SYMMETRICAL BROADWELL MODEL: CALCULATION OF SOLUTION

BY

HENRI CABANNES

Broadwell equations, in symmetrical case, are equations (1), where $i=$ $1,2,3$. Unknowns functions $n_{i}(t)$ are densities, the variable t is the time. To simplify we omit coefficients, appearing in original Broadwell model. Then functions $n_{i}(t)$ are inverse of time, and they have same dimensions as $(1 / t)$. We will search general solution of equations (1) on the form (2).

$$
\begin{gather*}
\frac{d n_{i}}{d t}+3 n_{i}^{2}=\sum_{j=1}^{3} n_{j}^{2}, \tag{1}\\
n_{i}(t)=A(t)+\frac{\alpha(t)}{\varphi(t)+C_{i}} . \tag{2}
\end{gather*}
$$

Functions $A(t), \alpha(t)$ and $\varphi(t)$ are functions to be determined, instead quantities C_{i} are constants, also to be determined. Putting formulas (2) in equations (1), one obtains equations (3) :

$$
\begin{align*}
\dot{A} & +3 A^{2} \frac{\dot{\alpha}+6 A \alpha}{\varphi+C_{i}}+\frac{3 \alpha^{2}-\alpha \dot{\varphi}}{\left(\varphi+C_{i}\right)^{2}} \\
& =3 A^{2}+2 A \alpha\left\{\sum_{j=1}^{3} \frac{1}{\varphi+C_{j}}\right\}+\alpha^{2}\left\{\sum_{j=1}^{3} \frac{1}{\left(\varphi+C_{j}\right)^{2}}\right\} . \tag{3}
\end{align*}
$$

The right hand-side of equations (3) are independent of index i, instead left hand-side depends of that index. In order that equations (3) can be reduced to a single equation unique, it is sufficient to choose $\dot{\alpha}+6 A \alpha=0$ and $3 \alpha-\dot{\varphi}=0$, what we will do. Equations (3) can be replaced by single
equation (4), instead relations (2) become relations (5).

$$
\begin{align*}
& \frac{1}{6} \frac{d}{d t}\left(\frac{\ddot{\varphi}}{\dot{\varphi}}\right)=\frac{\ddot{\varphi}}{9}\left\{\sum_{j=1}^{3} \frac{1}{\varphi+C_{j}}\right\}-\frac{\varphi^{2}}{9}\left\{\sum_{j=1}^{3} \frac{\dot{\varphi}}{\varphi+C_{i}}\right\}, \tag{4}\\
& n_{i}(t)=-\frac{\ddot{\varphi}}{6 \dot{\varphi}}+\frac{1}{3} \frac{\dot{\varphi}}{\varphi+C_{i}} . \tag{5}
\end{align*}
$$

Equation (4), which replace system (1) can be integrated a first time under form (6), then a second time under form (7), from which we deduce that φ is inverse of a time, and that is the same for constants C_{i}.

$$
\begin{align*}
& \frac{\ddot{\varphi}}{\dot{\varphi}}=\frac{2}{3}\left\{\sum_{j=1}^{3} \frac{\dot{\varphi}}{\varphi+C_{j}}\right\}-K_{1}, \tag{6}\\
& \log |\dot{\varphi}|=\frac{2}{3} \log \left|\left(\varphi+C_{1}\right)\left(\varphi+C_{2}\right)\left(\varphi+C_{3}\right)\right|-K_{1} t+K_{2} \tag{7}
\end{align*}
$$

From equations (1) the sum of three densities $n_{i}(t)$ is a constant, we will note by $\frac{\bar{n}}{2}$. From equations (5) and (6), $\sum_{i=1}^{6} n_{i}(t)=K_{1}=\bar{n}$. We will then put $\bar{n} t-K_{2}=\tau$, dimensionless variable, and $\exp (-\tau)=T$, also dimensionless, then $\bar{n} d t=d \tau=-\frac{d T}{T}$. We choose as initial time, the time t_{0} corresponding to $\varphi=0$. Then we choose $K_{2}=\bar{n} t_{0}$, so that when $t=t_{0}, T=T_{0}=1$. From equation (7) we can successively write :

$$
\begin{align*}
& \frac{d \varphi}{d t}=\left\{\left(\varphi+C_{1}\right)\left(\varphi+C_{2}\right)\left(\varphi+C_{3}\right)\right\}^{\frac{2}{3}} T \tag{8a}\\
& T(\varphi)=1-\bar{n} \int_{0}^{\varphi} \frac{d \varphi}{\left\{\left(\varphi+C_{1}\right)\left(\varphi+C_{2}\right)\left(\varphi+C_{3}\right)^{\frac{2}{3}}\right\}} \tag{8b}
\end{align*}
$$

Relation (8b) defines function $T(\varphi)$ and inverse $\varphi(T)$, consequently the three functions $\varphi(t), \dot{\varphi}(t)$ and $\ddot{\varphi}(t)$. Then: $n_{i}=-\frac{1}{6} \stackrel{\ddot{\varphi}}{\dot{\varphi}}+\frac{1}{3} \frac{\dot{\varphi}}{\varphi+C_{i}}, \dot{\varphi}=\bar{n} \frac{d \varphi}{d \tau}$,

$$
\begin{align*}
n_{i}= & \frac{\bar{n}}{6}-\frac{\dot{\varphi}}{9}\left\{\frac{1}{\varphi+C_{1}}+\frac{1}{\varphi+C_{2}}+\frac{1}{\varphi+C_{3}}\right\}+\frac{1}{3} \frac{\dot{\varphi}}{\varphi+C_{i}}, \tag{9a}\\
n_{i}(\varphi)= & \frac{\bar{n}}{6}-\frac{T(\varphi)}{9}\left\{\left(\frac{1}{\varphi+C_{1}}+\frac{1}{\varphi+C_{2}}+\frac{1}{\varphi+C_{3}}\right)-\frac{3}{\varphi+C_{i}}\right\} \\
& \times\left\{\left(\varphi+C_{1}\right)\left(\varphi+C_{2}\right)\left(\varphi+C_{3}\right)\right\}^{\frac{2}{3}} . \tag{9b}
\end{align*}
$$

To summarize: solution of symmetrical Broadwell equations is defined, on a
parametric form by relations (8b) et (9b).
Dimensions of different quantities. n_{i} being inverse of a time one can, from equations (1), multiply unknowns n_{i} by a constant k, and divide variable t by these constant. $A=-\ddot{\varphi} /(6 \dot{\varphi})$ is also the inverse of a time, and is also multiplied by k. From formula (8a), φ is the inverse of a time, like n_{i}, and then like C_{i}, instead $\alpha=\dot{\varphi} / 3$, is the square of the inverse of a time, like n_{i}^{2}. Then A, φ et C_{i} are multiplied by k, instead α is multiplied by k^{2}. Therefore one can choose the three constants C_{i} so that $C_{1} C_{2} C_{3}=\bar{n}^{3}$, what we will do.

References

1. Broadwell, J. E., Study of rarefied shear flow by the discrete velocity method, J. Fluid Mech., 19(1964), 401-414.

Membre de l'Académie des sciences, 23, quai de Conti - 75006 Paris, France.
E-mail: henri.cabannes@normalesup.org

