CHARACTERIZATION OF WEAKLY PRIME SUBTRACTIVE IDEALS IN SEMIRINGS

BY

VISHNU GUPTA AND J. N. CHAUDHARI

Abstract

In the paper we extend some results of [1] to non commutative semirings with $1 \neq 0$. We prove the following Theorem: (1) Let I be a subtractive ideal of a semiring R. Then I is a weakly prime ideal of R if and only if for left ideals A and B of $R, 0 \neq A B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. (2) Let R be a semiring in which all nilpotent elements are central and let I be a weakly prime subtractive ideal of R which is not a prime ideal of R. Then $I \sqrt{0}=0$.

For the definition of a semiring we refer the readers to [2]. Z^{+}will denote the set of all non negative integers. All (left, right) ideals are proper. An ideal I of a semiring R is called subtractive if $a, a+b \in I, b \in R$, then $b \in I$. An ideal I of a semiring R is called prime if $a R b \subseteq I$ where a, $b \in R$, then $a \in I$ or $b \in I$. Easily, an ideal I of a semiring R is prime if and only if for left ideals A and B of $R, A B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. A semiring R is called prime if 0 is a prime ideal of R. A semiring R is called semi prime if it has no non zero nilpotent ideals. An ideal I of a semiring R is called weakly prime if $0 \neq a R b \subseteq I$ where $a, b \in R$, then $a \in I$ or $b \in I$. Clearly every prime ideal is a weakly prime ideal. If R is a semiring, then 0 is a weakly prime ideal of R. Let $R=Z_{6}$. Then 0 in $R_{n \times n}$ is a weakly prime ideal but not a prime ideal. If R is a prime semiring and I is a weakly prime ideal of R, then I is a prime ideal of R.

Easily, I is a prime ideal of a semiring R if and only if $I_{n \times n}$ is a prime ideal of the semiring $R_{n \times n}$.

Now we have the following proposition.
Proposition 1. Let R be a semiring and let I be an ideal of R. If $I_{n \times n}$ is a weakly prime ideal of $R_{n \times n}$, then I is a weakly prime ideal of R.

Proof. Let $0 \neq a R b \subseteq I$ where $a, b \in R$. Then $0 \neq a E_{11} R_{n \times n} b E_{11} \subseteq$ $I_{n \times n}$. Hence $a E_{11} \in I_{n \times n}$ or $b E_{11} \in I_{n \times n}$. Now $a \in I$ or $b \in I$.

Lemma 2. Let I be a weakly prime subtractive ideal of a semiring R. Then $I^{2}=0$ or I is a prime ideal of R.

Proof. Suppose $I^{2} \neq 0$. Let $a R b \subseteq I$ where $a, b \in R$. If $a R b \neq 0$, then $a \in I$ or $b \in I$. So assume that $a R b=0$. If $a I \neq 0$, then there exists $x \in I$ such that $a x \neq 0$. Now $0 \neq a R x=a R(b+x) \subseteq I$. Hence $a \in I$ or $b+x \in I$. So $a \in I$ or $b \in I$. Now assume that $a I=0$. If $I b \neq 0$, then there exists $u \in I$ such that $u b \neq 0$. Now $0 \neq u R b=(u+a) R b \subseteq I$. So $a \in I$ or $b \in I$. Hence we can assume that $I b=0$. Since $I^{2} \neq 0$, there exist $w, z \in I$ such that $w z \neq 0$. Then $0 \neq w R z=(a+w) R(b+z) \subseteq I$. So $a \in I$ or $b \in I$.

Corollary 3. Let R be a semiprime semiring. Then a subtractive ideal I of R is weakly prime if and only if $I=0$ or I is a prime ideal.

Let I be an ideal of a semiring R and let

$$
\begin{aligned}
\sqrt{I} & =\{x \in R: \text { every } m \text {-system containing } x \text { meets } I\} \\
& \subseteq\left\{x \in R: x^{n} \in I \text { for some } n \geq 1\right\} .
\end{aligned}
$$

If R is a commutative semiring, then equality holds. If $I=0$ and all nilpotent elements are central, then equality also holds.

The following lemma can be proved easily.
Lemma 4. Let I be an ideal of a semiring R. Then \sqrt{I} is the intersection of all prime ideals of R containing I. So \sqrt{I} is an ideal of R.

Proposition 5. Let I be a weakly prime subtractive ideal of a semiring R. Then
(1) $I \subseteq \sqrt{0}$ or $\sqrt{0} \subseteq I$.
(2) If $I \subsetneq \sqrt{0}$, then I is not a prime ideal of R.
(3) If $\sqrt{0} \subsetneq I$, then I is a prime ideal of R.

Proof. (1) If I is a prime ideal of R, then by Lemma 4, $\sqrt{0} \subseteq I$. If I is not a prime ideal of R, then by Lemma $2, I^{2}=0 \subseteq \sqrt{0}$. So $I \subseteq \sqrt{0}$. (2) and (3) are obvious.

The following Lemma can be proved easily.

Lemma 6. Let I and J be subtractive ideals of a semiring R. Then $I \cup J$ is a subtractive ideal of R if and only if $I \cup J=I$ or $I \cup J=J$.

We use the following notations: If $x \in R$, then $\langle x\rangle_{\ell}=R x,\langle x\rangle_{r}=x R$ and $\langle x\rangle=R x R$. Let I be an ideal of a semiring R and let $x \notin I$. We define

$$
\left(I:\langle x\rangle_{\ell}\right)_{\ell}=\left\{y \in R: y\langle x\rangle_{\ell} \subseteq I\right\}
$$

and

$$
\left(I:\langle x\rangle_{r}\right)_{r}=\left\{y \in R:\langle x\rangle_{r} y \subseteq I\right\} .
$$

They form ideals of R containing I.
The following lemma can be proved easily.

Lemma 7. Let R be a semiring. Let I be an ideal of R and let $x \notin$ I.
(1) If I is subtractive, then $\left(I:\langle x\rangle_{\ell}\right)_{\ell}$ is also subtractive.
(2) If I is a prime ideal of R and $\left(I:\langle x\rangle_{\ell}\right)_{\ell}$ is subtractive, then I is also subtractive.

Lemma 8. Let I be a subtractive ideal of a semiring R. Then the following statements are equivalent.
(1) I is a weakly prime ideal of R.
(2) If $x \notin I$, then $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I \cup\left(0:\langle x\rangle_{\ell}\right)_{\ell}$.
(3) If $x \notin I$, then $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$ or $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=\left(0:\langle x\rangle_{\ell}\right)_{\ell}$.

Proof. (1) $\Rightarrow(2)$. Let $y \in\left(I:\langle x\rangle_{\ell}\right)_{\ell}$. Then $y R x \subseteq I$. If $y R x=0$, then $y \in\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. If $y R x \neq 0$, then $y \in I$. Now $\left(I:\langle x\rangle_{\ell}\right)_{\ell} \subseteq I \cup\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Otherway, let $z \in I \cup\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Then $z\langle x\rangle_{\ell} \subseteq I$. Now $z \in\left(I:\langle x\rangle_{\ell}\right)_{\ell}$. $(2) \Rightarrow(3)$. It follows by Lemmas 6 and 7 .
$(3) \Rightarrow(1)$. Let $y R x \subseteq I$ and $y R x \neq 0$. We have $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$ or $(I:$ $\left.\langle x\rangle_{\ell}\right)_{\ell}=\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Suppose $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Since $y \in\left(I:\langle x\rangle_{\ell}\right)_{\ell}$, we get $y\langle x\rangle_{\ell}=0$, a contradiction. Hence $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$. So $y \in I$.

Similarly the right analogues can be established.
Theorem 9. Let I be a subtractive ideal of a semiring R. Then the following statements are equivalent
(1) I is weakly prime ideal of R.
(2) For left ideals A and B of $R, 0 \neq A B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$.
(3) For ideals A and B of $R, 0 \neq A B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$.

Proof. (1) $\Rightarrow(2)$. Suppose I is a weakly prime ideal of R. If I is a prime ideal of R, then the result holds trivially. So assume that I is not a prime ideal of R. Let A and B be left ideals of R such that $0 \neq A B \subseteq I$. Suppose $A \nsubseteq I$ and $B \nsubseteq I$. Let $a \in A-I$. Now $\langle a\rangle_{r} B \subseteq I$. Hence $B \subseteq\left(I:\langle a\rangle_{r}\right)_{r}$. Since $B \nsubseteq I$, by right analogue of Lemma $8,\langle a\rangle_{r} B=0$. So $a B=0$. Next let $a \in A \cap I$. Let $b \in B$. If $b \in I$, then $a b \in I^{2}=0$ by Lemma 2. If $b \in B-I$, then $A\langle b\rangle_{\ell} \subseteq I$. Hence $A \subseteq\left(I:\langle b\rangle_{\ell}\right)_{\ell}$. Since $A \nsubseteq I$, by Lemma $8, A\langle b\rangle_{\ell}=0$. So $a b=0$. Now $A B=0$, a contradiction.
$(2) \Rightarrow(3)$. It is obvious.
$(3) \Rightarrow(1)$. Let $0 \neq a R b \subseteq I$ where $a, b \in R$. Then $0 \neq\langle a\rangle\langle b\rangle \subseteq I$. Hence $\langle a\rangle \subseteq I$ or $\langle b\rangle \subseteq I$. So $a \in I$ or $b \in I$.

Theorem 10. Let R be semiring in which all nilpotent elements are central. Let I be a weakly prime subtractive ideal of R which is not a prime ideal of R. Then $I \sqrt{0}=0$.

Proof. Suppose I is not a prime ideal of R. Let $0 \neq x \in \sqrt{0}$. Then $x \in I$ or $x \notin I$. If $x \in I$, then $I x \subseteq I^{2}=0$ by Lemma 2. If $x \notin I$, then by Lemma $8,\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$ or $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Suppose $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$. Since $x \in \sqrt{0}$, we get $x^{n}=0$ for some $n>1$ where $x^{n-1} \neq 0$. Since x is central, we get $x^{n-1}\langle x\rangle_{\ell}=0 \subseteq I$. Hence $x^{n-1} \in\left(I:\langle x\rangle_{\ell}\right\rangle_{\ell}=I$. So $x^{n-2} \in\left(I:\langle x\rangle_{\ell}\right)_{\ell}=I$. Continue in this way, we get $x \in I$, a contradiction.

Hence $\left(I:\langle x\rangle_{\ell}\right)_{\ell}=\left(0:\langle x\rangle_{\ell}\right)_{\ell}$. Since $I \subseteq\left(I:\langle x\rangle_{\ell}\right)_{\ell}$, we get $I\langle x\rangle_{\ell}=0$. Now $I \sqrt{0}=0$.

The converse of the Theorem 10 is not true.

Example 11. Let $R=Z_{12}$ and $I=\{0,4,8\}$. Then I is not a weakly prime ideal of R. So it is not a prime ideal of R. It is a subtractive ideal. We have $I \sqrt{0}=0$ where $\sqrt{0}=\{0,6\}$.

The condition that I is not a prime ideal is essential.

Example 12. Let $R=Z_{12}$ and let $I=\{0,3,6,9\}$. Then I is a subtractive prime ideal of R. So it is a weakly prime ideal of R. But $I \sqrt{0} \neq 0$ where $\sqrt{0}=\{0,6\}$.

Corollary 13. Let R be a semiring in which all nilpotent elements are central. Let I and J be the weakly prime subtractive ideals of R that are not prime ideals of R. Then $I J=0$.

Proof. By Lemma 2, $J^{2}=0 \subseteq \sqrt{0}$. Hence $J \subseteq \sqrt{0}$. Now $I J \subseteq I \sqrt{0}=$ 0.

Example 14. Let $R=\left(Z^{+},+, \cdot\right)$.
Consider the semiring

$$
S=\left\{\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]: a, b, c \in R\right\} .
$$

Let I be an ideal if R. Then $T=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in I\right\}$ is an ideal of S. Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ be in S.
(i) If $I=\langle 2,3\rangle$, then $0 \neq A S B \subseteq T$ but $A, B \notin T$. Hence T is not a weakly prime ideal of S. It is not subtractive. We have $T^{2} \neq 0$.
(ii) If $I=\langle 2\rangle$, then $0 \neq A S B \subseteq T$ but $A, B \notin T$. Hence T is not a weakly prime ideal of S. It is subtractive. We have $T^{2} \neq 0$.

Example 15. Let $R=Z_{12}$ and let $I=\langle 6\rangle$: Let $A=3 E_{11}, B=2 E_{11}$. Then $0 \neq A R_{2 \times 2} B \subseteq I_{2 \times 2}$. But $A, B \notin I_{2 \times 2}$. Hence $I_{2 \times 2}$ is not a weakly prime ideal of $R_{2 \times 2}$. It is subtractive. We have $I_{2 \times 2}^{2}=0$.

References

1. D. D. Anderson and Eric Smith, Weakly prime ideals, Houston J. Math., 29(2003), 831-840.
2. J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht 1999.
3. T. Y. Lam, A First Course in Non Commutative Rings, Springer-Verlag, New York, 1980.

Department of Mathematics, University of Delhi, Delhi 110 007, India.
E-mail: vishnu_gupta2k3@yahoo.co.in
Department of Mathematics, M. J. College, Jalgaon 425002, India.
E-mail: jnchaudhari@rediffmail.com

