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THE SECTIONS OF UNIVALENT FUNCTIONS
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ZHONGQIU YE

Abstract

Let f∈S and fk(z) = f
1

k (zk). The radius of convexity of

the partial sums of Taylor series expansion of fk(z) is investigated.

We obtain the sharp radius.

Let S be the class of functions f(z) = z +
∑

∞

n=2 anz
n regular and uni-

valent in |z| < 1. Let f∈S, the part sums of Taylor series expansion sn(z) =

z +
∑n

ν=2 aνz
ν . Let fk(z) = f

1

k (zk) =
∑

∞

ν=0 b
(k)
ν zkν+1, k = 2, 3, . . ., b

(k)
0 = 1

and sn,k(z) =
∑n

ν=0 b
(k)
ν zkν+1. The property of the sections sn(z) and sn,k(z)

is an interesting question. Szegö (see [1]) discovered that sn(z) is univalent

in |z| < 1
4 and conjectured that sn,k(z) is univalent in |z| < k

√

k
2(k+1) . This

question remains open. Huke and Pan ([2]) proved that sn(z) is starlike in

|z| < 1
4 . In this paper, we prove that sn,k(z) are convex in |z| < k

√

k
2(k+1)2

and the radii of convexity are best. Our main results are

Theorem 1. Let f(z) = z+
∑

∞

n=2 anz
n ∈S. Then sn(z) = z+

∑n
k=2 akz

k

(n = 2, 3, . . .) are convex in |z| < 1
8 . The radius 1

8 is sharp.

Theorem 2. Let f ∈S, fk(z) = f
1

k (zk) =
∑

∞

ν=0 b
(k)
ν zkν+1, k = 2, 3, . . .,

b
(k)
0 = 1. Then sn,k(z) =

∑n
ν=0 b

(k)
ν zkν+1 are convex in |z| < k

√

k
2(k+1)2

. The

radii of convexity are sharp.

To prove the theorems, we need following lemmas.
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Lemma 1.(see [3]) Let f(z) ∈ S. Then for |z| ≤ r < 1

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣
≤

2r2 + 4r

1− r2
. (1)

Lemma 2.(see [3]) Let f(z) ∈ S. Then for |z| ≤ r < 1

1 +Re
{zf ′′(z)

f ′(z)

}

≥
1− 4r + r2

1− r2
. (2)

Lemma 3. Let f(z) ∈ S, Rn(z) =
∑

∞

k=n+1 akz
k. Then for |z| ≤ r ≤ 1

8 ,

n ≥ 2

|R′

n(z)| ≤
(n+ 1)2rn

(1− r)2
= Gn(r), (3)

|R′′

n(z)| ≤ G′

n(r) =
n(n+ 1)2rn−1

(1− r)2
+

2(n + 1)2rn

(1− r)3
. (4)

Proof. By de Branges inequalities |an| ≤ n (n = 1, 2, . . .), it is clear that

|Rn(z)| ≤ g(r) =

∞
∑

k=n+1

krk =
rn+1(n + 1− nr)

(1− r)2
(5)

and

|R′

n(z)| ≤ g′(r) =
(n+ 1)2rn

(1− r)2
+

rn+1[2− n2(1− r)]

(1− r)3
= Gn(r) + tn(r).

It is clear for r ≤ 1
8 and n ≥ 2 that tn(r) ≤ 0 and

t′n(r) =
rn[(2n + 1)− (n+ 1)n2(1− r) + n2r]

(1− r)2
+

3rn+1[2− n2(1− r)]

(1− r)4
< 0.

Hence we obtain that |R′′

n(z)| ≤ g′′(r) ≤ G′

n(r). It is easy to see that {Gn(r)}

and {G′

n(r)} are a monotone decreasing sequences. It follows for n ≥ 3 that

Gn(r) ≤ G3(r) and G′

n(r) ≤ G′

3(r). �

Lemma 4. Let f(z) ∈ S, fk(z) = f
1

k (zk) =
∑

∞

ν=0 b
(k)
ν zkν+1, k =

2, 3, . . ., b
(k)
0 = 1. Then for n≥ 4 one has k|b

(k)
n | < 4.
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Proof. Milin proved ([5]) for k = 2 that |b
(2)
ν | < 1.17, ν = 1, 2, . . .. We

see that 2|b
(2)
ν | < 4. Now we assume that k ≥ 3. Define the logarithmic

coefficients, as usual, by the expansion

log
f(z)

z
= 2

∞
∑

ν=1

γνz
ν .

We have the equalities

zf ′

k(z) =
zf ′

k(z)

fk(z)
fk(z) =

zkf ′(zk)

f(zk)
fk(z). (6)

Comparing the coefficients of the same power of z in (6), we obtain that

(kn + 1)b(k)n = b(k)n + 2

n
∑

ν=1

νγνb
(k)
n−ν . (7)

Applying Cauchy inequality, we obtain from (7) that

k|b(k)n | ≤ 2n−
1

2

(

n
∑

ν=1

ν|γν |
2
)

1

2
(

n−1
∑

ν=0

|b(k)ν |2
)

1

2

. (8)

Milin proved ([5]) that for n = 1, 2, . . .

n
∑

ν=1

ν|γν |
2 ≤

n
∑

ν=1

1

ν
+ δ (9)

where δ = 0.312. And proved that

n−1
∑

ν=0

|b(k)ν |2 ≤ e
2δ

k

n−1
∑

ν=0

d2ν(
2

k
) ≤ e

2δ

3

n−1
∑

ν=0

d2ν(
2

3
) (10)

where dν(x) are Taylor coefficients of the function (1 − z)−x. It is known

([6]) that dν(
2
3) ≤

2
3e

2

3
Cν−

1

3 < ν−
1

3 (C is Euler constant). Hence it follows

that

n−1
∑

ν=0

d2ν(
2

3
) ≤ 1 +

n−1
∑

ν=1

ν−
2

3 ≤ 1 +

∫ n−1

0
ν−

2

3dν = 1 + 3(n − 1)
1

3 . (11)
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We obtain from (9), (10), (11) and (8) that

k|b(k)n | ≤ 2n−
1

2

(

n
∑

ν=1

1

ν
+ δ

)
1

2

(1 + 3(n − 1)
1

3 )
1

2 . (12)

For n ≥ 4, the right-hand of (12) is decreasing. This gives that

k|b(k)n | ≤
(

4
∑

ν=1

1

ν
+ δ

)
1

2

(1 + 3
4

3 )
1

2 < 4. �

Lemma 5. Let f(z) ∈ S, fk(z) = f
1

k (zk) =
∑

∞

ν=0 b
(k)
ν zkν+1, k =

2, 3, . . ., b
(k)
0 = 1 and Rn,k(z) =

∑

∞

ν=n+1 b
(k)
ν zkν+1. Let |zk| = k

√

k
2(k+1)2

.

Then for n≥ 3 one has |R′

n,k(zk)| < 0.004 and |zkR
′′

n,k(zk)| < 0.07.

Proof. Write t = tk = |zk|
k. We see for k = 2, 3, . . . that tk ≤ t2 =

1
9 . It

is clear that
∞
∑

ν=4

(ν + 1)tν =
d

dt

t5

1− t
=

5t4 − 4t5

(1− t)2
.

By Lemma 4, we obtain for n = 3 that

|R′

n,k(zk)| ≤
∞
∑

ν=4

(kν + 1)|b(k)ν |tν ≤ 4
∞
∑

ν=4

(ν + 1)tν <
20t42

(1− t2)2
< 0.004. (13)

It is clear for k = 2, 3, . . . that ktk < 1
2 . By Lemma 4, we obtain for n = 3

that

|zkR
′′

n,k(zk)| ≤
∞
∑

ν=4

kν(kν + 1)|b(k)ν |tν ≤ 4kt
d

dt

∞
∑

ν=4

(ν + 1)tν

≤ 2[
20t3

1 − t
+

10t4 − 8t5

(1− t)3
] ≤

40t32
1− t2

+
20t42

(1− t2)3
< 0.07. (14)

From the proof of (13) and (14), we see easy that the conclusion is true for

n > 3. �

Proof of Theorem 1. It is enough to prove the inequalities

I = 1 +Re{
zs′′n(z)

s′n(z)
} ≥ 0 (15)
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in |z| = 1
8 . The inequalities (15) are identical with the inequalities

J = Re{zs′′n(z)s
′

n(z)}+ |s′n(z)|
2 ≥ 0. (16)

We consider two cases respectively. (A) Case n = 2. In this case, we obtain

that s2(z) = z + a2z
2. It follows that

J = Re{(1 + 2a2z)2a2z}+ |1 + 2a2z|
2 = 1 + 2|2a2z|

2 + 3Re(2a2z). (17)

Write 2a2z = x+ iy. Since |a2| ≤ 2, |z| = 1
8 , we obtain that x2 + y2 ≤ 1

4 . It

follows from (17) that

J = 1 + 2(x2 + y2) + 3x ≥ 1 + 3x+ 2x2 = J1(x).

It is clear that J1(x) ≥ J1(−
1
2) = 0 for |x| ≤ 1

2 . This gives that s2(z) is

convex in |z| < 1
8 . For Koebe function, we obtain that s2(z) = z + 2z2. The

J = 0 when z = −1
8 . Hence we see that the radius 1

8 is sharp.

(B) Case n≥ 3. Since f(z) = sn(z) +Rn(z), by (15), we have

I = 1 +Re{z
f ′′ −R′′

n

f ′ −R′

n

} = 1 +Re{
zf ′′

f ′
}+Re

{

z
f ′′R′

n −R′′

nf
′

f ′(f ′ −R′

n)

}

≥ 1 +Re{
zf ′′

f ′
} −

|zf
′′

f ′ ||R′

n|+ |zR′′

n|

||f ′| − |R′

n||
. (18)

We shall prove that I ≥ 0 for |z| = 1
8 . By (1)-(4), by a simple calculation,

we obtain following inequalities for |z| = 1
8 that

|
zf ′′

f ′
| ≤ (

1

32
+

1

2
)
64

63
=

34

63
< 0.6, (19)

1 +Re{
zf ′′

f ′
} ≥ (

1

2
+

1

32
)
64

63
≥

33

63
≥ 0.5, (20)

|R′

n| ≤ G3(
1

8
) = 16(

1

8
)3(

8

7
)2 =

2

49
≤ 0.05, (21)

|R′′

n| ≤ G′

3(
1

8
) = (

8

7
)2 ×

3

4
+ (

1

7
)3 × 32 =

48

49
+

32

343
≤ 1.1. (22)
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By the distortion theorem, we get that for |z| = r = 1
8

|f ′(z)| ≥
1− r

(1 + r)3
=

7

8
(
8

9
)3 ≥ 0.6. (23)

Hence it follows from (21) and (23) that

|f ′(z)| − |R′

n| > 0.6− 0.05 = 0.55. (24)

Combining (19)-(24), we obtain from (18) that

I ≥ 0.5−
0.6 × 0.05 + 0.125 × 1.1

0.55
> 0.5− 0.31 > 0. (25)

Combining (A) and (B), we have proved Theorem. �

Proof of Theorem 2. First we consider the case n = 2. We assume,

without loss generality, that a2 = a ≥ 0. We see easy that s2,k = z + azk+1

k
.

Write s = zk, Re(s) = x and t = tk = k
2(k+1)2

. It follows from (16) that

J = Re
[

a(k + 1)zk(1 +
a(k + 1)

k
zk)

]

+
∣

∣

∣
1 +

a(k + 1)2

k
zk
∣

∣

∣

2

=
a2(k + 1)2

k
(
1

k
+ 1)x2 + a(k + 1)(

2

k
+ 1)x+ 1 = Ax2 +Bx+ 1.

It is clear that

−t ≥ −
B

2A
= −

k(k + 2)

2a(k + 1)2

and

At2 −Bt+ 1 =
a2k

4(k + 1)2
(
1

k
+ 1) −

a

k + 1
(
2

k
+ 1) + 1

=
2− a

4(k + 1)2
[2k2 + (4− a)k + (2− a)] ≥ 0.

Hence we obtain for |s| < t that J > 0 and J = 0 if and only if a = 2.

It follows that tk is best. Now we consider the case n ≥ 3. By a simple

calculation, we get

1 +
zf ′

k(z)

fk(z)
= (k − 1)

sf ′(s)

f(s)
+ k(1 +

sf ′′(s)

f ′(s)
). (26)
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We write

|R′

n,k(z)|

||f ′

k(z)| − |R′

n,k(z)||
= ank(z),

|zR′′

n,k(z)|

||f ′

k(z)| − |R′

n,k(z)||
= bnk(z).

From (19), we obtain for f = fk that

I ≥ kRe[1 +
sf ′′(s)

f ′(s)
] + (k − 1)Re

sf ′(s)

f(s)

−ank(z)
[

(k − 1)|
sf ′(s)

f(s)
|+ k|1 +

sf ′′(s)

f ′(s)
|+ 1

]

− bnk(z). (27)

Write

I1 = Re
sf ′(s)

f(s)
− ank|

sf ′(s)

f(s)
|,

I2 = k
[

Re(1 +
sf ′′(s)

f ′(s)
)− ank|1 +

sf ′′(s)

f ′(s)
|
]

− ank − bnk.

We estimate I1 and I2 respectively. It is well know that

1− |s|

1 + |s|
≤ |

sf ′(s)

f(s)
| ≤

1 + |s|

1− |s|
.

Since tk ≤ t2 =
1
9 and k = 2, 3, . . ., we obtain for |s| = tk that

|f ′

k(z)| = |
sf ′(s)

f(s)
||
fk(z)

z
| ≥

1− |s|

1 + |s|
(

1

1 + |s|
)
2

k ≥
1− t2

(1 + t2)2
> 0.72. (28)

By Lemma 5 and (28), we get for |z|k = tk that

ank(z) ≤
0.004

0.72 − 0.004
< 0.006, (29)

bnk(z) ≤
0.11

0.72 − 0.004
< 0.16 (30)

where k ≥ 2, n ≥ 4. Golusin proved ([3]) that

| arg
sf ′(s)

f(s)
| ≤ log

1 + |s|

1− |s|
.
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By this inequality, it follows for |s| = tk that

I1 ≥
1− |s|

1 + |s|
cos log

1 + |s|

1− |s|
− 0.006

1 + |s|

1 − |s|

≥
1− t2

1 + t2
cos log

1 + t2

1− t2
− 0.006

1 + t2

1 − t2

≥
8

10
cos log

10

8
− 0.006 ×

10

8
> 0.79 − 0.007 > 0. (31)

By Lemma 1, Lemma 2, (29) and (30), it follows for |s| = tk that

I2 ≥ k
(1− 4|s|+ |s|2

1− |s|2
− 0.006

1 + 4|s|+ |s|2

1− |s|2

)

− 0.006 − 0.16

≥ k
(1− 4t2 + t22

1− t22
− 0.006

1 + 4t2 + t22
1− t22

)

− 0.166

= k
(46

80
− 0.006 ×

118

80

)

− 0.166 > 0. (32)

Combining (31), (32) and (27), we get that I > 0 in |z| < k

√

k
2(k+1)2

. �
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