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Abstract

Abstract. We prove that if n ≥ 2 for each close-to-convex

functions in S whose n-th logarithmic coefficients γn satisfies

|γn| ≤ A log n/n, where A is an absolute constant.

1. Introduction and Statement of Result

Let S be the class of functions f analytic and univalent in the unit disk

D = {z ∈ C : |z| < 1} with f(0) = 0, f ′(0) = 1. Let S∗ denote the subset of

S consisting of those functions f ∈S for which f(D) is starlike with respect

to 0. It is well known that if f ∈ S∗, then Re{zf ′(z)/f(z)} > 0, for all

z ∈ D. Finally, we let Sc denote the set of those functions f∈ S for which

there exists a function g ∈ S∗ such that Re{zf ′(z)/g(z)} > 0, for all z ∈ D.

The elements of Sc are called close-to-convex functions. Clearly, S∗ ⊂ Sc.

Associated with each f ∈ S is well defined logarithmic function

log
f(z)

z
= 2

∞
∑

n=1

γnz
n, (1)

z∈ D. The numbers γn are called the logarithmic coefficients of f . Thus

the Koebe function k(z) = z(1− z)−2 has logarithmic coefficients γn = 1/n.

It is clear that |γ1| ≤ 1 for each f ∈ S. The estimate of the logarithmic
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coefficients is a important problem in the theory of univalent functions. The

inequality |γn| ≤ 1/n holds for functions f ∈ S∗, but is false for the full

class S, even in order of magnitude. Indeed, there exists a bounded function

f ∈ S with logarithmic coefficients γn 6= O(n−0.83) (see [1] p.242). In a

resent paper [2], it is presented that inequality |γn| ≤ 1/n holds also for

close-to-convex functions. However, it is pointed out in [3] that there are

some errors in the proof and , hence, the result is not substantiated. It is

proved in [4] that there exists a function f ∈ Sc such that |γn| > 1/n. In

this paper, we will prove the following theorem.

Theorem 1. Suppose f∈ Sc and that f has logarithmic coefficients

{γn}∞n=1. Then for n = 2, 3, . . .

|γn| ≤ A
log n

n

where A is an absolute constant.

2. Preliminary Lemmas

First, we prove some lemmas for the proof of Theorem.

Lemma 1. Let f ∈ S, z = reiθ, 1
2 ≤ r < 1. Then

Jr =
1

2π

∫ 2π

0

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

2
dθ ≤ 1 + 4

1

1− r
log

1

1−√
r
,

Ir =
1

2π

∫ r

1
2

∫ 2π

0

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

2
dθdr ≤ 1 + 2 log

1

1− r
.

Proof. It is clear that

zf ′(z)

f(z)
= 1 + z(log

f(z)

z
)′ = 1 +

∞
∑

k=1

2kγkz
k.

Lebedev proved (see [5]) that if f ∈ S then

∞
∑

k=1

k|γk|2r2k ≤ log
1

1− r
.
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Since krk < 1/(1− r), we obtain that

Jr = 1 + 4

∞
∑

k=1

k2|γk|2r2k ≤ 1 +
4

1− r
log

1

1−√
r
,

Ir =

∫ r

1
2

(

1 + 4

∞
∑

k=1

k2|γk|2r2k
)

dr < 1 + 4

∞
∑

k=1

k

2k + 1
k|γk|2r2k+1

≤ 1 + 2 log
1

1− r
. �

Lemma 2. Let f ∈ Sc and g ∈ S∗ such that Re{zf ′(z)/g(z)} > 0. Let

z = reiθ, 0 ≤ r < 1. Write

zf ′(z)

f(z)
= u(reiθ) + iv(reiθ). (2)

Then

I1 =
1

2π

∣

∣

∣

∫ 2π

0
u(reiθ)e

i arg
f(z)
g(z) dθ

∣

∣

∣
≤ 3.

Proof. It is clear that

zf ′(z)

f(z)
=

1

i

∂

∂θ
log

f(z)

z
+ 1. (3)

It follows that

u(reiθ) = Im{ ∂

∂θ
log

f(z)

z
}+ 1 =

∂

∂θ
arg

f(z)

z
+ 1. (4)

We obtain from (4) that

I1 ≤
1

2π

∣

∣

∣

∫ 2π

0
e
i arg

f(z)
g(z) dθ

∣

∣

∣
+

1

2π

∣

∣

∣

∫ 2π

0

∂

∂θ
arg

f(z)

z
e
i arg

f(z)
g(z) dθ

∣

∣

∣
= I11 + I12.

(5)

It is clear that

I11 ≤
1

2π

∫ 2π

0
dθ = 1. (6)
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By the part of integration, we obtain that

I12 =
1

2π

∣

∣

∣

∫ 2π

0

∂

∂θ
(ei arg

f(z)
z )e−i arg g(z)

z dθ
∣

∣

∣

=
1

2π

∣

∣

∣

∫ 2π

0
e
i arg f(z)

g(z)
∂

∂θ
(arg

g(z)

z
)dθ

∣

∣

∣

≤ 1

2π

∫ 2π

0

(

| ∂
∂θ

arg g(z)| + |∂z
∂θ

|
)

dθ. (7)

Since g∈ S∗, it follows that ∂ arg g(z)
∂θ

> 0. The right-hand of (7) is

=
1

2π

∫ 2π

0
dθ arg g(z) +

1

2π

∫ 2π

0
rdθ = 1 + r ≤ 2

Thus, we have proved Lemma. �

Lemma 3. Let f ∈ Sc and g ∈ S∗ such that Re{zf ′(z)/g(z)} > 0. Let

z = reiθ, 1
2 ≤ r < 1. The function v(reiθ) is defined in (2). Then

I2 =
1

2π

∣

∣

∣

∣

∫ 2π

0
v(reiθ)e

i arg f(z)
g(z) dθ

∣

∣

∣

∣

≤ 7 + 8 log
1

1− r
.

Proof. By the Cauchy-Riemann condition, we obtain for 0 < r0 < r < 1

that

v(reiθ)− v(r0e
iθ) =

∫ r

r0

∂v(reiθ)

∂r
dr = −

∫ r

r0

1

r

∂u(reiθ)

∂θ
dr. (8)

By (8), it follows that

I2 ≤ 1

2π

∣

∣

∣

∣

∫ 2π

0
v(r0e

iθ)e
i arg f(z)

g(z) dθ

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫ 2π

0

∫ r

r0

1

r

∂u(reiθ)

∂θ
e
i arg f(z)

g(z) drdθ

∣

∣

∣

∣

= I21 + I22. (9)

Taking r0 =
1
2 , it follows that

I21 ≤ max
θ∈[0,2π]

|v(r0eiθ)| ≤ max
θ∈[0,2π]

|r0f
′(r0e

iθ)

f ′(r0eiθ)
| ≤ 1 + r0

1− r0
= 3. (10)
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Now, we estimate I22. By the part of integration, it follows that

I22 =
1

2π

∣

∣

∣

∣

∫ r

r0

∫ 2π

0

1

r
u(reiθ)e

i arg
f(z)
g(z) (

∂ arg f(z)
z

∂θ
− ∂ arg g(z)

z

∂θ
)dθdr

∣

∣

∣

∣

.

By (4), it follows that

∣

∣

∣

∂ arg f(z)
z

∂θ
− ∂ arg g(z)

z

∂θ

∣

∣

∣
=

∣

∣

∣
Re

zf ′(z)

f(z)
−Re

zg′(z)

g(z)

∣

∣

∣
≤

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣
+

∣

∣

∣

zg′(z)

g(z)

∣

∣

∣
.

By Schwartz inequality and Lemma 2.1, we obtain that

I22 ≤ 2

2π

∫ r

r0

∫ 2π

0

[

|zf
′(z)

f(z)
|2 + |zf

′(z)

f(z)
||zg

′(z)

g(z)
|
]

dθdr

≤ 1

π

[
∫ r

r0

∫ 2π

0

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

2
dθdr

+

(
∫ r

r0

∫ 2π

0

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

2
dθdr

∫ r

r0

∫ 2π

0

∣

∣

∣

zg′(z)

g(z)

∣

∣

∣

2
dθdr

)
1
2
]

≤ 4(1 + 2 log
1

1− r
). (11)

Thus, we have proved Lemma by (9), (10) and (11). �

Lemma 4. Let f ∈ Sc and g ∈ S∗ such that Re{zf ′(z)/g(z)} > 0. Let

z = reiθ, 0 ≤ r < 1. Then for n = 2, 3, . . .

I3 =
1

2π

∣

∣

∣

∫ 2π

0

zf ′(z)

f(z)
e
i2 arg f(z)

g(z) einθdθ
∣

∣

∣

≤ 4
( 1

n2
+

4

n
log

1

1− r

)
1
2
(

1 +
4

1− r
log

1

1−√
r

)
1
2
.

Proof. From (1) we have

zf(z)

f(z)
einθ = einθ(1 +

∞
∑

k=1

2kγkz
k) = einθ +

∞
∑

k=1

2kγkr
kei(n+k)θ

=
1

i

∂

∂θ

(einθ

n
+

∞
∑

k=1

2kγkr
kei(n+k)θ

n+ k

)

=
∂

∂θ
F (z). (12)
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By the part of integration, we obtain that

I3 =
1

π

∣

∣

∣

∣

∫ 2π

0
F (z)e

i2 arg
f(z)
g(z)

(∂ arg f(z)
z

∂θ
− ∂ arg g(z)

z

∂θ

)

dθ

∣

∣

∣

∣

. (13)

By (4) and Schwartz inequality, it follows from (13) that

I3 ≤ 2
( 1

2π

∫ 2π

0
|F (z)|2dθ

)
1
2
( 1

2π

∫ 2π

0

(

|zf
′(z)

f(z)
|+ |zg

′(z)

g(z)
|
)2

dθ
)

1
2
= 2(J1J2)

1
2 .

(14)

By the definition of F(z) in (12), we obtain from Lebedev inequality that

J1 =
1

n2
+ 4

∞
∑

k=1

k2|γk|2r2k
(n+ k)2

≤ 1

n2
+

4

n

∞
∑

k=1

k|γk|2r2k ≤ 1

n2
+

4

n
log

1

(1− r)
. (15)

By Lemma 2.1, it follows that

J2 ≤ 4
(

1 +
4

1− r
log

1

1−√
r

)

. (16)

Combining (15), (16) and (14), we have proved Lemma 2.4. �

3. Proof of Theorem

Proof. If f ∈ Sc then there exists g ∈ S∗ such that Re{zf ′(z)/g(z)} > 0.

Write zf ′(z)/g(z) = h(z), then Reh(z) > 0. It is clear that

h(z) = 2Reh(z) − h(z).

From (1), we obtain for z = reiθ (0 < r < 1) and n = 2, 3, . . . that

2nγn =
1

2iπ

∫

|z|=r

zf ′(z)

f(z)
z−n−1dz.

Hence, we obtain that

|2nγnrn| =
1

2π

∣

∣

∣

∫ 2π

0

zf ′(z)

f(z)
e−inθdθ

∣

∣

∣
=

1

2π

∣

∣

∣

∫ 2π

0

h(z)g(z)

f(z)
e−inθdθ

∣

∣

∣
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≤ 1

2π

∣

∣

∣

∫ 2π

0
2Reh(z)

g(z)

f(z)
e−inθdθ

∣

∣

∣
+

1

2π

∣

∣

∣

∫ 2π

0
h(z)

g(z)

f(z)
e−inθdθ

∣

∣

∣

= P1 + P2. (17)

By Lemma 2.2 and Lemma 2.3, we obtain that

P1 ≤ 1

π

∫ 2π

0
Reh(z)

∣

∣

∣

g(z)

f(z)

∣

∣

∣
dθ ≤ 1

π

∣

∣

∣

∫ 2π

0
h(z)

∣

∣

∣

g(z)

f(z)

∣

∣

∣
dθ

∣

∣

∣

=
1

π

∣

∣

∣

∫ 2π

0

zf ′(z)

f(z)
e
i arg

f(z)
g(z) dθ

∣

∣

∣

≤ 1

π

∣

∣

∣

∫ 2π

0
u(reiθ)e

i arg f(z)
g(z) dθ

∣

∣

∣
+

1

π

∣

∣

∣

∫ 2π

0
v(reiθ)e

i arg f(z)
g(z) dθ

∣

∣

∣

≤ 20 + 16 log
1

1− r
. (18)

By Lemma 2.4, we obtain that

P2 =
1

2π

∣

∣

∣

∫ 2π

0
h(z)(

g(z)

f(z)
)einθdθ

∣

∣

∣
=

1

2π

∣

∣

∣

∫ 2π

0

zf ′(z)

f(z)
e
i2 arg f(z)

g(z) einθdθ
∣

∣

∣

≤ 4
( 1

n2
+

4

n
log

1

1− r

)
1
2
(

1 +
4

1− r
log

1

1−√
r

)
1
2
. (19)

Set r = 1− 1/n (n = 2, 3, . . .). We obtain from (17), (18) and (19) that for

n = 2, 3, . . .

|γn| ≤ 1

2n

(

1− 1

n

)−n
[

(

20+16 log
1

1−r

)

+4
( 1

n2
+
4 log n

n

)
1
2
(

1+8n log n
)

1
2

]

≤ A
log n

n
.

Thus, we have proved Theorem. �
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