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Abstract

Consider the neutral delay differential equation with posi-

tive and negative coefficients:

(r(t)(x(t) + px(t− τ )′)′ +Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0,

where p ∈ R and τ ∈ (0,∞), σ1, σ2 ∈ [0,∞) and Q1(t), Q2(t),

r(t) ∈ C([t0,∞), R+). Some sufficient conditions for the existence

of a nonoscillatory solution of the above equation in terms of
∫

∞

R(s)Qids < ∞, i = 1, 2 are obtained.

1. Introduction

Consider the neutral delay differential equation of second order with

positive and negative coefficients:

(r(t)(x(t) + px(t− τ)′)′ +Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0, (1)

where p ∈ R and

τ ∈ (0,∞), σ1,σ2 ∈ [0,∞) and Q1(t), Q2(t), r(t) ∈ C([t0,∞), R+). (2)
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∫

∞

R(s)Qids < ∞, i = 1, 2, (3)

where R(t) =
∫ t

r(s)ds.

When r(t) = 1, the equation (1) has been reduced to the following

equation:

d2

dt2
[x(t) + px(t− τ)] +Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0. (4)

When q(t) = 0, the Eq.(4) has been investigated by many authors, see

[1-7] and the reference therein.

For Eq.(4), Recently M. R. S. Kulenović and S.Hadžiomerspahić in [1]

obtained the following result:

Theorem A. Consider the Eq.(1), if condition (2) holds, and

∫

∞

sQids < ∞, i = 1, 2, (5)

aQ1(t)−Q2(t) ≥ 0, for every t ≥ T1 and a > 0, (6)

where p 6= ±1, and T1 is large enough, then Eq.(1) has a nonoscillatory

solution.

So far, this is the first global result (with respect to p) in the noncon-

stant coefficient case, which is a sufficient condition for the existence of a

nonoscillatory solution for all values of p.

But, condition (6) is too restrictive. In [6] the first author of this paper

deleted the strong condition (6), and permitting p=1, obtained the following

global sufficient condition(with respect to p) for the existence of a nonoscil-

latory solution for equation (1):

Theorem B. Consider equation (4), if condition (2), (5) hold, where

p 6= −1, then equation (1) has a nonoscillatory solution.

For Eq(1), only in special case, for example when p = 0, Q2(t) = 0,

Hooker and Patula in [7] had investigated the existence of positive solution.



2007] SECOND ORDER NEUTRAL DIFFERENTIAL EQUATION 787

However results for the existence of nonoscillatory solution of Eq.(1) are

relatives scarce. Motived by the paper [6] and [7], the purpose of this paper

will investigate the existence of nonoscillatory solution of Eq.(1).

Our main result is the following.

Theorem. Consider equation (1), if condition (2), (3) hold, where p 6=

±1, then equation (1) has a nonoscillatory solution.

This result extends the relevant result in [6] for p 6= −1.

2. The Proof of Theorem

The proof of theorem will be divided into four claims, depending on the

four different ranges of the parameter p.

Claim 1. p ∈ (0, 1). Choose t1 > t0 large enough such that

t1 ≥ t0 + σ, σ = max{τ, σ1, σ2},
∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds < 1− p,

∫

∞

t1

R(s)Q1(s)ds ≤
p− (1−M1)

M1

and
∫

∞

t1

R(s)Q2(s)ds ≤
1− p− pM2 −M1

M2

hold, where M1 and M2 are positive constants which satisfy

1−M2 < p <
1−M1

1−M2
.

Let X be the set of all continuous and bounded functions on [t0,∞)

with the sup norm. Set

A = {x ∈ X : M1 ≤ x(t) ≤ M2, t ≥ t0}.

Define mapping T : A → X as follows:
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(Tx)(t) =























1− p− px(t− τ)

+R(t)
∫

∞

t
[Q1(s)x (s− σ1)−Q2(s)x(s− σ2)]ds

+
∫ t

t1
R(s)[Q1(s)x(s − σ1)−Q2(s)x(s− σ2)]ds, t ≥ t1;

(Tx)(t1), t0 ≤ t ≤ t1.

We have

(Tx)(t) ≤ 1− p+R(t)

∫

∞

t

M2Q1(s)ds+

∫ t

t1

R(s)M2Q1(s)ds

≤ 1− p+M2

∫

∞

t

R(s)Q1(s)ds ≤ M2

and

(Tx)(t) ≥ 1− p− pM2 −R(t)

∫

∞

t

Q2(s)x (s− σ2) ds

−

∫ t

t1

R(s)[Q2(s)x(s − σ2)]ds

≥ 1− p− pM2 −M2

∫

∞

t

R(s)Q2(s)ds ≥ M1,

so TA ⊆ A .

Now for x1, x2 ∈ A and t ≥ t1 ,we have

|(Tx1)(t) − (Tx2)(t)| ≤ p|x1(t− τ)− x2(t− τ)|

+R(t)

∫

∞

t

Q1(s)|x1(s− σ1)− x2(s− σ1)|ds

+R(t)

∫

∞

t

Q2(s)|x1(s− σ2)− x2(s− σ2)|ds

+

∫ t

t1

R(s)Q1(s)|x1(s− σ1)− x2(s− σ1)|ds

+

∫ t

t1

R(s)Q2(s)|x1(s− σ2)− x2(s− σ2)|ds

≤ p||x1 − x2||+ ||x1 − x2||{

∫

∞

t

R(s)[Q1(s) +Q2(s)]ds

+

∫ t

t1

R(s)[Q1(s) +Q2(s)]ds}

= ||x1 − x2||{p +

∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds}
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= q1||x1 − x2||, q1 < 1.

Thus we know that T is a contraction mapping . Consequently T has

the unique fixed point x, which is obviously a positive solution of Eq.(1).

This completes the proof of Claim 1.

Claim 2. p ∈ (1,∞). Choose t1 ≥ t0 large enough such that

∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds < p− 1,

∫

∞

t1

R(s)Q1(s)ds ≤
1− p(1−N1)

N1

and
∫

∞

t1

R(s)Q2(s)ds ≤
(1−N1)p− (1 +N2)

N2
, (7)

where N1, N2 are positive constants which satisfy

(1−N1)p ≥ 1 +N2 and p(1−N2) < 1.

Let X be the same set as in Claim 1.Set

A = {x ∈ X : N1 ≤ x(t) ≤ N2, t ≥ t0}.

Define mapping T : A → X as follows:

(Tx)(t) =























1− 1
p
− 1

p
x(t+ τ)

+R(t+τ)
p

∫

∞

t+τ
[Q1(s)x(s− σ1)−Q2(s)x(s − σ2)]ds

+1
p

∫ t+τ

t1
R(s)[Q1(s)x(s − σ1)−Q2(s)x(s− σ2)]ds, t ≥ t1;

(Tx)(t1), t0 ≤ t ≤ t1.

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, we get

(Tx)(t) ≤ 1−
1

p
+

R(t+ τ)

p

∫

∞

t+τ

N2Q1(s)ds+
1

p

∫

∞

t1

N2R(s)Q1(s)ds

≤ 1−
1

p
+

N2

p

∫

∞

t1

R(s)Q1(s)ds ≤ N2
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and

(Tx)(t) ≥ 1−
1

p
−

N2

p
+

R(t+ τ)

p

∫

∞

t+τ

(−N2Q2(s))ds

+
1

p

∫ t+τ

t1

(−N2R(s)Q2(s))ds

≥ 1−
1

p
−

N2

p
−

N2

p

∫

∞

t1

R(s)Q2(s)ds ≥ N1.

Thus we know that TA ⊂ A. Since A is a bounded, closed, and convex

subset of X, hence we can prove that T is a contraction mapping on A by

the contraction principle.

In fact, for x1, x2 ∈ A, we have

|(Tx1)(t)− (Tx2)(t)|

≤
1

p
|x1(t+ τ)− x2(t+ τ)|

+
R(t+ τ)

p

[
∫

∞

t+τ

Q1(s)|x1(s− σ1)− x2(s− σ2)|ds

+

∫

∞

t+τ

Q2(s)|x1(s− σ2)− x2(s− σ2)|ds

]

+
1

p

[
∫ t+τ

t1

R(s)Q1(s)|x1(s − σ1)− x2(s− σ1)|ds

+

∫ t+τ

t1

R(s)Q1(s)|x1(s− σ2)− x2(s− σ2)|ds

]

≤
1

p
||x1 − x2||+

1

p
||x1 − x2||

{
∫

∞

t+τ

R(s)[Q1(s) +Q2(s)]ds

+

∫ t+τ

t1

R(s)[Q1(s) +Q2(s)]ds

}

=
1

p
||x1 − x2||{1 +

∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds}

= q2||x1 − x2||, q2 < 1.

This implies that

||Tx1 − Tx2|| ≤ q2||x1 − x2||.
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Thus we know that T is a contraction mapping. Consequently T has

the unique fixed point x, which is obviously a positive solution of Eq.(1).

This completes the proof of Claim 2.

Claim 3. p ∈ (−1, 0). Choose t1 > t0 large enough such that the

inequalities

∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds < p+ 1,

0 ≤

∫

∞

t1

R(s)Q1(s)ds ≤
M3(1 + p)− (1 + p)

M3

and
∫

∞

t1

R(s)Q2(s)ds ≤
(1 + p)−M3(1 + p)

M4
. (8)

hold, where the positive constants M3 and M4 satisfy

0 < M3 < 1 < M4.

Let X be the same set as in Claim 1. Set

A = {x ∈ X : M3 ≤ x(t) ≤ M4, t ≥ t0}. (9)

Define mapping T : A → X as follows:

(Tx)(t) =























1 + p− px(t− τ)

+R(t)
∫

∞

t
[Q1(s)x(s − σ1)−Q2(s)x(s− σ2)]ds

+
∫ t

t1
R(s)[Q1(s)x(s− σ1)−Q2(s)x(s − σ2)]ds, t ≥ t1;

(Tx)(t1), t0 ≤ t ≤ t1.

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, by (8) we get

(Tx)(t) ≤ 1 + p− pM4 +R(t)

∫

∞

t

M4Q1(s)ds+

∫ t

t1

R(s)M4Q1(s)ds

≤ 1 + p− pM4 +M4

∫

∞

t1

R(s)Q1(s)ds ≤ M4
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and

(Tx)(t) ≥ 1 + p− pM3 −R(t)

∫

∞

t

M4Q2(s)ds −

∫ t

t1

R(s)M4Q2(s)ds

= 1 + p− pM3 −M4

∫

∞

t

R(s)Q2(s)ds ≥ M3.

Thus we know that TA ⊂ A. Since A is a bounded, closed, and convex

subset of X, hence we can prove that T is a contraction mapping on A by

the contraction principle.

In fact, for x1, x2 ∈ A, we have

|(Tx1)(t)− (Tx2)(t)|

≤ −p|x1(t− τ)− x2(t− τ)|

+R(t)

∫

∞

t

Q1 (s) |x1 (s− σ2)− x2 (s− σ2) |ds

+R(t)

∫

∞

t

Q2 (s) |x1 (s− σ2)− x2 (s− σ2) |ds

+

∫ t

t1

R(s)Q1 (s) |x1 (s− σ1)− x2 (s− σ1) |ds

+

∫ t

t1

R(s)Q2 (s) |x1 (s− σ2)− x2 (s− σ2) |ds

≤ −p||x1 − x2||+ ||x1 − x2||

(
∫

∞

t

R(s) [Q1 (s) +Q2 (s)] ds

)

= ||x1 − x2||{−p+

∫

∞

t1

R(s) [Q1 (s) +Q2 (s)] ds}

= q3||x1 − x2||, q3 < 1.

This implies that

||Tx1 − Tx2|| ≤ q3||x1 − x2||.

Thus we know that T is a contraction mapping. Consequently T has

the unique fixed point x, which is obviously a positive solution of Eq.(1).

This completes the proof of Claim 3.

Claim 4. p ∈ (−∞,−1). Choose t1 > t0 large enough such that the
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inequalities

∫

∞

t1

R(s) [Q1 (s) +Q2 (s)] ds < −(p + 1), (10)

∫

∞

t1

R(s)Q2(s)ds <
−(p+ 1)(N3 − 1)

N3
(11)

and
∫

∞

t1

R(s)Q1(s) <
−(1 + p)(1−N3)

N4
(12)

hold, where the positive constants N3 and N4 satisfy

0 < N3 < 1 < N4.

Let X be the same set as in Claim 1. Set

A = {x ∈ X : N3 ≤ x(t) ≤ N4, t ≥ t0}. (13)

Define mapping T : A → X as follows:

(Tx)(t) =























1 + 1
p
− 1

p
x(t+ τ)

+R(t+τ)
p

∫

∞

t+τ
[Q1(s)x(s− σ1)−Q2(s)x(s − σ2)]ds

+1
p

∫ t+τ

t1
R(s)[Q1(s)x(s − σ1)−Q2(s)x(s− σ2)]ds, t ≥ t1;

(Tx)(t1), t0 ≤ t ≤ t1.

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1 , using (10) and

(12) we get

(Tx)(t) ≤ 1 +
1

p
−

N4

p
−

N4

p

∫

∞

t

R(s)Q2(s)ds ≤ N4.

Furthermore, in view of (11) and (12) we have

(Tx)(t) ≥ 1 +
1

p
−

N3

p
+

N4

p

∫

∞

t

R(s)Q1(s)ds ≥ N3.

Thus we know that TA ⊂ A. Since A is a bounded, closed, and convex

subset of X, hence we can prove that T is a contraction mapping on A by

the contraction principle.
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In fact, for x1, x2 ∈ A, we have

|(Tx1)(t) − (Tx2)(t)|

≤ −
1

p
|x1(t+ τ)− x2(t+ τ)|

−
R(t+ τ)

p

[
∫

∞

t+τ

Q1(s)|x1(s− σ1)− x2(s− σ1)|ds

+

∫

∞

t+τ

Q2(s)|x1(s− σ2)− x2(s− σ2)|ds

]

−
1

p

[
∫ t+τ

t1

R(s)Q1(s)|x1(s− σ1)− x2(s− σ1)|ds

+

∫ t+τ

t1

R(s)Q2(s)|x1(s− σ2)− x2(s− σ2)|ds

]

≤ −
1

p
||x1 − x2|| −

1

p
||x1 − x2||

∫

∞

t+τ

R(s)[Q1(s) +Q2(s)]ds

+

∫ t+τ

t1

R(s)[Q1(s) +Q2(s)]ds

= −
1

p
||x1 − x2||{1 +

∫

∞

t1

R(s)[Q1(s) +Q2(s)]ds}

= q4||x1 − x2||, q4 < 1.

This implies that

||Tx1 − Tx2|| ≤ q4||x1 − x2||.

Thus we know that T is a contraction mapping. Consequently T has the

unique fixed point x, which is obviously a positive solution of Eq.(1). This

completes the proof of Claim 4.
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