THE LOGARITHMIC COEFFICIENTS OF CLOSE-TO-CONVEX FUNCTIONS

BY

ZHONGQIU YE

Abstract

Abstract. We prove that if $n \geq 2$ for each close-to-convex functions in S whose n -th logarithmic coefficients γ_{n} satisfies $\left|\gamma_{n}\right| \leq A \log n / n$, where A is an absolute constant.

1. Introduction and Statement of Result

Let S be the class of functions f analytic and univalent in the unit disk $D=\{z \in C:|z|<1\}$ with $f(0)=0, f^{\prime}(0)=1$. Let S^{*} denote the subset of S consisting of those functions $\mathrm{f} \in \mathrm{S}$ for which $f(D)$ is starlike with respect to 0 . It is well known that if $f \in S^{*}$, then $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>0$, for all $z \in D$. Finally, we let S_{c} denote the set of those functions $f \in S$ for which there exists a function $g \in S^{*}$ such that $\operatorname{Re}\left\{z f^{\prime}(z) / g(z)\right\}>0$, for all $z \in D$. The elements of S_{c} are called close-to-convex functions. Clearly, $S^{*} \subset S_{c}$.

Associated with each $f \in S$ is well defined logarithmic function

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{1}
\end{equation*}
$$

$\mathrm{z} \in D$. The numbers γ_{n} are called the logarithmic coefficients of f. Thus the Koebe function $k(z)=z(1-z)^{-2}$ has logarithmic coefficients $\gamma_{n}=1 / n$. It is clear that $\left|\gamma_{1}\right| \leq 1$ for each $f \in S$. The estimate of the logarithmic

[^0]coefficients is a important problem in the theory of univalent functions. The inequality $\left|\gamma_{n}\right| \leq 1 / n$ holds for functions $f \in S^{*}$, but is false for the full class S, even in order of magnitude. Indeed, there exists a bounded function $f \in S$ with logarithmic coefficients $\gamma_{n} \neq O\left(n^{-0.83}\right)$ (see 11 p.242). In a resent paper [2], it is presented that inequality $\left|\gamma_{n}\right| \leq 1 / n$ holds also for close-to-convex functions. However, it is pointed out in [3] that there are some errors in the proof and, hence, the result is not substantiated. It is proved in [4] that there exists a function $f \in S_{c}$ such that $\left|\gamma_{n}\right|>1 / n$. In this paper, we will prove the following theorem.

Theorem 1. Suppose $f \in S_{c}$ and that f has logarithmic coefficients $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$. Then for $n=2,3, \ldots$

$$
\left|\gamma_{n}\right| \leq A \frac{\log n}{n}
$$

where A is an absolute constant.

2. Preliminary Lemmas

First, we prove some lemmas for the proof of Theorem.
Lemma 1. Let $f \in S, z=r e^{i \theta}, \frac{1}{2} \leq r<1$. Then

$$
\begin{aligned}
& J_{r}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta \leq 1+4 \frac{1}{1-r} \log \frac{1}{1-\sqrt{r}} \\
& I_{r}=\frac{1}{2 \pi} \int_{\frac{1}{2}}^{r} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta d r \leq 1+2 \log \frac{1}{1-r}
\end{aligned}
$$

Proof. It is clear that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+z\left(\log \frac{f(z)}{z}\right)^{\prime}=1+\sum_{k=1}^{\infty} 2 k \gamma_{k} z^{k}
$$

Lebedev proved (see [5]) that if $f \in S$ then

$$
\sum_{k=1}^{\infty} k\left|\gamma_{k}\right|^{2} r^{2 k} \leq \log \frac{1}{1-r}
$$

Since $k r^{k}<1 /(1-r)$, we obtain that

$$
\begin{aligned}
J_{r} & =1+4 \sum_{k=1}^{\infty} k^{2}\left|\gamma_{k}\right|^{2} r^{2 k} \leq 1+\frac{4}{1-r} \log \frac{1}{1-\sqrt{r}} \\
I_{r} & =\int_{\frac{1}{2}}^{r}\left(1+4 \sum_{k=1}^{\infty} k^{2}\left|\gamma_{k}\right|^{2} r^{2 k}\right) d r<1+4 \sum_{k=1}^{\infty} \frac{k}{2 k+1} k\left|\gamma_{k}\right|^{2} r^{2 k+1} \\
& \leq 1+2 \log \frac{1}{1-r} .
\end{aligned}
$$

Lemma 2. Let $f \in S_{c}$ and $g \in S^{*}$ such that $\operatorname{Re}\left\{z f^{\prime}(z) / g(z)\right\}>0$. Let $z=r e^{i \theta}, 0 \leq r<1$. Write

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=u\left(r e^{i \theta}\right)+i v\left(r e^{i \theta}\right) \tag{2}
\end{equation*}
$$

Then

$$
I_{1}=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} u\left(r e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}} d \theta\right| \leq 3 .
$$

Proof. It is clear that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{i} \frac{\partial}{\partial \theta} \log \frac{f(z)}{z}+1 . \tag{3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
u\left(r e^{i \theta}\right)=\operatorname{Im}\left\{\frac{\partial}{\partial \theta} \log \frac{f(z)}{z}\right\}+1=\frac{\partial}{\partial \theta} \arg \frac{f(z)}{z}+1 . \tag{4}
\end{equation*}
$$

We obtain from (4) that

$$
\begin{equation*}
I_{1} \leq \frac{1}{2 \pi}\left|\int_{0}^{2 \pi} e^{i \arg \frac{f(z)}{g(z)}} d \theta\right|+\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{\partial}{\partial \theta} \arg \frac{f(z)}{z} e^{i \arg \frac{f(z)}{g(z)}} d \theta\right|=I_{11}+I_{12} \tag{5}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
I_{11} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta=1 \tag{6}
\end{equation*}
$$

By the part of integration, we obtain that

$$
\begin{align*}
I_{12} & =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{\partial}{\partial \theta}\left(e^{i \arg \frac{f(z)}{z}}\right) e^{-i \arg \frac{g(z)}{z}} d \theta\right| \\
& =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} e^{i \arg \frac{f(z)}{g(z)}} \frac{\partial}{\partial \theta}\left(\arg \frac{g(z)}{z}\right) d \theta\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|\frac{\partial}{\partial \theta} \arg g(z)\right|+\left|\frac{\partial z}{\partial \theta}\right|\right) d \theta \tag{7}
\end{align*}
$$

Since $g \in S^{*}$, it follows that $\frac{\partial \arg g(z)}{\partial \theta}>0$. The right-hand of (7) is

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} d_{\theta} \arg g(z)+\frac{1}{2 \pi} \int_{0}^{2 \pi} r d \theta=1+r \leq 2
$$

Thus, we have proved Lemma.

Lemma 3. Let $f \in S_{c}$ and $g \in S^{*}$ such that $\operatorname{Re}\left\{z f^{\prime}(z) / g(z)\right\}>0$. Let $z=r e^{i \theta}, \frac{1}{2} \leq r<1$. The function $v\left(r e^{i \theta}\right)$ is defined in (2). Then

$$
I_{2}=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} v\left(r e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}} d \theta\right| \leq 7+8 \log \frac{1}{1-r}
$$

Proof. By the Cauchy-Riemann condition, we obtain for $0<r_{0}<r<1$ that

$$
\begin{equation*}
v\left(r e^{i \theta}\right)-v\left(r_{0} e^{i \theta}\right)=\int_{r_{0}}^{r} \frac{\partial v\left(r e^{i \theta}\right)}{\partial r} d r=-\int_{r_{0}}^{r} \frac{1}{r} \frac{\partial u\left(r e^{i \theta}\right)}{\partial \theta} d r \tag{8}
\end{equation*}
$$

By (8), it follows that

$$
\begin{align*}
I_{2} & \leq \frac{1}{2 \pi}\left|\int_{0}^{2 \pi} v\left(r_{0} e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}} d \theta\right|+\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \int_{r_{0}}^{r} \frac{1}{r} \frac{\partial u\left(r e^{i \theta}\right)}{\partial \theta} e^{i \arg \frac{f(z)}{g(z)}} d r d \theta\right| \\
& =I_{21}+I_{22} \tag{9}
\end{align*}
$$

Taking $r_{0}=\frac{1}{2}$, it follows that

$$
\begin{equation*}
I_{21} \leq \max _{\theta \in[0,2 \pi]}\left|v\left(r_{0} e^{i \theta}\right)\right| \leq \max _{\theta \in[0,2 \pi]}\left|\frac{r_{0} f^{\prime}\left(r_{0} e^{i \theta}\right)}{f^{\prime}\left(r_{0} e^{i \theta}\right)}\right| \leq \frac{1+r_{0}}{1-r_{0}}=3 \tag{10}
\end{equation*}
$$

Now, we estimate I_{22}. By the part of integration, it follows that

$$
I_{22}=\frac{1}{2 \pi}\left|\int_{r_{0}}^{r} \int_{0}^{2 \pi} \frac{1}{r} u\left(r e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}}\left(\frac{\partial \arg \frac{f(z)}{z}}{\partial \theta}-\frac{\partial \arg \frac{g(z)}{z}}{\partial \theta}\right) d \theta d r\right|
$$

By (4), it follows that

$$
\left|\frac{\partial \arg \frac{f(z)}{z}}{\partial \theta}-\frac{\partial \arg \frac{g(z)}{z}}{\partial \theta}\right|=\left|\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}-R e \frac{z g^{\prime}(z)}{g(z)}\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\left|\frac{z g^{\prime}(z)}{g(z)}\right| .
$$

By Schwartz inequality and Lemma 2.1, we obtain that

$$
\begin{align*}
I_{22} \leq & \frac{2}{2 \pi} \int_{r_{0}}^{r} \int_{0}^{2 \pi}\left[\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2}+\left|\frac{z f^{\prime}(z)}{f(z)} \| \frac{z g^{\prime}(z)}{g(z)}\right|\right] d \theta d r \\
\leq & \frac{1}{\pi}\left[\int_{r_{0}}^{r} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta d r\right. \\
& \left.+\left(\int_{r_{0}}^{r} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta d r \int_{r_{0}}^{r} \int_{0}^{2 \pi}\left|\frac{z g^{\prime}(z)}{g(z)}\right|^{2} d \theta d r\right)^{\frac{1}{2}}\right] \\
\leq & 4\left(1+2 \log \frac{1}{1-r}\right) . \tag{11}
\end{align*}
$$

Thus, we have proved Lemma by (9), (10) and (11).

Lemma 4. Let $f \in S_{c}$ and $g \in S^{*}$ such that $\operatorname{Re}\left\{z f^{\prime}(z) / g(z)\right\}>0$. Let $z=r e^{i \theta}, 0 \leq r<1$. Then for $n=2,3, \ldots$

$$
\begin{aligned}
I_{3} & =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{z f^{\prime}(z)}{f(z)} e^{i 2 \arg \frac{f(z)}{g(z)}} e^{i n \theta} d \theta\right| \\
& \leq 4\left(\frac{1}{n^{2}}+\frac{4}{n} \log \frac{1}{1-r}\right)^{\frac{1}{2}}\left(1+\frac{4}{1-r} \log \frac{1}{1-\sqrt{r}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Proof. From (1) we have

$$
\begin{align*}
\frac{z f(z)}{f(z)} e^{i n \theta} & =e^{i n \theta}\left(1+\sum_{k=1}^{\infty} 2 k \gamma_{k} z^{k}\right)=e^{i n \theta}+\sum_{k=1}^{\infty} 2 k \gamma_{k} r^{k} e^{i(n+k) \theta} \\
& =\frac{1}{i} \frac{\partial}{\partial \theta}\left(\frac{e^{i n \theta}}{n}+\sum_{k=1}^{\infty} \frac{2 k \gamma_{k} r^{k} e^{i(n+k) \theta}}{n+k}\right)=\frac{\partial}{\partial \theta} F(z) . \tag{12}
\end{align*}
$$

By the part of integration, we obtain that

$$
\begin{equation*}
I_{3}=\frac{1}{\pi}\left|\int_{0}^{2 \pi} F(z) e^{i 2 \arg \frac{f(z)}{g(z)}}\left(\frac{\partial \arg \frac{f(z)}{z}}{\partial \theta}-\frac{\partial \arg \frac{g(z)}{z}}{\partial \theta}\right) d \theta\right| \tag{13}
\end{equation*}
$$

By (4) and Schwartz inequality, it follows from (13) that

$$
\begin{equation*}
I_{3} \leq 2\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|F(z)|^{2} d \theta\right)^{\frac{1}{2}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\left|\frac{z g^{\prime}(z)}{g(z)}\right|\right)^{2} d \theta\right)^{\frac{1}{2}}=2\left(J_{1} J_{2}\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

By the definition of $\mathrm{F}(\mathrm{z})$ in (12), we obtain from Lebedev inequality that

$$
\begin{align*}
J_{1} & =\frac{1}{n^{2}}+4 \sum_{k=1}^{\infty} \frac{k^{2}\left|\gamma_{k}\right|^{2} r^{2 k}}{(n+k)^{2}} \\
& \leq \frac{1}{n^{2}}+\frac{4}{n} \sum_{k=1}^{\infty} k\left|\gamma_{k}\right|^{2} r^{2 k} \leq \frac{1}{n^{2}}+\frac{4}{n} \log \frac{1}{(1-r)} \tag{15}
\end{align*}
$$

By Lemma 2.1, it follows that

$$
\begin{equation*}
J_{2} \leq 4\left(1+\frac{4}{1-r} \log \frac{1}{1-\sqrt{r}}\right) \tag{16}
\end{equation*}
$$

Combining (15), (16) and (14), we have proved Lemma 2.4.

3. Proof of Theorem

Proof. If $f \in S_{c}$ then there exists $g \in S^{*}$ such that $\operatorname{Re}\left\{z f^{\prime}(z) / g(z)\right\}>0$. Write $z f^{\prime}(z) / g(z)=h(z)$, then $\operatorname{Reh}(z)>0$. It is clear that

$$
h(z)=2 \operatorname{Reh}(z)-\overline{h(z)}
$$

From (1), we obtain for $z=r e^{i \theta}(0<r<1)$ and $n=2,3, \ldots$ that

$$
2 n \gamma_{n}=\frac{1}{2 i \pi} \int_{|z|=r} \frac{z f^{\prime}(z)}{f(z)} z^{-n-1} d z
$$

Hence, we obtain that

$$
\left|2 n \gamma_{n} r^{n}\right|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{z f^{\prime}(z)}{f(z)} e^{-i n \theta} d \theta\right|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{h(z) g(z)}{f(z)} e^{-i n \theta} d \theta\right|
$$

$$
\begin{align*}
& \leq \frac{1}{2 \pi}\left|\int_{0}^{2 \pi} 2 R e h(z) \frac{g(z)}{f(z)} e^{-i n \theta} d \theta\right|+\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \overline{h(z)} \frac{g(z)}{f(z)} e^{-i n \theta} d \theta\right| \\
& =P_{1}+P_{2} \tag{17}
\end{align*}
$$

By Lemma 2.2 and Lemma 2.3, we obtain that

$$
\begin{align*}
P_{1} & \leq \frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{Reh}(z)\left|\frac{g(z)}{f(z)}\right| d \theta \leq \frac{1}{\pi}\left|\int_{0}^{2 \pi} h(z)\right| \frac{g(z)}{f(z)}|d \theta| \\
& =\frac{1}{\pi}\left|\int_{0}^{2 \pi} \frac{z f^{\prime}(z)}{f(z)} e^{i \arg \frac{f(z)}{g(z)}} d \theta\right| \\
& \leq \frac{1}{\pi}\left|\int_{0}^{2 \pi} u\left(r e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}} d \theta\right|+\frac{1}{\pi}\left|\int_{0}^{2 \pi} v\left(r e^{i \theta}\right) e^{i \arg \frac{f(z)}{g(z)}} d \theta\right| \\
& \leq 20+16 \log \frac{1}{1-r} . \tag{18}
\end{align*}
$$

By Lemma 2.4, we obtain that

$$
\begin{align*}
P_{2} & \left.=\frac{1}{2 \pi} \left\lvert\, \int_{0}^{2 \pi} h(z) \overline{\left(\frac{g(z)}{f(z)}\right.}\right.\right) \left.e^{i n \theta} d \theta\left|=\frac{1}{2 \pi}\right| \int_{0}^{2 \pi} \frac{z f^{\prime}(z)}{f(z)} e^{i 2 \arg \frac{f(z)}{g(z)}} e^{i n \theta} d \theta \right\rvert\, \\
& \leq 4\left(\frac{1}{n^{2}}+\frac{4}{n} \log \frac{1}{1-r}\right)^{\frac{1}{2}}\left(1+\frac{4}{1-r} \log \frac{1}{1-\sqrt{r}}\right)^{\frac{1}{2}} . \tag{19}
\end{align*}
$$

Set $r=1-1 / n(n=2,3, \ldots)$. We obtain from (17), (18) and (19) that for $n=2,3, \ldots$

$$
\begin{aligned}
\left|\gamma_{n}\right| & \leq \frac{1}{2 n}\left(1-\frac{1}{n}\right)^{-n}\left[\left(20+16 \log \frac{1}{1-r}\right)+4\left(\frac{1}{n^{2}}+\frac{4 \log n}{n}\right)^{\frac{1}{2}}(1+8 n \log n)^{\frac{1}{2}}\right] \\
& \leq A \frac{\log n}{n}
\end{aligned}
$$

Thus, we have proved Theorem.

References

1. P. L. Duren, Univalent Functions, Springer-Verlag New York, 1983.
2. M. M. Elhosh, On the logarithmic Coefficients of Close-to-convex Functions, J. Austral. Math. Soc. Ser. A, 60(1996), 1-6.
3. K. Pearce, Review of [2], Math. Reviews, info Review no. 96j:30013, 1996.
4. D. Girela, Logarithmic Coefficients of Univalent Functions, Annals AcademiæScientiarum FeunicæMathematika, Volumen 25, 2000, 337-350.
5. N. A. Lebedev, Applications of Area Principle to Problems on Nonoverlapping DOmains, Trudy Mat. Inst Stekliov, 60(1961), 211-231, (Russin).
6. Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Götingen, 1975.
7. I. M. Milin, Univalent Functions and Orthonormal Systems, (Russian), Moscow, 1971.

Department of Mathematics, JiangXi Normal University, Nanchang 330027, P.R. China.
E-mail: yezhqi@sina.com

[^0]: Received September 19, 2006 and in revised form September 19, 2007.
 AMS Subject Classification: Primary 30C45.
 Key words and phrases: Close-to-convex functions, logarithmic coefficients, starlike functions.

