^{T}, \mu(x)=x /|x|,(x \neq 0)$, denotes the outward unit normal.

Proof. Differentiating $W(x)$ and making use of (1.1), we have

$$
\begin{equation*}
\operatorname{div} W(x)=-p(x)-f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) \tag{1.7}
\end{equation*}
$$

Then, by Green's formula, we get

$$
\begin{equation*}
Z^{\prime}(r)=\int_{S_{r}} \operatorname{div} W(x) d \sigma=-P_{M}(r)-\int_{S_{r}} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma \tag{1.8}
\end{equation*}
$$

In view of (A1), we find that

$$
\left(W^{T} A^{-1} W\right)(x) \geq \lambda_{\max }^{-1}(x)|W(x)|^{2}
$$

The Schwartz inequality gives that

$$
\int_{S_{r}}|W(x)|^{2} d \sigma \geq \frac{r^{1-N}}{\omega_{N}}\left[\int_{S_{r}} W(x) \cdot \mu(x) d \sigma\right]^{2}=\frac{r^{1-N}}{\omega_{N}} Z^{2}(r)
$$

Thus, by (1.8), we obtain

$$
\begin{equation*}
Z^{\prime}(r)+\frac{k r^{1-N}}{\omega_{N} \lambda(r)} Z^{2}(r)+P_{M}(r) \leq 0 \tag{1.9}
\end{equation*}
$$

which follows that (1.4) holds.
On the other hand, using integrating (1.8) from b to $r,\left(b \geq r_{1}\right)$, we have

$$
\begin{equation*}
Z(r)-Z(b)+\int_{b}^{r} P_{M}(s) d s+\int_{b}^{r} d \tau \int_{S_{\tau}} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma=0 \tag{1.10}
\end{equation*}
$$

By virtue of (1.3), if $u(r)$ is defined by

$$
u(r)=\int_{b}^{r} d \tau \int_{S \tau} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma
$$

then

$$
\begin{equation*}
\lim _{r \rightarrow \infty}[Z(r)+u(r)]=C, \tag{1.11}
\end{equation*}
$$

where C is a finite constant.
Now, we show that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} u(r)<\infty \tag{1.12}
\end{equation*}
$$

Otherwise, $\lim _{r \rightarrow \infty} u(r)=\infty$, then, by (1.11),

$$
\lim _{r \rightarrow \infty} Z(r) u^{-1}(r)=-1
$$

Thus, there exists $r^{*}>b$ such that for $r \geq r^{*}$,

$$
\begin{equation*}
Z(r) u^{-1}(r) \leq-\frac{1}{2} . \tag{1.13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
u(r) \geq \frac{k}{\omega_{N}} \int_{b}^{r} \frac{s^{1-N}}{\lambda(s)} Z^{2}(s) d s \tag{1.14}
\end{equation*}
$$

By (1.13), we have

$$
\frac{k^{2}}{4 \omega_{N}^{2}} \frac{r^{1-N}}{\lambda(r)} \leq \frac{k^{2}}{\omega_{N}^{2}} \frac{r^{1-N}}{\lambda(r)} \frac{Z^{2}(r)}{u^{2}(r)} \leq \frac{r^{1-N}}{\lambda(r)} Z^{2}(r)\left[\int_{b}^{r} \frac{s^{1-N}}{\lambda(r)} Z^{2}(s) d s\right]^{-2},
$$

consequently,

$$
\begin{aligned}
\frac{k^{2}}{4 \omega_{N}} \int_{r^{*}}^{r} \frac{s^{1-N}}{\lambda(s)} d s & \leq \int_{r^{*}}^{r} \frac{r^{1-N}}{\lambda(r)} Z^{2}(r)\left[\int_{b}^{r} \frac{s^{1-N}}{\lambda(r)} Z^{2}(s) d s\right]^{-2} d s \\
& \leq\left[\int_{b}^{r^{*}} \frac{s^{1-N}}{\lambda(r)} Z^{2}(s) d s\right]^{-2},
\end{aligned}
$$

which contradicts (A1). So (1.12) hold. From (1.11), it follows that $\lim _{r \rightarrow \infty}$ $Z(r)$ exists. If $\lim _{r \rightarrow \infty} Z(r)=d \neq 0$, there exists a sufficiently large r_{2} such that $Z^{2}(r) \geq d^{2} / 2$ for $r \geq r_{2}$, then, by (1.12) and (1.14),

$$
\frac{k d^{2}}{2 \omega_{N}} \int_{r_{2}} \frac{s^{1-N}}{\lambda(s)} d s \leq \lim _{r \rightarrow \infty} u(r)<\infty
$$

This contradicts (A1), which implies that $\lim _{r \rightarrow \infty} Z(r)=0$. Taking limit in (1.10) as $r \rightarrow \infty$, we get (1.5) holds. Noting (1.5) and (1.3), we get $Z(r)>0$ for $r \geq r_{1}$. From (1.5) and (1.14), we establish (1.6). Thus, the proof is compete.

2. Main Results

In this section, we will give new oscillation criteria for (1.1). First of all, we establish Hille-type oscillation theorem [4] for (1.1). Throughout this paper we always assume that condition (1.3) holds without further mentioning.

Theorem 2.1. If

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \Psi(r) P(r)>\frac{1}{4} \tag{2.1}
\end{equation*}
$$

then (1.1) is oscillatory.
Proof. Let $y=y(x)$ be a nonoscillatory solution of (1.1). Without loss of generality, let us consider that $y=y(x)>0$ on $\Omega\left(r_{1}\right),\left(r_{1} \geq r_{0}\right)$, then it follows from Lemma 1.1 that (1.6) holds. Moreover, by (2.1), there exist an $\alpha>1 / 4$ and $r_{2} \geq r_{1}$ such that

$$
P(r) \geq \frac{\alpha}{\Psi(r)} \quad \text { for } r \geq r_{2}
$$

Hence, in view of (1.6), we find that $Z(r) \geq \alpha / \Psi(r)$ for $r \geq r_{2}$. Applying the same step, we get

$$
\begin{aligned}
Z(r) & \geq \int_{r}^{\infty} \frac{\alpha^{2}}{\Psi^{2}(r)} \varphi(s) d s+P(r) \\
& =\frac{\alpha^{2}+\alpha}{\Psi(r)} \quad \text { for } r \geq r_{2}
\end{aligned}
$$

Repeating the above procedure n-times, we conclude that

$$
Z(r) \geq \frac{\beta_{n}}{\Psi(r)} \quad \text { for } r \geq r_{2}
$$

where $\beta_{1}=\alpha$ and $\beta_{n+1}=\beta_{n}^{2}+\alpha$ for $n=1,2, \cdots$.
As we see, the sequence $\left\{\beta_{n}\right\}$ is nondecreasing and bounded, while $\lim _{r \rightarrow \infty} \beta_{n}=\beta$ is a solution the quadratic equation $\beta^{2}-\beta+\alpha=0$. This implies that $1-4 \alpha \geq 0$ which contradicts $\alpha>1 / 4$.

Theorem 2.2. If

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\int_{r}^{\infty} \varphi(s) P^{2}(s) d s}{P(r)}>\frac{1}{4} \tag{2.2}
\end{equation*}
$$

then (1.1) is oscillatory.
Proof. Let $y=y(x)$ be a nonoscillatory solution of (1.1). Without loss of generality, let us consider that $y=y(x)>0$ on $\Omega\left(r_{1}\right),\left(r_{1} \geq r_{0}\right)$, then it follows from Lemma 1.1 that (1.6) holds. By (2.2), there exist an $\alpha>1 / 4$ and $r_{2} \geq r_{1}$ such that

$$
\int_{r}^{\infty} \varphi(s) P^{2}(s) d s \geq \alpha P(r) \quad \text { for } r \geq r_{2}
$$

Using this inequality and (1.6), as in the proof of Theorem 2.1, we get

$$
Z(r) \geq c_{n} P(r) \quad \text { for } r \geq r_{2}
$$

where $c_{1}=1$ and $c_{n+1}=\alpha c_{n}^{2}+1$ for $n=1,2, \cdots$.
It is easy to see that the sequence $\left\{c_{n}\right\}$ is nondecreasing and bounded, while $\lim _{r \rightarrow \infty} c_{n}=c$ is a solution the quadratic equation $\alpha c^{2}-c+1=0$. This implies that $1-4 \alpha \geq 0$ which contradicts $\alpha>1 / 4$.

Theorem 2.3. If

$$
\begin{equation*}
\int_{r_{0}}^{\infty} \Psi^{\alpha}(s) P_{M}(s) d s=\infty \quad \text { for some } \alpha \in(0,1) \tag{2.3}
\end{equation*}
$$

then (1.1) is oscillatory.

Proof. Let $y=y(x)$ be a nonoscillatory solution of (1.1). Without loss of generality, let us consider that $y=y(x)>0$ on $\Omega\left(r_{1}\right),\left(r_{1} \geq r_{0}\right)$. By Lemma 1.1, (1.4) has a positive solution $Z(r)$ on $\left[r_{1}, \infty\right)$. Let $h(r)=\Psi^{\alpha}(r) Z(r)$ for $r \geq r_{1}$, then, by (1.4), for $r \geq r_{1}$,

$$
\begin{aligned}
h^{\prime}(r) & \leq-\Psi^{\alpha}(r) P_{M}(r)-\Psi^{\alpha}(r) \varphi(r)\left[Z(r)-\frac{\alpha}{2 \Psi(r)}\right]^{2}+\frac{\alpha^{2}}{4} \Psi^{\alpha-2}(r) \varphi(r) \\
& \leq-\Psi^{\alpha}(r) P_{M}(r)+\frac{\alpha}{4} \Psi^{\alpha-2}(r) \varphi(r)
\end{aligned}
$$

Integrating this inequality and using (2.3), we lead to a contradiction.

Theorem 2.4. If

$$
\begin{equation*}
\int_{r_{0}}^{\infty}\left[\Psi(s) P_{M}(s)-\frac{\varphi(s)}{4 \Psi(s)}\right] d s=\infty \tag{2.4}
\end{equation*}
$$

then (1.1) is oscillatory.

Proof. Let $y=y(x)$ be a nonoscillatory solution of (1.1). Without loss of generality, let us consider that $y=y(x)>0$ on $\Omega\left(r_{1}\right),\left(r_{1} \geq r_{0}\right)$. By Lemma 1.1, (1.4) has a positive solution $Z(r)$ on $\left[r_{1}, \infty\right)$. Set $h(r)=\Psi(r) Z(r)-\frac{1}{2}$ for $r \geq r_{1}$, then, by (1.4), for $r \geq r_{1}$,

$$
\begin{aligned}
h^{\prime}(r) & \leq \varphi(r) Z(r)+\Psi(r)\left[-\varphi(r) Z^{2}(r)-P_{M}(r)\right] \\
& =-\frac{\varphi(r)}{\Psi(r)} h^{2}(r)+\frac{\varphi(r)}{4 \Psi(r)}-\Psi(r) P_{M}(r)
\end{aligned}
$$

Integrating this inequality and using (2.4), we conclude that there exists $b_{1} \geq r_{1}$ such that $h(r) \leq-1$ for $r \geq b_{1}$. This implies $Z(r)<0$ for $r \geq b_{1}$, which is a contradiction.

Theorem 2.5. If

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[\int_{r_{0}}^{r} P(s) d s\right]\left[(1+\Phi(s)) \int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right]^{-1 / 2}=\infty \tag{2.5}
\end{equation*}
$$

where

$$
\Phi(r)=\int_{r_{0}}^{r} \exp \left[-\frac{4 k}{\omega_{N}} \int_{r_{0}}^{s} \frac{\tau^{1-N}}{\lambda(\tau)} P(\tau) d \tau\right] d s
$$

then (1.1) is oscillatory.

Proof. Let $y=y(x)$ be a nonoscillatory solution of (1.1). Without loss of generality, let us consider that $y=y(x)>0$ on $\Omega\left(r_{0}\right)$. By Lemma 1.1, we have

$$
Z(r)=u(r)+P(r),
$$

where

$$
u(r)=\int_{\Omega(r)} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma
$$

Hence

$$
\begin{aligned}
-u^{\prime}(r) & =\int_{S_{r}} f^{\prime}(y)\left(W^{T} A^{-1} W\right)(x) d \sigma \geq \frac{k}{\omega_{N}} \frac{r^{1-N}}{\lambda(r)} Z^{2}(r) \\
& =\frac{k}{\omega_{N}} \frac{r^{1-N}}{\lambda(r)}[u(r)+P(r)]^{2} \geq \frac{4 k}{\omega_{N}} \frac{r^{1-N}}{\lambda(r)} P(r) u(r) .
\end{aligned}
$$

This implies that

$$
u(r) \leq u\left(r_{0}\right) \exp \left(-\frac{4 k}{\omega_{N}} \int_{r_{0}}^{r} \frac{s^{1-N}}{\lambda(s)} P(s) d s\right)
$$

Thus

$$
\int_{r_{0}}^{r} d s \int_{s}^{\infty} \frac{\tau^{1-N}}{\lambda(\tau)} Z^{2}(\tau) d \tau \leq k_{1} \Phi(r), \quad k_{1}>0
$$

and consequently,

$$
\int_{r_{0}}^{r}\left(s-r_{0}\right) \frac{s^{1-N}}{\lambda(s)} Z^{2}(s) d s+\left(r-r_{0}\right) \int_{r}^{\infty} \frac{s^{1-N}}{\lambda(s)} Z^{2}(s) d s \leq k_{1} \Phi(r) .
$$

So

$$
\int_{r_{0}}^{r} \frac{s^{2-N}}{\lambda(s)} Z^{2}(s) d s \leq k_{2}^{2}[1+\Phi(r)], \quad k_{2}>0
$$

From this and Schwarz's inequality, we have

$$
\begin{align*}
\left(\int_{r_{0}}^{r} Z(s) d s\right)^{2} & \leq\left(\int_{r_{0}}^{r} \frac{s^{2-N}}{\lambda(s)} Z^{2}(s) d s\right)\left(\int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right) \\
& \leq k_{2}^{2}[1+\Phi(r)] \int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s \tag{2.6}
\end{align*}
$$

It from (1.6) and (2.6) that

$$
\int_{r_{0}}^{r} P(s) d s \leq \int_{r_{0}}^{r} Z(s) d s \leq k_{2}\left[(1+\Phi(r)) \int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right]^{1 / 2}
$$

i.e.,

$$
\left[\int_{r_{0}}^{r} P(s) d s\right]\left[(1+\Phi(r)) \int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right]^{-1 / 2} \leq k_{2}
$$

this contradicts (2.5).

Corollary 2.1. If $\Phi(r)<\infty$ and

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[\int_{r_{0}}^{r} P(s) d s\right]\left[\int_{r_{0}}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right]^{-1 / 2}=\infty \tag{2.7}
\end{equation*}
$$

then (1.1) is oscillatory.

Example 2.1. Consider the semilinear elliptic equation

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}}\left(\frac{1}{|x|^{2}} \frac{\partial y}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{1}{|x|^{2}} \frac{\partial y}{\partial x_{2}}\right)+\frac{\nu}{|x|^{4}}\left(y+y^{3}\right)=0 \tag{2.8}
\end{equation*}
$$

where $x \in \Omega(1), N=2$, and $\nu>1$. Clearly

$$
\lambda(r)=\frac{1}{r^{2}}, \quad p(x)=\frac{\nu}{|x|^{4}}
$$

then

$$
\varphi(r)=\frac{r}{2 \pi}, \Psi(r)=\frac{r^{2}-1}{4 \pi}, P(r)=\frac{\pi \nu}{r^{2}}
$$

Thus

$$
\liminf _{r \rightarrow \infty} \Psi(r) P(r)=\frac{\nu}{4},
$$

or

$$
\liminf _{r \rightarrow \infty} \frac{\int_{r}^{\infty} \varphi(s) P^{2}(s) d s}{P(r)}=\frac{\nu}{4}
$$

Thus, by Theorem 2.1 or Theorem $2.2,(2.8)$ is oscillatory for $\nu>1$.

Example 2.2. Consider the semilinear elliptic equation

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}}\left(\frac{1}{|x|^{2}} \frac{\partial y}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{1}{|x|^{2}} \frac{\partial y}{\partial x_{2}}\right)+\frac{1+k \sin |x|}{|x|^{\gamma}}\left(y+y^{5}\right)=0, \tag{2.9}
\end{equation*}
$$

where $x \in \Omega(1), N=2, k \in \mathbb{R}$, and $2<\gamma \leq 3$. Clearly

$$
\lambda(r)=\frac{1}{r^{2}}, \quad p(x)=\frac{1+k \sin |x|}{|x|^{\gamma}},
$$

then

$$
\varphi(r)=\frac{r}{2 \pi}, \Psi(r)=\frac{r^{2}-1}{4 \pi}, P_{M}(r)=\frac{2 \pi(1+k \sin r)}{r^{\gamma-1}} .
$$

Thus

$$
\int_{1}^{\infty} \Psi^{1 / 2}(r) P_{M}(r) d r=\sqrt{\pi} \int_{1}^{\infty} \frac{(1+k \sin r)\left(r^{2}-1\right)^{1 / 2}}{r^{\gamma-1}} d r=\infty \quad \text { for } \gamma \leq 3
$$

Thus, by Theorem 2.3, (2.9) is oscillatory for $2<\gamma \leq 3$.

Example 2.3. Consider the semilinear elliptic equation

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}\left(\frac{1}{|x|} \frac{\partial y}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{1}{|x|} \frac{\partial y}{\partial x_{2}}\right) \\
& +\frac{3-2|x| \cos \sqrt{|x|}-\sqrt{|x|} \sin \sqrt{|x|}}{|x|^{3}} y=0 \tag{2.10}
\end{align*}
$$

where $x \in \Omega(1), N=2$, and $0<\gamma \leq 1$. Clearly

$$
\lambda(r)=\frac{1}{r}, \quad p(x)=\frac{3-2|x| \cos \sqrt{|x|}-\sqrt{|x|} \sin \sqrt{|x|}}{|x|^{3}}
$$

then

$$
\begin{aligned}
P(r) & =\int_{\Omega(r)} p(x) d x=\frac{2 \pi(3-2 \cos \sqrt{r})}{r} \geq \frac{2 \pi}{r} \\
\Phi(r) & =\int_{1}^{r} \exp \left[-\frac{4 k}{\omega_{N}} \int_{1}^{s} \frac{\tau^{1-N}}{\lambda(\tau)} P(\tau) d \tau\right] d s \\
& \leq \int_{1}^{r} \exp \left(-4 \int_{1}^{s} \frac{1}{\tau} d \tau\right) d s \\
& \leq \int_{1}^{r} \frac{1}{s^{4}} d s<\infty \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{r \rightarrow \infty}\left[\int_{1}^{r} P(s) d s\right]\left[\int_{1}^{r} \frac{\lambda(s)}{s^{2-N}} d s\right]^{-1 / 2} & \geq \lim _{r \rightarrow \infty}\left[\int_{1}^{r} \frac{2 \pi}{s} d s\right]\left[\int_{1}^{r} \frac{1}{s} d s\right]^{-1 / 2} \\
& =\lim _{r \rightarrow \infty} 2 \pi \sqrt{\ln r}=\infty
\end{aligned}
$$

Thus, by Corollary 2.1, (2.10) is oscillatory.

References

1. W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., 19(1918), 341-352.
2. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Now York. 1983.
3. P. Hartman, Ordinary Differential Equations, Wiley, Now York. 1982.
4. E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc., 64(1948), 234-252.
5. I. V. Kamenev, Oscillation of solution of a second order differential equation with an "integrally small" coefficient, Differencial'nye Uravnenija., 13(1977), 2141-2148. (In Russian)
6. I. V. Kamenev, An integral criterion for oscillation of linear differential equations, Math. Zamtki., 23 (1978), 249-251. (In Russian)
7. E. S. Noussair and C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati transformation, Canad. J. Math., 32(4)(1980), 908-923.
8. C. A. Swanson, Comparison and Oscillatory Theory of Linear Differential Equations, Academic Press, New York. 1968.
9. C. A. Swanson, Semilinear second order elliptic oscillation, Cand. Math. Bull., 22(1979), 139-157.
10. Z. T. Xu, Oscillation of second order elliptic partial differential equations with a "weakly integrally small" coefficient, J. Systems Sci. Math. Sci., 18(4)(1998), 478-484. (In Chinese)
11. Z. T. Xu, Oscillation of second order nonlinear differential elliptic equations, Appl. Math. J. Chinese Univ. Ser. (A)., 17(1)(2002), 29-36. (In Chinese)
12. Z. T. Xu, Riccati technique and oscillation of semilinear elliptic equations, Chinese J. Contemp. Math., 24(4)(2003), 329-340.
13. Z. T. Xu, D. K. Ma and B. G. Jia, Oscillation theorems for elliptic equations of second order, Acta Math. Sci. Ser. A Chin. Ed., 24(2)(2004), 144-151. (In Chinese)
14. Z. T. Xu and H. Y. Xing, Kamenev-type oscillation criteria for semilinear elliptic differential equations, Northeast. Math. J., 22(2)(2004), 153-160.
15. B. G. Zhang, T. Zhao and B. S. Lalli, Oscillation criteria for nonlinear second order elliptic differential equations, Chinese Ann. Math. Ser. B, $\mathbf{1 7}(1)(1996), 89-102$.

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China.

E-mail: xztxhyyj@pub.guangzhou.gd.cn

