CHARACTERIZATION OF WEAKLY PRIME SUBTRACTIVE IDEALS IN SEMIRINGS

ΒY

VISHNU GUPTA AND J. N. CHAUDHARI

Abstract

In the paper we extend some results of [1] to non commutative semirings with $1 \neq 0$. We prove the following Theorem: (1) Let I be a subtractive ideal of a semiring R. Then I is a weakly prime ideal of R if and only if for left ideals A and B of $R, 0 \neq AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. (2) Let R be a semiring in which all nilpotent elements are central and let I be a weakly prime subtractive ideal of R which is not a prime ideal of R. Then $I\sqrt{0} = 0$.

For the definition of a semiring we refer the readers to [2]. Z^+ will denote the set of all non negative integers. All (left, right) ideals are proper. An ideal I of a semiring R is called subtractive if $a, a + b \in I, b \in R$, then $b \in I$. An ideal I of a semiring R is called prime if $aRb \subseteq I$ where $a, b \in R$, then $a \in I$ or $b \in I$. Easily, an ideal I of a semiring R is prime if and only if for left ideals A and B of R, $AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. A semiring R is called prime if 0 is a prime ideal of R. A semiring R is called semi prime if it has no non zero nilpotent ideals. An ideal I of a semiring Ris called weakly prime if $0 \neq aRb \subseteq I$ where $a, b \in R$, then $a \in I$ or $b \in I$. Clearly every prime ideal is a weakly prime ideal. If R is a semiring, then 0 is a weakly prime ideal of R. Let $R = Z_6$. Then 0 in $R_{n \times n}$ is a weakly prime ideal but not a prime ideal. If R is a prime semiring and I is a weakly prime ideal of R, then I is a prime ideal of R.

Received May 22, 2007 and in revised form August 23, 2007.

AMS Subject Classification: 16Y60.

Key words and phrases: Semiring, subtractive ideal, prime ideal, weakly prime ideal.

Easily, I is a prime ideal of a semiring R if and only if $I_{n \times n}$ is a prime ideal of the semiring $R_{n \times n}$.

Now we have the following proposition.

Proposition 1. Let R be a semiring and let I be an ideal of R. If $I_{n \times n}$ is a weakly prime ideal of $R_{n \times n}$, then I is a weakly prime ideal of R.

Proof. Let $0 \neq aRb \subseteq I$ where $a, b \in R$. Then $0 \neq aE_{11}R_{n \times n}bE_{11} \subseteq I_{n \times n}$. Hence $aE_{11} \in I_{n \times n}$ or $bE_{11} \in I_{n \times n}$. Now $a \in I$ or $b \in I$.

Lemma 2. Let I be a weakly prime subtractive ideal of a semiring R. Then $I^2 = 0$ or I is a prime ideal of R.

Proof. Suppose $I^2 \neq 0$. Let $aRb \subseteq I$ where $a, b \in R$. If $aRb \neq 0$, then $a \in I$ or $b \in I$. So assume that aRb = 0. If $aI \neq 0$, then there exists $x \in I$ such that $ax \neq 0$. Now $0 \neq aRx = aR(b+x) \subseteq I$. Hence $a \in I$ or $b+x \in I$. So $a \in I$ or $b \in I$. Now assume that aI = 0. If $Ib \neq 0$, then there exists $u \in I$ such that $ub \neq 0$. Now $0 \neq uRb = (u+a)Rb \subseteq I$. So $a \in I$ or $b \in I$. Hence we can assume that Ib = 0. Since $I^2 \neq 0$, there exist $w, z \in I$ such that $wz \neq 0$. Then $0 \neq wRz = (a+w)R(b+z) \subseteq I$. So $a \in I$ or $b \in I$. \Box

Corollary 3. Let R be a semiprime semiring. Then a subtractive ideal I of R is weakly prime if and only if I = 0 or I is a prime ideal.

Let I be an ideal of a semiring R and let

 $\sqrt{I} = \{ x \in R : \text{ every } m \text{-system containing } x \text{ meets } I \}$ $\subseteq \{ x \in R : x^n \in I \text{ for some } n \ge 1 \}.$

If R is a commutative semiring, then equality holds. If I = 0 and all nilpotent elements are central, then equality also holds.

The following lemma can be proved easily.

Lemma 4. Let I be an ideal of a semiring R. Then \sqrt{I} is the intersection of all prime ideals of R containing I. So \sqrt{I} is an ideal of R.

Proposition 5. Let I be a weakly prime subtractive ideal of a semiring R. Then

(1) $I \subseteq \sqrt{0} \text{ or } \sqrt{0} \subseteq I.$

- (2) If $I \subsetneq \sqrt{0}$, then I is not a prime ideal of R.
- (3) If $\sqrt{0} \subseteq I$, then I is a prime ideal of R.

Proof. (1) If I is a prime ideal of R, then by Lemma 4, $\sqrt{0} \subseteq I$. If I is not a prime ideal of R, then by Lemma 2, $I^2 = 0 \subseteq \sqrt{0}$. So $I \subseteq \sqrt{0}$. (2) and (3) are obvious.

The following Lemma can be proved easily.

Lemma 6. Let I and J be subtractive ideals of a semiring R. Then $I \cup J$ is a subtractive ideal of R if and only if $I \cup J = I$ or $I \cup J = J$.

We use the following notations: If $x \in R$, then $\langle x \rangle_{\ell} = Rx$, $\langle x \rangle_r = xR$ and $\langle x \rangle = RxR$. Let I be an ideal of a semiring R and let $x \notin I$. We define

$$(I:\langle x\rangle_{\ell})_{\ell} = \{y \in R: y\langle x\rangle_{\ell} \subseteq I\}$$

and

$$(I:\langle x\rangle_r)_r = \{y \in R: \langle x\rangle_r y \subseteq I\}.$$

They form ideals of R containing I.

The following lemma can be proved easily.

Lemma 7. Let R be a semiring. Let I be an ideal of R and let $x \notin I$.

- (1) If I is subtractive, then $(I : \langle x \rangle_{\ell})_{\ell}$ is also subtractive.
- (2) If I is a prime ideal of R and $(I : \langle x \rangle_{\ell})_{\ell}$ is subtractive, then I is also subtractive.

Lemma 8. Let I be a subtractive ideal of a semiring R. Then the following statements are equivalent.

- (1) I is a weakly prime ideal of R.
- (2) If $x \notin I$, then $(I : \langle x \rangle_{\ell})_{\ell} = I \cup (0 : \langle x \rangle_{\ell})_{\ell}$.
- (3) If $x \notin I$, then $(I : \langle x \rangle_{\ell})_{\ell} = I$ or $(I : \langle x \rangle_{\ell})_{\ell} = (0 : \langle x \rangle_{\ell})_{\ell}$.

June

Proof. (1) \Rightarrow (2). Let $y \in (I : \langle x \rangle_{\ell})_{\ell}$. Then $yRx \subseteq I$. If yRx = 0, then $y \in (0 : \langle x \rangle_{\ell})_{\ell}$. If $yRx \neq 0$, then $y \in I$. Now $(I : \langle x \rangle_{\ell})_{\ell} \subseteq I \cup (0 : \langle x \rangle_{\ell})_{\ell}$. Otherway, let $z \in I \cup (0 : \langle x \rangle_{\ell})_{\ell}$. Then $z \langle x \rangle_{\ell} \subseteq I$. Now $z \in (I : \langle x \rangle_{\ell})_{\ell}$. (2) \Rightarrow (3). It follows by Lemmas 6 and 7. (3) \Rightarrow (1). Let $yRx \subseteq I$ and $yRx \neq 0$. We have $(I : \langle x \rangle_{\ell})_{\ell} = I$ or $(I : \langle x \rangle_{\ell})_{\ell} = (0 : \langle x \rangle_{\ell})_{\ell}$. Suppose $(I : \langle x \rangle_{\ell})_{\ell} = (0 : \langle x \rangle_{\ell})_{\ell}$. Since $y \in (I : \langle x \rangle_{\ell})_{\ell}$, we get $y \langle x \rangle_{\ell} = 0$, a contradiction. Hence $(I : \langle x \rangle_{\ell})_{\ell} = I$. So $y \in I$.

Similarly the right analogues can be established.

Theorem 9. Let I be a subtractive ideal of a semiring R. Then the following statements are equivalent

- (1) I is weakly prime ideal of R.
- (2) For left ideals A and B of R, $0 \neq AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$.
- (3) For ideals A and B of R, $0 \neq AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$.

Proof. (1) \Rightarrow (2). Suppose *I* is a weakly prime ideal of *R*. If *I* is a prime ideal of *R*, then the result holds trivially. So assume that *I* is not a prime ideal of *R*. Let *A* and *B* be left ideals of *R* such that $0 \neq AB \subseteq I$. Suppose $A \nsubseteq I$ and $B \nsubseteq I$. Let $a \in A - I$. Now $\langle a \rangle_r B \subseteq I$. Hence $B \subseteq (I : \langle a \rangle_r)_r$. Since $B \nsubseteq I$, by right analogue of Lemma 8, $\langle a \rangle_r B = 0$. So aB = 0. Next let $a \in A \cap I$. Let $b \in B$. If $b \in I$, then $ab \in I^2 = 0$ by Lemma 2. If $b \in B - I$, then $A\langle b \rangle_{\ell} \subseteq I$. Hence $A \subseteq (I : \langle b \rangle_{\ell})_{\ell}$. Since $A \nsubseteq I$, by Lemma 8, $A\langle b \rangle_{\ell} = 0$. So ab = 0. Now AB = 0, a contradiction.

 $(2) \Rightarrow (3)$. It is obvious.

(3) \Rightarrow (1). Let $0 \neq aRb \subseteq I$ where $a, b \in R$. Then $0 \neq \langle a \rangle \langle b \rangle \subseteq I$. Hence $\langle a \rangle \subseteq I$ or $\langle b \rangle \subseteq I$. So $a \in I$ or $b \in I$.

Theorem 10. Let R be semiring in which all nilpotent elements are central. Let I be a weakly prime subtractive ideal of R which is not a prime ideal of R. Then $I\sqrt{0} = 0$.

Proof. Suppose I is not a prime ideal of R. Let $0 \neq x \in \sqrt{0}$. Then $x \in I$ or $x \notin I$. If $x \in I$, then $Ix \subseteq I^2 = 0$ by Lemma 2. If $x \notin I$, then by Lemma 8, $(I : \langle x \rangle_{\ell})_{\ell} = I$ or $(I : \langle x \rangle_{\ell})_{\ell} = (0 : \langle x \rangle_{\ell})_{\ell}$. Suppose $(I : \langle x \rangle_{\ell})_{\ell} = I$. Since $x \in \sqrt{0}$, we get $x^n = 0$ for some n > 1 where $x^{n-1} \neq 0$. Since x is central, we get $x^{n-1} \langle x \rangle_{\ell} = 0 \subseteq I$. Hence $x^{n-1} \in (I : \langle x \rangle_{\ell})_{\ell} = I$. So $x^{n-2} \in (I : \langle x \rangle_{\ell})_{\ell} = I$. Continue in this way, we get $x \in I$, a contradiction.

Hence $(I : \langle x \rangle_{\ell})_{\ell} = (0 : \langle x \rangle_{\ell})_{\ell}$. Since $I \subseteq (I : \langle x \rangle_{\ell})_{\ell}$, we get $I \langle x \rangle_{\ell} = 0$. Now $I \sqrt{0} = 0$.

The converse of the Theorem 10 is not true.

Example 11. Let $R = Z_{12}$ and $I = \{0, 4, 8\}$. Then I is not a weakly prime ideal of R. So it is not a prime ideal of R. It is a subtractive ideal. We have $I\sqrt{0} = 0$ where $\sqrt{0} = \{0, 6\}$.

The condition that I is not a prime ideal is essential.

Example 12. Let $R = Z_{12}$ and let $I = \{0, 3, 6, 9\}$. Then I is a subtractive prime ideal of R. So it is a weakly prime ideal of R. But $I\sqrt{0} \neq 0$ where $\sqrt{0} = \{0, 6\}$.

Corollary 13. Let R be a semiring in which all nilpotent elements are central. Let I and J be the weakly prime subtractive ideals of R that are not prime ideals of R. Then IJ = 0.

Proof. By Lemma 2, $J^2 = 0 \subseteq \sqrt{0}$. Hence $J \subseteq \sqrt{0}$. Now $IJ \subseteq I\sqrt{0} = 0$.

Example 14. Let $R = (Z^+, +, \cdot)$.

Consider the semiring

$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in R \right\}.$$

Let *I* be an ideal if *R*. Then $T = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in I \right\}$ is an ideal of *S*. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ be in *S*.

- (i) If $I = \langle 2, 3 \rangle$, then $0 \neq ASB \subseteq T$ but $A, B \notin T$. Hence T is not a weakly prime ideal of S. It is not subtractive. We have $T^2 \neq 0$.
- (ii) If $I = \langle 2 \rangle$, then $0 \neq ASB \subseteq T$ but $A, B \notin T$. Hence T is not a weakly prime ideal of S. It is subtractive. We have $T^2 \neq 0$.

Example 15. Let $R = Z_{12}$ and let $I = \langle 6 \rangle$: Let $A = 3E_{11}$, $B = 2E_{11}$. Then $0 \neq AR_{2\times 2}B \subseteq I_{2\times 2}$. But $A, B \notin I_{2\times 2}$. Hence $I_{2\times 2}$ is not a weakly prime ideal of $R_{2\times 2}$. It is subtractive. We have $I_{2\times 2}^2 = 0$.

References

 D. D. Anderson and Eric Smith, Weakly prime ideals, *Houston J. Math.*, 29(2003), 831-840.

2. J. S. Golan, *Semirings and Their Applications*, Kluwer Academic Publishers, Dordrecht 1999.

3. T. Y. Lam, A First Course in Non Commutative Rings, Springer-Verlag, New York, 1980.

Department of Mathematics, University of Delhi, Delhi 110 007, India. E-mail: vishnu_gupta2k3@yahoo.co.in

Department of Mathematics, M. J. College, Jalgaon 425002, India. E-mail: jnchaudhari@rediffmail.com