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SHAPE PRESERVING APPROXIMATION BY COMPLEX

POLYNOMIALS IN THE UNIT DISK

BY

SORIN G. GAL

Abstract

The purpose of this paper is to obtain new results concern-

ing the preservation of some properties in Geometric Function

Theory, in approximation of analytic functions by polynomials,

with best approximation types of rates. In addition, the approxi-

mating polynomials satisfy some interpolation conditions too.

1. Introduction

A central concept in Geometric Function Theory is that of univalence.

Many sufficient conditions of geometric kind that imply univalence are im-

portant, like : starlikeness, convexity, close-to-convexity, α-convexity, spiral-

likeness, bounded turn. Also, there are known many other sufficient analytic

conditions of univalence.

All these geometric sufficient conditions for univalence are mainly stud-

ied for analytic functions, because in this case they can easily be expressed

by nice (and simple) differential inequalities. Also, because of the Riemann

Mapping Theorem, in general it suffices to study these properties on the open

unit disk denoted by D = {z ∈ C; |z| < 1}.

Concerning these properties, it is natural to ask how well can be approx-

imated an analytic function having a given property in Geometric Function

Theory, by polynomials having the same property.
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The history of this problem, in our best knowledge, contains three main

directions of research, depending on the methods used :

(1) Approximation preserving geometric properties by the partial sums

of the Taylor expansion, see e.g., Szegö [27], Alexander [1], Ruscheweyh

[18], Ruscheweyh-Wirths [22], Suffridge [25, p. 236], Suffridge [26] and the

references cited therein;

(2) Approximation preserving geometric properties by Cesàro means

and by convolution polynomials based on other trigonometric kernels, see

e.g., Fejér [6], Robertson [17], Pólya-Schoenberg [16], Bustoz [4], Lewis [12],

Egerváry [5], Ruscheweyh [19, 20], Ruscheweyh-Sheil-Small [21], Gal [7, 8, 9]

and the references cited therein;

(3) Approximation of univalent functions by subordinate polynomials

in the unit disk, by using the concept of maximal polynomial range, see

e.g., Andrievskii-Ruscheweyh [2], Greiner [10], Greiner-Ruscheweyh [11] and

the references cited therein.

In this paper we use other methods in order to obtain new results con-

cerning the preservation of geometric properties by approximating and in-

terpolating polynomials.

2. Main Results

The basic tools are represented by the simultaneous approximation re-

sults. Theorems A, B and Theorem 2.1 below summarize these kinds of

results. Before to state them, let us first make some useful comments.

Theorem A was proved by Vorob’ev [28] for the so-called domains of type

A in the complex plane (including the unit disk) and Theorem B was proved

by Andrievskii-Pritsker-Varga [3] for general continua in the complex plane

(including the unit disk). For our purpose, we will re-state them here for the

particular case of unit disk only. Unfortunately, the constants appearing in

these estimates, are claimed in the corresponding papers, as independent of

n and z only, without to be mentioned the independence of f too. Because of

complicated technical details, it seems to be very difficult to deduce from the

proofs of Theorems A and B that possibly these constants are independent

of f too. For this reason, in the case of unit disk, by Theorem 2.1, we prefer
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to present here a new simple proof which clearly shows that the constant is

independent of n, z, and f too.

Denote by A(D) = {f : D → C; f is analytic in D and continuous in D}

and for p ∈ N, Ap(D) denotes the space of p-times continuous differentiable

functions on D.

The following two results are known.

Theorem A. (Vorob’ev [28]) Let p ∈ N. For any f ∈ Ap(D) and n ≥ p,

there exists a polynomial Pn of degree ≤ n, such that for all j = 0, . . . , p we

have

|f (j)(z)− P (j)
n (z)| ≤ Anj−pω1(f

(p);
1

n
),∀z ∈ ∂D,

where A is independent of n and z. Here ω1(g; δ) = sup{|f(u)− f(v)|;u, v ∈

D, |u− v| ≤ δ}.

Theorem B. (Andrievskii-Pritsker-Varga [3]) Let us suppose that p, q, r ∈

N, f ∈ Ap(D) and consider the distinct points |zl| = 1, l = 1, . . . , q. Then,

for any n ∈ N, n ≥ qp+ r, there exists a polynomial Pn of degree ≤ n, such

that for all j = 0, . . . , p we have

|f (j)(z) − P (j)
n (z)| ≤ cnj−pω∗

r (f
(p);

1

n
),∀z ∈ ∂D,

and

P (j)
n (zl) = f (j)(zl), l = 1, . . . , q,

where c is independent of n and z. Here

ω∗
r(g; δ) := supz∈D{Er−1(g;D ∩B(z; δ))},

B(z; δ) = {ξ ∈ C; |ξ − z| ≤ δ}, Em(g;M) := inf{||g − P ||M ; P complex

polynomial of degree ≤ m}, || · ||M is the uniform norm on the set M .

Our main result is the following.

Theorem 2.1. Let p ∈ N. For any f ∈ Ap(D) and n ≥ p, there exists

a polynomial Pn of degree ≤ n, such that for all j = 0, . . . , p we have

||f (j) − P (j)
n || ≤ Cnj−pEn−p(f

(p)),
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where C > 0 depends on p but it is independent of n and f . Here En(f
(p)) =

inf{||f (p)−P ||;P is polynomial of degree ≤ n} and || · || represents the uni-

form norm in C(D).

Proof. First we recall some known facts about the de la Vallée Poussin

trigonometric sums. According to e.g., Stechkin [24, p. 61], relation (0.3),

the de la Vallée Poussin sums attached to a continuous 2π periodic function

g is given by

σ̃n,m(g)(x) =
1

m+ 1

n
∑

j=n−m

sj(g)(x),

where 0 ≤ m ≤ n, n = 0, 1, . . . , and sj(g)(x) denotes the jth Fourier partial

sum attached to g. We also have the representation (see e.g. Stechkin [24],

p. 63)

σ̃n,m(g)(x) =
1

π

∫ π

−π

g(x+ t)Vn,m(t)dt,

where

Vn,m(t) =
1

m+ 1

n
∑

k=n−m

Dk(t),

and Dk(t) =
1
2 +

∑k
j=1 cos(jt) represents the Dirichlet kernel of order k.

Now, for f ∈ Ap(D) and 0 ≤ m ≤ n, let us define

σn,m(f)(z) =
1

m+ 1

n
∑

k=n−m

Tk(f)(z),

where Tk(f)(z) =
∑k

j=0
f(j)(0)

j! zj represents the kth Taylor partial sum of f .

It is easy to see that we have the representation (by using the same

kinds of reasonings as in , e.g., the proof of Lemma 1, p. 881-882 in Mujica

[15])

σn,m(f)(z) =
1

π

∫ π

−π

f(zeit)Vn,m(t)dt.

In what follows we will consider some properties of σ2n,n−p(f)(z), n ≥ p,

by using everywhere the notation T ′
k(f) instead of {Tk(f)}

′. First, from the
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obvious property T ′
k(f)(z) = Tk−1(f

′)(z), we easily get

σ
(k)
2n,n−p(f)(z) = σ2n−k,n−p(f

(k))(z),

for all k = 0, . . . , p. Also, σ2n,n−p(f)(z) is a polynomial of degree ≤ 2n.

Concerning the approximation property, analysing all the proofs in Stechkin

[24], it is not difficult to see (by repeating the reasonings there) that we

can get the same kind of estimate as that in the trigonometric case, that is

relation (0.10) in Stechkin [24, p. 62], which is

||f − σn,m(f)|| ≤ A

n
∑

j=0

En−m+j(f)

m+ j + 1
,

where || · || denotes the uniform norm in C(D), A > 0 is an absolute constant

(independent of f , n and m) and En(f) = inf{||f −P ||; P is polynomial of

degree ≤ n}.

This implies that for all k = 0, . . . , p and n ≥ p, we have the estimate

||f − σ2n−k,n−p(f)|| ≤ A

2n−k
∑

j=0

En+p−k+j(f)

n− p+ j + 1

≤ AEn+p−k(f)

2n−k
∑

j=0

1

n− p+ j + 1

≤ AEn+p−k(f)
2n− k + 1

n− p+ 1

≤ AEn+p−k(f)
2n+ 1

n− p+ 1

= AEn+p−k(f)[2 + (2p − 1)/(n − p+ 1)]

≤ A(2p + 1)En+p−k(f).

Let Pn(z) be the best approximation polynomial of degree ≤ n, that is

En(f) = ||f − Pn|| (or, any near to the best approximation polynomial of

degree ≤ n, that is ||f − Pn|| ≤ CEn(f), with C > 1 independent of n and

f).

For any n ≥ p and k = 0, . . . , p, taking into account the above error

estimate, the Bernstein’s inequality for complex polynomials and the well-

known inequality En(f) ≤ Cpn
−pEn−p(f

(p)), we obtain (notice that below
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Cp stands for a constant depending only on p, which may change from line

to line)

||f (k) − P (k)
n || ≤ ||f (k) − σ

(k)
2n,n−p(f)||+ ||σ

(k)
2n,n−p(f)− P (k)

n ||

= ||f (k) − σ2n−k,n−p(f
(k))||+ ||σ

(k)
2n,n−p(f)− P (k)

n ||

≤ CpEn+p−k(f
(k)) + ||(σ2n,n−p(f)− Pn)

(k)||

≤ CpEn+p−k(f
(k)) + (2n)k||σ2n,n−p(f)− Pn||

≤ CpEn+p−k(f
(k)) + Cpn

k[||σ2n,n−p(f)− f ||+ ||f − Pn||]

≤ CpEn+p−k(f
(k)) + Cpn

k[En+p(f) + En(f)]

≤ CpEn+p−k(f
(k)) + Cpn

kEn(f)

≤ CpEn+p−k(f
(k)) + Cpn

kn−pEn−p(f
(p))

≤ Cp(n+ p− k)−p+kEn(f
(p)) + Cpn

−p+kEn−p(f
(p))

≤ Cpn
−p+kEn−p(f

(p)),

which proves the theorem. �

Remark. Theorem 2.1 raises the natural question if instead of the de

la Vallée Poussin sums, we could use the Taylor polynomials attached to f ,

denoted by Tn(f)(z) =
∑n

j=0
f(j)(0)

j! zj . Indeed, these polynomials reproduce

any polynomial of degree ≤ n and satisfy T
(k)
n (f) = Tn−k(f

(k)). However, as

linear operators on A(D), the family Tn, n ∈ N, obviously is not uniformly

bounded on A(D). This shortcoming could be solved by supposing a stronger

hypothesis on f , that is, f ∈ Ap(DR) with R > 1 and p ∈ N, where DR =

{|z| < R}. In this case, taking into account the Cauchy’s estimates for the

coefficients, for any fixed 1 < r < R, we have |f(j)(0)|
j! ≤ ||f ||r

rj
, where ||f ||r

denotes the uniform norm in C(Dr) (for simplicity, || · ||1 is denoted by || · ||)

and

||Tn(f)|| ≤
r

r − 1
||f ||r,∀n ∈ N,

which shows that Tn : A(Dr) → A(D), n ∈ N, is a family of bounded linear

operators. Reasoning similar with the proof of Theorem 2.1, let Pn be the

polynomial of best approximation of degree ≤ n of f and qn−k the polynomial

of best approximation of degree ≤ n− k of f (k), both on Dr. We get

||f (k) − P (k)
n || ≤ ||f (k) − Tn−k(f

(k))||+ ||T (k)
n (f)− P (k)

n ||
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≤ ||f (k) − qn−k||+ ||qn−k − Tn−k(f
(k))||+ ||[Tn(f)− Pn]

(k)||

≤ En−k(f
(k);Dr) + |||Tn−k||| · ||f

(k) − qn−k||r + nk||Tn(f)− Pn||

≤ En−k(f
(k);Dr) +

r

r − 1
En−k(f

(k);Dr) + nk||Tn[f − Pn]||

≤ Cr,p,kn
−p+kEn−p(f

(p);Dr) + |||Tn||| · n
k||f − Pn||r

≤ Cr,p,kn
−p+kEn−p(f

(p);Dr) + Cr,p,kn
−p+kEn−p(f

(p);Dr)

≤
Cr,p,k

np−k
En−p(f

(p);Dr).

Therefore, for any f ∈ Ap(DR), p ≥ 1, (with R > 1), any fixed 1 <

r < R and any n > p, there exists a sequence of polynomials Pn(f), with

degree(Pn(f)) ≤ n, such that for any k = 0, 1, . . . , p, we have

||f (k) − P (k)
n (f)|| ≤

Cr,p

np−k
En−p(f

(p);Dr), k = 0, 1, . . . , p,

where Cr,p > 0 is a constant independent of f and n. This inequality is very

similar to that in the statement of Theorem 2.1. Here En(F ;Dr) denotes

the best approximation of F on Dr by polynomials of degree ≤ n.

The first shape preserving result is the following.

Theorem 2.2. Let us consider a function f ∈ Ap(D), the fixed integers

h, k, p ∈ N, 0 ≤ h ≤ k ≤ p, functions aj : D → C, continuous on D, for all

j = h, . . . , k, such that ah(z) = 1, for all z ∈ D, and distinct interpolation

points |zi| ≤ 1, i = 1, . . . , h (if h=0, then by convention we do not consider

any interpolation point).

Define a differential operator L by L(f)(z) =
∑k

j=h aj(z)f
(j)(z), z ∈ D

and suppose that Re[L(f)(z)] ≥ 0, for all z ∈ D.

Then, for every n ∈ N, n ≥ p, there exists a complex polynomial Pn(z)

of degree ≤ n, such that

||f − Pn|| ≤ Cnk−pEn−p(f
(p)),

with C independent of n, f and, in addition, Re[L(Pn)(z)] ≥ 0, for all z ∈ D

and Pn(zi) = f(zi), i = 1, . . . , h (if h = 0 then we don’t have interpolative

conditions). Here || · || denotes the uniform norm on C(D).
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Proof. We use the above Theorem 2.1, that is, for any g ∈ Ap(D) and

n ≥ p, there exists a polynomial pn(z) of degree ≤ n, such that

||g(j) − p(j)n || ≤ Cnj−pEn−p(g
(p)),

j = 0, 1, . . . , p, with C > 0 independent of n and g.

Define qn(z) = pn(z) +Q(g − pn)(z), where Q(g − pn)(z) represents the

Lagrange interpolation polynomial attached to g−pn on the points z1, . . . , zh.

It is immediate that qn(zi) = g(zi), i = 1, . . . , h and

||qn − g|| ≤ ||pn − g||+ ||Q(g − pn)|| ≤ c1n
−pEn−p(g

(p)),

with c1 independent of n and g.

Since each aj(z) is continuous on D, denoting Aj = ||aj ||, j = h, . . . , k,

it easily follows Ah = 1 and there exists M > 0 with Aj ≤ M, j =

h + 1, . . . , k. Since c1En−p(f
(p))

∑k
j=hAjn

j−p ≤ c1 · max{1,M}(k − h +

1)nk−pEn−p(f
(p)) =: ηn, taking g(z) = f(z) + ηn[(z − z1) · · · (z − zh)]/(h!),

(if h = 0 then g(z) = f(z) + ηn), let Pn(z) be the polynomial of degree ≤ n

satisfying Pn(zi) = g(zi), i = 1, . . . , h and

||g(j) − P (j)
n || ≤ c1n

j−pEn−p(g
(p)) = c1n

j−pEn−p(f
(p)), j = 0, 1, . . . , p.

(Here c1 is independent of n and g, so independent of f too). First it is

obvious that Pn(zi) = g(zi) = f(zi), i = 1, . . . , h.

We get

||f − Pn|| ≤ 2hηn(h!)
−1 + c1n

−pEn−p(f
(p)) ≤ Cnk−pEn−p(f

(p)),

with C independent of n and f , which implies the estimate in theorem.

On the other hand, if z ∈ D , with the convention on the case h = 0, it

is easy to check

L(Pn)(z) = L(f)(z) + ηn

+

k
∑

j=h

aj(z)
{

Pn(z) − f(z)− [(z − z1) · · · (z − zh)]ηn/(h!)
}(j)

,
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and we get

Re[L(Pn)(z)] = Re[L(f)(z)] + ηn

+Re
{

k
∑

j=h

aj(z){Pn(z)− f(z)− [(z − z1) · · · (z − zh)]ηn/(h!)}
(j)

}

.

By

∣

∣

∣
Re

{

k
∑

j=h

aj(z){Pn(z) − f(z)− [(z − z1) · · · (z − zh)]ηn/(h!)}
(j)

}
∣

∣

∣

≤
∣

∣

∣

k
∑

j=h

aj(z){Pn(z)− f(z)− [(z − z1) · · · (z − zh)]ηn/(h!)}
(j)

∣

∣

∣

≤ max{1,M}c1 · (k − h+ 1)nk−pEn−p(f
(p)) = ηn,

we get

ηn +Re
{

k
∑

j=h

aj(z){Pn(z)− f(z)− [(z − z1) · · · (z − zh)]ηn/(h!)}
(j)

}

≥ 0,

and since Re[L(f)(z)] ≥ 0, we finally obtain Re[L(Pn)(z)] ≥ 0, for all z ∈ D.

�

Remarks. (1) The statement of Theorem 2.2 obviously remains valid

if we replace the real part ”Re” of the corresponding quantities, with the

imaginary part ”Im”.

(2) If in the statement of Theorem 2.2 we have Re[L(f)(z)] > 0, for all

z ∈ D, then from the proof it easily follows Re[L(Pn)(z)] > 0, for all z ∈ D,

n ≥ p.

Another consequence of Theorem 2.1 is the following

Corollary 2.3. Let us consider a function f ∈ Ap(D), the fixed integers

h, k, p ∈ N, 0 ≤ h ≤ k ≤ p, the functions aj : D → C, continuous on D,

for all j = h, . . . , k, such that ah(z) = 1, for all z ∈ D, and the fixed point

|z0| ≤ 1.

Define the complex differential operator L(f)(z) =
∑k

j=h aj(z)f
(j)(z),

z ∈ D and suppose that Re[L(f)(z)] ≥ 0, for all z ∈ D.
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Then, for every n ∈ N, n ≥ p, there exists a complex polynomial Pn(z)

of degree ≤ n, such that

||f − Pn|| ≤ Cnk−pEn−p(f
(p)),

with C independent of n, f and, in addition, Re[L(Pn)(z)] ≥ 0, for all z ∈ D

and P
(i)
n (z0) = f (i)(z0), i = 0, . . . , h.

Proof. As in the proof of Theorem 2.2, for any g ∈ Ap(D) and n ≥ p,

there exists a polynomial pn(z) of degree ≤ n, such that

||g(j) − p(j)n || ≤ cnj−pEn−p(g
(p)), j = 0, 1, . . . , p.

Define now qn(z) = pn(z)+Th(z), where Th(z) denotes the Taylor poly-

nomial of degree h attached to the point z0 and to g − pn, i.e. Th(z) =
∑h

j=0
(z−z0)j

j! [g − pn]
(j)(z0).

We easily get q
(j)
n (z0) = g(j)(z0), j = 0, . . . , h and ||qn − g|| ≤ c1

∑h
j=0

||g(j) − p
(j)
n || ≤ c1n

k−pEn(g
(p)), with c1 > 0 independent of n and f , since

h ≤ k.

Defining ηn = c1max{1,M}(k−h+1)nk−pEn−p(f
(p)) (whereM is given

by the proof of Theorem 2.2) and taking g(z) = f(z) + ηn(z − z0)
h/(h!), let

Pn(z) be the polynomial of degree ≤ n satisfying P
(i)
n (z0) = g(i)(z0), i =

0, . . . , h and

||g(j) − P (j)
n || ≤ c1n

j−pEn−p(g
(p))

= c1n
j−pEn−p(f

(p)) ≤ Cnk−pEn−p(f
(p)), j = 0, 1, . . . , k.

The rest of the proof follows the lines in the proof of Theorem 2.2. �

In what follows we present some applications of Corollary 2.3.

Theorem 2.4.

(i) Let p ∈ N, f ∈ Ap(D) be normalized in D, i.e. f(0) = f ′(0)− 1 = 0,

and satisfying Re[f ′(z)] > 0, for all z ∈ D.
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For any n ≥ p, there exists a polynomial of degree ≤ n such that Pn(0) =

f(0), P ′
n(0) = f ′(0), Re[P ′

n(z)] > 0, for all z ∈ D and

||f − Pn|| ≤ C
1

np−1
En−p(f

(p)),

with C independent of n, f ;

(ii) Let f ∈ Ap(D), p ∈ N, p ≥ 2, be normalized in D. For any n ∈ N, n ≥

p, there exists a polynomial of degree ≤ n such that Pn(0) = f(0), P ′
n(0) =

f ′(0),

||f − Pn|| ≤ C
1

np−2
En−p(f

(p)),

with C independent of n, f , that in addition, has the following properties

(the choice of Pn(z) depends on the property):

(a) If Re[f ′(z) + 1
γ
zf ′′(z)] > 0, for all z ∈ D, where −1 < γ ≤ γ0 = 1.869...,

then Re[P ′
n(z) +

1
γ
zP ′′

n (z)] > 0, ∀z ∈ D.

(b) If Re[f ′(z)+ 1
2zf

′′(z)] > 0, for all z ∈ D, then Re[P ′
n(z)+

1
2zP

′′
n (z)] > 0,

for all z ∈ D;

(iii) If g ∈ Ap(D), p ∈ N, p ≥ 2, satisfies g(0) = a, with Re[a] > 0

and Re[g(z) + zg′(z) + z2g′′(z)] > 0, for all z ∈ D, then for all n ∈ N,

n ≥ p, there exists a polynomial Pn of degree ≤ n, such that Pn(0) = g(0),

Re[Pn(z) + zP ′
n(z) + z2P ′′

n (z)] > 0, for all z ∈ D and

||g − Pn|| ≤ C
1

np−2
En−p(g

(p)),

with C independent of n, f .

(iv) If g ∈ Ap(D), p ∈ N, satisfies g(0) = a, with Re[a] > 0 and Re[g(z)+

zB(z)g′(z)] > 0, where B(z) is analytic in D and Re[B(z)] > 0, for all z ∈ D,

then for all n ∈ N, n ≥ p, there exists a polynomial Pn of degree ≤ n, such

that Pn(0) = g(0), Re[Pn(z) + zB(z)P ′
n(z)] > 0, for all z ∈ D and

||g − Pn|| ≤ C
1

np−1
En−p(g

(p)),

with C independent of n, f .
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Proof.

(i) Let L(f)(z) = f ′(z). Apply Remark 2 of Theorem 2.2 and Corollary

2.3 for z0 = 0, h = k = 1.

(ii) (a), (b) Let L(f)(z) = f ′(z)+ 1
γ
zf ′′(z) (or L(f)(z) = f ′(z)+ z

2f
′′(z),

respectively). Apply Remark 2 of Theorem 2.2 and Corollary 2.3 for z0 = 0,

h = 1, k = 2.

(iii) Apply Remark 2 of Theorem 2.2 and Corollary 2.3 for z0 = 0, h = 0

and k = 2.

(iv) Apply Remark 2 of Theorem 2.2 and Corollary 2.3 for z0 = 0, h = 0

and k = 1. �

Remarks. (1) It is well-known (see e.g., Mocanu-Bulboaca-Salagean

[14, p. 78]) that if f is normalized and satisfies the condition Re[f ′(z)] > 0,

for all z ∈ D, then f is univalent and of bounded turn in D (i.e. |arg[f ′(z)]| <
π
2 , for all z ∈ D). As a consequence, the approximation polynomials Pn, n ≥

p, are univalent and of bounded turn on D.

(2) By Singh-Singh [23], Mocanu [13] and Mocanu-Bulboaca-Salagean

[14, p. 358], respectively, the fact that f is normalized together with any from

the two conditions (a) and (b) in Theorem 2.4, (ii), implies the starlikeness

of f (and as a consequence the starlikeness of Pn too) in D (for the above

sufficient conditions of starlikeness (a) and (b), see also Mocanu-Bulboaca-

Salagean [14, p. 363].

(3) The conditions on g in Theorem 2.4, (iii), imply Re[g(z)] > 0 for all

z ∈ D (see e.g. Mocanu-Bulboaca-Salagean [14, Problem 9.6.5, (ii), p. 221]).

(4) The conditions in Theorem 2.4, (iv), imply Re[g(z)] > 0, for all

z ∈ D (see e.g., Mocanu-Bulboaca-Salagean [14, p. 192]).

Other results of the same kind are given by the following.

Theorem 2.5.

(i) If f ∈ A(D), satisfies Re[f(z)] > 0, for all z ∈ D, then for each n ∈ N,

there exists Pn-complex polynomial of degree ≤ n, such that ||Pn − f || ≤

2En(f), and , in addition Re[Pn(z)] > 0, for all z ∈ D. Here En(f) denotes

the best approximation of f by polynomials of degree ≤ n.
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(ii) Let f ∈ A1(D) be such that f ′(0) = 1 and there exists γ ∈ (−π/2, π/2),

with Re[eiγf ′(z)] > 0, for all z ∈ D. Then, for any n ≥ 1, there exists a

polynomial Qn(f)(z), of degree ≤ n, such that Re[eiγQ′
n(z)] > 0, for all

z ∈ D, and ||Qn(f)− f || ≤ cEn−1(f
′), where c is independent of n and f .

Proof. (i) Let P ∗
n be the polynomial of degree ≤ n that satisfies ||f −

P ∗
n || = En(f) > 0. Then it is easy to check that Pn(z) = P ∗

n(z) + En(f)

satisfies the required conditions, since |Re[P ∗
n(z)−f(z)]| ≤ ||f−P ∗

n || = En(f)

and Re[Pn(z)− f(z)] = Re[P ∗
n(z)− f(z)] + En(f) > 0.

If En(f) = 0 and Re[f ] > 0, then f = Pn-polynomial of degree ≤ n and

the result is obvious.

(ii) First supposeEn−1(f
′) > 0. By Theorem 2.1, there exists Pn(z) with

the properties ||Pn− f || ≤ c 1
n
En−1(f

′) =: αn, and ||P ′
n− f ′|| ≤ cEn−1(f

′) :=

βn.

Denote Qn(z) = Pn(z) + z 2βn

cos(γ) . We get ||Qn − f || ≤ ||Pn − f ||+2βn ≤

αn + 2βn, which proves the approximation error.

Also,

Re[eiγ(Q′
n(z)− f ′(z))] = Re[eiγ(P ′

n(z) − f ′(z))] + 2βnRe

[

eiγ

cos(γ)

]

= Re[eiγ(P ′
n(z) − f ′(z))] + 2βn > 0,

since |Re[eiγ(P ′
n(z)− f ′(z))]| ≤ |eiγ [P ′

n(z)− f ′(z)]| ≤ ||P ′
n − f ′|| ≤ βn < 2βn.

The case En−1(f
′) = 0 implies f = Pn-polynomial of degree ≤ n and we

choose Qn(f) = Pn, which proves the theorem. �

Remark. It is well-known that Re[eiγf ′(z)] > 0, for all z ∈ D, is the

Noshiro, Warschawski, Wolff’s sufficient condition of univalence for f (see

also e.g. Mocanu-Bulboaca-Salagean [14, p. 78]).

All the above results show that there exists polynomials with good ap-

proximation properties, that preserve some known subclasses of univalent

functions. Also, we note that the approximation polynomials constructed

in Gal [7, 8, 9], in general do not preserve these subclasses and even if they

preserve some subclasses (the cases of subclasses in Theorem 2.4, (i) and

Theorem 2.5, (i) ), the error estimates presented here are much better than
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those in Gal [7, 8, 9], (which are expressed in terms of moduli of smoothness

of order one or two).
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16. G. Pólya and I.J. Schoenberg, Remarks on de la Vallée Poussin means and convex

conformal maps of the circle, Pacific J. Math., 8(1958), 295-333.

17. M. S. Robertson, On the univalency of Cesàro sums of univalent functions, Bull.
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22. S. Ruscheweyh and K.J. Wirths, Über die Faltung schlichter Funktionen, Mat. Z.,

131(1973), 11-23.

23. S. Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ.

Mariae Curie-Sklodowska, Sect. A, 16(1981), 145-148.

24. S. B. Stechkin, On the approximation of periodic functions by the de la Vallée

Poussin sums, Anal. Math., 4(1978), 61-74.

25. T. J. Suffridge, Extreme points in a class of polynomials having univalent sequen-

tial limits, Trans. Amer. Math. Soc., 163(1972), 225-237.

26. T. J. Suffridge, On a family of convex polynomials, Rocky Mount. J. Math.,

22(1992), No. 1, 387-391.
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