FACTORS FOR $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ SUMMABILITY OF FOURIER SERIES

BY

HÜSEYİN BOR

IIII

Abstract

In the present paper, the author presents a generalization of some known results on the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors for the $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors. Some new results have also been obtained.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by t_{n} the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$. A series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [4, 6])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

Received August 8, 2007 and in revised form December 11, 2007.
AMS Subject Classification: 40D15, 40F05, 40G99.
Key words and phrases: Absolute summability, Fourier series, summability factors.
defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [5]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{5}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n}\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability.

Let $\left(\theta_{n}\right)$ be any sequence of positive real constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

In the special case if we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [3]) summability.

Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) \tag{8}
\end{equation*}
$$

We write

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}, \quad \varphi_{1}(t)=\frac{1}{2} \int_{0}^{t} \varphi(u) d u .
$$

2. Known Results

In [7] Mishra has proved two theorems for $\left|\bar{N}, p_{n}\right|$ summability factors. Later on, Bor [2] has generalized these theorems for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors in the following forms.

Theorem A. Let $\left(p_{n}\right)$ be a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{9}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) . \tag{10}
\end{align*}
$$

If $\varphi_{1}(t)$ is of bounded variation in $(0, \pi)$ and $\left(\lambda_{n}\right)$ is a sequence such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\lambda_{n}\right|^{k}<\infty \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty \tag{12}
\end{equation*}
$$

then the series $\sum A_{n}(t) \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Theorem B. If the sequences $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ satisfy the conditions (9)-(12) of Theorem A and

$$
\begin{equation*}
B_{n} \equiv \sum_{v=1}^{n} v a_{v}=O(n) \tag{13}
\end{equation*}
$$

then the series $\sum a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. Main results.

The aim of this paper is to generalize Theorem A and Theorem B for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability methods.

Now we shall prove the following theorems.
Theorem 1. Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If all conditions
of Theorem A are satisfied with the condition (11) replaced by;

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1} n^{-k}\left|\lambda_{n}\right|^{k}<\infty \tag{14}
\end{equation*}
$$

then the series $\sum A_{n}(t) \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
Theorem 2. If the conditions (9)-(10) and (12)-(14) are satisfied and $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence, then the series $\sum a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.

Remark. It should be noted that if we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ in Theorem 1 and Theorem 2, then we get Theorem A and Theorem B, respectively. In this case the condition $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ which is a non-increasing sequence is automatically satisfied and condition (14) reduces to condition (11).

We need the following lemmas for the proof of our Theorems.
Lemma $\mathbf{1}([7])$. If $\varphi_{1}(t)$ is of bounded variation in $(0, \pi)$, then

$$
\sum v A_{v}(x)=O(n) \quad \text { as } \quad n \rightarrow \infty
$$

Lemma 2([2]). If the sequence $\left(p_{n}\right)$ such that conditions (9) and (10) of Theorem A are satisfied, then

$$
\Delta\left\{\frac{P_{n}}{p_{n} n^{2}}\right\}=O\left(\frac{1}{n^{2}}\right)
$$

4. Proof of Theorem 2.

Let $\left(T_{n}\right)$ denotes the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} P_{n} \lambda_{n}\left(n p_{n}\right)^{-1}$. Then, by definition, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} P_{r} \lambda_{r}\left(r p_{r}\right)^{-1} \\
& =\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} P_{v} \lambda_{v}\left(v p_{v}\right)^{-1}
\end{aligned}
$$

Then, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} P_{v} \lambda_{v}\left(v p_{v}\right)^{-1}
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1}= & B_{n} \lambda_{n} n^{-2}-p_{n}\left(P_{n} P_{n-1}\right)^{-1} \sum_{v=1}^{n-1} p_{v} P_{v} B_{v} \lambda_{v}\left(v^{2} p_{v}\right)^{-1} \\
& +p_{n}\left(P_{n} P_{n-1}\right)^{-1} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} B_{v}\left(v^{2} p_{v}\right)^{-1} \\
& +p_{n}\left(P_{n} P_{n-1}\right)^{-1} \sum_{v=1}^{n-1} P_{v} B_{v} \lambda_{v+1} \Delta\left\{\frac{P_{v}}{v^{2} p_{v}}\right\} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say. }
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Firstly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k}\left|B_{n}\right|^{k} n^{-2 k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k} n^{k} n^{-2 k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} n^{-k}\left|\lambda_{n}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by (13) and (14).

Now, applying Hölder's inequality, we have that

$$
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} \frac{p_{v} P_{v} B_{v} \lambda_{v}}{v^{2} p_{v}}\right|^{k}
$$

$$
\begin{aligned}
\leq & \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\left\{\frac{P_{v}\left|B_{v}\right|\left|\lambda_{v}\right|}{v^{2} p_{v}}\right\}^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left\{\frac{P_{v}}{p_{v}}\right\}^{k} v^{k} v^{-2 k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
= & O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left\{\frac{P_{v}}{p_{v}}\right\}^{k} v^{-k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left\{\frac{P_{v}}{p_{v}}\right\}^{k-1} v^{-k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} v^{-k}\left|\lambda_{v}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by (13) and (14). On the other hand, since

$$
\sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right| \leq P_{n-1} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right| \Rightarrow \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right| \leq \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|=O(1)
$$

by (12), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} \leq & \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} \frac{P_{v} P_{v} B_{v} \Delta \lambda_{v}}{v^{2} p_{v}}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v}\left\{\frac{P_{v}\left|B_{v}\right|}{v^{2} p_{v}}\right\}^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left|B_{v}\right|^{k} v^{-2 k}\left\{\frac{P_{v}}{p_{v}}\right\}^{k} P_{v}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \\
& \times \frac{p_{n}}{P_{n} P_{n-1}} \\
= & O(1) \sum_{v=1}^{m} v^{k} v^{-2 k} v^{k}\left|\Delta \lambda_{v}\right|\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of (9), (12) and (13).
Finally, using the fact that $\Delta\left\{\frac{P_{v}}{v^{2} p_{v}}\right\}=O\left(\frac{1}{v^{2}}\right)$ by Lemma 2, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} \leq & \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|B_{v}\right| \lambda_{v+1} \Delta\left\{\frac{P_{v}}{v^{2} p_{v}}\right\}\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} p_{v} \frac{P_{v}}{v^{2} p_{v}}\left|B_{v}\right|\left|\lambda_{v+1}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m-1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|\lambda_{v+1}\right|^{k} v^{-2 k} \\
& \times\left|B_{v}\right|^{k}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|\lambda_{v+1}\right|^{k} v^{-2 k} v^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \\
& \times \frac{p_{n}}{P_{n} P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} v^{-k}\left|\lambda_{v+1}\right|^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} v^{-k}\left|\lambda_{v+1}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by (13) and (14). Therefore, we get that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3,4
$$

This completes the proof of Theorem 2.

Proof of Theorem 1. Theorem 1 is a direct consequence of Theorem 2 and Lemma 1. If we take $p_{n}=1$ and $\theta_{n}=n$ in Theorem 1 and Theorem

2, then we get the following corollaries. It should be noted that, in this case condidtion (14) reduces to condition (11).

Corollary 1. If $\varphi_{1}(t)$ is of bounded variation in $(0, \pi)$ and $\left(\lambda_{n}\right)$ is a sequence such that conditions (11) and (12) are satisfied, then the series $\sum A_{n}(t) \lambda_{n}$, at $t=x$ is summable $|C, 1|_{k}, k \geq 1$.

Corollary 2. If the conditions (11)-(13) are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

References

1. H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98(1986), 81-84.
2. H. Bor, Multipliers for $\left|\bar{N}, p_{n}\right|_{k}$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica, 17(1989), 285-290.
3. H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113(1991), 1009-1012.
4. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
5. G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949.
6. E. Kogbetliantz, Sur les séries absolument par la méthode des moyannes arithmétiques, Bull. Sci. Math., 49(1925), 234-256.
7. K. N. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica, 14(1986), 431-438.
8. W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115(1992) , 313-317.

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey.
E-mail: bor@erciyes.edu.tr, hbor33@gmail.com

