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Abstract

We survey some recent applications of the Boltzmann equa-

tion to the study of MEMS.

1. Introduction

I am pleased and honored to contribute to this special issue dedicate to

Yoshio Sone, whom I have been knowing for about forty years and whose

research has been frequently very close to areas of my interest. In particular,

he has been working on rarefied flows at low speed, an area of research that

has received a renovated attention in the last few years because of its impor-

tant role in the study of MEMS. In order to explain these developments, we

recall that the presence of a fluid film is known to reduce the sliding friction

between solid objects. Although one usually thinks of a liquid (typically,

oil), the case of a gas lubricant (typically, air) is also very important in sev-

eral applications. Sometimes, problems of gas lubrication are not so obvious,

because air is so easily available that one tends to disregard its presence. As

technology expands and the size of components becomes smaller and smaller,

the role of rarefied gases as lubricants becomes increasingly important. We

recall that a gas is called rarefied when the mean free path between col-

lisions (of the order of 100 microns at room pressure and temperature) is

comparable with the a typical size of the region where it flows. A typical

example is provided by modern computers: the read/write head must be as

close as possible to a rotating disk, and the air in between has accordingly

a thickness of the order of a mean free path.
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In lubrication theory, the thickness of the gas layer is extremely small

compared with its lateral dimensions. Properly handled, this observation

can be used to eliminate from the equations the dependence upon one of the

three space variables. This possibility was exploited since long time by the

famous hydrodynamicist Osborne Reynolds [1] to integrate the mass balance

equation across the layer and to use the linearized Navier–Stokes equation

for momentum balance to evaluate the quantities appearing as integrands.

Fortunately, Reynolds’s argument can be extended to rarefied gases; the

only difference is that the linearized Boltzmann equation (sect. 3) must now

be used to evaluate the averaged velocity components in the mass balance

equation.

From a very superficial consideration of the matter one might expect

that the main problem of lubrication theory is to predict the friction which

results from a given configuration of solid objects. However, a little more

reflection reveals that the real problem is quite different. Lubricating layers

are usually found between two solid bodies which are acted upon by forces

(such as gravity) tending to push them together. To carry this load, the gas

layer must develop normal stresses, largely dominated by pressure. Thus

the first task of lubrication theory is to predict the pressure distribution

and from it the load-carrying capacity. Thus we must relate the velocity

components to the pressure gradients and to the motion of the solid surfaces

bounding the gas layer. Since the variations of thickness are very slow,

this result is obtained by solving highly idealized problems between parallel

plates, such as plane Couette and Poiseuille flows, which will be considered

in Sect. 4. Thus these problems, far from being didactic exercises, play a

very important role in applications of enormous practical importance.

2. The Boltzmann Equation

We briefly recall the basic structure of the Boltzmann equation [2, 3, 4, 5]

∂f

∂t
+ ξ · ∂f

∂x
= Q(f, f) (1)

Here f = f(x,v, t) is the distribution function, giving the probability

density of finding a gas molecule at position x with velocity ξ at time t.

Q(f, f) is the collision term, quadratic in f .
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The solutions describing equilibria of the Boltzmann equation are the

so-called Maxwellians, i.e. distributions of the form

M = ρ0(2πRT0)
−3/2 exp[−|ξ − v0|2/(2RT0)] (2)

where ρ0, v0, T0 are parameters having the meaning of density, bulk velocity

and temperature in an equilibrium state. The vector v0 is usually taken to

be zero.

We can look for solutions written as

f =M(1 + h). (3)

Then the Boltzmann equation takes on the form:

∂h

∂t
+ ξ · ∂h

∂x
= Lh+ Γ(h, h) (4)

where L is the linearized collision operator:

Lh = 2M−1Q(Mh,M) (5)

and Γ(h, h) the nonlinear part (assumed to be small compared to the linear

one):

Γ(h, h) =M−1Q(Mh,Mh). (6)

Here Q(f, g) is the bilinear symmetric operator uniquely associated with

Q(f, f). The rigorous theory for solutions of the form (3) was given by S.

Ukai (see Ref.[6] for more details).

In many applications, the collision term in the Boltzmann equation is

replaced by the so-called BGK model (see Refs.[2] and [3] for more details):

J(f) = ν[Φ(ξ)− f(ξ)] (7)

where the collision frequency ν depends on the local density ρ and the local

temperature T , whereas Φ is the local Maxwellian:

Φ = ρ(2πRT )−3/2 exp[−|ξ − v|2/(2RT )] (8)

having the same density, temperature and bulk velocity v as f . Notice

that from the viewpoint of nonlinearity the BGK model is worse than the
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Boltzmann equation, but offers the advantage that one can derive integral

equations for ρ, v, T . The linearized form reads:

LBGK = ν0

[

∫

M̂(ξ
∗
)h(ξ

∗
)dξ

∗
+

ξ

RT0
·
∫

ξ
∗
M̂(ξ

∗
)h(ξ

∗
)dξ

∗

+
2

3

( |ξ|2
2RT0

− 3

2

)

∫

( |ξ
∗
|2

2RT0
− 3

2

)

M̂(ξ
∗
)h(ξ

∗
)dξ

∗
− h

]

(9)

3. The Modified Reynolds Equation

The starting point to obtain the rarefied version of the Reynolds equa-

tion for lubrication is the mass balance equation, Eq. (4.18), which, as we

have seen, is a consequence of the Boltzmann equation. This equation is

considerably simplified by the fact that the variations of density do not

show up for slow motion in the steady case, which is the most important in

applications and we shall consider henceforth. Thus

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (10)

where the three components of the bulk velocity are denoted by u, v, w.

Let us consider a layer of gas between two walls located at z = 0 and

z = D(x, y); the lower wall moves in its own plane. If we integrate Eq. (10)

across the layer, we obtain

∂

∂x

∫ D

0
udz +

∂

∂y

∫ D

0
vdz = 0. (11)

Since the problem is linear and the pressure gradient is assumed to be con-

stant across the layer, each component u, v is proportional to the sum of

the velocities given by a Poiseuille flow with pressure gradient dp/dx, dp/dy

respectively and a Couette flow with the lower wall moving with velocity

components U and V .

In the case of Couette flow the evaluation of the integral: F
(1)
C =

∫D
0 uCdz is easy, if the walls are assumed to be identical. In fact, in this

situation the profile is antisymmetric with respect to the midpoint and

F
(1)
C = UD

2 . Similarly F
(2)
C =

∫D
0 vCdz = V D

2 . The behavior of the flow
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rate for plane Poiseuille flow is much more complicated and is given by

F
(1)
P =

∫ D

0
uPdz = − 1

ρ0
√
2RT0

∂p

∂x
D2Q(δ); (12)

F
(2)
P =

∫ D

0
vP dz = − 1

ρ0
√
2RT0

∂p

∂y
D2Q(δ) (13)

where δ is the ratio between the distance and the (unperturbed) mean free

path:

δ =
pD

µ
√
2RT

and Q(δ) is the nondimensional flow rate which can be obtained by solving

the problem of plane Poiseuille flow. Thus the modified Reynolds equation

reads as follows

∂

∂x

[∂p

∂x
D2Q(δ)

]

+
∂

∂y

[∂p

∂y
D2Q(δ)

]

= ρ0
√

2RT0

[U

2

∂D

∂x
+
V

2

∂D

∂y

]

. (14)

Given D = D(x, y), this is an (elliptic) partial differential equation for

p which must be solved for an assigned value of p (usually constant) at the

boundary.

We have assumed so far that the linearization assumption holds ev-

erywhere. It may turn out, however, that the pressure undergoes a signif-

icant change. In this case, one can still utilize the linearized Boltzmann

equation to compute the local flow rate, but one should use the local pres-

sure p throughout, rather than the unperturbed pressure p0. The modified

Reynolds equation then reads as follows

∂

∂x

[D2Q(δ)√
2RT

∂p

∂x

]

+
∂

∂y

[D2Q(δ)√
2RT

∂p

∂y

]

=
1

2

[

U
∂(ρD)

∂x
+ V

∂(ρD)

∂y

]

. (15)

This generalized Reynolds equation was first introduced by Fukui and

Kaneko [7, 8].

In the continuum limit we have

Q(δ) =
1

6

pD

µ
√
2RT
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and Eq. (15) becomes

∂

∂x

[ρD3

µ

∂p

∂x

]

+
∂

∂y

[ρD3

µ

∂p

∂y

]

= 6
[

U
∂(ρD)

∂x
+ V

∂(ρD)

∂y

]

(16)

which is essentially the equation originally given by Reynolds [1].

4. The Reynolds Equation and the Poiseuille-Couette Problem

The micromachinery fabrication techniques have become more and more

mature in the last ten years. In particular, the micro-electro-mechanical

systems (MEMS) developed rapidly and found many applications in micro-

electronics, medicine, biology, optics, aerospace and other high technology

fields. Both experimental and computational efforts have been undertaken to

understand the specific features of the microscale flows. A basic constituent

of the MEMS devices is the microchannel, the region between two paral-

lel plates that can reveal many specific features of the low speed internal

flows in microdevices. Typically the first devices were integrated micro-

channel/pressure sensor systems. The Knudsen number at the outlet of the

channel at room conditions is 0.05 for nitrogen, and even higher for helium;

hence the flow is surely beyond the slip flow regime. The pressure distri-

bution along the channel and the flow rates across these channels are found

to deviate from the linear distribution of the Poiseuille flow. Monte Carlo

methods were used to simulate microchannel flows but they meet with the

excessively high demands to the storage and computation time. The gradual

regulation of the inlet and outlet boundary conditions of the channel seems

to be tremendously difficult for DSMC in solving the long channel flows. In

fact the typical DSMC simulation of the micro channel flow is limited to

high speeds. Recently, the so called information preservation (IP) method

was proposed[9, 10]; it uses a conservative scheme and a super-relaxation

technique, with results in excellent agreement with experimental data.

However, the kinetic theory of MEMS does not require heavy compu-

tational tools. The generalized Reynolds equation can be used to calculate

the gas film lubrication problem provided that the flow rate of Poiseuille

flow is calculated from the linearized Boltzmann equation. The case of a

microchannel with parallel plates was treated by C. Shen [11].

Following Refs.[12] and [13], let us consider again two plates separated

by a distance D and a gas flowing parallel to them, in the x direction, due
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to a pressure gradient. The lower boundary (z = −D/2) moves to the

right with velocity U , while the upper boundary (z = D/2) is fixed. Both

boundaries are held at a constant temperature To. However, at variance

with our previous discussions, we assume the gas-surface interaction to be

different at the wall.

As usual, if the pressure gradient and the velocity U are taken to be

small, it can be assumed that the Boltzmann equation can be linearized

about a Maxwellian. If we assume the linearized BGK model for the collision

operator, the Boltzmann equation reads:

1

2
k + cz

∂Z

∂z
=

1

ℓ

[

π−
1

2

∫ +∞

−∞

e−c2z1Z(z, cz1)dcz1 − Z(z, cz)
]

(17)

where by definition

Z(z, cz) = π−1

∫ +∞

−∞

∫ +∞

−∞

e−c2x−c2ycxh(z, c)dcxdcy (18)

k =
1

p

∂p

∂x
=

1

ρ

∂ρ

∂x

with p and ρ being the gas pressure and density, respectively, and ℓ is the

mean free path. Consequently, the bulk velocity of the gas is given by:

q(z) = π−
1

2

∫ +∞

−∞

e−c2z1Z(z, cz1)dcz1 (19)

From Eq. (17) we obtain the integral relation:

Z(z, cz) = exp
(

− (z +
D

2
sgncz)/(czℓ)

)

Z
(

− D

2
sgncz, cz

)

+

∫ z

−
D
2
sgncz

exp
(−|z − t|

|cz|ℓ
)

[q(t)− kℓ/2]/(czℓ)dt (20)

with the values at the boundary, Z(−D
2 sgnζ, ζ), depending on the model

of boundary condition chosen. This problem was first treated by Cercig-

nani and Daneri [12] for completely diffusing walls. In the following, we

will consider the Maxwell boundary conditions as in Ref. [13] and consider

two walls having different physical properties, i.e. with two accommodation

coefficients (α1, α2). In this case, the boundary conditions can be written
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as:

Z+(D/2, ζ) = (1− α1)Z
−(D/2,−ζ)

Z+(−D/2, ζ) = α2U + (1− α2)Z
−(−D/2,−ζ)

where U is expressed in units of (2RTo)
1/2; Z−(−D/2, ζ), Z−(D/2, ζ) are the

distribution functions of the molecules impinging upon the walls; similarly,

Z+(−D/2, ζ), Z+(D/2, ζ) are the distribution functions of the molecules

reemerging from the same walls.

Once the function at the boundary, Z(−D
2 sgnζ, ζ), has been evaluated

following the analytical procedure reported in [13, 14], the substitution of

the integral formula (20) in the definition (19) of q(z) gives the following

expression for the bulk velocity of the gas:

q(z) =
1

2
kℓ[1− ψp(u)] + Uψc(u) (21)

Eq. (21) shows that the gas velocity is induced by the superposition of two

distinct effects. The gas moves by an imposed pressure gradient (Poiseuille

flow) and by the shear driven flow due to the motion of the bottom sur-

face (Couette flow). The non-dimensional functions ψp(u) and ψc(u), giving

the Poiseuille and Couette contributions, respectively, satisfy the following

integral equations:

ψp(u) = 1+
1√
π

∫ δ
2

−
δ
2

dwψp(w)
{

(1−α1)S−1(δ−u−w)+(1−α2)S−1(δ+u+w)

+(1−α1)(1−α2)[S−1(2δ−u+w)+S−1(2δ+u−w)]
+T−1(|u−w|)

}

(22)

ψc(u) =
α2√
π

[

To(
δ

2
+ u)+(1−α1)So(

3

2
δ−u)+(1−α1)(1−α2)So(

5

2
δ+u)

]

+
1√
π

∫ δ
2

−
δ
2

dwψc(w)
{

(1−α1)S−1(δ−u−w)+(1−α2)S−1(δ+u+w)

+(1− α1)(1− α2)[S−1(2δ − u+w) + S−1(2δ + u−w)]

+T−1(|u− w|)
}

(23)

where Tn(x) is the Abramowitz function defined by

Tn(x) =

∫ +∞

0
tn exp(−t2 − x/t)dt
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Sn(x) is a generalized Abramowitz function defined by

Sn(x, δ, α1, α2) =

∫ +∞

0

tn exp(−t2 − x/t)

1− (1− α1)(1− α2) exp(−2δ/t)
dt

and the following non-dimensional variables have been introduced:

δ = D/ℓ, w = t/ℓ, u = z/ℓ.

Using Eq. (21), the flow rate (per unit time through unit thickness) defined

by:

F = ρ

∫ D/2

−D/2
q(z)dz (24)

can be expressed as the sum of the Poiseuille flow (Fp) and the Couette flow

(Fc) as follows:

F = Fp + Fc = −∂p
∂x
D2Qp(δ, α1, α2) +

ρUD

2
Qc(δ, α1, α2) (25)

where

Qp(δ, α1, α2) = −1

δ
+

1

δ2

∫ δ/2

−δ/2
ψp(u)du

Qc(δ, α1, α2) =
2

δ

∫ δ/2

−δ/2
ψc(u)du

are the non-dimensional volume flow rates.

5. The Generalized Reynolds Equation for Unequal Walls

One can easily extend the generalized Reynolds equation to the case of

unequal walls:

d

dx

(dp

dx
D2Qp(δ, α1, α2)−

ρUD

2
Qc(δ, α1, α2)

)

= 0 (26)

For the purpose of a direct comparison with the classical Reynolds equation

(16), let us introduce the Poiseuille relative flow rate:

Q̃p(δ, α1, α2) =
Qp(δ, α1, α2)

Qcon
(27)
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where Qcon = δ/6. If one introduces the following dimensionless quantities

X = x/l, P = p/po, H = D/Do,

the rarefaction parameter δ can be expressed as: δ = δoPH, where δo is

the characteristic inverse Knudsen number defined by the minimum film

thickness, Do, and the ambient pressure po as:

δo =
poDo

µ
√
2RTo

.

Finally, assuming that the heat generation in the gas is very small, so that

an isothermal process can be considered, the non-dimensional generalized

Reynolds equation reads:

d

dX

(

Q̃p(δoPH,α1, α2)PH
3 dP

dX
−Qc(δoPH,α1, α2)ΛPH

)

= 0. (28)

The bearing number Λ in Eq. (28) is defined as

Λ =
6µUl

poD2
o

(29)

where µ is the viscosity coefficient. If the two walls are identical (α1 = α2 =

α), the Couette flow rate is independent of the Knudsen number regardless

of the value of the accommodation coefficient α and Eq. (28) reduces to the

generalized Reynolds equation introduced by Fukui and Kaneko [7, 8].

Writing the non-dimensional film thickness H in terms of the longitudi-

nal coordinate X,

H =
D1

Do
− l

L

(D1

Do
− 1

)

X (30)

such that
dP

dX
= − l

L

(D1

Do
− 1

) dP

dH

Eq. (28) can be immediately integrated to give:

l

L

(D1

Do
− 1

)

Q̃p(δoPH,α1, α2)PH
3 dP

dH
+Qc(δoPH,α1, α2)ΛPH = K1 (31)

where K1 is a constant of integration. The substitution of

PH = ζ (32)
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in Eq. (31) gives:

dζ

dH
=

ζ

H
− [Qc(δoζ, α1, α2)Λζ −K1]

l/L(D1/Do − 1)Q̃p(δoζ, α1, α2)Hζ
(33)

Eq. (33) can be solved numerically using relaxation methods. To apply this

numerical scheme, the differential equations have to be replaced by finite-

difference equations on a point mesh. The solution of the resulting set of

equations is determined by starting with a guess and improving it iteratively

using Newton’s method. The Poiseuille flow rate coefficient Qp(δ, α1, α2) has

been evaluated by means of the numerical method described in [14] and the

variational technique for the integral form of the Boltzmann equation based

on the BGK model. In order to compute the Couette flow rate Qc(δ, α1, α2)

one can solve numerically Eq. (23), extending a finite difference technique

first introduced by Cercignani and Daneri [12].

Once ζ(H) has been numerically evaluated on a grid that spans the

domain of interest, Eqs. (30) and (32) give the pressure field in the gas film

as a function of X. Furthermore, a prediction of the vertical force acting on

the upper surface of the slider bearing, crucial for practical design, may be

obtained from the load carrying capacity W , defined as

W =
l

L

∫ L/l

0
(P − 1)dX (34)

One finds that the pressure distribution in the gas film increases with

increasing Λ. Furthermore, at fixed bearing number, the pressure field re-

duces by increasing the fraction of gas molecules specularly reflected by the

walls. It is worth noting that, when Λ increases, the Couette contribution

to the lubrication flow rate becomes dominant compared with the Poiseuille

flow. Therefore, if the two walls are identical, the influence of the Knudsen

number on the load carrying capacity decreases as Λ increases, since Qc is

independent of δ and α. On the contrary, if the two walls have a different

physical structure the load carrying capacity shows a dependence on both

the Knudsen number and the accommodation coefficients α1, α2. For the

validation of the code, the results obtained with the modified Reynolds equa-

tion have been compared with the results from DSMC (Direct Simulation

Monte Carlo) simulations published by Alexander et al. [15] in the case
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of Maxwell’s boundary conditions on two physically identical walls. The

agreement is exceptionally good.

6. A Kinetic Approach for the Evaluation of Damping in MEMS

Beyond the lubrication problems, shear-and pressure-driven gas flows

are encountered in several MEMS applications like surface-micromachined

inertial sensors, resonating filter structures for signal processing and mi-

cromachined capacitive accelerometers, where the distance between the ca-

pacitor plates is minimized in order to increase the efficiency of actuation

and improve the sensitivity of detection. The damping, due to the inter-

nal friction of the flowing gas, in the small gaps between these oscillating

microstructures, is an important design parameter since it determines, e.g.,

the frequency-domain behavior of the sensor or the quality factor of the

vibrating filter structure. At low pressures or in ultra thin films, the gas

rarefaction effects and the molecular interaction with the surfaces effectively

change the viscosity. In this flow regime, the continuum equations are no

longer valid and the Boltzmann equation must be considered to understand

and compute the rarefied flows related with these devices. In spite of its

apparently complex structure, a real micromechanical accelerometer usually

has a highly repetitive layout whose basic units consist of two or three-

dimensional microchannels where different sets of bounding walls move in

the direction perpendicular or parallel to their surfaces.

Let us consider a two-dimensional microchannel where the plates parallel

to the x direction generate a Poiseuille-like flow, while those parallel to the

y direction induce a Couette-like flux. Since the gaps between the moving

elements and the fixed boundaries are only a few micrometres wide, the

mean free path of the gas molecules is not negligible compared to the gap

width and the gas cannot be treated as a continuous medium. Therefore,

the behavior of a gas as it moves along the tube must be studied through the

Boltzmann equation. Since the various types of motions experienced by the

accelerometer components are typically at very low Mach number, it can be

assumed that the velocity distribution of the gas flow only slightly deviates

from that occurring at an equilibrium state. Moreover, if one assumes that

the flow field can be described quasi-statically, it is convenient to linearize

the Boltzmann equation about a Maxwellian M by setting:

f =M(1 + h) (35)
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where h(x̃, ξ) is the small perturbation of the basic equilibrium state, with

x̃ being the coordinate vector and ξ the molecular velocity. The above

mentioned absolute Maxwellian M is given by:

M(ξ) =
ρ0

(2πRT0)3/2
exp

{

−
(ξ2x + ξ2y + ξ2z)

2RT0

}

(36)

where ρ0 and T0 are the equilibrium density and temperature, respectively,

and R is the gas constant. If one assumes the linearized Bhatnagar, Gross

and Krook (BGK) model for the collision operator, which describes the effect

of molecular interactions, the steady state Boltzmann equation reads:

cx
∂h

∂x̃
+ cy

∂h

∂ỹ
=

π−3/2

ℓ

[

∫

e−c′2h(x̃, ỹ, c′)dc′ + 2cx

∫

c′xe
−c′2h(x̃, ỹ, c′)dc′

+2cy

∫

c′ye
−c′2h(x̃, ỹ, c′)dc′

]

− h(x̃, ỹ, c)/ℓ (37)

where ℓ is the mean free path and the following non-dimensional velocity

variable has been introduced:

c =
ξ√
2RT0

(38)

In Eq. (37) integrations are extended to the whole velocity space. Since the

microchannel walls are mantained at the same constant temperature, the

thermal perturbation, which would have to appear in Eq. (37), has been

dropped out.

Multiplying Eq. (37) by (1/
√
π) exp(−c2z) and integrating with respect

to cz, we obtain the following equation

cx
∂

∂x
G(x, y, cx, cy) + cy

∂

∂y
G(x, y, cx, cy)

= −G(x, y, cx, cy) + ρ(x, y) + 2cxvx(x, y) + 2cyvy(x, y) (39)

for the reduced distribution function G(x, y, cx, cy) defined by

G(x, y, cx, cy) = π−1/2

∫ +∞

−∞

e−c2zh(x, y, c)dcz (40)

where the spatial variables have been rescaled as follows

x = x̃/ℓ; y = ỹ/ℓ.
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In Eq. (39), the macroscopic fields associated to the perturbation are defined

as

ρ(x, y) = π−1

∫ +∞

−∞

∫ +∞

−∞

e−(c2x+c2y)G(x, y, cx, cy)dcxdcy (41)

vx(x, y) = π−1

∫ +∞

−∞

∫ +∞

−∞

cxe
−(c2x+c2y)G(x, y, cx, cy)dcxdcy (42)

vy(x, y) = π−1

∫ +∞

−∞

∫ +∞

−∞

cye
−(c2x+c2y)G(x, y, cx, cy)dcxdcy (43)

with ρ(x, y) being the perturbation part of the density of molecules, vx(x, y)

and vy(x, y) the x and y components of the bulk velocity of the gas, re-

spectively. This transformation permits to greatly simplify the numerical

solution of the Boltzmann equation since it reduces the three-dimensional

molecular velocity field to two-dimensional.

Appropriate boundary conditions on the plates, describing the gas-wall

interactions, must be supplied for the equation (39) to be solved. We as-

sume the diffuse-specular reflection condition of Maxwell’s type, according

to which the reemitted molecules are partly reflected by the wall in a specu-

lar fashion and partly diffused with a Maxwellian distribution described by

the wall properties (i.e. its temperature and velocity).

The solution of the problem described by Eq. (39) can be determined by

pursuing the long-time behavior of the solution of the initial and boundary-

value problem. That is, we consider Eq. (39) with the additional ∂G/∂t
term on the left-hand side and an initial condition (e.g., G = 0) beyond the

boundary conditions of Maxwell’s type. The time-dependent problem can

then be solved numerically by a deterministic finite-difference method [16].

The most apparent features of the results are the vx parabolic profiles

in the cross-stream directions of the longest branches of the channel where

a Poiseuille-like flow is induced and similar parabolic profiles of the y com-

ponent of the gas velocity in the stream-wise direction of the transversal

section of the channel where a coupled Poiseuille-Couette flow develops.

In order to model the damping forces occurring as a result of the internal

friction of the flowing gas underneath the plates, the following elements of

the stress tensor have been evaluated:

Pxx(x, y) =
ρ0
2

+
ρ0
π

∫ +∞

−∞

∫ +∞

−∞

dcxdcyc
2
xe

−(c2x+c2y)G(x, y, cx, cy) (44)
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Pyy(x, y) =
ρ0
2

+
ρ0
π

∫ +∞

−∞

∫ +∞

−∞

dcxdcyc
2
ye

−(c2x+c2y)G(x, y, cx, cy) (45)

Pyx(x, y) =
ρ0
π

∫ +∞

−∞

∫ +∞

−∞

dcxdcycxcye
−(c2x+c2y)G(x, y, cx, cy) (46)

A comparison between the numerical findings and the experimental data

collected on a silicon biaxial accelerometer produced by STMicroelectronics

show that the agreement is very good in the transitional flow regime as well

as in the near-free molecular flow limit.
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