
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 3 (2008), No. 3, pp. 391-398

BEST PROXIMITY PAIRS IN UNIFORMLY CONVEX

SPACES

BY
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Abstract

In this paper we prove existence theorems of best proximity

pairs in uniformly convex spaces, using a fixed point theorem for

Kakutani factorizable multi-functions.

1. Introduction

Let X and Y be two non-empty subsets of a normed linear space E

and let T : X → 2Y be a multi-function. The pair (x, T (x)) is called a

best proximity pair if d(x, T (x)) = d(X,Y ). The existence of best proximity

pairs is closely related to the existence of equilibrium pairs for free abstract

economies and the existence of fixed points for multi-functions. Several

authors have studied these problems ([5], [6], [2] and [3]).

In [3] the authors established the following existence theorem of best

proximity pairs.

Theorem 1.1. For each i ∈ I = {1, . . . ,m}, let X and Yi be non-empty

compact and convex subsets of a normed linear space E, and let Ti : X → 2Yi

be a upper semi-continuous multi-function on X0 such that Ti(x) ⊂ Yi is a

non-empty closed and convex subset for each x ∈ X. Assume that X0 6= ∅

and Ti(x) ∩ Y 0

i
6= ∅, for each x ∈ X0. Then there exists a system of best

proximity pairs {xi} × Ti(xi) ⊂ X × Yi, i.e., for each i ∈ I, d(xi, Ti(xi)) =

d(X,Yi).

Received July 5, 2007 and in revised form September 27, 2007.

AMS Subject Classification: Primary 47H10, 47H04.

Key words and phrases: Best proximity pair, uniformly convex, multi-functions.

391



392 HÉCTOR H. CUENYA AND AGUSTÍN G. BONIFACIO [September

Here X0 and Y 0

i
are certain sets which we shall describe later.

The main purpose of this paper is to prove similar results to Theorem

1.1 for uniformly convex Banach spaces or finite dimensional spaces, only

assuming compactness for one of the involved sets. The interest in these type

of results are based on the very limited condition of being a compact set in

infinite dimensional spaces. In the case in which E is a finite dimensional

normed space, no additional condition over the space E is required. As in [2],

one theorem of existence of equilibrium pairs for a free 1-person game can

be obtained in uniformly convex spaces or finite dimensional normed spaces.

We observe that it is usual in the literature, even for finite dimensional

spaces, to require compactness of all the considered sets.

We shall use in this paper, in part, the technique employed by Kim and

Lee in [2].

We shall also give an example which shows that the authors in [3] have

forgotten an essential condition in the statement of Theorem 1, when m > 1.

2. Preliminaries

In what follows we shall enumerate some classical notions and results

regarding the multi-valued mappings. Although many of these are available

in a more general framework, we shall mention them only in the form we

need in the present paper.

Let (E, ‖ · ‖) be a Banach space. Let X,Y ⊂ E. We call multi-valued

mapping (or multi-function) defined on X to every application F : X → 2Y .

We call F upper semi-continuous at x ∈ X (in brief u.s.c.) if for all open U

subset of Y , with F (x) ⊂ U, there exists an open ball B(x, s) ⊂ X, of center

at x and radius s > 0, such that F (B(x, s)) ⊂ U. We call F u.s.c. on X if

it is u.s.c. in each point of X. The multi-function F is said to be a Kakutani

multi-function if the following conditions are satisfied: i) F is u.s.c.; ii) either

F (x) is a singleton for each x ∈ X or Y is a convex set and for each x ∈ X,

F (x) is a non-empty compact and convex set. F is said to be a Kakutani

factorizable multi-function if it can be expressed as a composition of finitely

many Kakutani multi-functions.
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Given X ⊂ E and Yi ⊂ E, i ∈ I = {1, . . . ,m},m ∈ N, we denote

X0 = {x ∈ X : for each i ∈ I,∃yi ∈ Yi such that d(x, yi) = d(X,Yi)}

and

Y 0

i = {y ∈ Yi : ∃x ∈ X such that d(x, y) = d(X,Yi)}.

We also consider PX : E → 2X the metric projection defined by PX(z) =

{x ∈ X : d(z, x) = d(z,X)}.

Now, we introduce some classical concepts of the Functional Analysis

which will be necessary for our purposes. (See [1],[4])

Let E be a Banach space. If (xn) ⊂ E is a sequence which weakly

converges to x ∈ E then ‖x‖ ≤ lim‖xn‖. If X ⊂ E is a convex set, then it is

strongly closed iff it is weakly closed. If E is reflexive then every bounded

subset of E is weakly sequentially compact. E is said to be uniformly convex

(or uniformly rotund) if for ǫ > 0 there exists δ = δ(ǫ) > 0 such that

‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ǫ imply ‖x + y‖ ≤ 2(1 − δ). It is well

known that every uniformly convex Banach space is reflexive and satisfies

the property H, i.e, if

(a) (xn) ⊂ E is a sequence which weakly converges to x ∈ E, and

(b) ‖xn‖ → ‖x‖,

then ‖xn − x‖ → 0, as n → ∞.

The following form of Lassonde’s fixed point theorem is due to Srinivasan

and Veeramani.

Lemma 2.1. Let X be a non-empty compact and convex subset of a

locally convex Hausdorff topological vector space, then any Kakutani factor-

izable multi-function F : X → 2X has a fixed point, i.e., there exists x ∈ X

such that x ∈ F (x).

3. Main Results

We begin with an auxiliary Lemma.

Lemma 3.1. Let E be a reflexive Banach space satisfying the property

H. Let X ⊂ E be a non-empty closed and convex set, and let PX be the
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metric projection. Then PX(z) is a non-empty compact convex set for all

z ∈ E, and PX is a u.s.c. multi-function on E.

Proof. Let z ∈ E. Since X is reflexive, it is well known that PX(z) is

a non-empty convex set. Let (xn) ⊂ PX(z) be a sequence. Then (xn) is

strongly bounded, therefore there is a subsequence xnk
weakly converging

to a point x ∈ X. Thus (xnk
− z) weakly converges to x − z, it follows

immediately that x ∈ PX(z). Now the property H implies (xnk
) strongly

converges to x. In consequence PX(z) is a compact set.

We show that it is u.s.c.. Let z0 ∈ E and let U be an open set which

contains to PX(z0). Since PX(z0) is a compact set, there is r > 0 such

that PX(z0) + r := {y ∈ E : d(y, PX(z0)) < r} ⊂ U. Then, it will be

sufficient to prove that there is s > 0 such that PX(B(z0, s)) ⊂ PX(z0) + r.

Suppose that it is not true, so there are two sequences (zn) ⊂ E and (yn) ⊂

PX(zn) such that ‖zn − z0‖ < 1

n
and d(yn, PX(z0)) ≥ r. The sequence (yn)

is strongly bounded, in consequence we can find a subsequence (ynk
) weakly

converging to a point y ∈ X. Now, (znk
− ynk

) weakly converges to z0 − y

and ‖z0 − y‖ ≤ lim‖znk
− ynk

‖ = d(z0,X). It follows that y ∈ PX(z0)

and ‖znk
− ynk

‖ → ‖z0 − y‖. The property H implies ‖ynk
− y‖ → 0, so

d(ynk
, PX(z0)) → 0, a contradiction. This completes the proof. �

Next, we establish a theorem of existence of best proximity pairs.

Theorem 3.2. Let I = {1, . . . ,m} and let E be a reflexive Banach

space satisfying the property H. Let X and Yi, i ∈ I, be non-empty closed

convex subsets of E. Let Ti : X → 2Yi , i ∈ I, be u.s.c. multi-functions on

X0 such that Ti(x) is a non-empty closed and convex subset of Yi for each

x ∈ X, and Ti(x) ∩ Y 0

i
6= ∅, for each x ∈ X0, i ∈ I. If

(a) |I| > 1, X is a compact set, and PX(Y 0

i
) ⊂ X0, i ∈ I, or

(b) |I| = 1, and either of the sets X and Y1 is a compact set,

then there is a system of best proximity pairs {(xi, Ti(xi)) : i ∈ I}, i.e., for

each i ∈ I, d(xi, Ti(xi)) = d(X,Yi).

Proof. (a) First, we show that Y 0

i
6= ∅. In fact, since X is a compact

set there is x ∈ X such that d(x, Yi) = d(X,Yi). We can choose a sequence

(yn) ⊂ Y which satisfies lim d(x, yn) = d(x, Yi). So, (yn) is strongly bounded,
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therefore there is a subsequence ynk
weakly converging to a point y ∈ Yi and

‖y − x‖ ≤ lim ‖ynk
− x‖ = d(X,Yi). Thus y ∈ Y 0

i
.

The convexity of the sets X0 and Y 0

i
follows immediately from the con-

vexity of the sets X and Yi. We shall prove that X0 and Y 0

i
are compact

sets.

Let (xn) be a sequence in X0, and let yn
i

∈ Yi, i ∈ I, be such that

d(xn, y
n

i
) = d(X,Yi). The compactness of X implies that there exists a sub-

sequence (xnk
) and x ∈ X such that ‖xnk

− x‖ → 0. As xnk
is strongly

bounded, then for each i ∈ I the sequence (ynk

i
) is strongly bounded. Since

E is reflexive, there is a subsequence, which for simplicity we denote again

by (ynk

i
), and yi ∈ Yi, verifying (ynk

i
) weakly converges to yi for all i ∈ I.

In consequence, the sequence (xnk
− y

nk

i
) weakly converges to x− yi, for all

i ∈ I. In addition, we have ‖x− yi‖ ≤ lim‖xnk
− y

nk

i
‖ = d(X,Yi), so x ∈ X0.

Therefore X0 is a compact set.

If i ∈ I, in order to prove that Y 0

i
is compact, consider a sequence (yn

i
) ⊂

Y 0

i
and let xn ∈ X be such that d(xn, y

n

i
) = d(X,Yi). As X is a compact set,

(xn) has a strongly convergent subsequence, say (xnk
) → x ∈ X. So, (ynk

)

is strongly bounded. Therefore, it has a subsequence which we denote again

for simplicity by (ynk
) such that (ynk

) weakly converges to y ∈ Yi . Since

‖x − y‖ ≤ lim‖xnk
− ynk

‖ = d(X,Yi), we get ‖x − y‖ = lim‖xnk
− ynk

‖. It

follows that there is a subsequence xn′

k
−yn′

k
such that ‖xn′

k
−yn′

k
‖ → ‖x−y‖.

Now the property H implies xn′

k
− yn′

k
strongly converges to x − y, so yn′

k

strongly converges to y ∈ Y 0

i
.

(b) If either X or Y1 is a compact set, as in the part a), we can see that

X0 6= ∅ 6= Y 0

1
, and both are convex and compact sets. In this case it is easy

to show that PX(Y 0

1
) ⊂ X0.

Now, using the Lemma 3.1, the remainder of the proof follows the same

patterns that the proof of [2], Theorem 1. In fact, we define the functions

P ′

X(y1, . . . , ym) :=
∏

i∈I

PX(yi), (y1, . . . , ym) ∈
∏

i∈I

Y 0

i ,

and

T ′(x1, . . . , xm) :=
∏

i∈I

T ′

i (xi), (x1, . . . , xm) ∈
∏

i∈I

X0,
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where T ′

i
(x) := Ti(x) ∩ Y 0

i
, x ∈ X0. Since in both cases, (a) and (b),

PX(Y 0

i
) ⊂ X0, i ∈ I, holds, we can apply the Lemma 2.1 to the multi-

function P ′

X
◦ T ′. �

Corollary 3.3. Let I = {1, . . . ,m} and let E be a uniformly convex

Banach space or a finite dimensional normed space. Let X and Yi, i ∈ I, be

non-empty closed convex subsets of E. Let Fi : X → 2Yi be a u.s.c. multi-

function on X0 such that Fi(x) is a non-empty closed and convex subset of

Yi for each x ∈ X, and Fi(x) ∩ Y 0

i
6= ∅ for each x ∈ X0, i ∈ I. If

(a) |I| > 1, X is a compact set, and PX(Y 0

i
) ⊂ X0, i ∈ I, or

(b) |I| = 1, and either of the sets X and Y1 is a compact set,

then there is a system of best proximity pairs {(xi, Fi(xi)) : i ∈ I}, i.e., for

each i ∈ I, d(xi, Fi(xi)) = d(X,Yi).

Proof. For E a uniformly convex Banach space, the Corollary follows

immediately from Theorem 3.2 and the fact that every uniformly convex

Banach space is reflexive and satisfies the property H. If dim E < ∞, we

observe that the conditions of being reflexive and verifying the property H

are automatically satisfied for E. �

Remark 3.4. First we observe that we do not require compactness

of all sets X and Yi, i ∈ I, as in [3], Theorem 1, but we assume certain

properties about the normed space E.

The assumption of either X or Y1 being a compact set in Corollary 3.3,

(b) can not be relaxed as the following example shows.

Example. Let E = R2 be with the Euclidean norm and let X =

{(x, 0) : x ∈ R}, and Y = {(x, 1) : x ∈ R} be. Let F : X → Y defined

by F (x, 0) = (x + 1, 1). Here, X0 = X and Y 0 = Y . Clearly a pair

(x, F (x)) ∈ X × Y such that ‖x− F (x)‖ = d(X,Y ) = 1 does not exist.

The next example shows that the condition of either of the sets being

compact is not necessary for the existence of best proximity pairs.

Example. Let E = R2 be with the Euclidean norm and let Y = {(x, y) :

0 ≤ x ≤ 2, 1 ≤ y} and X = {(x, y) : 0 ≤ x ≤ 2, y ≤ 0}. If F = PX , clearly

there are best proximity pairs.
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Next we give other Theorem over existence of best proximity pairs

closely related to Theorem 2, of Kim and Lee [3].

Theorem 3.5. Let I = {1, . . . ,m} and let E be a reflexive Banach

space satisfying the property H. Let X and Yi, i ∈ I, be non-empty closed

convex subsets of E. Assume

⋂

i∈I

PX(yi) 6= ∅ for all (y1, . . . , ym) ∈
∏

i∈I

Y 0

i . (∗)

Let Fi : X → 2Yi , i ∈ I, be multi-functions on X0 such that Fi(x) is a non-

empty closed and convex subset of Yi for each x ∈ X, and Fi(x) ∩ Y 0

i
6= ∅,

for each x ∈ X0, i ∈ I. If Fi, i ∈ I, are u.s.c. on X0 and X is a compact

set, then there is x ∈ X satisfying the system of best proximity pairs, i.e.,

for each i ∈ I, {x} × Fi(x) ⊂ X × Yi such that d(x, Fi(x)) = d(X,Yi).

Proof. As it was proved in [2], if (y1, . . . , ym)∈
∏

i∈I
Y 0

i
then

⋂
i∈I

PX(yi)

⊂ X0, so from (∗) we get X0 6= ∅. The remainder of the proof follows

analogously to the proof of Theorem 3.2 and Theorem 2,[2], by defining the

multi-functions P ′

X
(y1, . . . , ym) :=

⋂
i∈I

PX(yi), (y1, . . . , ym) ∈
∏

i∈I
Y 0

i
, and

T ′(x) :=
∏

i∈I
T ′

i
(x), x ∈ X0, where T ′

i
(x) := Fi(x) ∩ Y 0

i
, x ∈ X0. �

Remark 3.6. We observe that the hypothesis X0 6= ∅ in [3], Theorem

2, can be deduced of the hypothesis
⋂

i∈I
PX(yi) 6= ∅ for each (y1, . . . , ym) ∈

∏
i∈I

Y 0

i
.

Now, we give an example which shows that the Theorem 1 in [3] is not

true for m > 1.

Example 3.7. Let E = R2 be with the Euclidean norm. Let X =

{(x, 0) : 0 ≤ x ≤ 1}, Y1 = {(x, y) : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2} and Y2 = {(1,−1)}.

Then d(X,Y1) = d(X,Y2) = 1, Y 0

1
= {(x, 1) : 0 ≤ x ≤ 1}, Y 0

2
= Y2 and

X0 = {(1, 0)}. We consider the continuous functions Fi : X → Yi, i =

1, 2, defined by F1((x, 0)) = (0, 2 − x) and F2((x, 0)) = (1,−1). Clearly,

Fi((x, 0))∩Y
0

i
6= ∅, for (x, 0) ∈ X0, i = 1, 2. AlthoughX0 6= ∅, PX(Y 0

1
) * X0.

Further, we observe that there is not a pair ((x, 0), F1((x, 0))) such that

d((x, 0), F1((x, 0))) = 1.
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Remark 3.8. We observe that the Theorem 1 in [3], with the additional

condition PX(Y 0

i
) ⊂ X0, i ∈ I, is true and it can be worked analogously as

in [2]. The previous example shows that if |I| > 1, the hypothesis PX(Y 0

i
) ⊂

X0, for all i ∈ I, is stronger than the condition X0 6= ∅. Justly, we note that

there is a gap in the proof ([2], p. 438), when it is proved that PX(Y 0

i
) ⊂ X0

always occurs, whenever X0 6= ∅.

As we have mentioned in the Introduction, we can obtain one existence

theorem of equilibrium pairs for free 1-person games in the setting of uni-

formly convex Banach spaces. In fact, given Γ := (X,Y,A, P ) a free 1-person

game as in [2] with the same hypothesis as [2], Theorem 3, except that we

assume only compactness for the set Y, and using the Theorem 3.2 (b), we

get the existence of an equilibrium pair, with the same proof that in [2],

Theorem 3.
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