PENCILS ON COVERINGS OF A GIVEN CURVE WHOSE DEGREE IS LARGER THAN THE CASTELNUOVO-SEVERI LOWER BOUND

BY

E. BALLICO ${ }^{1}$, C. KEEM 2 AND D. SHIN ${ }^{3}$

Abstract

Fix integers q, g, k, d. Set $\pi_{d, k, q}:=k d-d-k+k q+1$ and assume $q>0, k \geq 2, d \geq 3 q+1, g \geq k q-k+1$ and $\pi_{d, k, q}-\left((\lfloor d / 2\rfloor+1-q) \cdot(\lfloor k / 2\rfloor+1) \leq g \leq \pi_{d, k, q}\right.$. Let Y be a smooth and connected genus q projective curve. Here we prove the existence of a smooth and connected genus g projective curve X, a degree k morphism $f: X \rightarrow Y$ and a degree d morphism $u: X \rightarrow \mathbf{P}^{1}$ such that the morphism $(f, u): X \rightarrow Y \times \mathbf{P}^{1}$ is birational onto its image.

1. Introduction

Let X (resp. Y) be a smooth and connected curve of genus g (resp. genus q) and $f: X \rightarrow Y$ a degree k covering. Let $u: X \rightarrow \mathbf{P}^{1}$ be a degree d morphism. Assume $d \leq(g-k q) /(k-1)$. By Castelnuovo-Severi inequality ([4]) the induced morphism $(f, u): X \rightarrow Y \times \mathbf{P}^{1}$ is not birational onto its image. Very roughly speaking, " u factors through f ". Several papers were devoted to the proof of the existence of X, Y, f, u for certain $d>(g-k q) /(k-1)$ for which the morphism $(f, u): X \rightarrow Y \times \mathbf{P}^{1}$ is birational onto its image (see [1] and references therein). In this paper we prove the following result.

[^0]Theorem 1. Fix integers q, g, k, d. Set $\pi_{d, k, q}:=k d-d-k+k q+1$ and assume $q>0, k \geq 2, d \geq 3 q+1, g \geq k q-k+1$ and $\pi_{d, k, q}-((\lfloor d / 2\rfloor+1-q)$. $(\lfloor k / 2\rfloor+1) \leq g \leq \pi_{d, k, q}$. Let Y be a smooth and connected genus q projective curve. Then there exist a smooth and connected genus g projective curve X, a degree k morphism $f: X \rightarrow Y$ and a degree d morphism $u: X \rightarrow \mathbf{P}^{1}$ such that the morphism $(f, u): X \rightarrow Y \times \mathbf{P}^{1}$ is birational onto its image.

We work over an algebraically closed field \mathbb{K} with $\operatorname{char}(\mathbb{K})=0$.

2. Proof of Theorem 1.

Remark 1. Let $f: X \rightarrow Y$ be a finite morphism between smooth and connected projective curves and $D=\sum n_{i} P_{i}$ any divisor on X. Set $f_{!}(D):=\sum n_{i} f\left(P_{i}\right)$. A key property of rational equivalence say that if D and D^{\prime} are linearly equivalent divisors on X, then $f_{!}(D)$ and $f_{!}\left(D^{\prime}\right)$ are linearly equivalent divisors on Y; here the smoothness of Y is essential, because it implies that rational equivalence and linear equivalence are the same on Y. Hence for any $d \in \mathbb{Z}$ the map $f_{!}$induces a map $f_{!}: \operatorname{Pic}^{d}(X) \rightarrow \operatorname{Pic}^{d}(Y)$ such that $h^{0}\left(Y, f_{!}(L)\right) \geq h^{0}(X, L)$ for all $L \in \operatorname{Pic}^{d}(X)$. Furthermore, if L is base point free, then $f_{!}(L)$ is base point free.

In the next remark we introduce our set-up. We will use several times the notations and results proved in this remark.

Remark 2. Let Y be a smooth and connected projective curve. Set $q:=p_{a}(Y)$ and $S:=Y \times \mathbf{P}^{1}$. Hence $h^{1}\left(S, \mathcal{O}_{S}\right)=q$. Let $\pi_{1}: S \rightarrow Y$ and $\pi_{2}: S \rightarrow \mathbf{P}^{1}$ denote the two projections. For any $R \in \operatorname{Pic}(S)$ there are unique $M \in \operatorname{Pic}(Y)$ and $k \in \mathbb{Z}$ such that $R \cong \pi_{1}^{*}(M) \otimes \pi_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(k)\right)$. Set $\mathcal{O}_{S}(M, k):=\pi_{1}^{*}(M) \otimes \pi_{2}^{*}\left(\mathcal{O}_{\mathbf{P}^{1}}(k)\right)$. If $k<0$, then $h^{0}\left(S, \mathcal{O}_{S}(M, k)\right)=0$ and $h^{1}\left(S, \mathcal{O}_{S}(M, k)\right)=(-k-1) \cdot h^{0}(Y, M)$ (Künneth formula). If $k \geq 0$, then $h^{0}\left(S, \mathcal{O}_{S}(M, k)\right)=(k+1) \cdot h^{0}(Y, M)$ and $h^{1}\left(S, \mathcal{O}_{S}(M, k)\right)=(k+1) \cdot h^{1}(Y, M)$ (Künneth formula). Furthermore, if M is spanned and $k \geq 0$, then $\mathcal{O}_{S}(M, k)$ is spanned, while if M is (birationally) very ample and $k>0$, then $\mathcal{O}_{S}(M, k)$ is (birationally) very ample. Fix integers $k \geq 2$ and $d>0$ and $M \in \operatorname{Pic}^{d}(Y)$ such that $|M|$ has no base point. Let $C \subset S$ be an integral curve in the linear system $\left|\mathcal{O}_{S}(M, k)\right|$ and $\nu: X \rightarrow C$ the normalization map. For any $A \in \operatorname{Pic}(Y)$ and any integer x set $\mathcal{O}_{C}(A, x):=\mathcal{O}_{S}(A, x) \mid C$. Notice that $\mathcal{O}_{C}(A, x)$ is a line bundle of degree $k \cdot \operatorname{deg}(A)+x \cdot \operatorname{deg}(M)$. The morphism
$\pi_{1} \circ \nu: X \rightarrow Y$ is a degree k covering between smooth and projective curves. Since $\omega_{S} \cong \mathcal{O}_{S}\left(\omega_{Y},-2\right)$, then $\omega_{C} \cong \mathcal{O}_{C}\left(M \otimes \omega_{S}, k-2\right)$ (adjunction formula). Thus $p_{a}(C)=k d-d-k+k q+1$. Set $\pi_{d, k, q}:=k d-d-k-k q+1$.

Proposition 1. Fix integers $q \geq 0, k \geq 2$ and $d>0$ and a smooth curve Y of genus q. Assume the existence of a base point free $M \in \operatorname{Pic}^{d}(Y)$. Set $g:=k d-d-k+k q+1$. Then there exist a smooth genus g curve, a degree k covering $f: X \rightarrow Y$ and $L \in \operatorname{Pic}^{d}(X)$ such that L is base point free and $f_{!}(L)=M$.

Proof. Notice that $g=\pi_{d, k, q}$ and take as X the curve C described in the second part of Remark 2. Here we may take as C a smooth curve because $\mathcal{O}_{S}(M, k)$ is base point free and hence we may apply Bertini's theorem.

Proposition 2. Take Y, S as in Remark 2 and integers u, v, a such that $u>0, v \geq 2,0<a \leq(v+1)(u+1-q)-3$ and there is a very ample $R \in \operatorname{Pic}^{u}(Y)$. Let $A \subset S$ be a general subset such that $\sharp(A)=a$. Then the linear system $\left|\mathcal{I}_{A, S}(R, v)\right|$ has no base point outside A and its schemetheoretic base locus is exactly A.

Proof. Since $h^{0}(Y, R) \geq u+1-q$, we have $h^{0}\left(S, \mathcal{I}_{A, S}(R, v)\right) \geq 3$. Since R is very ample, $\mathcal{O}_{S}(R, v)$ is very ample. Fix two general $D, D^{\prime} \in\left|\mathcal{O}_{S}(R, v)\right|$. Hence $D \cap D^{\prime}$ is the union of $2 u v$ points, each of them appearing with multiplicity one. By semicontinuity it is sufficient to show the result when we take as A a subset of $D \cap D^{\prime}$ with $\sharp(A)=a$. By the very ampleness of $\mathcal{O}_{S}(R, v)$ and hence of $\mathcal{O}_{D}(R, v)$ we may apply the monodromy theorem ([3], Ch. III, or [5]), and get that the result is true for one such A if and only if it is true for all $A^{\prime} \subset D \cap D^{\prime}$ with $\sharp\left(A^{\prime}\right)=a$. Furthermore, the linear span of $\left\{D, D^{\prime}\right\}$ in $\left|\mathcal{O}_{S}(R, v)\right|$ is uniquely determined by any $E \subset D \cap D^{\prime}$ such that $\sharp(E)=h^{0}\left(S, \mathcal{O}_{S}(R, v)\right)-2$. Fix any such E, any $P \in E$ and set $F:=E \backslash\{P\}$. Hence $h^{0}\left(S, \mathcal{I}_{F, S}(R, v)\right)=h^{0}\left(S, \mathcal{O}_{S}(R, v)\right)-3$. First, we will show that F is scheme-theoretically the base locus $B(F)$ of $\left|\mathcal{I}_{F, S}(R, v)\right|$. Indeed, $B(F) \subseteq$ $D \cap D^{\prime}$ and hence each point of F appears with multiplicity one in $B(F)$, while other base points (if any) are contained in $D \cap D^{\prime} \backslash F$. Assume there is $Q \in B(F) \backslash F$. By the monodromy theorem all $Q^{\prime} \in D \cap D^{\prime}$ are contained in $B(F)$. Hence $h^{0}\left(S, \mathcal{I}_{F, S}(R, v)\right)=h^{0}\left(S, \mathcal{I}_{E, S}(R, v)\right)=h^{0}\left(S, \mathcal{O}_{S}(R, v)\right)-2$, contradiction. Notice that $\sharp(F) \geq a$. If $\sharp(F)=a$, we are done. If $\sharp(F)>a$
we apply the same trick $\sharp(F)-a$ times and get the result for $\sharp(F)-1, \ldots, a$ points.

Proof of Theorem 1. The case $k=2$ is well-known ([1]) and the case $k=3$ was done (in a different, but more explicit way) in [6] under different numerical assumptions. Hence to simplify the numerical computations we will assume $k \geq 4$. Set $y:=\pi_{d, k, q}-g$. By assumption we have $0 \leq y \leq$ $(\lfloor d / 2\rfloor+1-q) \cdot(\lfloor k / 2\rfloor+1)$. Proposition 1 gives the result when $g=\pi_{d, k, q}$. Hence we may assume $y>0$. Let $A \subset S$ be a general subset with $\sharp(A)=y$, say $A=\left\{P_{1}, \ldots, P_{y}\right\}$. For any $P \in S$ let $2 P$ denote the first infinitesimal neighborhood of P in S, i.e. the closed zero-dimensional subscheme of S with $\mathcal{I}_{P, S}{ }^{2}$ as its ideal sheaf. Hence length $(2 P)=3$. Fix a base point free $M \in \operatorname{Pic}^{d}(Y)$.

Claim. There is a reduced curve $\left.C \in \mid \mathcal{I}_{2 P_{1} \cup \ldots \cup 2 P_{y}}(M, k)\right) \mid$ such that $\operatorname{Sing}(C)=A$ and each $P_{i} \in A$ is an ordinary node of C.

Proof of the Claim. By Bertini's theorem it is sufficient to show that the linear system $\left|\mathcal{I}_{2 P_{1} \cup \ldots \cup 2 P_{y}}(M, k)\right|$ has no base point outside $\left\{P_{1}, \ldots, P_{y}\right\}$ and that a general $\left.C \in \mid \mathcal{I}_{2 P_{1} \cup \ldots \cup 2 P_{y}}(M, k)\right) \mid$ has an ordinary node at each point of $\left\{P_{1}, \ldots, P_{y}\right\}$. Take $L, L^{\prime} \in \operatorname{Pic}^{\lfloor d / 2\rfloor}(Y)$ such that either $L^{\otimes 2} \cong M$ (case d even) or $L^{\otimes 2}(Q) \cong M$ for some $Q \in Y$ (case d odd) and apply Proposition 2 taking $R:=L, v:=\lfloor k / 2\rfloor, a:=y$ and $A=\left\{P_{1}, \ldots, P_{a}\right\}$.

The Claim shows that the image of S by the linear system $|L|$ is not weakly defective in the sense of [2] and hence it is not defective, so that the linear system of curves in $|L|$ has the expected dimension $\operatorname{dim}(|L|)-3 y$, i.e. $h^{0}\left(S, \mathcal{I}_{2 P_{1} \cup \ldots \cup 2 P_{y}}(M, k)\right)=h^{0}\left(S, \mathcal{O}_{S}(M, k)\right)-3 y=(k+1)(d+1-q)-3 y$ and $h^{1}\left(S, \mathcal{I}_{2 P_{1} \cup \cdots \cup 2 P_{y}}(M, k)\right)=0$. By [2], Th. 1.4, the general such curve, C, has y ordinary nodes as its only singularities. Now we will check that a general $\left.C \in \mid \mathcal{I}_{2 P_{1} \cup \ldots \cup 2 P_{y}}(M, k)\right) \mid$ is integral. Since C is nodal, it is reduced. Assume that C has $t \geq 2$ irreducible components, say C_{1}, \ldots, C_{t}. Since $\sharp(\operatorname{Sing}(C))=$ y and each sigular point of C is an ordinary node, this give a very strong restriction on the sum of the intersection numbers $\sum_{1 \leq i<j \leq t} C_{i} \cdot C_{j}$. Since S^{y} is irreducible and $A \subset S^{y}$ is general in S^{y}, moving A we also see that either each point of A is contained in exactly two irreducible components of C or each $P \in A$ is in contained a unique irreducible component of C. In the first case we get $t=2$. Furthermore, moving again A we also see that
C_{1} and C_{2} are algebraically equivalent. Since $C_{1} \cdot C_{2}=y$, the contradiction comes from the inequality $2\lfloor d / 2\rfloor\lfloor k / 2\rfloor>y$. In the second case we get $t \geq y$ and $C_{i} \cap C_{j}=\emptyset$ for all $i \geq j$. Hence all C_{i} are fibers of one of the projections $\pi_{1}: S \rightarrow Y$ or $\pi_{2}: S \rightarrow \mathbf{P}^{1}$, contradicting the assumptions $d>0$ and $k>0$. Take C as in the Claim and integral. and let $\nu: X \rightarrow C$ be the normalization. The curve X satisfies the thesis of Theorem 1 for the curve Y, the genus g and the integers d, k.

Our main numerical restriction in the statement of Theorem 1 came from the use of Proposition 2.

References

1. E. Ballico, C. Keem and S. Park, Double covering of curves, Proc. Amer. Math. Soc., 132 (2004), no. 11, 3153-3158.
2. L. Chiantini, C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc., 454 (2002), no. 1, 151-178.
3. J. Harris, with the collaboration of D. Eisenbud, Curves in Projective Space, Les Presses de l'Université de Montréal, Montréal, 1982.
4. E. Kani, On Castelnuovo's equivalent defect, J. Reine Angew. Math., 352 (1984), 24-70.
5. J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276 (1987), no. 4, 565-579.
6. D. Shin, Existence of triple coverings satisfying the converse of Castelnuovo-Severi inequality, preprint.

Department of Mathematics, University of Trento, 38050 Povo (TN), Italy.
E-mail: ballico@science.unitn.it

Department of Mathematics, Seoul National University, Seoul 151-742, South Korea.
E-mail: ckeem@math.snu.ac.kr

Department of Mathematics, Seoul National University, Seoul 151-742, South Korea.
E-mail: qeds@korea.com

[^0]: Received February 20, 2006 and in revised form March 31, 2006.
 AMS Subject Classification: 14H51, 14H30.
 Key words and phrases: Covering of curves, Brill-Noether theory, ruled surface.
 ${ }^{1}$ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
 ${ }^{2,3}$ The author is supported by Korea Research Foundation 2005-070-C00005.

