# THE SECTIONS OF UNIVALENT FUNCTIONS 

## BY

## ZHONGQIU YE


#### Abstract

Let $\mathrm{f} \in \mathrm{S}$ and $f_{k}(z)=f^{\frac{1}{k}}\left(z^{k}\right)$. The radius of convexity of the partial sums of Taylor series expansion of $f_{k}(z)$ is investigated. We obtain the sharp radius.


Let S be the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ regular and univalent in $|z|<1$. Let $\mathrm{f} \in \mathrm{S}$, the part sums of Taylor series expansion $s_{n}(z)=$ $z+\sum_{\nu=2}^{n} a_{\nu} z^{\nu}$. Let $f_{k}(z)=f^{\frac{1}{k}}\left(z^{k}\right)=\sum_{\nu=0}^{\infty} b_{\nu}^{(k)} z^{k \nu+1}, k=2,3, \ldots, b_{0}^{(k)}=1$ and $s_{n, k}(z)=\sum_{\nu=0}^{n} b_{\nu}^{(k)} z^{k \nu+1}$. The property of the sections $s_{n}(z)$ and $s_{n, k}(z)$ is an interesting question. Szegö (see [1]) discovered that $s_{n}(z)$ is univalent in $|z|<\frac{1}{4}$ and conjectured that $s_{n, k}(z)$ is univalent in $|z|<\sqrt[k]{\frac{k}{2(k+1)}}$. This question remains open. Huke and $\operatorname{Pan}([2])$ proved that $s_{n}(z)$ is starlike in $|z|<\frac{1}{4}$. In this paper, we prove that $s_{n, k}(z)$ are convex in $|z|<\sqrt[k]{\frac{k}{2(k+1)^{2}}}$ and the radii of convexity are best. Our main results are

Theorem 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S$. Then $s_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ $(n=2,3, \ldots)$ are convex in $|z|<\frac{1}{8}$. The radius $\frac{1}{8}$ is sharp.

Theorem 2. Let $f \in S, f_{k}(z)=f^{\frac{1}{k}}\left(z^{k}\right)=\sum_{\nu=0}^{\infty} b_{\nu}^{(k)} z^{k \nu+1}, k=2,3, \ldots$, $b_{0}^{(k)}=1$. Then $s_{n, k}(z)=\sum_{\nu=0}^{n} b_{\nu}^{(k)} z^{k \nu+1}$ are convex in $|z|<\sqrt[k]{\frac{k}{2(k+1)^{2}}}$. The radii of convexity are sharp.

To prove the theorems, we need following lemmas.

Received March 10, 2006 and in revised form May 2, 2006.
AMS Subject Classification: Primary 30C45.
Key words and phrases: Univalent functions, radius of convexity, partial sums.

Lemma 1.(see [3]) Let $f(z) \in S$. Then for $|z| \leq r<1$

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{2 r^{2}+4 r}{1-r^{2}} \tag{1}
\end{equation*}
$$

Lemma 2.(see [3]) Let $f(z) \in S$. Then for $|z| \leq r<1$

$$
\begin{equation*}
1+\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{1-4 r+r^{2}}{1-r^{2}} \tag{2}
\end{equation*}
$$

Lemma 3. Let $f(z) \in S, R_{n}(z)=\sum_{k=n+1}^{\infty} a_{k} z^{k}$. Then for $|z| \leq r \leq \frac{1}{8}$, $n \geq 2$

$$
\begin{gather*}
\left|R_{n}^{\prime}(z)\right| \leq \frac{(n+1)^{2} r^{n}}{(1-r)^{2}}=G_{n}(r)  \tag{3}\\
\left|R_{n}^{\prime \prime}(z)\right| \leq G_{n}^{\prime}(r)=\frac{n(n+1)^{2} r^{n-1}}{(1-r)^{2}}+\frac{2(n+1)^{2} r^{n}}{(1-r)^{3}} . \tag{4}
\end{gather*}
$$

Proof. By de Branges inequalities $\left|a_{n}\right| \leq n(n=1,2, \ldots)$, it is clear that

$$
\begin{equation*}
\left|R_{n}(z)\right| \leq g(r)=\sum_{k=n+1}^{\infty} k r^{k}=\frac{r^{n+1}(n+1-n r)}{(1-r)^{2}} \tag{5}
\end{equation*}
$$

and

$$
\left|R_{n}^{\prime}(z)\right| \leq g^{\prime}(r)=\frac{(n+1)^{2} r^{n}}{(1-r)^{2}}+\frac{r^{n+1}\left[2-n^{2}(1-r)\right]}{(1-r)^{3}}=G_{n}(r)+t_{n}(r)
$$

It is clear for $r \leq \frac{1}{8}$ and $n \geq 2$ that $t_{n}(r) \leq 0$ and

$$
t_{n}^{\prime}(r)=\frac{r^{n}\left[(2 n+1)-(n+1) n^{2}(1-r)+n^{2} r\right]}{(1-r)^{2}}+\frac{3 r^{n+1}\left[2-n^{2}(1-r)\right]}{(1-r)^{4}}<0 .
$$

Hence we obtain that $\left|R_{n}^{\prime \prime}(z)\right| \leq g^{\prime \prime}(r) \leq G_{n}^{\prime}(r)$. It is easy to see that $\left\{G_{n}(r)\right\}$ and $\left\{G_{n}^{\prime}(r)\right\}$ are a monotone decreasing sequences. It follows for $n \geq 3$ that $G_{n}(r) \leq G_{3}(r)$ and $G_{n}^{\prime}(r) \leq G_{3}^{\prime}(r)$.

Lemma 4. Let $f(z) \in S, f_{k}(z)=f^{\frac{1}{k}}\left(z^{k}\right)=\sum_{\nu=0}^{\infty} b_{\nu}^{(k)} z^{k \nu+1}, k=$ $2,3, \ldots, b_{0}^{(k)}=1$. Then for $n \geq 4$ one has $k\left|b_{n}^{(k)}\right|<4$.

Proof. Milin proved ([5]) for $k=2$ that $\left|b_{\nu}^{(2)}\right|<1.17, \nu=1,2, \ldots$. We see that $2\left|b_{\nu}^{(2)}\right|<4$. Now we assume that $k \geq 3$. Define the logarithmic coefficients, as usual, by the expansion

$$
\log \frac{f(z)}{z}=2 \sum_{\nu=1}^{\infty} \gamma_{\nu} z^{\nu}
$$

We have the equalities

$$
\begin{equation*}
z f_{k}^{\prime}(z)=\frac{z f_{k}^{\prime}(z)}{f_{k}(z)} f_{k}(z)=\frac{z^{k} f^{\prime}\left(z^{k}\right)}{f\left(z^{k}\right)} f_{k}(z) \tag{6}
\end{equation*}
$$

Comparing the coefficients of the same power of z in (6), we obtain that

$$
\begin{equation*}
(k n+1) b_{n}^{(k)}=b_{n}^{(k)}+2 \sum_{\nu=1}^{n} \nu \gamma_{\nu} b_{n-\nu}^{(k)} . \tag{7}
\end{equation*}
$$

Applying Cauchy inequality, we obtain from (7) that

$$
\begin{equation*}
k\left|b_{n}^{(k)}\right| \leq 2 n^{-\frac{1}{2}}\left(\sum_{\nu=1}^{n} \nu\left|\gamma_{\nu}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{\nu=0}^{n-1}\left|b_{\nu}^{(k)}\right|^{2}\right)^{\frac{1}{2}} . \tag{8}
\end{equation*}
$$

Milin proved ([5]) that for $n=1,2, \ldots$

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu\left|\gamma_{\nu}\right|^{2} \leq \sum_{\nu=1}^{n} \frac{1}{\nu}+\delta \tag{9}
\end{equation*}
$$

where $\delta=0.312$. And proved that

$$
\begin{equation*}
\sum_{\nu=0}^{n-1}\left|b_{\nu}^{(k)}\right|^{2} \leq e^{\frac{2 \delta}{k}} \sum_{\nu=0}^{n-1} d_{\nu}^{2}\left(\frac{2}{k}\right) \leq e^{\frac{2 \delta}{3}} \sum_{\nu=0}^{n-1} d_{\nu}^{2}\left(\frac{2}{3}\right) \tag{10}
\end{equation*}
$$

where $d_{\nu}(x)$ are Taylor coefficients of the function $(1-z)^{-x}$. It is known ([6]) that $d_{\nu}\left(\frac{2}{3}\right) \leq \frac{2}{3} e^{\frac{2}{3} C} \nu^{-\frac{1}{3}}<\nu^{-\frac{1}{3}}$ ( $C$ is Euler constant). Hence it follows that

$$
\begin{equation*}
\sum_{\nu=0}^{n-1} d_{\nu}^{2}\left(\frac{2}{3}\right) \leq 1+\sum_{\nu=1}^{n-1} \nu^{-\frac{2}{3}} \leq 1+\int_{0}^{n-1} \nu^{-\frac{2}{3}} d \nu=1+3(n-1)^{\frac{1}{3}} \tag{11}
\end{equation*}
$$

We obtain from (9), (10), (11) and (8) that

$$
\begin{equation*}
k\left|b_{n}^{(k)}\right| \leq 2 n^{-\frac{1}{2}}\left(\sum_{\nu=1}^{n} \frac{1}{\nu}+\delta\right)^{\frac{1}{2}}\left(1+3(n-1)^{\frac{1}{3}}\right)^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

For $n \geq 4$, the right-hand of (12) is decreasing. This gives that

$$
k\left|b_{n}^{(k)}\right| \leq\left(\sum_{\nu=1}^{4} \frac{1}{\nu}+\delta\right)^{\frac{1}{2}}\left(1+3^{\frac{4}{3}}\right)^{\frac{1}{2}}<4
$$

Lemma 5. Let $f(z) \in S, f_{k}(z)=f^{\frac{1}{k}}\left(z^{k}\right)=\sum_{\nu=0}^{\infty} b_{\nu}^{(k)} z^{k \nu+1}, k=$ $2,3, \ldots, b_{0}^{(k)}=1$ and $R_{n, k}(z)=\sum_{\nu=n+1}^{\infty} b_{\nu}^{(k)} z^{k \nu+1}$. Let $\left|z_{k}\right|=\sqrt[k]{\frac{k}{2(k+1)^{2}}}$. Then for $n \geq 3$ one has $\left|R_{n, k}^{\prime}\left(z_{k}\right)\right|<0.004$ and $\left|z_{k} R_{n, k}^{\prime \prime}\left(z_{k}\right)\right|<0.07$.

Proof. Write $t=t_{k}=\left|z_{k}\right|^{k}$. We see for $k=2,3, \ldots$ that $t_{k} \leq t_{2}=\frac{1}{9}$. It is clear that

$$
\sum_{\nu=4}^{\infty}(\nu+1) t^{\nu}=\frac{d}{d t} \frac{t^{5}}{1-t}=\frac{5 t^{4}-4 t^{5}}{(1-t)^{2}}
$$

By Lemma 4, we obtain for $n=3$ that

$$
\begin{equation*}
\left|R_{n, k}^{\prime}\left(z_{k}\right)\right| \leq \sum_{\nu=4}^{\infty}(k \nu+1)\left|b_{\nu}^{(k)}\right| t^{\nu} \leq 4 \sum_{\nu=4}^{\infty}(\nu+1) t^{\nu}<\frac{20 t_{2}^{4}}{\left(1-t_{2}\right)^{2}}<0.004 \tag{13}
\end{equation*}
$$

It is clear for $k=2,3, \ldots$ that $k t_{k}<\frac{1}{2}$. By Lemma 4 , we obtain for $n=3$ that

$$
\begin{align*}
\left|z_{k} R_{n, k}^{\prime \prime}\left(z_{k}\right)\right| & \leq \sum_{\nu=4}^{\infty} k \nu(k \nu+1)\left|b_{\nu}^{(k)}\right| t^{\nu} \leq 4 k t \frac{d}{d t} \sum_{\nu=4}^{\infty}(\nu+1) t^{\nu} \\
& \leq 2\left[\frac{20 t^{3}}{1-t}+\frac{10 t^{4}-8 t^{5}}{(1-t)^{3}}\right] \leq \frac{40 t_{2}^{3}}{1-t_{2}}+\frac{20 t_{2}^{4}}{\left(1-t_{2}\right)^{3}}<0.07 \tag{14}
\end{align*}
$$

From the proof of (13) and (14), we see easy that the conclusion is true for $n>3$.

Proof of Theorem 1. It is enough to prove the inequalities

$$
\begin{equation*}
I=1+\operatorname{Re}\left\{\frac{z s_{n}^{\prime \prime}(z)}{s_{n}^{\prime}(z)}\right\} \geq 0 \tag{15}
\end{equation*}
$$

in $|z|=\frac{1}{8}$. The inequalities (15) are identical with the inequalities

$$
\begin{equation*}
J=\operatorname{Re}\left\{z s_{n}^{\prime \prime}(z) \overline{s_{n}^{\prime}(z)}\right\}+\left|s_{n}^{\prime}(z)\right|^{2} \geq 0 \tag{16}
\end{equation*}
$$

We consider two cases respectively. (A) Case $n=2$. In this case, we obtain that $s_{2}(z)=z+a_{2} z^{2}$. It follows that

$$
\begin{equation*}
J=\operatorname{Re}\left\{\left(1+2 \overline{a_{2} z}\right) 2 a_{2} z\right\}+\left|1+2 a_{2} z\right|^{2}=1+2\left|2 a_{2} z\right|^{2}+3 \operatorname{Re}\left(2 a_{2} z\right) \tag{17}
\end{equation*}
$$

Write $2 a_{2} z=x+i y$. Since $\left|a_{2}\right| \leq 2,|z|=\frac{1}{8}$, we obtain that $x^{2}+y^{2} \leq \frac{1}{4}$. It follows from (17) that

$$
J=1+2\left(x^{2}+y^{2}\right)+3 x \geq 1+3 x+2 x^{2}=J_{1}(x)
$$

It is clear that $J_{1}(x) \geq J_{1}\left(-\frac{1}{2}\right)=0$ for $|x| \leq \frac{1}{2}$. This gives that $s_{2}(z)$ is convex in $|z|<\frac{1}{8}$. For Koebe function, we obtain that $s_{2}(z)=z+2 z^{2}$. The $J=0$ when $z=-\frac{1}{8}$. Hence we see that the radius $\frac{1}{8}$ is sharp.
(B) Case $\mathrm{n} \geq 3$. Since $f(z)=s_{n}(z)+R_{n}(z)$, by (15), we have

$$
\begin{align*}
I & =1+\operatorname{Re}\left\{z \frac{f^{\prime \prime}-R_{n}^{\prime \prime}}{f^{\prime}-R_{n}^{\prime}}\right\}=1+\operatorname{Re}\left\{\frac{z f^{\prime \prime}}{f^{\prime}}\right\}+\operatorname{Re}\left\{z \frac{f^{\prime \prime} R_{n}^{\prime}-R_{n}^{\prime \prime} f^{\prime}}{f^{\prime}\left(f^{\prime}-R_{n}^{\prime}\right)}\right\} \\
& \geq 1+\operatorname{Re}\left\{\frac{z f^{\prime \prime}}{f^{\prime}}\right\}-\frac{\left|\frac{z f^{\prime \prime}}{f^{\prime}}\right|\left|R_{n}^{\prime}\right|+\left|z R_{n}^{\prime \prime}\right|}{\| f^{\prime}\left|-\left|R_{n}^{\prime}\right|\right|} . \tag{18}
\end{align*}
$$

We shall prove that $I \geq 0$ for $|z|=\frac{1}{8}$. By (1)-(4), by a simple calculation, we obtain following inequalities for $|z|=\frac{1}{8}$ that

$$
\begin{gather*}
\left|\frac{z f^{\prime \prime}}{f^{\prime}}\right| \leq\left(\frac{1}{32}+\frac{1}{2}\right) \frac{64}{63}=\frac{34}{63}<0.6,  \tag{19}\\
1+\operatorname{Re}\left\{\frac{z f^{\prime \prime}}{f^{\prime}}\right\} \geq\left(\frac{1}{2}+\frac{1}{32}\right) \frac{64}{63} \geq \frac{33}{63} \geq 0.5,  \tag{20}\\
\left|R_{n}^{\prime}\right| \leq G_{3}\left(\frac{1}{8}\right)=16\left(\frac{1}{8}\right)^{3}\left(\frac{8}{7}\right)^{2}=\frac{2}{49} \leq 0.05,  \tag{21}\\
\left|R_{n}^{\prime \prime}\right| \leq G_{3}^{\prime}\left(\frac{1}{8}\right)=\left(\frac{8}{7}\right)^{2} \times \frac{3}{4}+\left(\frac{1}{7}\right)^{3} \times 32=\frac{48}{49}+\frac{32}{343} \leq 1.1 . \tag{22}
\end{gather*}
$$

By the distortion theorem, we get that for $|z|=r=\frac{1}{8}$

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq \frac{1-r}{(1+r)^{3}}=\frac{7}{8}\left(\frac{8}{9}\right)^{3} \geq 0.6 \tag{23}
\end{equation*}
$$

Hence it follows from (21) and (23) that

$$
\begin{equation*}
\left|f^{\prime}(z)\right|-\left|R_{n}^{\prime}\right|>0.6-0.05=0.55 \tag{24}
\end{equation*}
$$

Combining (19)-(24), we obtain from (18) that

$$
\begin{equation*}
I \geq 0.5-\frac{0.6 \times 0.05+0.125 \times 1.1}{0.55}>0.5-0.31>0 \tag{25}
\end{equation*}
$$

Combining (A) and (B), we have proved Theorem.

Proof of Theorem 2. First we consider the case $n=2$. We assume, without loss generality, that $a_{2}=a \geq 0$. We see easy that $s_{2, k}=z+\frac{a z^{k+1}}{k}$. Write $s=z^{k}, \operatorname{Re}(s)=x$ and $t=t_{k}=\frac{k}{2(k+1)^{2}}$. It follows from (16) that

$$
\begin{aligned}
J & =\operatorname{Re}\left[a(k+1) z^{k}\left(1+\frac{a(k+1)}{k} \bar{z}^{k}\right)\right]+\left|1+\frac{a(k+1)^{2}}{k} z^{k}\right|^{2} \\
& =\frac{a^{2}(k+1)^{2}}{k}\left(\frac{1}{k}+1\right) x^{2}+a(k+1)\left(\frac{2}{k}+1\right) x+1=A x^{2}+B x+1 .
\end{aligned}
$$

It is clear that

$$
-t \geq-\frac{B}{2 A}=-\frac{k(k+2)}{2 a(k+1)^{2}}
$$

and

$$
\begin{aligned}
A t^{2}-B t+1 & =\frac{a^{2} k}{4(k+1)^{2}}\left(\frac{1}{k}+1\right)-\frac{a}{k+1}\left(\frac{2}{k}+1\right)+1 \\
& =\frac{2-a}{4(k+1)^{2}}\left[2 k^{2}+(4-a) k+(2-a)\right] \geq 0
\end{aligned}
$$

Hence we obtain for $|s|<t$ that $J>0$ and $J=0$ if and only if $a=2$. It follows that $t_{k}$ is best. Now we consider the case $n \geq 3$. By a simple calculation, we get

$$
\begin{equation*}
1+\frac{z f_{k}^{\prime}(z)}{f_{k}(z)}=(k-1) \frac{s f^{\prime}(s)}{f(s)}+k\left(1+\frac{s f^{\prime \prime}(s)}{f^{\prime}(s)}\right) \tag{26}
\end{equation*}
$$

We write

$$
\frac{\left|R_{n, k}^{\prime}(z)\right|}{\left\|f_{k}^{\prime}(z)|-| R_{n, k}^{\prime}(z)\right\|}=a_{n k}(z), \quad \frac{\left|z R_{n, k}^{\prime \prime}(z)\right|}{\left\|f_{k}^{\prime}(z)|-| R_{n, k}^{\prime}(z)\right\|}=b_{n k}(z) .
$$

From (19), we obtain for $f=f_{k}$ that

$$
\begin{align*}
I \geq & k \operatorname{Re}\left[1+\frac{s f^{\prime \prime}(s)}{f^{\prime}(s)}\right]+(k-1) \operatorname{Re} \frac{s f^{\prime}(s)}{f(s)} \\
& -a_{n k}(z)\left[(k-1)\left|\frac{s f^{\prime}(s)}{f(s)}\right|+k\left|1+\frac{s f^{\prime \prime}(s)}{f^{\prime}(s)}\right|+1\right]-b_{n k}(z) . \tag{27}
\end{align*}
$$

Write

$$
\begin{aligned}
& I_{1}=R e \frac{s f^{\prime}(s)}{f(s)}-a_{n k}\left|\frac{s f^{\prime}(s)}{f(s)}\right|, \\
& I_{2}=k\left[\operatorname{Re}\left(1+\frac{s f^{\prime \prime}(s)}{f^{\prime}(s)}\right)-a_{n k}\left|1+\frac{s f^{\prime \prime}(s)}{f^{\prime}(s)}\right|\right]-a_{n k}-b_{n k} .
\end{aligned}
$$

We estimate $I_{1}$ and $I_{2}$ respectively. It is well know that

$$
\frac{1-|s|}{1+|s|} \leq\left|\frac{s f^{\prime}(s)}{f(s)}\right| \leq \frac{1+|s|}{1-|s|} .
$$

Since $t_{k} \leq t_{2}=\frac{1}{9}$ and $k=2,3, \ldots$, we obtain for $|s|=t_{k}$ that

$$
\begin{equation*}
\left|f_{k}^{\prime}(z)\right|=\left|\frac{s f^{\prime}(s)}{f(s)} \|\left|\frac{f_{k}(z)}{z}\right| \geq \frac{1-|s|}{1+|s|}\left(\frac{1}{1+|s|}\right)^{\frac{2}{k}} \geq \frac{1-t_{2}}{\left(1+t_{2}\right)^{2}}>0.72 .\right. \tag{28}
\end{equation*}
$$

By Lemma 5 and (28), we get for $|z|^{k}=t_{k}$ that

$$
\begin{align*}
& a_{n k}(z) \leq \frac{0.004}{0.72-0.004}<0.006  \tag{29}\\
& b_{n k}(z) \leq \frac{0.11}{0.72-0.004}<0.16 \tag{30}
\end{align*}
$$

where $k \geq 2, n \geq 4$. Golusin proved ([3]) that

$$
\left|\arg \frac{s f^{\prime}(s)}{f(s)}\right| \leq \log \frac{1+|s|}{1-|s|}
$$

By this inequality, it follows for $|s|=t_{k}$ that

$$
\begin{align*}
I_{1} & \geq \frac{1-|s|}{1+|s|} \cos \log \frac{1+|s|}{1-|s|}-0.006 \frac{1+|s|}{1-|s|} \\
& \geq \frac{1-t_{2}}{1+t_{2}} \cos \log \frac{1+t_{2}}{1-t_{2}}-0.006 \frac{1+t_{2}}{1-t_{2}} \\
& \geq \frac{8}{10} \cos \log \frac{10}{8}-0.006 \times \frac{10}{8}>0.79-0.007>0 \tag{31}
\end{align*}
$$

By Lemma 1, Lemma 2, (29) and (30), it follows for $|s|=t_{k}$ that

$$
\begin{align*}
I_{2} & \geq k\left(\frac{1-4|s|+|s|^{2}}{1-|s|^{2}}-0.006 \frac{1+4|s|+|s|^{2}}{1-|s|^{2}}\right)-0.006-0.16 \\
& \geq k\left(\frac{1-4 t_{2}+t_{2}^{2}}{1-t_{2}^{2}}-0.006 \frac{1+4 t_{2}+t_{2}^{2}}{1-t_{2}^{2}}\right)-0.166 \\
& =k\left(\frac{46}{80}-0.006 \times \frac{118}{80}\right)-0.166>0 . \tag{32}
\end{align*}
$$

Combining (31), (32) and (27), we get that $I>0$ in $|z|<\sqrt[k]{\frac{k}{2(k+1)^{2}}}$.

## References

1. G. Szegö, Zur Theoric der Schlichten Abbidungen, Math. Annalen., 100(1928), 188-211.
2. Ke Hu and Yifei Pan, On a Theorem of Szegö, Chin. J. Math. Research and Expasition, 1(1984), 41-44.
3. G. M. Golusin, Geometrische Funktionentheorie, Deutsch. Verlag Wiss., Berlin, 1957.
4. P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
5. I. M. Milin, Univalent Functions and Othonormal Systerms (Russian), Moscow, 1971.
6. V. I. Milin, Adjacent Coefficients of Odd Univalent Functions, Sib. Math. J., 22(1981), no.2, 283-290.
7. Ke Hu and Yifei Pan, The section of odd univalent functions, Chinese Ann. Math., 4(5B)(1984), 727-730.

Department of Mathematics, JiangXi Normal University, Nanchang 330027, P.R. China.
E-mail: yezhqi@sina.com

