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Abstract

In this paper, we consider the FitzHugh-Nagumo system

and obtain by singular perturbation techniques a precise form of

the eigenfunction of the adjoint operator associated with the lin-

earization at a traveling pulse solution. We also show that some

precise properties of the adjoint eigenfunction are useful to study

the behavior of solutions such as interfacial dynamics, the inter-

action of traveling pulses and so on.

1. Introduction

The FitzHugh-Nagumo system is a simplified mathematical model that

describes the generation and propagation of nerve impulses. This system

can be written as











εut = ε2uxx + f(u)− v, x ∈ (−∞,∞),

vt = u− γv, x ∈ (−∞,∞),

lim
|x|→∞

u(x, t) = lim
|x|→∞

v(x, t) = 0,
(1.1)

where f(u) = u(1 − u)(u − a) with 0 < a < 1/2, ε > 0 is a parameter and
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γ > 0 is a fixed constant. It is known that if ε > 0 is small enough, then (1.1)

has two traveling pulse solutions with different speed. It was shown in [3] that

the slower pulse solution is unstable, whereas it was proved independently

by Jones [8] and Yanagida [12] that the fast traveling pulse solution is stable

if ε > 0 is sufficiently small.

On the other hand, the following combustion model was proposed by

Mimura and Ikeda [6];



















εut = ε2uxx + γk(u)v − au, x ∈ (−∞,∞),

vt = −k(u)v, x ∈ (−∞,∞),

lim
|x|→∞

u(x, t) = 0, lim
x→−∞

v(x, t) = v,

(1.2)

where k(u) is Arrhenius Kinetics defined by

k(u) =

{

A exp(−B/(u− θ)), u > θ,

0, 0 ≤ u ≤ θ

for some constants A,B > 0, θ ≥ 0, v > 0, a > 0 and γ > 0. This system is

a limiting equation of a 3-component system



























εut = ε2uxx + γk(u)vw − au, x ∈ (−∞,∞),

vt = −k(u)vw, x ∈ (−∞,∞),

wt = wxx − λwx − k(u)vw x ∈ (−∞,∞),

lim
|x|→∞

u(x, t) = 0, lim
x→−∞

v(x, t)=v, lim
x→−∞

w(x, t)=1

(1.3)

as λ→ ∞. In [5], it was shown that there is a linearly stable traveling wave

solution in (1.2) if ε > 0 is sufficiently small and other parameters satisfy

suitable conditions. Also, a linearly stable traveling wave solution in (1.3)

has been obtained under the same conditions on the parameters as far as λ

is sufficiently large.

In this paper, we focus on these two system:











εut = ε2uxx + f(u, v), x ∈ (−∞,∞),

vt = g(u, v), x ∈ (−∞,∞),

u(±∞, t) = 0, v(−∞, t) = 0,

(1.4)
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where the nonlinear terms f(u, v) and g(u, v) are either

(

f(u)− v

u− γv

)

or

(

γk(u)(v + v)− au

−k(u)(v + v)

)

.

(Later in this section, we shall give a remark on more general nonlinearities.)

With a traveling coordinate system (z, t) = (x+ ct, t), (1.4) is written as











εut = ε2uzz − εcuz + f(u, v) z ∈ (−∞,∞),

vt = −cvz + g(u, v), z ∈ (−∞,∞),

u(±∞, t) = 0, v(−∞, t) = 0.

(1.5)

Any stationary solution of (1.5) corresponds to a traveling wave solution of

(1.4) with the traveling speed c. Let (u, v) = (u(z), v(z)) be a traveling pulse

solution with the propagation speed c = c(ε) > 0. Then (u(z), v(z)) satisfies











ε2uzz − εcuz + f(u, v) = 0, z ∈ (−∞,∞),

−cvz + g(u, v) = 0, z ∈ (−∞,∞),

u(±∞) = 0, v(−∞) = 0.

(1.6)

We fix the translation of the pulse solution by demanding

u(0) = α, uz(0) > 0.

Let β > 0 be chosen appropriately, and let τ > 0 be defined by

u(τ) = β, uz(τ) < 0.

Then the profile of the solution is as shown in Figure 1. Note that it has

two transition layers near z = 0 and z = τ .

Let us consider the linearized equation around (u, v), i.e.











ε2Pzz − εcPz + fu(u, v)P + fv(u, v)Q = 0, z ∈ (−∞,∞),

−cQz + gu(u, v)P + gv(u, v)Q = 0, z ∈ (−∞,∞),

P (±∞) = 0, Q(±∞) = 0

(1.7)
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(a) Pulse solution in the

FitzHugh-Nagumo system.

(b) Pulse solution in the com-

bustion model.

Figure 1. The profiles of pulse solutions.

and its adjoint equation











ε2Pzz + εcPz + fu(u, v)P + gu(u, v)Q = 0, z ∈ (−∞,∞),

cQz + fv(u, v)P + gv(u, v)Q = 0, z ∈ (−∞,∞),

P (±∞) = 0, Q(±∞) = 0.

(1.8)

Differentiating (1.6) by z, we see that (1.7) has a bounded solution (P,Q) =

(uz, vz). Hence the adjoint equation (1.8) also has a bounded solution. We

will demonstrate that the properties of the bounded solution of the adjoint

system (1.8) plays essential roles for several problems concerning the fast

pulse solution, which will be described in the next section.

The main purpose of this paper is to construct the bounded solution

of (1.8) when ε > 0 is sufficiently small, and obtain the asymptotic profile

of the solution as ε → 0. Although the existence of a pulse solution was

proved by Hastings [4] and Langer [9] for the FitzHugh-Nagumo system and

in [5] for the combustion model via geometrical methods, their results are

insufficient for our purpose because more precise information about the pulse

solution is needed to construct an eigenfunction of the adjoint operator and

study the asymptotic behavior as ε→ 0. In this paper, we adapt a singular

perturbation approach to get more precise information about the waveform

of the fast pulse solution. Using this, we can construct the bounded solution

of the adjoint equation and obtain useful properties of the eigenfunction.
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This paper is organized as follows; In Section 2, we state main results

of this paper and then give several applications of the results. In Section

3, we construct a fast pulse solution via a singular perturbation method.

In Section 4, we construct a bounded solution of the adjoint equation. In

Appendix, we give rigorous proofs of Theorems 3 and 4. Other theorems

can be proved in the same way.

2. Main Result and Applications

We first describe several facts and notations. Under adequate assump-

tions, all conditions below hold true.

• There are vmin < vmax such that the nullcline of f includes two smooth

curves u = h−(v) and u = h+(v) defined on [vmin, vmax] (see Figure 2).

• The problem

{

Φ̈1 − cΦ̇1 + f(Φ1, 0) = 0, ξ ∈ (−∞,∞),

Φ1(−∞) = 0, Φ1(∞) = h+(0)

has a monotone solution Φ1 with a wave speed c = c∗0 > 0, where the

dot “ ˙ ” represents a derivative of functions with respect to ξ. We fix

the solution by Φ1(0) = α, where 0 < α < h+(0) is arbitrarily fixed.

• The problem

{

Φ̈2 − c∗0Φ̇2 + f(Φ2, v) = 0, ξ ∈ (−∞,∞),

Φ2(−∞) = h+(v), Φ2(∞) = h−(v)

has a monotone solution Φ2 for v = v∗ 6= 0. We fix the solution by

Φ2(0) = β, where h−(v
∗) < β < h+(v

∗) is arbitrarily fixed.

• Let V
(2)
0 be a solution of

{

c∗0v
′ = g(h+(v), v), y > 0,

v(0) = 0

and attain v∗ at y = τ∗0 > 0. Set U
(2)
0 = h+(V

(2)
0 ).

• Let V
(3)
0 be a solution of

{

c∗0v
′ = g(h−(v), v), y > 0,

v(0) = v∗

and set U
(3)
0 = h−(V

(3)
0 ).
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Figure 2. Nullclines of f and g. The left figure shows the null cline of the

nonlinearity in the FitzHugh-Nagumo system and the right one does that in

the combustion model. Although not only u = 0 but also v = −v should be

included in the null cline of g for the combustion model, the line v = −v is

omitted in this figure.

We may need more conditions for the parameters in order to show the exis-

tence of these functions.

Now we describe our main results in this paper, using these notations. In

the following, we write φ = O(δ) if a functions φ and a small parameter δ > 0

satisfy ‖φ‖X ≤ cδ for a constant c independent of δ, where X is a Banach

space endowed with the norm ‖ · ‖X . Similarly, if φ satisfies ‖φ‖X/δ → 0 as

δ → 0, we write φ = o(δ). The first theorem is concerning the existence of a

pulse solution of (1.4).

Theorem 1. The system (1.6) has a pulse solution with the following

properties as ε→ 0:

(a) The propagation speed c satisfies

c = c∗0 +O(ε).

(b) The pulse width τ satisfies

τ = τ∗0 +O(ε).
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(c) The waveform (u(z), v(z)) satisfies











u(z)=Φ1(
z

ε
) +O(ε),

v(z)=
ε

c∗0

∫ z

ε

−∞
g(Φ1, 0)ds + o(ε),

in Xµ, z∈(−∞, 0),































u(z)=U
(2)
0 (z)+Φ1(

z

ε
)−h+(0)+Φ2(

z−τ

ε
)−h+(v

∗)+O(ε),

v(z)=V
(2)
0 (z)−

ε

c∗0

∫ ∞

z

ε

(g(Φ1, 0)−g(h+(0), 0))ds

+
ε

c∗0

∫ z−τ

ε

−∞
(g(Φ2, v

∗)−g(h+(v
∗), v∗))ds+o(ε),

inXε, z∈ [0, τ ],























u(z)=U
(3)
0 (z) + Φ2(

z − τ

ε
)− h−(v

∗) +O(ε),

v(z)=V
(3)
0 (z)+

ε

c∗0

∫ ∞

z−τ

ε

(g(Φ2, v
∗)−g(h−(v

∗), v∗))ds

+o(ε),

in Xµ,ε, z∈(τ,∞),

where the functional spaces Xµ,Xε,Xµ,ε will be defined in Section 3.

In Theorem 1, we only give the information of the lowest order terms

of the propagating speed, the pulse width and the waveform. But in its

proof (see Section 3), we get more specific properties of higher order terms

of traveling wave solution with respect to the small parameter ε, which are

necessarily needed to show Theorem 2. Theorem 2 is applicable to many

interesting problems as we shall give several applications below. To show

only Theorem 1, it suffices for us to get lowest order approximations and use

analytic or geometric singular perturbation theory (see [5], [8]).

Since the linearized equation (1.7) has a unique solution up to mul-

tiplication by constants, the solution of the adjoint equation (1.8) is also

unique up to multiplication by constants by Fredholm’s alternatives. In the

following theorem, we normalize a solution P satisfying P (0) = A/ε.

Theorem 2. Fix A ∈ (−∞,∞) arbitrarily. The adjoint equation (1.8)

has a bounded solution (P,Q) with the following properties as ε ↓ 0:











P (z)=εP
(1)
0 (z) +Ae−

c
∗

0
z

ε Φ̇1(
z

ε
) + εζ1(

z

ε
) + o(ε),

Q(z)=εQ
(1)
0 (z) + εη0(

z

ε
) + o(ε),

in Xν,ε, z∈(−∞, 0),
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P (z)=εP
(2)
0 (z)+Ae−

c
∗

0
z

ε Φ̇1(
z

ε
)+B(A, ε)e−

c
∗

0
z

ε Φ̇2(
z − τ

ε
)+o(ε),

Q(z)=εQ
(2)
0 (z) + ε

A

c∗0

∫ ∞

z

ε

fv(Φ1, 0)e
−c∗

0
sΦ̇1(s)ds in Xε, z∈ [0, τ ],

−ε
B(A, ε)

c∗0

∫ z−τ

ε

−∞
fv(Φ2, v

∗)e−c∗
0
sΦ̇2(s)ds+o(ε),















P (z)=B(A, ε)e−
c
∗

0
z

ε Φ̇2(
z−τ
ε ) + o(ε),

in Xν , z∈(τ,∞).

Q(z)=ε
B(A, ε)

c∗0

∫ ∞

z−τ

ε

fv(Φ2, v
∗)e−c∗

0
sΦ̇2(s)ds+ o(ε2),

Here P
(1)
0 , Q

(1)
0 are smooth and decay exponentially as z → −∞, P

(2)
0 , Q

(2)
0

are smooth, and ζ1 = ζ1(ξ) and η0 = η0(ξ) are smooth and decay exponen-

tially as ξ → −∞. All functional spaces and functions above will be defined

in Section 4. The constant B(A, ε) tends to 0 as ε→ 0.

Here we remark the generalization of f and g. Although we consider

only two nonlinearities in this paper, we can show the same results for more

general nonlinear terms with a bistable condition. Then we obtain a different

type of a homoclinic-heteroclinic solution, which means that the function u

of a solution of (1.6) tends to 0 as |z| → ∞ and the function v converges to

different values as |z| → ∞. Those types may not have been considered yet.

Figure 3. A nullcline of some nonlinearity for which there is other type

pulse solution in (1.4).

In the following, we collect several applications of Theorem 2.



2008] EIGENFUNCTIONS OF THE ADJOINT OPERATOR 611

(A) Transversality of stable and unstable manifolds

In the case of FitzHugh-Nagumo nonlinearity, (1.6) can be rewritten as

uz = f(u; ε), z ∈ (−∞,∞),

where we set z → εz and put

uz = p, u = (u, p, v, c)t, f(u, ε) = (p, cp − f(u) + v,
ε

c
u−

ε

c
γv, 1)t.

Let (uε, vε, cε) be a traveling wave solution of (1.6) and Wu and Ws are a

two-dimensional center-unstable manifold and a three-dimensional center-

stable manifold of (0, 0, 0)t and c around cε. Since (uε, uεz , v
ε, cε) is on both

these manifolds, Ws ∩Wu 6= φ at c = cε. It was shown by Evans [2] that if

∫ ∞

−∞
(uεzP + vεzQ)dz 6= 0,

then Wu and Ws intersect transversally as c exceeds c∗, where (P,Q) is an

eigenfunction of the adjoint equation (1.8). Moreover, the sign of the above

integral is closely related to the stability of the fast pulse solution. The

transversality can be proved by Langer [9] using a geometric argument. By

Theorems 1 and 2, we can show that the above integral is positive, which

gives a necessary condition for the stability.

(B) Response to a disturbance

We introduce a traveling coordinate system z = x + ct and do some

suitable scaling. Then (1.1) is rewritten as

{

ut = uzz − cuz + f(u)− v, z ∈ (−∞,∞),

vt = −cuz + ε(u− γv), z ∈ (−∞,∞).
(2.1)

Clearly, any traveling wave solution of (1.1) corresponds to a stationary

solution of this equation.

It was proved independently by Jones [7] and Yanagida [12] that if ε is

sufficiently small, the fast pulse solution, denoted by (u, v), is asymptotically

stable in the sense of waveform stability. More precisely, if (U(z), V (z)) is
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bounded, then the solution of (2.1) with

u(0, t) = u(z) + µU(z), v(0, t) = v(z) + µV (z),

where µ is a small parameter, satisfies

lim
t→∞

u(z, t) = u(z + µθ), lim
t→∞

v(z, t) = v(z + µθ).

It was proved by Yanagida [13] that the phase shift θ satisfies

θ =

∫∞
−∞(UP + V Q)dz
∫∞
−∞(uzP + vzQ)dz

+ o(1) as µ→ 0.

Thus the bounded solution (P (z), Q(z)) of (1.8) gives a weight function.

(C) Stability of planar pulse solutions.

Let Ω be a bounded domain in R
n with a smooth boundary. We consider

the equation

{

εut = ε2∆u− cεuz + f(u, v), (z, y) ∈ (−∞,∞)× Ω,

vt = −cvz + g(u, v), (z, y) ∈ (−∞,∞)× Ω.
(2.2)

It is clear that a traveling wave solution of (1.4) corresponds to a solution of

(2.2) that is constant in y-direction. Such a solution is called a planar pulse

solution. To consider the stability of the planar solution in the cylindri-

cal domain, called the planar stability, we introduce a linearized eigenvalue

problem with a new parameter l > 0;

{

(µ + l)φ = ε2φ′′ − εcφ′ + fu(u, v)φ + fv(u, v)ψ,

µψ = −εcψ′ + εgu(u, v)φ + εgv(u, v)ψ.
(2.3)

By using a similar argument in [12] or [5], it was shown in [11] that there

is no eigenvalue of (2.3) with a positive real part if l > 0 is independent of

ε > 0.

Moreover, if l converges 0 as ε → 0, eigenvalues µ of (2.3) staying in
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{λ ∈ C | Reλ > −δ} for a small δ > 0 must satisfy

µ ∼ −l

∫∞
−∞ uzPdz

∫∞
−∞(uzP + vzQ)dz

as ε → 0. Hence the stability of the planar pulse solution is determined by

the bounded solution of (1.8).

In the case of the combustion model, we need to study (2.3) in a weighted

Sobolev space because the essential spectrum comes to the imaginary axis

if we consider (2.3) in a usual Sobolev space or continuous functions space

(see [10], [5]). We shall discuss this in detail in Section 4.

In fact, the authors in [11] also considered the planar stability of a

traveling wave in the FitzHugh-Nagumo system. However, in that paper, the

cylindrical domain depends on ε and becomes thinner and thinner as ε→ 0,

and so it is insufficient to investigate eigenvalues of (2.3) for any given l > 0

independent of ε. On the other hand, our domain Ω is independent of ε in

(2.2).

(D) Pulse interaction

In Section 3.2 of [1], the author considered the interaction of two stable

1-pulse solutions moving toward the same direction in (1.1) with f(u) =

u(1 − u)(u − a) for 0 < a < 1
2 , and demonstrated that the two pulses are

repulsive. He claimed that the distance between two 1-pulses denoted by

h = h(t) is governed by a differential equation

ḣ ∼ −Mαe
−αh

provided that h is sufficiently large, where ḣ denotes the derivative of h with

respect to t and α > 0,Mα are some constants. Moreover we can calculate

the sign of Mα by investigating the behaviors of the 1-pulse (u(z), v(z)) and

the eigenfunction (P (z), Q(z)) as |z| → ∞, and the sign determines whether

those pulses interact repulsively or attractively. From our theorems, we see

that
{

t(u(z), v(z)) → e−αza+, z → ∞,

t(P (z), Q(z)) → eαzb−, z → −∞,
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where α, a+, b− are defined by

α =
1

c0

(

γ −
1

a

)

+O(ε), a+ = −K1

(

1

a

)

+O(ε), b− = K2

(

1

−a

)

+O(ε)

for positive constants K1,K2. Then Mα can be calculated such as

Mα = εc0
〈

a+, b−
〉

+O(ε2) = −εc0K1K2(1− a2) +O(ε2) < 0,

which implies that two 1-pulses interact repulsively. Here 〈·, ·〉 denotes the

usual inner product in R
2.

3. Construction of Pulse Solutions

We divide (−∞,∞) into three parts

I1 = (−∞, 0), I2 = (0, τ), I3 = (τ,∞)

for some τ > 0, and consider the following three problems:























ε2u
(1)
zz − εcu

(1)
z + f(u(1), v(1)) = 0, z ∈ I1,

−cv
(1)
z + g(u(1), v(1)) = 0, z ∈ I1,

u(1)(−∞) = 0, u(1)(0) = α,

v(1)(−∞) = 0,

(3.1)























ε2u
(2)
zz − εcu

(2)
z + f(u(2), v(2)) = 0, z ∈ I2,

−cv
(2)
z + g(u(2), v(2)) = 0, z ∈ I2,

u(2)(0) = α, u(2)(τ) = β,

v(2)(0) = v(1)(0),

(3.2)























ε2u
(3)
zz − εcu

(3)
z + f(u(3), v(3)) = 0, z ∈ I3,

−cv
(3)
z + g(u(3), v(3)) = 0, z ∈ I3,

u(3)(τ) = β, u(3)(∞) = 0,

v(3)(τ) = v(2)(τ).

(3.3)

The superscript (k) for k = 1, 2, 3 means that the functions are defined on
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the interval Ik. This notation shall be used throughout Sections 3 and 4.

3.1. The lowest order approximation

We first construct an outer solution of (1.6) that approximates (1.6)

outside internal transition layers. Putting ε = 0 in (3.1), we formally get















f(U
(1)
0 , V

(1)
0 ) = 0, z ∈ (−∞, 0),

−c0V
(1)
0

′
+ g(U

(1)
0 , V

(1)
0 ) = 0, z ∈ (−∞, 0),

V
(1)
0 (−∞) = 0,

that is,














U
(1)
0 = h−(V

(1)
0 ), z ∈ (−∞, 0),

c0V
(1)
0

′
= g(h−(V

(1)
0 ), V

(1)
0 ), z ∈ (−∞, 0),

V
(1)
0 (−∞) = 0.

Due to fu(0, 0)gv(0, 0) − fv(0, 0)gu(0, 0) ≥ 0, V
(1)
0 (z) must be identically 0

and then U
(1)
0 (z) is also 0. Next, putting ε = 0 in (3.2), we formally get















f(U
(2)
0 , V

(2)
0 ) = 0, z ∈ (0, τ0),

−c0V
(2)
0

′
+ g(U

(2)
0 , V

(2)
0 ) = 0, z ∈ (0, τ0),

V
(2)
0 (0) = V

(1)
0 (0),

that is,














U
(2)
0 = h+(V

(2)
0 ), z ∈ (0, τ0),

c0V
(2)
0

′
= g(h+(V

(2)
0 ), V

(2)
0 ), z ∈ (0, τ0),

V
(2)
0 (0) = 0.

Finally, putting ε = 0 in (3.3), we formally get















f(U
(3)
0 , V

(3)
0 ) = 0, z ∈ (τ0,∞),

−c0V
(3)
0

′
+ g(U

(3)
0 , V

(3)
0 ) = 0, z ∈ (τ0,∞),

V
(3)
0 (τ0) = V

(2)
0 (τ0),
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that is,














U
(3)
0 = h−(V

(2)
0 ), z ∈ (τ0,∞),

c0V
(3)
0

′
= g(h−(V

(3)
0 ), V

(3)
0 ), z ∈ (τ0,∞),

V
(3)
0 (τ0) = V

(2)
0 (τ0).

The outer solutions constructed as above do not satisfy (1.6) approxi-

mately in neighborhoods of z = 0 and z = τ . So we will construct inner

solutions of (1.6) that approximate (1.6) in the internal transition layers.

At z = 0, we rewrite (1.6) by the stretched variable ξ = z/ε and put

ε = 0. Then we formally get

{

φ̈0 − c0φ̇0 + f(φ0, 0) = 0, ξ ∈ (−∞,∞),

φ0(−∞) = 0, φ0(∞) = h+(0), (φ0(0) = α).
(3.4)

where the superscript “ ˙ ” denotes the differentiation with respect to ξ. As

we state in Section 2, there is a unique wave speed, denoted by c0 = c∗0, such

that (3.4) has a unique solution Φ1(ξ).

At z = τ , we introduce the stretched variable ξ = (z − τ)/ε. Then,

similar to the above, we formally get

{

φ̈0 − c∗0φ̇0 + f(φ0, v) = 0, ξ ∈ (−∞,∞),

φ0(−∞) = h+(v), φ0(∞) = h−(v), (φ0(0) = β).
(3.5)

As we state in Section 2, there is a unique value v = v∗ ∈ (vmin, vmax) such

that Φ2(ξ) is a unique solution of (3.5).

From Section 2, we find that V
(2)
0 (z) is a solution of







c∗0V
(2)
0

′
= g(h+(V

(2)
0 ), V

(2)
0 ), z > 0,

V
(2)
0 (0) = 0

and satisfies the condition the condition

V
(2)
0 (τ∗0 ) = v∗.

We set

U
(2)
0 (z) = h+(V

(2)
0 (z)).
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Moreover, V (3)(z) is a solution of







c∗0V
(3)
0

′
= g(h−(V

(3)
0 ), V

(3)
0 ), z ∈ (τ∗0 ,∞),

V
(3)
0 (τ∗0 ) = v∗,

and we set

U
(3)
0 (z) = h−(V

(3)
0 (z)).

From this 0-th order approximation, we can construct the solution of (1.6)

rigorously. But, to show Theorem 1, we must construct higher order approx-

imations.

3.2. The first interval I1

In this section, we consider the problem























ε2uzz − εcuz + f(u, v) = 0, z ∈ I1,

−cvz + g(u, v) = 0, z ∈ I1,

u(−∞) = 0, u(0) = α,

v(−∞) = 0.

(3.6)

Outer Approximations

We expand u, v and c as

u = U0 + εU1 + · · · , v = V0 + εV1 + · · · , c = c∗0 + εc1 + · · · .

Substituting these in (3.6) and equating the power of ε0, we get















f(U0, V0) = 0, z ∈ I1,

−c∗0V
′
0 + g(U0, V0) = 0, z ∈ I1,

V0(−∞) = 0.

From the first equation, we have U0 = h−(V0). Then we obtain

{

c∗0V
′
0 = g(h−(V0), V0), z ∈ I1,

V0(−∞) = 0,
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which leads

U0(z) = 0, V0(z) = 0

by the lowest order approximation in Section 3.1.

Similarly, equating the power ε1, we get















fu(0, 0)U1 + fv(0, 0)V1 = 0, z ∈ I1,

−c∗0V
′
1 + gu(0, 0)U1 + gv(0, 0)V1 = 0, z ∈ I1,

V1(−∞) = 0,

which implies

U1(z) = 0, V1(z) = 0.

Inner Approximations

In a neighborhood of z = 0, we expand u and v as

u(z) = φ0(
z

ε
) + εφ1(

z

ε
) + · · · , v(z) = εψ0(

z

ε
) + · · · .

Substituting these in (3.6), putting ξ = z/ε, and equating the power of ε0,

we get






















φ̈0 − c∗0φ̇0 + f(φ0, 0) = 0, ξ ∈ (−∞, 0),

−c∗0ψ̇0 + g(φ0, 0) = 0, ξ ∈ (−∞, 0),

φ0(−∞) = 0, φ0(0) = α,

ψ0(−∞) = 0.

(3.7)

Hence we obtain

φ0(ξ) = Φ1(ξ), ψ0(ξ) =
1

c∗0

∫ ξ

−∞
g(Φ1, 0)ds.

Similarly, from the power ε1, we get

{

φ̈1 − c∗0φ̇1 + fu(Φ1, 0)φ1 = c1φ̇0 − fv(Φ1, 0)ψ0, ξ ∈ (−∞, 0),

φ1(−∞) = 0, φ1(0) = 0.
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Hence

φ1(ξ; c1) = −Φ̇1

∫ 0

ξ

ec
∗

0
s

(Φ̇1)2

∫ s

−∞
e−c∗

0
ρΦ̇1(c1Φ̇1 − fv(Φ1, 0)ψ0)dρds.

We will find a solution of (3.6) such as











u(1)(z; ε, c1) = φ
(1)
0 (

z

ε
) + εφ

(1)
1 (

z

ε
; c1) + εR(1)(

z

ε
; ε, c1),

v(1)(z; ε, c1) = εψ
(1)
0 (

z

ε
) + εS(1)(

z

ε
; ε, c1).

(3.8)

Indeed, we can show the following theorem, which gives a solution of the

form (3.8).

Theorem 3. Fix δ > 0 and c∗1 ∈ (−∞,∞) arbitrarily, and put

Λδ ≡ {c1 ∈ (−∞,∞) | |c1 − c∗1| ≤ δ}.

Then, there is ε0 > 0 such that the pair (u(1), v(1)) given by (3.8) for a

function (R(1), S(1)) ∈ Xµ is a solution of (3.6) for any ε ∈ (0, ε0), where the

functional space Xµ is defined by



























Xµ ≡ X2
µ ×X1

µ,

X1
µ(−∞, 0) ≡ {ϕ ∈ C(−∞, 0) | ‖ϕ‖X0

µ
+ ‖ϕ̇‖X0

µ
<∞},

X2
µ(−∞, 0) ≡ {ϕ ∈ C(−∞, 0) | ‖ϕ‖X0

µ
+‖ϕ̇‖X0

µ
+‖ϕ̈‖X0

µ
<∞, ϕ(0)=0},

‖ϕ‖X0
µ
≡ sup−∞<ξ<0 e

−µξ|ϕ(ξ)|

and µ is an arbitrary number satisfying

0 < µ < µ0 ≡
1

2

(

−c∗0 +
√

(c∗0)
2 − 4fu(0, 0)

)

.

In addition, (R(1), S(1)) = O(ε) in Xµ uniformly in c1 ∈ Λδ as ε→ 0.

This theorem shall be proved in Appendix. Note that R(1)(0; ε, c1) = 0

and R(1)(−∞; ε, c1) = S(1)(−∞; ε, c1) = 0.
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3.3. The second interval I2

In this subsection, we consider the problem























ε2uzz − εcuz + f(u, v) = 0, z ∈ I2,

−cvz + g(u, v) = 0, z ∈ I2,

u(0) = α, u(τ) = β(ε),

v(0) = εψ
(1)
0 (0) + εS(1)(0; ε, c1),

(3.9)

where β(ε) = β+o(ε) as ε→ 0. More precise definition of β(ε) will be given

after stating Theorem 4. By putting y = τ∗0 z/τ (τ = τ∗0 + ετ1), the above

problem is rewritten as



































ε2uyy − εc

(

1 + ε
τ1
τ∗0

)

uy +

(

1 + ε
τ1
τ∗0

)2

f(u, v) = 0, y ∈ (0, τ∗0 ),

−cvy +

(

1 + ε
τ1
τ∗0

)

g(u, v) = 0, y ∈ (0, τ∗0 ),

u(0) = α, u(τ∗0 ) = β(ε),

v(0) = εψ
(1)
0 (0) + εS(1)(0; ε, c1).

(3.10)

Outer Approximations

We expand u, v and c as

u = U0 + εU1 + · · · , v = V0 + εV1 + · · · , c = c∗0 + εc1 + · · · .

By substituting these in (3.10), the coefficient of ε0 is calculated as















f(U0, V0) = 0, y ∈ (0, τ∗0 ),

−c∗0V
′
0 + g(U0, V0) = 0, y ∈ (0, τ∗0 ),

V0(0) = 0.

(3.11)

From Section 3.1, we find that U0 = h+(V0)(= h+(V
(2)
0 )) and V0(y)(=

V
(2)
0 (y)) is a solution of the equation

{

c∗0V
′
0 = g(h+(V0), V0), y ∈ (0, τ∗0 ),

V0(0) = 0.
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Similarly, from the power ε1, we have















−c∗0U
′
0 + fu(U0, V0)U1 + fv(U0, V0)V1 = 0, y∈(0, τ∗0 ),

−c∗0V
′
1−c1V

′
0+gu(U0, V0)U1+gv(U0, V0)V1+

τ1
τ∗
0

g(U0, V0) = 0, y∈(0, τ∗0 ),

V1(0) = ψ
(1)
0 (0)− ψ

(2)
0 (0),

(3.12)

where ψ
(2)
0 is determined later. Integrating these, we get

U1(y; c1, τ1) =
c∗0U

′
0 − fv(U0, V0)V1(y; c1, τ1)

fu(U0, V0)
,

V1(y; c1, τ1) = V ′
0

{

1

c∗0

∫ y

0

(

c∗0gu(U0, V0)U
′
0

fu(U0, V0)
− c1V

′
0 +

τ1
τ∗0
g(U0, V0)

)

1

V ′
0

dx

+
1

V ′
0(0)

(ψ
(1)
0 (0)− ψ

(2)
0 (0))

}

. (3.13)

Inner Approximations at y = 0

In a neighborhood of y = 0, we expand u and v as

u(y) = U0(y) + εU1(y) + φ0(
y

ε
) + εφ1(

y

ε
) + · · · ,

v(y) = V0(y) + εV1(y) + εψ0(
y

ε
) + ε2ψ1(

y

ε
) + · · · .

Here we note that the ε1-th order term appears in the expression of the

function u, while we obtain the ε2-th order term for the function v. The

ε2-th order term will be just needed in the proof of Theorem 4. This may

result from the influence by the underlying difference of the scaling between

outer solutions and inner solutions with respect to ε. It is not that we would

like to establish the existence of the traveling wave solution with ε2-th order

expansion.

Substituting these in (3.10), putting ξ = y/ε, and equating the power

of ε0, we get























φ̈0 − c∗0φ̇0 + f(h+(0) + φ0, 0) = 0, ξ ∈ (0,∞),

−c∗0V
′
0(0)− c∗0ψ̇0 + g(h+(0) + φ0, 0) = 0, ξ ∈ (0,∞),

φ0(0) = α− h+(0) = α− U0(0), φ0(∞) = 0,

ψ0(∞) = 0.

(3.14)
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Hence we obtain

φ0(ξ) = Φ1(ξ)−h+(0), ψ0(ξ) = −
1

c∗0

∫ ∞

ξ
(g(Φ1, 0)−g(h+(0), 0))ds. (3.15)

Similarly, from the power ε1, we have



















































































φ̈1 − c∗0φ̇1 + fu(Φ0, 0)φ1 = c∗0U
′
0(0) +

(

c1 + c∗0
τ1
τ∗0

)

φ̇0

−2
τ1
τ∗0
f(Φ1, 0)− fu(Φ1, 0)(ξU

′
0(0) + U1(0))

−fv(Φ1, 0)(ξV
′
0(0) + V1(0) + ψ0), ξ ∈ (0,∞),

−c∗0ψ̇1 − c∗0V
′
1(0)− c1V

′
0(0)− c∗0V

′′
0 (0)ξ − c1ψ̇0 +

τ1
τ∗0
g(Φ1, 0)

+gv(Φ1, 0)(ξV
′
0(0) + V1(0) + ψ0)

+gu(Φ1, 0)(ξU
′
0(0) + U1(0) + φ1) = 0, ξ ∈ (0,∞),

φ1(0) = −U1(0), φ1(∞) = 0,

ψ1(∞) = 0.

(3.16)

Noting fu(U0, V0)U
′
0 + fv(U0, V0)V

′
0 = 0, we have

φ1(ξ; c1, τ1)

= −U1(0)
Φ̇1

Φ̇1(0)
− Φ̇1

∫ ξ

0

ec
∗

0
s

(Φ̇1)2

∫ ∞

s
e−c∗

0
ρΦ̇1

[(

c1+c
∗
0

τ1
τ∗0

)

Φ̇1−2
τ1
τ∗0
f(Φ1, 0)

−fv(Φ1, 0)ψ0 − (fu(Φ1, 0)− fu(h+(0), 0))(ρU
′
0(0) + U1(0))

−(fv(Φ1, 0)− fv(h+(0), 0))(ρV
′
0 (0) + V1(0))

]

dρds,

ψ1(ξ; c1, τ1)

=
1

c∗0

∫ ∞

ξ
{c1ψ̇0−gu(Φ1, 0)φ1−gv(Φ1, 0)ψ0−

τ1
τ∗0

(g(Φ1, 0)−g(h+(0), 0))

−(gu(Φ1, 0)− gu(h+(0), 0))(sU
′
0(0) + U1(0))

−(gv(Φ1, 0)− gv(h+(0), 0))(sV
′
0 (0) + V1(0))}ds. (3.17)

Here we note that we do not write c1 and τ1 for U1(0), V1(0) in (3.17) explic-

itly. In fact, U1(0), V1(0) are independent of c1 and τ1 though the functions

U1 and V1 do depend on these parameters. This is easy to see by substituting

y = 0 into U1, V1 directly.
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Inner Approximations at y = τ∗

0

In a neighborhood of y = τ∗0 , we expand u and v as

u(y) = U0(y) + εU1(y) + φ0(
y − τ∗0
ε

) + εφ1(
y − τ∗0
ε

) + · · · ,

v(y) = V0(y) + εV1(y) + εψ0(
y − τ∗0
ε

) + ε2ψ1(
y − τ∗0
ε

) + · · · .

By substituting these in (3.10), putting ξ = (y − τ∗0 )/ε, the coefficient of ε0

is computed as























φ̈0 − c∗0φ̇0 + f(h+(v
∗) + φ0, v

∗) = 0, ξ ∈ (−∞, 0),

−c∗0V
′
0(τ

∗
0 )− c∗0ψ̇0 + g(h+(v

∗) + φ0, v
∗) = 0, ξ ∈ (−∞, 0),

φ0(−∞) = 0, φ0(0) = β − U0(τ
∗
0 ) = β − h+(v

∗),

ψ0(−∞) = 0.

(3.18)

Hence we obtain

φ0(ξ) = Φ2(ξ)− h+(v
∗), ψ0(ξ) =

1

c∗0

∫ ξ

−∞
(g(Φ2, v

∗)− g(h+(v
∗), v∗))ds.

(3.19)

Similarly, from the power ε1, we have











































































φ̈1 − c∗0φ̇1 + fu(Φ2, v
∗)φ1 = c∗0U

′
0(τ

∗
0 ) +

(

c1 + c∗0
τ1
τ∗0

)

φ̇0

−2
τ1
τ∗0
f(Φ2, v

∗)− fu(Φ2, v
∗)(ξU ′

0(τ
∗
0 ) + U1(τ

∗
0 ))

−fv(Φ2, v
∗)(ξV ′

0(τ
∗
0 ) + V1(τ

∗
0 ) + ψ0), ξ ∈ (−∞, 0),

−c∗0ψ̇1 − c∗0V
′
1(τ

∗
0 )− c1V

′
0(τ

∗
0 )− c∗0V

′′
0 (τ

∗
0 )ξ − c1ψ̇0

+
τ1
τ∗0
g(Φ2, v

∗) + gu(Φ2, v
∗)(ξU ′

0(τ
∗
0 )

+U1(τ
∗
0 ) + φ1) + gv(Φ2, v

∗)(ξV ′
0(τ

∗
0 ) + V1(τ

∗
0 ) + ψ0) = 0, ξ ∈ (−∞, 0),

φ1(−∞) = 0, φ1(0) = −U1(τ
∗
0 ),

ψ1(−∞) = 0.

(3.20)

Noting fu(U0, V0)U
′
0 + fv(U0, V0)V

′
0 = 0 again, we have

φ1(ξ; c1, τ1)

= −U1(τ
∗
0 ; c1, τ1)

Φ̇2

Φ̇2(0)
− Φ̇2

∫ 0

ξ

ec
∗

0
s

(Φ̇2)2

∫ s

−∞
e−c∗

0
ρΦ̇2
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×
[(

c1 + c∗0
τ1
τ∗0

)

Φ̇2 − 2
τ1
τ∗0
f(Φ2, v

∗)− fv(Φ2, v
∗)ψ0

−(fu(Φ2, v
∗)− fu(h+(v

∗), v∗))(ρU ′
0(τ

∗
0 ) + U1(τ

∗
0 ; c1, τ1))

−(fv(Φ2, v
∗)− fv(h+(v

∗), v∗))(ρV ′
0(τ

∗
0 ) + V1(τ

∗
0 ; c1, τ1))

]

dρds, (3.21)

ψ1(ξ; c1, τ1)

= −
1

c∗0

∫ ξ

−∞
[c1ψ̇0 − (gu(Φ2, v

∗)− gu(h+(v
∗), v∗))(sU ′

0(τ
∗
0 ) + U1(τ

∗
0 ; c1, τ1))

−(gv(Φ2, v
∗)− gv(h+(v

∗), v∗))(sV ′
0(τ

∗
0 ) + V1(τ

∗
0 ; c1, τ1))− gu(Φ2, v

∗)φ1

−gv(Φ2, v
∗)ψ0 −

τ1
τ∗0

(g(Φ2, v
∗)− g(h+(v

∗), v∗))]ds.

We will find a solution of (3.9) given by

u(2)(y; ε, c1, τ1)

= U
(2)
0 (y) + εU

(2)
1 (y; c1, τ1) + θ(

y

τ∗0
)(φ

(2),l
0 (

y

ε
) + εφ

(2),l
1 (

y

ε
; c1, τ1))

+θ(1−
y

τ∗0
)(φ

(2),r
0 (

y − τ∗0
ε

) + εφ
(2),r
1 (

y − τ∗0
ε

; c1, τ1))

+εR(2)(y; ε, c1, τ1) + εh′+(V
(2)
0 (y))S(2)(y; ε, c1, τ1), (3.22)

v(2)(y; ε, c1, τ1)

= V
(2)
0 (y) + εV

(2)
1 (y; c1, τ1) + εθ(

y

τ∗0
)(ψ

(2),l
0 (

y

ε
) + εψ

(2),l
1 (

y

ε
; c1, τ1))

+εθ(1−
y

τ∗0
)(ψ

(2),r
0 (

y − τ∗0
ε

) + εψ
(2),r
1 (

y − τ∗0
ε

; c1, τ1))

+εS(2)(y; ε, c1, τ1) + εθ(
y

τ∗0
)(S(1)(0; ε, c1)− εψ

(2),l
1 (0; c1, τ1)), (3.23)

where the superscript “ l ” means that the functions are given by (3.15) and

(3.17), and “ r ” is also a superscript given for the functions of (3.19) and

(3.21) as well as “ l ”. A smooth cut-off function θ(y) ∈ C∞[0, 1] is supposed

to satisfy














θ(y) = 1 for 0 ≤ y ≤ 1
4 ,

0 ≤ θ(y) ≤ 1 for 1
4 ≤ y ≤ 1

2 ,

θ(y) = 0 for 1
2 ≤ y ≤ 1.
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Theorem 4. Fix δ > 0 and c∗1, τ
∗
1 ∈ (−∞,∞) arbitrarily, and put

Ξδ = {(c1, τ1) ∈ R
2 | |c1 − c∗1|+ |τ1 − τ∗1 | ≤ δ}.

Then, there is ε0 > 0 such that (u(2), v(2)) given by (3.22) and (3.23) for a

function (R(2), S(2)) ∈ Xε is a solution of (3.10) for any ε ∈ (0, ε0) , where

the functional space Xε is defined by















Xε = C2
ε (0, τ

∗
0 )×C2

1,ε(0, τ
∗
0 ),

C2
ε (0, τ

∗
0 ) =

{

ϕ ∈ C2(0, τ∗0 ) | ϕ(0) = 0, ϕ(τ∗0 ) = 0, ‖ϕ‖C2
ε
<∞

}

,

C2
1,ε(0, τ

∗
0 ) = {ϕ ∈ C2(0, τ∗0 ) | ϕ(0) = 0, ‖ϕ‖C2

1,ε

<∞},

and the norms are defined by

‖ϕ‖C2
ε
=

2
∑

i=0

max
[0,τ∗

0
]

∣

∣

∣

(

ε
d

dy

)i

ϕ
∣

∣

∣
, ‖ϕ‖C2

1,ε

=
1
∑

i=0

max
[0,τ∗

0
]

∣

∣

∣

(

d

dy

)i

ϕ
∣

∣

∣
+max

[0,τ∗
0
]

∣

∣

∣
ε
d2

dy2
ϕ
∣

∣

∣
.

In addition, (R(2), S(2)) = o(1) in Xε uniformly for (c1, τ1) ∈ Ξδ as ε→ 0.

This theorem shall be proved in Appendix. Note that R(2)(0; ε, c1, τ1) =

R(2)(τ∗0 ; ε, c1, τ1) = S(2)(0; ε, c1, τ1) = 0. Therefore, we constructed a solution

of (3.10) such as

u(2)(z; ε, c1, τ1)

= U
(2)
0 (

τ∗0
τ
z) + εU

(2)
1 (

τ∗0
τ
z; c1, τ1) + θ(

z

τ
)(φ

(2),l
0 (

τ∗0
ετ
z) + εφ

(2),l
1 (

τ∗0
ετ
z; c1, τ1))

+θ(1−
z

τ
)(φ

(2),r
0 (

τ∗0 (z − τ)

ετ
) + εφ

(2),r
1 (

τ∗0 (z − τ)

ετ
; c1, τ1))

+εR(2)(
τ∗0
τ
z; ε, c1, τ1) + εh′+(V

(2)
0 (

τ∗0
τ
z))S(2)(

τ∗0
τ
z; ε, c1, τ1), (3.24)

v(2)(z; ε, c1, τ1)

= V
(2)
0 (

τ∗0
τ
z) + εV

(2)
1 (

τ∗0
τ
z; c1, τ1) + εθ(

z

τ
)(ψ

(2),l
0 (

τ∗0
ετ
z) + εψ

(2),l
1 (

τ∗0
ετ
z; c1, τ1))

+εθ(1−
z

τ
)(ψ

(2),r
0 (

τ∗0 (z − τ)

ετ
) + εψ

(2),r
1 (

τ∗0 (z − τ)

ετ
; c1, τ1))

+εS(2)(
τ∗0
τ
z; ε, c1, τ1) + εθ(

z

τ
)(S(1)(0; ε, c1)− εψ

(2),l
1 (0; c1, τ1)). (3.25)



626SHIN-ICHIRO EI, HIDEO IKEDA, KOTA IKEDA AND EIJI YANAGIDA[December

The constant β(ε) is given by

β(ε) = β + εh′+(v
∗)S(2)(τ∗0 ; ε, c1, τ1).

3.4. The third interval I3

In this subsection, we find a bounded solution of























ε2uzz − εcuz + f(u, v) = 0, z ∈ I3,

−cvz + g(u, v) = 0, z ∈ I3,

u(τ) = β(ε), u(+∞) = 0,

v(τ) = v(2)(τ),

(3.26)

where

v(2)(τ) = v∗+εV
(2)
1 (τ∗0 ; c1, τ1)+εψ

(2),r
0 (0)+ε2ψ

(2),r
1 (0; c1, τ1)+εS

(2)(τ∗0 ; ε, c1, τ1).

If we transform y = z − τ , then this problem is rewritten as























ε2uyy − εcuy + f(u, v) = 0, y ∈ (0,∞),

−cvy + g(u, v) = 0, y ∈ (0,∞),

u(0) = β(ε), u(+∞) = 0,

v(0) = v(2)(τ).

(3.27)

Outer Approximations

We expand u, v and c as

u = U0 + εU1 + · · · , v = V0 + εV1 + · · · .

We substitute these in (3.27), and equate each power of ε. Then, from the

order ε0, we have















f(U0, V0) = 0, y ∈ (0,∞),

−c∗0V
′
0 + g(U0, V0) = 0, y ∈ (0,∞),

V0(0) = v∗.
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Hence U0 = h−(V0) and

{

c∗0V
′
0 = g(h−(V0), V0), y ∈ (0,∞),

V0(0) = v∗.

From Section 3.1, we find that V0(y) = V
(3)
0 (y) is a solution of the above

problem and set U0(y) = h−(V0(y))(= h−(V
(3)
0 (y))).

Similarly, from ε1-order term, we have















−c∗0U
′
0 + fu(U0, V0)U1 + fv(U0, V0)V1 = 0, y ∈ (0,∞),

−c∗0V
′
1 − c1V

′
0 + gu(U0, V0)U1 + gv(U0, V0)V1 = 0, y ∈ (0,∞),

V1(0) = −ψ
(3)
0 (0) + V

(2)
1 (τ∗0 ; c1, τ1) + ψ

(2),r
0 (0),

where the function ψ
(3)
0 is given later. Since V ′

0 6= 0 for any y > 0 in case of

the FitzHugh-Nagumo system,

U1(y; c1, τ1) =
−fv(U0, V0)V1 + c∗0U

′
0

fu(U0, V0)
,

V1(y; c1, τ1) = V ′
0

[ 1

c∗0

∫ y

0

1

V ′
0

(

−c1V
′
0 + c∗0

gu(U0, V0)U
′
0

fu(U0, V0)

)

dx (3.28)

+
1

V ′
0(0)

(−ψ
(3)
0 (0) + V

(2)
1 (τ∗0 ; c1, τ1) + ψ

(2),r
0 (0))

]

.

Since V0 ≡ v∗ in case of the combustion model, U1 and V1 are identically

constants given by











U1(y; c1, τ1) = −
fv(h−(v

∗), v∗)

fu(h−(v∗), v∗)
V1,

V1(y; c1, τ1) = −ψ
(3)
0 (0) + V

(2)
1 (τ∗0 ; c1, τ1) + ψ

(2),r
0 (0).

Although U1 and V1 are constants, we use the variable y for these functions

in order to correspond to (3.28).

Inner Approximations

In a neighborhood of y = 0, we expand u and v as

u(y) = U0(y) + εU1(y) + φ0(
y

ε
) + εφ1(

y

ε
) + · · · ,

v(y) = V0(y) + εV1(y) + εψ0(
y

ε
) + ε2ψ1(

y

ε
) + · · · .
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Substituting these in (3.27) and putting ξ = y/ε, we have from ε0-order term



























φ̈0 − c∗0φ̇0 + f(U0(0) + φ0, V0(0)) = 0, ξ ∈ (0,∞),

−c∗0V
′
0(0) − c∗0ψ̇0 + g(U0(0) + φ0, V0(0)) = 0, ξ ∈ (0,∞),

φ0(0) = β − U0(0) = β − h−(v
∗), φ0(∞) = 0,

ψ0(∞) = 0.

(3.29)

Hence we obtain

φ0(ξ) = Φ2(ξ)− h−(v
∗),

ψ0(ξ) = −
1

c∗0

∫ ∞

ξ
{g(Φ2, v

∗)− g(h−(v
∗), v∗)}ds.

Similarly, from the order of ε1, we have



























































φ̈1 − c∗0φ̇1 + fu(Φ2, v
∗)φ1

= c∗0U
′
0(0) + c1φ̇0 − fu(Φ2, v

∗)(ξU ′
0(0) + U1(0))

−fv(Φ2, v
∗)(ξV ′

0(0) + V1(0) + ψ0), ξ ∈ (0,∞),

−c1V
′
0(0)− c∗0V

′
1(0) − c∗0ξV

′′
0 (0)− c∗0ψ̇1 − c1ψ̇0

+gu(Φ2, v
∗)(ξU ′

0(0) + U1(0) + φ1)

+gv(Φ2, v
∗)(ξV ′

0(0) + V1(0) + ψ0) = 0, ξ ∈ (0,∞),

φ1(0) = −U1(0), φ1(∞) = 0,

ψ1(∞) = 0.

Hence we obtain

φ1(ξ; c1, τ1)

=−U1(0; c1, τ1)
Φ̇2

Φ̇2(0)
−Φ̇2

∫ ξ

0

ec
∗

0
s

(Φ̇2)2

∫ ∞

s
e−c∗

0
ρΦ̇2[c1Φ̇2−fv(Φ2, v

∗)ψ0

−(fu(Φ2, v
∗)− fu(h−(v

∗), v∗))(ρU ′
0(0) + U1(0; c1, τ1))

−(fv(Φ2, v
∗)− fv(h−(v

∗), v∗))(ρV ′
0(0) + V1(0; c1, τ1))]dρds,

ψ1(ξ; c1, τ1)

=
1

c∗0

∫ ∞

ξ
[c1ψ̇0 − gu(Φ2, v

∗)φ1 − gv(Φ2, v
∗)ψ0

−(gu(Φ2, v
∗)− gu(h−(v

∗), v∗))(sU ′
0(0) + U1(0; c1, τ1))

−(gv(Φ2, v
∗)− gv(h−(v

∗), v∗))(sV ′
0(0) + V1(0; c1, τ1))]ds.
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The solution of (3.27) is given by



















































u(3)(y; ε, c1, τ1) = U
(3)
0 (y) + εU

(3)
1 (y; c1, τ1) + φ

(3)
0 (

y

ε
) + εφ

(3)
1 (

y

ε
; c1, τ1)

+εh′−(V
(3)
0 (y))S(3)(y; ε, c1, τ) + εR(3)(y; ε, c1, τ1),

v(3)(y; ε, c1, τ1) = V
(3)
0 (y) + εV

(3)
1 (y; c1, τ1) + εψ

(3)
0 (

y

ε
)

+ε2{ψ
(3)
1 (

y

ε
; c1, τ1)− ψ

(3)
1 (0; c1, τ1)e

−µy}

+{ε2ψ
(2),r
1 (0; c1, τ1) + εS(2)(τ∗0 ; ε, c1, τ1)}e

−µy

+εS(3)(y; ε, c1, τ1).

(3.30)

Actually, we can show the existence of a solution of (3.27) with the above

form and the function (R,S) satisfies ‖R‖X2
µ,ε

= o(1) and ‖S‖X̂2
µ,ε

= o(1) as

ε → 0 by a similar argument in Sections 3.2 and 3.3, where the functional

spaces X2
µ,ε and X̂2

µ,ε are given in the following theorem.

Theorem 5. Fix δ > 0 and c∗1, τ
∗
1 ∈ (−∞,∞) arbitrarily, and put

Ξδ = {(c1, τ1) ∈ R
2 | |c1 − c∗1|+ |τ1 − τ∗1 | ≤ δ}.

Then, there is ε0 > 0 such that the pair (u(3), v(3)) given by (3.30) for a

function (R(3), S(3)) ∈ Xµ,ε is a solution of (3.27) for any ε ∈ (0, ε0). The

functional space Xµ,ε is defined by























Xµ,ε = X2
µ,ε × X̂2

µ,ε,

Xµ ≡ {ϕ ∈ C(0,∞) | ‖ϕ‖Xµ
= supy∈(0,∞) |ϕ(y)e

µy | <∞},

X2
µ,ε ≡ {ϕ ∈ C2(0,∞) | ϕ(0) = 0, ‖ϕ‖Xµ

+ ε‖ϕ′‖Xµ
+ ε2‖ϕ′′‖Xµ

<∞},

X̂2
µ,ε ≡ {ϕ ∈ C2(0,∞) | ϕ(0) = 0, ‖ϕ‖Xµ

+ ‖ϕ′‖Xµ
+ ε‖ϕ′′‖Xµ

<∞},

and µ satisfies 0 < µ < µ0 and is fixed, where µ0 is given by

µ0 = −
fu(0, 0)gv(0, 0) − fv(0, 0)gu(0, 0)

c∗0fu(0, 0)
=

1

c∗0

(

γ +
1

a

)

in the FitzHugh-Nagumo case and it is any positive constant in the com-

bustion model case. In addition, (R(3), S(3)) = o(1) in Xµ,ε uniformly for

(c1, τ1) ∈ Ξδ as ε→ 0.

This theorem can be shown by the same argument as in the proof of

Theorem 4. So we omit the details.
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Therefore, the solution of (3.26) is given by































































u(3)(z; ε, c1, τ1) = U
(3)
0 (z − τ) + εU

(3)
1 (z − τ ; c1, τ1) + φ

(3)
0 (

z − τ

ε
)

+εφ
(3)
1 (

z−τ

ε
; c1, τ1)+εh

′
−(V

(3)
0 (z−τ))S(3)(z−τ ; ε, c1, τ1)

+εR(3)(z − τ ; ε, c1, τ1),

v(3)(z; ε, c1, τ1) = V
(3)
0 (z − τ) + εV

(3)
1 (z − τ ; c1, τ1) + εψ

(3)
0 (

z − τ

ε
)

+ε2{ψ
(3)
1 (

z − τ

ε
; c1, τ1)− ψ

(3)
1 (0; c1, τ1)e

−µ(z−τ)}

+{ε2ψ
(2),r
1 (0; c1, τ1) + εS(2)(τ∗0 ; ε, c1, τ1)}e

−µ(z−τ)

+εS(3)(z − τ ; ε, c1, τ1).

(3.31)

3.5. The whole interval

We have constructed solutions of (3.6), (3.9) and (3.26) on each intervals.

From the boundary conditions we imposed, we know that

(u(1)(0), v(1)(0)) = (u(2)(0), v(2)(0)), (u(2)(τ), v(2)(τ)) = (u(3)(τ), v(3)(τ)).

In order to obtain a smooth solution of (1.6), we match the solutions con-

structed in the previous subsections smoothly, that is, find (c1, τ1) for which

d

dz
u(1)(0) =

d

dz
u(2)(0),

d

dz
u(2)(τ) =

d

dz
u(3)(τ)

hold. Set

X(ε; c1, τ1) = ε
d

dz
u(1)(0; ε, c1)− ε

d

dz
u(2)(0; ε, c1, τ1)

= φ̇
(1)
0 (0) + εφ̇

(1)
1 (0; c1)

−
τ∗0

τ∗0 + ετ1
(εU

(2)
0

′
(0) + φ̇

(2),l
0 (0) + εφ̇

(2),l
1 (0; c1, τ1)) + o(ε)

= φ̇
(1)
0 (0)− φ̇

(2),l
0 (0)

+ε(φ̇
(1)
1 (0; c1)− φ̇

(2),l
1 (0; c1, τ1)− U

(2)
0

′
(0) +

τ1
τ∗0
φ̇
(2),l
0 (0)) + o(ε)

= εX1(c1, τ1) + o(ε).

Here we put

X1(c1, τ1) ≡ φ̇
(1)
1 (0; c1)− φ̇

(2),l
1 (0; c1, τ1) +

τ1
τ∗0

Φ̇1(0) − U
(2)
0

′
(0)



2008] EIGENFUNCTIONS OF THE ADJOINT OPERATOR 631

and recall Φ̇1 = φ̇
(1)
0 for ξ ≤ 0 and Φ̇1 = φ̇

(2),l
0 for ξ ≥ 0. Note that

φ̇
(1)
1 (0; c1) =

∫ 0

−∞
e−c∗

0
s Φ̇1

Φ̇1(0)
(c1Φ̇1 − fv(Φ1, 0)ψ

(1)
0 )ds,

φ̇
(2),l
1 (0; c1, τ1) = −U

(2)
1 (0)

Φ̈1(0)

Φ̇1(0)
−

∫ ∞

0
e−c∗

0
s Φ̇1

Φ̇1(0)

{(

c1+c
∗
0

τ1
τ∗0

)

Φ̇1

−2
τ1
τ∗0
f(Φ1, 0)− (fu(Φ1, 0)− fu(h+(0), 0))(sU

(2)
0

′
(0) + U

(2)
1 (0))

−fv(Φ1, 0)ψ
(2),l
0 − (fv(Φ1, 0)− fv(h+(0), 0))(sV

(2)
0

′
(0) + V

(2)
1 (0))

}

ds.

Recall that U1(0) and V1(0) are independent of c1 and τ1. The condition

X1(c1, τ1) = 0 is written as

{

∫ 0

−∞
e−c∗

0
s (Φ̇1)

2

Φ̇1(0)
ds +

∫ ∞

0
e−c∗

0
s (Φ̇1)

2

Φ̇1(0)
ds

}

c1

+

{

∫ ∞

0
e−c∗

0
s Φ̇1

Φ̇1(0)

(

c∗0
τ∗0

Φ̇1 −
2

τ∗0
f(Φ1, 0)

)

ds+
Φ̇1(0)

τ∗0

}

τ1

−

∫ 0

−∞
e−c∗

0
s Φ̇1

Φ̇1(0)
fv(Φ1, 0)ψ

(1)
0 ds+ U

(2)
1 (0)

Φ̈1(0)

Φ̇1(0)

−

∫ ∞

0
e−c∗

0
s Φ̇1

Φ̇1(0)

[

(fu(Φ1, 0)−fu(h+(0), 0))(sU
(2)
0

′
(0)+U

(2)
1 (0))

+fv(Φ1, 0)ψ
(2),l
0 + (fv(Φ1, 0) − fv(h+(0), 0))(sV

(2)
0

′
(0) + V

(2)
1 (0))

]

ds

−U
(2)
0

′
(0) = 0.

Here the coefficient of τ1 vanishes by (3.14) so that c1 = c∗1 is determined as

c∗1 =
1

A

{

∫ 0

−∞
e−c∗

0
s Φ̇1

Φ̇1(0)
fv(Φ1, 0)ψ

(1)
0 ds − U

(2)
1 (0)

Φ̈1(0)

Φ̇1(0)

+

∫ ∞

0
e−c∗

0
s Φ̇1

Φ̇1(0)
[(fu(Φ1, 0)−fu(h+(0), 0))(sU

(2)
0

′
(0)+U

(2)
1 (0))

+fv(Φ1, 0)ψ
(2),l
0 + (fv(Φ1, 0)− fv(h+(0), 0))(sV

(2)
0

′
(0) + V

(2)
1 (0))]ds

+U
(2)
0

′
(0)
}

.

Here we set A =
∫∞
−∞ e−c∗

0
s (Φ̇1)

2/Φ̇1(0)ds > 0.
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Next set

Y (ε; c1, τ1) = ε
d

dz
u(2)(τ ; ε, c1, τ1)− ε

d

dz
u(3)(τ ; ε, c1, τ1)

=
τ∗0

τ∗0 + ετ1
{εU

(2)
0

′
(τ∗0 ) + φ̇

(2),r
0 (0) + εφ̇

(2),r
1 (0; c1, τ1)}

−{εU
(3)
0

′
(0) + φ̇

(3)
0 (0) + εφ̇

(3)
1 (0; c1, τ1)}+ o(ε)

= {φ̇
(2),r
0 (0)− φ̇

(3)
0 (0)}+ ε{U

(2)
0

′
(τ∗0 ) + φ̇

(2),r
1 (0; c1, τ1)

−
τ1
τ∗0
φ̇
(2),r
0 (0)− U

(3)
0

′
(0) − φ̇

(3)
1 (0; c1, τ1)}+ o(ε)

= εY1(c1, τ1) + o(ε),

where

Y1(c1, τ1) = U
(2)
0

′
(τ∗0 ) + φ̇

(2),r
1 (0; c1, τ1)−

τ1
τ∗0

Φ̇2(0) − U
(3)
0

′
(0)− φ̇

(3)
1 (0; c1, τ1).

Here we recall Φ̇2 = φ̇
(2),r
0 for ξ ≤ 0 and Φ̇2 = φ̇

(3)
0 for ξ ≥ 0. Note that

φ̇
(2),r
1 (0; c1, τ1)

= −U
(2)
1 (τ∗0 ; c1, τ1)

Φ̈2(0)

Φ̇2(0)
+

∫ 0

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)

[(

c1+c
∗
0

τ1
τ∗0

)

Φ̇2 − 2
τ1
τ∗0
f(Φ2, v

∗)

−(fu(Φ2, v
∗)− fu(h+(v

∗), v∗))(sU
(2)
0

′
(τ∗0 ) + U

(2)
1 (τ∗0 ; c1, τ1))

−(fv(Φ2, v
∗)− fv(h+(v

∗), v∗))(sV
(2)
0

′
(τ∗0 ) + V

(2)
1 (τ∗0 ; c1, τ1))

−fv(Φ2, v
∗)ψ

(2),r
0

]

ds,

φ̇
(3)
1 (0; c1, τ1)

= −U
(3)
1 (0; c1, τ1)

Φ̈2(0)

Φ̇2(0)
−

∫ ∞

0
e−c∗

0
s Φ̇2

Φ̇2(0)

[

c1Φ̇2 − fv(Φ2, v
∗)ψ

(3)
0

−(fu(Φ2, v
∗)− fu(h−(v

∗), v∗))(sU
(3)
0

′
(0) + U

(3)
1 (0; c1, τ1))

−(fv(Φ2, v
∗)− fv(h−(v

∗), v∗))(sV
(3)
0

′
(0) + V

(3)
1 (0; c1, τ1))

]

ds.

The condition Y1(c
∗
1, τ1) = 0 is written as

U
(2)
1 (τ∗0 ; c

∗
1, τ1)

{

−
Φ̈2(0)

Φ̇2(0)
−

∫ 0

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)
fu(Φ2, v

∗)ds

}
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+τ1

{

∫ 0

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)

[

c∗0
τ∗0

Φ̇2 −
2

τ∗0
f(Φ2, v

∗)

]

ds−
1

τ∗0
Φ̇2(0)

}

+U
(3)
1 (0; c∗1, τ1)

{

Φ̈2

Φ̇2(0)
−

∫ ∞

0
e−c∗

0
s Φ̇2

Φ̇2(0)
fu(Φ2, v

∗)ds

}

−

∫ 0

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)V
(2)
1 (τ∗0 ; c

∗
1, τ1)ds

−

∫ ∞

0
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)V
(3)
1 (0; c∗1, τ1)ds + Z = 0,

where Z consists of remaining terms independent of τ1. Here, the first,

second and third terms vanish by (3.18) and (3.29). In addition, from (3.13)

and (3.28), we have

∫ 0

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)V
(2)
1 (τ∗0 ; c

∗
1, τ1)ds

+

∫ ∞

0
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)V
(3)
1 (0; c∗1, τ1)ds

=

∫ ∞

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)V
(2)
1 (τ∗0 ; c

∗
1, τ1)ds+ Z1

= Bτ1 + Z2,

where a constant B is independent of τ1 and defined by

B =
V

(2)
0

′
(τ∗0 )

c∗0τ
∗
0

∫ τ∗
0

0

g(U
(2)
0 , V

(2)
0 )

V
(2)
0

′ dx

∫ ∞

−∞
e−c∗

0
s Φ̇2

Φ̇2(0)
fv(Φ2, v

∗)ds,

and Z1 and Z2 consist of remaining terms independent of τ1. Note that

B 6= 0. Therefore τ∗1 is determined as

τ∗1 =
Z − Z2

B
.

By the implicit function theorem, there exist a constant ε0 > 0 and continu-

ously differentiable functions c1 = c1(ε) and τ1 = τ1(ε) defined for ε ∈ [0, ε0)

satisfying

X(ε; c1, τ1) = 0, Y (ε; c1, τ1) = 0
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and

lim
ε↓0

c1(ε) = c∗1, lim
ε↓0

τ1(ε) = τ∗1 .

Thus the proof of Theorem 1 is completed. �

4. Construction of Solutions of Adjoint Equations

Let us consider the linearized equation (1.7) and its adjoint equation

(1.8). In the case of the combustion model, we should consider the prob-

lem (1.7) in a weighted Sobolev space H2
−κ(−∞,∞)×H1

−κ(−∞,∞) with a

weighted function e−κz/ε for a small κ > 0 because essential spectrums of

(1.7) come to the imaginary axis if we consider usual Sobolev spaces and

continuous functions spaces. This was pointed out in [10], and (1.7) is con-

sidered in [5]. The weighted Sobolev spaces H1
−κ(−∞,∞) and H2

−κ(−∞,∞)

are defined by

H1
−κ(−∞,∞) = {ϕ ∈ H1

loc(R) | ‖ϕ‖L2

−κ

+ ‖ϕ′‖L2

−κ

<∞},

H2
−κ(−∞,∞) = {ϕ ∈ H2

loc(R) | ‖ϕ‖L2

−κ

+ ‖ϕ′‖L2

−κ

+ ‖ϕ′′‖L2

−κ

<∞}

and

‖ϕ‖L2

−κ

≡

(
∫ ∞

−∞
|ϕ(z)|2e−2κz/εdz

)1/2

.

Differentiating (1.6) by z, we see that (1.7) has a solution (P,Q) = (uz, vz)

in H2
−κ(−∞,∞) × H1

−κ(−∞,∞). Hence the adjoint equation (1.8) also

has a solution in H2
κ(−∞,∞) × H1

κ(−∞,∞). On the other hand, in the

FitzHugh-Nagumo system, we consider both problems (1.7) and (1.8) in a

usual Sobolev space H2(−∞,∞) ×H1(−∞,∞), that is, we can set κ = 0.

In the following, we do not distinguish these cases as far as readers are not

confused.

We shall construct a solution of (1.8) by dividing R into three parts

I1 = (−∞, 0), I2 = (0, τ), and I3 = (τ,∞) as in Section 3. By three given
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constants A,B,D, (1.8) is respectively written in each interval as



























ε2Pzz + εcPz + fu(u, v)P + gu(u, v)Q = 0, z ∈ I1,

cQz + fv(u, v)P + gv(u, v)Q = 0, z ∈ I1,

P (−∞) = 0, P (0) =
A

ε
,

Q(−∞) = 0, Q(0) = D,

(4.1)



























ε2Pzz + εcPz + fu(u, v)P + gu(u, v)Q = 0, z ∈ I2,

cQz + fv(u, v)P + gv(u, v)Q = 0, z ∈ I2,

P (0) =
A

ε
, P (τ) =

B(ε)

ε
,

Q(0) = D,

(4.2)



























ε2Pzz + εcPz + fu(u, v)P + gu(u, v)Q = 0, z ∈ I3,

cQz + fv(u, v)P + gv(u, v)Q = 0, z ∈ I3,

P (τ) =
B(ε)

ε
, P (∞) = 0,

Q(∞) = 0,

(4.3)

where it is supposed that B(ε) = B + o(ε) as ε → 0. We shall determine

A,B,D and B(ε) later.

In the following we expand P and Q in each interval and look for outer

and inner solutions as well as in Section 3. Many functions obtained below

may depend on the parameters A,B,D and so we should write these param-

eters for the functions explicitly as in Section 3. Recall that we keep writing

c1 and τ1 explicitly for functions depending on these parameters in Section 3

in spite of cumbersome expressions. For it is important to see the parameter

dependency of functions when we determine c∗1 and τ∗1 (see Section 3.5). On

the other it is not much important in this section because eventual equations

obtained in Section 4.4 to determine A,B,D seem simpler than in Section

3.5. So we omit writing the parameter dependency of functions in many

cases.

4.1. The first interval I1

Outer Approximations

We expand P,Q as

P (z) = P0(z) + · · · , Q(z) = Q0(z) + · · · . (4.4)
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By substituting these in (4.1), the lowest approximation is obtained as















fu(0, 0)P0 + gu(0, 0)Q0 = 0, z ∈ I1,

c∗0Q
′
0 + fv(0, 0)P0 + gv(0, 0)Q0 = 0, z ∈ I1,

Q0(−∞) = 0, Q0(0) = D − η0(0),

where the function η0 is given later. Hence we have

P0(z) = −
gu(0, 0)

fu(0, 0)
Q0(z)

and






c∗0Q
′
0 =

(

fv(0, 0)gu(0, 0)

fu(0, 0)
− gv(0, 0)

)

Q0, z ∈ I1,

Q0(−∞) = 0, Q0(0) = D − η0(0).

Thus we obtain














Q0(z) = (D − η0(0)) exp

{(

fv(0, 0)gu(0, 0)

fu(0, 0)
− gv(0, 0)

)

z

c∗0

}

,

P0(z) = −
gu(0, 0)

fu(0, 0)
Q0(z).

Inner Approximations

Next, we consider the inner approximations. We expand P,Q as

P (z) = P0(z)+
1

ε
ζ0(

z

ε
)+ζ1(

z

ε
)+ · · · , Q(z) = Q0(z)+η0(

z

ε
)+εη1(

z

ε
)+ · · · .

By substituting this in (4.1) and putting ξ = z/ε, it follows from ε−1-order

terms that


























ζ̈0 + c∗0ζ̇0 + fu(Φ1, 0)ζ0 = 0, ξ ∈ (−∞, 0),

c∗0η̇0 + fv(φ0, 0)ζ0 = 0, ξ ∈ (−∞, 0),

ζ0(−∞) = 0, ζ0(0) = A,

η0(−∞) = 0.

Hence we obtain

ζ0(ξ) = Ae−c∗
0
ξ Φ̇1

Φ̇1(0)
, η0(ξ) = −

1

c∗0

∫ ξ

−∞
fv(Φ1, 0)ζ0ds.
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Similarly, from the order of ε0, we get































































ζ̈1 + c∗0ζ̇1 + fu(Φ1, 0)ζ1

= −c∗1ζ̇0 − fu(Φ1, 0)P0(0) − fuu(Φ1, 0)φ1ζ0

−fuv(Φ1, 0)ψ0ζ0 − gu(Φ1, 0)(Q0(0) + η0), ξ∈(−∞, 0),

c∗0η̇1+c
∗
1η̇0+c

∗
0Q

′
0(0)+fv(Φ1, 0)(ζ1+P0(0))+fuv(Φ1, 0)ζ0φ1

+fvv(Φ1, 0)ζ0ψ0+gv(Φ1, 0)(Q0(0)+η0) = 0, ξ∈(−∞, 0),

ζ1(−∞) = 0, ζ1(0) = −P0(0),

η1(−∞) = 0.

Hence we have

ζ1(ξ) =−P0(0)
ζ̂0

Φ̇1(0)
+ ζ̂0

∫ 0

ξ

e−c∗
0
s

(ζ̂0)2

∫ s

−∞
ec

∗

0
ρζ̂0[c

∗
1ζ̇0 + fu(Φ1, 0)P0(0)

+fuu(Φ1, 0)φ1ζ0 + fuv(Φ1, 0)ψ0ζ0 + gu(Φ1, 0)(Q0(0) + η0)]dρds,

η1(ξ) =−
1

c∗0

∫ ξ

−∞
{c∗1η̇0+(fv(Φ1, 0)−fv(0, 0))P0(0)+fv(Φ1, 0)ζ1+fuv(Φ1, 0)ζ0φ1

+fvv(Φ1, 0)ζ0ψ0 + (gv(Φ1, 0) − gv(0, 0))Q0(0) + gv(Φ1, 0)η0}ds.

where

ζ̂0(ξ) = e−c∗
0
ξΦ̇1.

The solution of (4.1) will be represented as















































P (1)(z; ε,A,D) = P
(1)
0 (z;A,D) +

1

ε
ζ
(1)
0 (

z

ε
;A) + ζ

(1)
1 (

z

ε
;A,D)

+Z(1)(z; ε,A,D) −
gu(0, 0)

fu(0, 0)
W (1)(z; ε,A,D),

Q(1)(z; ε,A,D) = Q
(1)
0 (z;A,D) + η

(1)
0 (

z

ε
;A)

+ε
{

η
(1)
1 (

z

ε
;A,D)− η

(1)
1 (0;A,D)eνz

}

+W (1)(z; ε,A,D).

(4.5)

Theorem 6. Fix δ > 0 and A∗,D∗ ∈ (−∞,∞) arbitrarily, and put

Ωδ = {(A,D) ∈ R
2 | |A−A∗|+ |D −D∗| ≤ δ}.
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Then, there is ε0 > 0 such that the pair (P (1), Q(1)) given by (4.5) for a

function (Z(1),W (1)) ∈ Xν,ε is a solution of (4.1) for any ε ∈ (0, ε0), where

the functional space Xν,ε is defined by



























Xν,ε = X2
ν,ε × X̂2

ν,ε,

Xν ≡ {ϕ ∈ C(−∞, 0) | ‖ϕ‖Xν
≡ supz∈(−∞,0) |ϕ(z)|e

−νz <∞},

X2
ν,ε ≡ {ϕ ∈ Xν | ϕ(0) = 0, ‖ϕ‖Xν

+ ε‖ϕ′‖Xν
+ ε2‖ϕ′′‖Xν

<∞},

X̂2
ν,ε ≡ {ϕ ∈ Xν | ϕ(0) = 0, ‖ϕ‖Xν

+ ‖ϕ′‖Xν
+ ε‖ϕ′′‖Xν

<∞},

and ν satisfies 0 < ν < µ0 and is fixed, where µ0 was given in Theorem 5.

In addition, (Z(1),W (1)) = o(1) in Xν,ε uniformly for (A,D) ∈ Ωδ as ε→ 0.

This theorem can be shown by the same argument as in the proof

of Theorem 4. So we omit the details. Note that Z(1)(−∞; ε,A,D) =

Z(1)(0; ε,A,D) = W (1)(−∞; ε,A,D) = 0.

4.2. The second interval I2

In this subsection, we consider the problem (4.2). If we set y = τ∗0 z/τ ,

then this problem is rewritten as







































ε2Pyy+εc(1+ε
τ1
τ∗0

)Py+(1+ε
τ1
τ∗0

)2(fu(u, v)P+gu(u, v)Q)=0, y∈(0, τ∗0 ),

cQy +

(

1 + ε
τ1
τ∗0

)

(fv(u, v)P + gv(u, v)Q) = 0, y∈(0, τ∗0 ),

P (0) =
A

ε
, P (τ∗0 ) =

B(ε)

ε
,

Q(0) = D,

(4.6)

where B(ε) = B + o(1) as ε→ 0, as stated pervasively.

Outer Approximations

We expand P and Q as

P (y) = P0(y) + · · · , Q(y) = Q0(y) + · · · .

By substituting these in (4.6), the lowest order approximation is obtained
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as














fu(U0, V0)P0 + gu(U0, V0)Q0 = 0, y ∈ (0, τ∗0 ),

c∗0Q
′
0 + fv(U0, V0)P0 + gv(U0, V0)Q0 = 0, y ∈ (0, τ∗0 ),

Q0(0) = D − η0(0),

where the function η0 will be determined later. Hence we have

P0(y) = −
gu(U0, V0)

fu(U0, V0)
Q0(y)

and







c∗0Q
′
0 =

(

fv(U0, V0)gu(U0, V0)

fu(U0, V0)
− gv(U0, V0)

)

Q0, y ∈ (0, τ∗0 ),

Q0(0) = D − η0(0).

Thus we obtain














Q0(y) = (D−η0(0)) exp

{

1
c∗
0

∫ y

0

(

fv(U0, V0)gu(U0, V0)

fu(U0, V0)
−gv(U0, V0)

)

dx

}

,

P0(y) = −
gu(U0, V0)

fu(U0, V0)
Q0(y).

Inner Approximations at y = 0

In a neighborhood of y = 0, we expand P and Q as

P (y) = P0(y)+
1

ε
ζ0(

y

ε
)+ζ1(

y

ε
)+· · · , Q(y) = Q0(y)+η0(

y

ε
)+εη1(

y

ε
)+· · · .

By substituting this in (4.6) and putting ξ = y/ε, it follows from ε−1-order

terms that


























ζ̈0 + c∗0ζ̇0 + fu(Φ1, 0)ζ0 = 0, ξ ∈ (0,∞),

c∗0η̇0 + fv(Φ1, 0)ζ0 = 0, ξ ∈ (0,∞),

ζ0(0) = A, ζ0(∞) = 0,

η0(∞) = 0.

Hence we obtain

ζ0(ξ) = Ae−c∗
0
ξ Φ̇1

Φ̇1(0)
, η0(ξ) =

1

c∗0

∫ ∞

ξ
fv(Φ1, 0)ζ0ds.
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Similarly, from the order of ε0, we have































































































ζ̈1 + c∗0ζ̇1 + fu(Φ1, 0)ζ1

= −

(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇0 − 2
τ∗
1

τ∗
0

fu(Φ1, 0)ζ0 − fu(Φ1, 0)P0(0)

−gu(Φ1, 0)(Q0(0)+η0)−fuu(Φ1, 0)(ξU
′
0(0)+U1(0)+φ1)ζ0

−fuv(Φ1, 0)(ξV
′
0(0) + V1(0) + ψ0)ζ0, ξ∈(0,∞),

c∗0η̇1 = −c∗0Q
′
0(0) − c∗1η̇0 − gv(Φ1, 0)(Q0(0) + η0)

−fv(Φ1, 0)(P0(0) + ζ1)−
τ∗1
τ∗0
fv(Φ1, 0)ζ0

−fuv(Φ1, 0)(ξU
′
0(0) + U1(0) + φ1)ζ0

−fvv(Φ1, 0)(ξV
′
0(0) + V1(0) + ψ0)ζ0, ξ∈(0,∞),

ζ1(0) = −P0(0), ζ1(∞) = 0,

η1(∞) = 0.

Hence

ζ1(ξ) = −P0(0)
ζ̂0

Φ̇1(0)
+ ζ̂0

∫ ξ

0

e−c∗
0
s

(ζ̂0)2

∫ ∞

s
ec

∗

0
ρζ̂0

{(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇0

+2
τ∗1
τ∗0
fu(Φ1, 0)ζ0 + fu(Φ1, 0)P0(0) + gu(Φ1, 0)Q0(0)

+gu(Φ1, 0)η0 + fuu(Φ1, 0)(ρU
′
0(0) + U1(0) + φ1)ζ0

+fuv(Φ1, 0)(ρV
′
0(0) + V1(0) + ψ0)ζ0

}

dρds,

η1(ξ) =
1

c∗0

∫ ∞

ξ

{

c∗1η̇0 + (gv(Φ1, 0)− gv(h+(0), 0))Q0(0) + gv(Φ1, 0)η0

+(fv(Φ1, 0)− fv(h+(0), 0))P0(0) + gv(Φ1, 0)ζ1 +
τ∗1
τ∗0
fv(Φ1, 0)ζ0

+fuv(Φ1, 0)(sU
′
0(0) + U1(0) + φ1)ζ0

+fvv(Φ1, 0)(sV
′
0(0) + V1(0) + ψ0)ζ0

}

ds,

where

ζ̂0(ξ) = e−c∗
0
ξΦ̇1.

Inner Approximations at y = τ∗0

In a neighborhood of y = τ∗0 , we expand P and Q as

P (y) = P0(y) +
1

ε
ζ0(

y − τ∗0
ε

) + ζ1(
y − τ∗0
ε

) + · · · ,
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Q(y) = Q0(y) + η0(
y − τ∗0
ε

) + εη1(
y − τ∗0
ε

) + · · · .

By substituting these in (4.6), ε−1-order terms satisfy



















ζ̈0 + c∗0ζ̇0 + fu(Φ2, v
∗)ζ0 = 0, ξ ∈ (−∞, 0),

c∗0η̇0 + fv(Φ2, v
∗)ζ0 = 0, ξ ∈ (−∞, 0),

ζ0(0) = B, ζ0(−∞) = 0,

η0(−∞) = 0.

Hence we obtain

ζ0(ξ) = Be−c∗
0
ξ Φ̇2

Φ̇2(0)
, η0(ξ) = −

1

c∗0

∫ ξ

−∞
fv(Φ2, v

∗)ζ0ds.

Similarly, from the order of ε0, we have







































































































ζ̈1 + c∗0ζ̇1 + fu(Φ2, v
∗)ζ1

= −

(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇0 − 2
τ∗1
τ∗0
fu(Φ2, v

∗)ζ0 − fu(Φ2, v
∗)P0(τ

∗
0 )

−gu(Φ2, v
∗)(Q0(τ

∗
0 ) + η0)

−fuu(Φ2, v
∗)(ξU ′

0(τ
∗
0 ) + U1(τ

∗
0 ) + φ1)ζ0

−fuv(Φ2, v
∗)(ξV ′

0(τ
∗
0 ) + V1(τ

∗
0 ) + ψ0)ζ0, ξ ∈ (−∞, 0),

c∗0η̇1 = −c∗0Q
′
0(τ

∗
0 )− c∗1η̇0 − gv(Φ2, v

∗)(Q0(τ
∗
0 ) + η0)

−fv(Φ2, v
∗)(P0(τ

∗
0 ) + ξ1)−

τ∗1
τ∗0
fv(Φ2, v

∗)ζ0

−fuv(Φ2, v
∗)(ξU ′

0(τ
∗
0 ) + U1(τ

∗
0 ) + φ1)ζ0

−fvv(Φ2, v
∗)(ξV ′

0(τ
∗
0 ) + V1(τ

∗
0 ) + ψ0)ζ0, ξ∈(−∞, 0),

ζ1(0) = −P0(τ
∗
0 ), ζ1(−∞) = 0,

η1(−∞) = 0.

Hence we have

ζ1(ξ) = −P0(τ
∗
0 )

ζ̂0

Φ̇2(0)
+ ζ̂0

∫ 0

ξ

e−c∗
0
s

(ζ̂0)2

∫ s

−∞
ec

∗

0
ρζ̂0

{(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇0

+2
τ∗1
τ∗0
fu(Φ2, v

∗)ζ0 + fu(Φ2, v
∗)P0(τ

∗
0 ) + gu(Φ2, v

∗)Q0(τ
∗
0 )

+gu(Φ2, v
∗)η0 + fuu(Φ2, v

∗)(ρU ′
0(τ

∗
0 ) + U1(τ

∗
0 ) + φ1)ζ0

+fuv(Φ2, v
∗)(ρV ′

0(τ
∗
0 ) + V1(τ

∗
0 ) + ψ0)ζ0

}

dρds,
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η1(ξ) = −
1

c∗0

∫ ξ

−∞

{

c∗1η̇0 + (gv(Φ2, v
∗)− gv(h+(v

∗), v∗))Q0(τ
∗
0 )

+gv(Φ2, v
∗)η0 + (fv(Φ2, v

∗)− fv(h+ (v∗), v∗))P0(τ
∗
0 ) + fv(Φ2, v

∗)ζ1

+
τ∗1
τ∗0
fv(Φ2, v

∗)ζ0 + fuv(Φ2, v
∗)(sU ′

0(τ
∗
0 ) + U1(τ

∗
0 ) + φ1)ζ0

+fvv(Φ2, v
∗)(sV ′

0(τ
∗
0 ) + V1(τ

∗
0 ) + ψ0)ζ0

}

ds,

where

ζ̂0(ξ) = e−c∗
0
ξΦ̇2.

The solution of (4.6) will be represented as

P (2)(y; ε,A,B,D)

= P
(2)
0 (y;A,D) + θ(

y

τ∗0
)

{

1

ε
ζ
(2),l
0 (

y

ε
;A) + ζ

(2),l
1 (

y

ε
;A,D)

}

+θ(
τ∗0 − y

τ∗0
)

{

1

ε
ζ
(2),r
0 (

y − τ∗0
ε

;B) + ζ
(2),r
1 (

y − τ∗0
ε

;A,B,D)

}

+Z(2)(y; ε,A,B,D) − h′+(V
(2)
0 (y))W (2)(y; ε,A,B,D), (4.7)

Q(2)(y; ε;A,B,D)

= Q
(2)
0 (y;A,D) + θ(

y

τ∗0
)
{

η
(2),l
0 (

y

ε
;A) + ε[η

(2),l
1 (

y

ε
;A,D)− η

(2),l
1 (0;A,D)]

}

+θ(
τ∗0 − y

τ∗0
)

{

η
(2),r
0 (

y − τ∗0
ε

;B) + εη
(2),r
1 (

y − τ∗0
ε

;A,B,D)

}

+W (2)(y; ε,A,B,D), (4.8)

where θ(y) is the same cut-off function as given in Section 3.3.

Theorem 7. Fix δ > 0 and A∗, B∗,D∗ ∈ (−∞,∞) arbitrarily, and put

Πδ = {(A,B,D) | |A−A∗|+ |B −B∗|+ |D −D∗| ≤ δ}.

Then, there is ε0 > 0 such that the pair (P (2), v(2)) given by (4.7) and (4.8)

for a function (Z(2),W (2)) ∈ Xε is a solution of (4.6) for any ε0 > 0, where

Xε is the same one as defined in Section 3.3. In addition, (Z(2),W (2)) = o(1)

in Xε uniformly for (A,B,D) ∈ Πδ as ε→ 0.

This theorem can be shown by the same argument as in the proof of The-
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orem 4. So we omit the details. Note that Z(2)(0;A,B,D) = Z(2)(τ∗0 ;A,B,D)

= W (2)(0;A,B,D) = 0. Therefore, we constructed a solution of (4.2) such

as

P (2)(z; ε,A,B,D)

= P
(2)
0 (

τ∗0
τ
z;A,D) + θ(

z

τ
)
{1

ε
ζ
(2),l
0 (

τ∗0
ετ
z;A) + ζ

(2),l
1 (

τ∗0
ετ
z;A,D)

}

+θ(
τ − z

τ
)
{1

ε
ζ
(2),r
0 (

τ∗0 (z − τ)

ετ
;B) + ζ

(2),r
1 (

τ∗0 (z − τ)

ετ
;A,B,D)

}

+Z(2)(
τ∗0
τ
z; ε,A,B,D) − h′+(V

(2)
0 (

τ∗0
τ
z))W (2)(

τ∗0
τ
z; ε,A,B,D), (4.9)

Q(2)(z; ε,A,B,D)

= Q
(2)
0 (

τ∗0
τ
z;A,D) + θ(

z

τ
)
{

η
(2),l
0 (

τ∗0
ετ
z;A)

+ε
[

η
(2),l
1 (

τ∗0
ετ
z;A,D) − η

(2),l
1 (0;A,D)

]}

+θ(
τ − z

τ
)
{

η
(2),r
0 (

τ∗0 (z − τ)

ετ
;A,B,D) + εη

(2),r
1 (

τ∗0 (z − τ)

ετ
;A,B,D)

}

+W (2)(
τ∗0
τ
z; ε,A,B,D). (4.10)

The constant B(ε) is given by B(ε) = B−h′+(V
(2)
0 (τ∗0 ))W

(2)(τ∗0 ; ε,A,B,D),

which leads to B(ε) = B + o(ε) as ε→ 0.

4.3. The third interval I3

In this subsection, we consider the problem (4.3). If we put y = z − τ ,

then the above problem is rewritten as



























ε2Pzz + εcPz + fu(u, v)P + gu(u, v)Q = 0, y ∈ (0,∞),

cQz + fv(u, v)P + gv(u, v)Q = 0, y ∈ (0,∞),

P (0) =
B(ε)

ε
, P (∞) = 0,

Q(∞) = 0.

(4.11)

Outer Approximations

We expand P and Q as

P (y) = P0(y) + · · · , Q(y) = Q0(y) + · · · .
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By substituting these in (4.11), the lowest order approximation is obtained

as










fu(U0, V0)P0 + gu(U0, V0)Q0 = 0, y ∈ (0,∞),

c∗0Q
′
0 + fv(U0, V0)P0 + gv(U0, V0)Q0 = 0, y ∈ (0,∞),

Q0(∞) = 0.

Hence

P0 = −
fu(U0, V0)

gu(U0, V0)
Q0

and







c∗0Q
′
0 =

(

fv(U0, V0)gu(U0, V0)

fu(U0, V0)
− gv(U0, V0)

)

Q0, y ∈ (0,∞),

Q0(∞) = 0.

Thus we obtain














Q0(y) = Q0(0) exp

{(

fv(U0, V0)gu(U0, V0)

fu(U0, V0)
− gv(U0, V0)

)

y

c∗0

}

,

P0(y) = −
gu(U0, V0)

fu(U0, V0)
Q0(y).

Since fu(U0, V0) < 0 and fu(U0, V0)gv(U0, V0)− gu(U0, V0)fv(U0, V0) ≥ 0 for

sufficiently large y > 0, we have

P0 ≡ 0, Q0 ≡ 0.

Inner Approximations at y = 0

In a neighborhood of y = 0, we expand P and Q as

P (y) =
1

ε
ζ0(

y

ε
) + ζ1(

y

ε
) + · · · , Q(y) = η0(

y

ε
) + εη1(

y

ε
) + · · · .

By substituting these in (4.11) and putting ξ = y/ε, it follows from the order

of ε−1 that






















ζ̈0 + c∗0ζ̇0 + fu(Φ2, v
∗)ζ0 = 0, ξ ∈ (0,∞),

c∗0η̇0 + fv(Φ2, v
∗)ζ0 = 0, ξ ∈ (0,∞),

ζ0(0) = B, ζ0(∞) = 0,

η0(∞) = 0.
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Hence we obtain

ζ0(ξ) = Be−c∗
0
ξ Φ̇2

Φ̇2(0)
, η0(ξ) =

1

c∗0

∫ ∞

ξ
fv(Φ2, v

∗)ζ0ds.

Similarly, from the order of ε0, we have































































ζ̈1 + c∗0ζ̇1 + fu(Φ2, v
∗)ζ1 = −c∗1ζ̇0

−gu(Φ2, v
∗)η0 − fuu(Φ2, v

∗)(ξU ′
0(0) + U1(0) + φ1)ζ0

−fuv(Φ2, v
∗)(ξV ′

0(0) + V1(0) + ψ0)ζ0, ξ ∈ (0,∞),

c∗0η̇1 = −c∗1η̇0 − gv(Φ2, v
∗)η0 − fv(Φ2, v

∗)ζ1
−fuv(Φ2, v

∗)(ξU ′
0(0) + U1(0) + φ1)ζ0

−fvv(Φ2, v
∗)(ξV ′

0(0) + V1(0) + ψ0)ζ0, ξ ∈ (0,∞),

ζ1(0) = 0, ζ1(∞) = 0,

η1(∞) = 0.

Hence we have

ζ1(ξ) = −P0(0)
ζ̂0

Φ̇2(0)
+ ζ̂0

∫ ξ

0

e−c∗
0
s

(ζ̂0)2

∫ ∞

s
ec

∗

0
ρζ̂0

{

c∗1ζ̇0 + gu(Φ2, v
∗)η0

+fuu(Φ2, v
∗)(ρU ′

0(0) + U1(0) + φ1)ζ0

+fuv(Φ2, v
∗)(ρV ′

0(0) + V1(0) + ψ0)ζ0

}

dρds,

η1(ξ) =
1

c∗0

∫ ∞

ξ

{

c∗1η̇0 + gv(Φ2, v
∗)η0 + fv(Φ2, v

∗)ζ1

+fuv(Φ2, v
∗)(sU ′

0(0) + U1(0) + φ1)ζ0

+fvv(Φ2, v
∗)(sV ′

0(0) + V1(0) + ψ0)ζ0

}

ds,

where

ζ̂0(ξ) = e−c∗
0
ξΦ̇2.

The solution of (4.11) will be represented as























P (3)(y; ε,A,B,D) =
1

ε
ζ
(3)
0 (

y

ε
;B) + ζ

(3)
1 (

y

ε
;B)

−h′+(V
(2)
0 (τ∗0 ))W

(2)(τ∗0 ; ε,A,B,D)e−νy/ε + Z(3)(
y

ε
; ε,A,B,D),

Q(3)(y; ε,A,B,D)=η
(3)
0 (

y

ε
;B)+εη

(3)
1 (

y

ε
;B)+εW (3)(

y

ε
; ε,A,B,D),

(4.12)
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where ν is a constant independent of ε, given as well as µ in Theorem 3.

Theorem 8. Fix δ > 0 and A∗, B∗,D∗ ∈ (−∞,∞) arbitrarily, and put

Πδ = {(A,B,D) | |A−A∗|+ |B −B∗|+ |D −D∗| ≤ δ}.

Then, there is ε0 > 0 such that the pair (P (3), Q(3)) given by (4.12) for a

function (Z(3),W (3)) ∈ Xν is a solution of (4.11) for any ε ∈ (0, ε0). The

functional space Xν is defined as well as in Section 3.2 and ν satisfies 0 <

ν < µ0, where µ0 was given in Theorem 3. In addition, (Z(3),W (3)) = o(1)

in Xν uniformly for (A,B,D) ∈ Πδ as ε→ 0.

The solution of (4.3) is represented as























P (3)(z; ε,A,B,D)=
1

ε
ζ
(3)
0 (

z − τ

ε
;B) + ζ

(3)
1 (

z − τ

ε
;B)

−h′+(V
(2)
0 (τ∗0 ))W

(2)(τ∗0 ; ε,A,B,D)e−ν(z−τ)/ε + Z(3)(
z − τ

ε
; ε,A,B,D),

Q(3)(z; ε,A,B,D)=η
(3)
0 (

z − τ

ε
;B)+εη

(3)
1 (

z − τ

ε
;B)+εW (3)(

z − τ

ε
; ε,A,B,D).

4.4. The whole interval

In summary, we have







P (1)(z) = P
(1)
0 (z) +

1

ε
ζ
(1)
0 (

z

ε
) + ζ

(1)
1 (

z

ε
) + · · · , z ∈ I1,

Q(1)(z) = Q
(1)
0 (z) + η

(1)
0 (

z

ε
) + εη

(1)
1 (

z

ε
) + · · · , z ∈ I1,



















































P (2)(z) = P
(2)
0 (

τ∗0
τ
z) + θ(

z

τ
)

{

1

ε
ζ
(2),l
0 (

τ∗0 z

ετ
) + ζ

(2),l
1 (

τ∗0 z

ǫτ
)

}

+θ(
τ − z

τ
)

{

1

ε
ζ
(2),r
0 (

τ∗0 (z − τ)

ǫτ
) + ζ

(2),r
1 (

τ∗0 (z − τ)

ǫτ
)

}

+ · · · , z ∈ I2,

Q(2)(z) = Q
(2)
0 (

τ∗0
τ
z) + θ(

z

τ
)

{

η
(2),l
0 (

τ∗0 z

ǫτ
) + εη

(2),l
1 (

τ∗0 z

ǫτ
)

}

+θ(
τ − z

τ
)

{

η
(2),r
0 (

τ∗0 (z − τ)

ǫτ
) + εη

(2),r
1 (

τ∗0 (z − τ)

ǫτ
)

}

+ · · · , z ∈ I2,











P (3)(z) =
1

ε
ζ
(3)
0 (

z − τ

ε
) + ζ

(3)
1 (

z − τ

ε
) + · · · z ∈ I3,

Q(3)(z) = η
(3)
0 (

z − τ

ε
) + εη

(3)
1 (

z − τ

ε
) + · · · , z ∈ I3.
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It is clear from the construction of the above solutions that














P (1)(0) = P (2)(0),

Q(1)(0) = Q(2)(0),

P (2)(τ) = P (3)(τ).

Hence we will determine A,B,D by the following three conditions:















X(A,B,D; ε) ≡ εP
(1)
z (0)− εP

(2)
z (0) = 0,

Y (A,B,D; ε) ≡ εP
(2)
z (τ)− εP

(3)
z (τ) = 0,

Z(A,B,D; ε) ≡ Q(2)(τ)−Q(3)(τ) = 0.

Since ζ̇
(1)
0 (0) = ζ̇

(2),l
0 (0), we have

X(A,B,D; ε) =
1

ε
{ζ̇

(1)
0 (0)−ζ̇

(2),l
0 (0)}+{ζ̇

(1)
1 (0)−ζ̇

(2),l
1 (0)+

τ∗1
τ∗0
ζ̇
(2),l
0 (0)}+O(ε)

=X0(A,B,D) +O(ε),

where

X0(A,B,D) ≡ ζ̇
(1)
1 (0) − ζ̇

(2),l
1 (0) +

τ∗1
τ∗0
ζ̇
(2),l
0 (0).

Here we calculate

ζ̇
(1)
1 (0) = −P

(1)
0 (0)

(

−c∗0 +
Φ̈1(0)

Φ̇1(0)

)

−

∫ 0

−∞

Φ̇1

Φ̇1(0)
{c∗1ζ̇

(1)
0

+fu(Φ1, 0)P
(1)
0 (0)+fuu(Φ1, 0)φ

(1)
1 ζ

(1)
0 +fuv(Φ1, 0)ψ

(1)
0 ζ

(1)
0

+gu(Φ1, 0)(Q
(1)
0 (0)+η

(1)
0 )}ds

=
P

(1)
0 (0)

Φ̇1(0)
{c∗0Φ̇1(0)− Φ̈1(0) + Φ̈1(0)− c∗0Φ̇1(0)}

−Q
(1)
0 (0)

g(Φ1(0), 0)

Φ̇1(0)
−

∫ 0

−∞

Φ̇1

Φ̇1(0)
{c∗1ζ̇

(1)
0 +fuu(Φ1, 0)φ

(1)
1 ζ

(1)
0

+fuv(Φ1, 0)ψ
(1)
0 ζ

(1)
0 +gu(Φ1, 0)η

(1)
0 }ds

= −Q
(1)
0 (0)

g(Φ1(0), 0)

Φ̇1(0)
−

∫ 0

−∞

Φ̇1

Φ̇1(0)
{c∗1ζ̇

(1)
0 +fuu(Φ1, 0)φ

(1)
1 ζ

(1)
0

+fuv(Φ1, 0)ψ
(1)
0 ζ

(1)
0 +gu(Φ1, 0)η

(1)
0 }ds.
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Here we note that

Q
(1)
0 (0) = D − η

(1)
0 (0),

∫ 0

−∞
Φ̇1ζ̇

(1)
0 ds = Φ̇1(0)ζ

(1)
0 (0)−

∫ 0

−∞
Φ̈1ζ

(1)
0 ds,

∫ 0

−∞
Φ̇1gu(Φ1, 0)η

(1)
0 ds = g(Φ1(0), 0)η

(1)
0 (0) +

1

c∗0

∫ 0

−∞
g(Φ1, 0)fv(Φ1, 0)ζ

(1)
0 ds.

On the other hand, φ
(1)
1 satisfies

...
φ
(1)
1 − c∗0φ̈

(1)
1 + fu(Φ1, 0)φ̇

(1)
1

= c∗1Φ̈1 − fuu(Φ1, 0)φ
(1)
1 Φ̇1 − fv(Φ1, 0)ψ̇

(1)
0 − fuv(Φ1, 0)Φ̇1ψ

(1)
0 .

Multiplying this by ζ
(1)
0 , integrating it on (−∞, 0) and using ψ̇

(1)
0 = g(Φ1, 0)/c

∗
0,

we get

Aφ̈
(1)
1 (0)−Aφ̇

(1)
1 (0)

Φ̈1(0)

Φ̇1(0)
=

∫ 0

−∞
ζ
(1)
0 {c∗1Φ̈1−fuu(Φ1, 0)φ

(1)
1 Φ̇1

−
1

c∗0
fv(Φ1, 0)g(Φ1, 0)−fuv(Φ1, 0)Φ̇1ψ

(1)
0 }ds.

Using these relations, we obtain

ζ̇
(1)
1 (0) = −(D − η

(1)
0 (0))

g(Φ1(0), 0)

Φ̇1(0)
− c∗1ζ

(1)
0 (0) −

g(Φ1(0), 0)η
(1)
0 (0)

Φ̇1(0)

+A
φ̈
(1)
1 (0)

Φ̇1(0)
−A

Φ̈1(0)φ̇
(1)
1 (0)

(Φ̇1(0))2

= −D
g(Φ1(0), 0)

Φ̇1(0)
− c∗1ζ

(1)
0 (0) +A

φ̈
(1)
1 (0)

Φ̇1(0)
−A

Φ̈1(0)φ̇
(1)
1 (0)

(Φ̇1(0))2
.

Next we calculate ζ̇
(2),l
1 (0).

ζ̇
(2),l
1 (0) = −P

(2)
0 (0)

(

− c∗0+
Φ̈1(0)

Φ̇1(0)

)

+

∫ ∞

0

Φ̇1

Φ̇1(0)

{

(

c∗1+c
∗
0

τ∗1
τ∗0

)

ζ̇
(2),l
0 +2

τ∗1
τ∗0
fu(Φ1, 0)ζ

(2),l
0

+fu(Φ1, 0)P
(2)
0 (0) + gu(Φ1, 0)(Q

(2)
0 (0) + η

(2),l
0 )
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+fuu(Φ1, 0)(sU
(2)
0

′
(0) + U

(2)
1 (0) + φ

(2),l
1 )ζ

(2),l
0

+fuv(Φ1, 0)(sV
(2)
0

′
(0) + V

(2)
1 (0) + ψ

(2),l
0 )ζ

(2),l
0

}

ds

=
Q

(2)
0 (0)

Φ̇1(0)
(g(h+(0), 0) − g(Φ1(0), 0))

+

∫ ∞

0

Φ̇1

Φ̇1(0)

{(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇
(2),l
0 +2

τ∗1
τ∗0
fu(Φ1, 0)ζ

(2),l
0

+gu(Φ1, 0)η
(2),l
0 +fuu(Φ1, 0)(sU

(2)
0

′
(0)+U

(2)
1 (0)+φ

(2),l
1 )ζ

(2),l
0

+fuv(Φ1, 0)(sV
(2)
0

′
(0) + V

(2)
1 (0) + ψ

(2),l
0 )ζ

(2),l
0

}

ds.

Here we note that
∫ ∞

0
Φ̇1ζ̇

(2),l
0 ds = −Φ̇1(0)ζ

(2),l
0 (0)−

∫ ∞

0
Φ̈1ζ

(2),l
0 ds,

∫ ∞

0
Φ̇1gu(Φ1, 0)η

(2),l
0 ds = −g(Φ1(0), 0)η

(2),l
0 (0)

+
1

c∗0

∫ ∞

0
g(Φ1, 0)fv(Φ1, 0)ζ

(2),l
0 ds.

Also, φ
(2),l
1 satisfies

...
φ
(2),l
1 − c∗0φ̈

(2),l
1 + fu(Φ1, 0)φ̇

(2),l
1

= (c∗1+c
∗
0

τ∗1
τ∗0

)Φ̈1−2
τ∗1
τ∗0
fu(Φ1, 0)Φ̇1−fuu(Φ1, 0)(ξU

(2)
0

′
(0)+U

(2)
1 (0)+φ

(2),l
1 )Φ̇1

−fu(Φ1, 0)U
(2)
0

′
(0)− fuv(Φ1, 0)(ξV

(2)
0

′
(0) + V

(2)
1 (0) + ψ

(2),l
0 )Φ̇1

−fv(Φ1, 0)(V
(2)
0

′
(0) + ψ̇

(2),l
0 ).

Multiplying this by ζ
(2),l
0 , integrating it on (0,∞) and using c∗0V

(2)
0

′
(0) +

c∗0ψ̇
(2),l
0 = g(Φ1, 0), we get

−Aφ̈
(2),l
1 (0) +Aφ̇

(2),l
1 (0)

Φ̈1(0)

Φ̇1(0)

=

∫ ∞

0
ζ
(2),l
0

{(

c∗1 + c∗0
τ∗1
τ∗0

)

Φ̈1 − 2
τ∗1
τ∗0
fu(Φ1, 0)Φ̇1

−fuu(Φ1, 0)(sU
(2)
0

′
(0) + U

(2)
1 (0) + φ

(2),l
1 )Φ̇1 − fu(Φ1, 0)U

(2)
0

′
(0)

−fuv(Φ1, 0)(sV
(2)
0

′
(0) + V

(2)
1 (0) + ψ

(2),l
0 )Φ̇1 −

1

c∗0
fv(Φ1, 0)g(Φ1, 0)

}

ds.
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Using these relations and noting

A
Φ̈1(0)

Φ̇1(0)
=

∫ ∞

0
fu(Φ1, 0)ζ

(2),l
0 ds,

we obtain

ζ̇
(2),l
1 (0) = Q

(2)
0 (0)

g(h+(0), 0) − g(Φ1(0), 0)

Φ̇1(0)
−

(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ
(2),l
0 (0)

−η
(2),l
0 (0)

g(Φ1(0), 0)

Φ̇1(0)
+A

φ̈
(2),l
1 (0)

Φ̇1(0)
−A

Φ̈1(0)φ̇
(2),l
1 (0)

(Φ̇1(0))2

−A
Φ̈1(0)

(Φ̇1(0))2
U

(2)
0

′
(0).

Substituting these into X0(A,B,D) and using Φ1(0) = α − h+(0) and

Q
(2)
0 (0) = D − η

(2),l
0 (0), we get

X0(A,B,D)

= −D
g(Φ1(0), 0)

Φ̇1(0)
− c∗1ζ

(1)
0 (0) +A

φ̈
(1)
1 (0)

Φ̇1(0)
−A

Φ̈1(0)φ̇
(1)
1 (0)

(Φ̇1(0))2

−
[

Q
(2)
0 (0)

g(h+(0), 0) − g(Φ1(0), 0)

Φ̇1(0)
− η

(2),l
0 (0)

g(Φ1(0), 0)

Φ̇1(0)

−
(

c∗1+c
∗
0

τ∗1
τ∗0

)

ζ
(2),l
0 (0)+A

φ̈
(2),l
1 (0)

Φ̇1(0)
−A

Φ̈1(0)φ̇
(2),l
1 (0)

(Φ̇1(0))2
−A

Φ̈1(0)

(Φ̇1(0))2
U

(2)
0

′
(0)
]

+A
τ∗1
τ∗0

(

−c∗0 +
Φ̈1(0)

Φ̇1(0)

)

= A
1

Φ̇1(0)
{φ̈

(1)
1 (0)− φ̈

(2),l
1 (0) +

τ∗1
τ∗0

Φ̈1(0)}

−A
Φ̈1(0)

(Φ̇1(0))2
(φ̇

(1)
1 (0) − φ̇

(2),l
1 (0)− U

(2)
0

′
(0))− (D − η

(2),l
0 (0))

g(h+(0), 0)

Φ̇1(0)
.

Here, by noting

φ̈
(1)
1 (0)− φ̈

(2),l
1 (0) + 2

τ∗1
τ∗0

Φ̈1(0) = 0,

φ̇
(1)
1 (0)− φ̇

(2),l
1 (0)− U

(2)
0

′
(0) +

τ∗1
τ∗0

Φ̇1(0) = 0,
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we obtain

X0(A,B,D) = −(D − η
(2),l
0 (0))

g(h+(0), 0)

Φ̇1(0)
.

Thus we obtain

D = η
(2),l
0 (0) =

A

c∗0

∫ ∞

0
e−c∗

0
s Φ̇1

Φ̇1(0)
fv(Φ1, 0)ds.

Secondly, we calculate Y (A,B,D; ε). Since ζ̇
(2),r
0 (0) = ζ̇

(3)
0 (0), we have

Y (A,B,D; ε) =
1

ε
{ζ̇

(2),r
0 (0) − ζ̇

(3)
0 (0)} + {ζ̇

(2),r
1 (0)− ζ̇

(3)
1 (0)

−
τ∗1
τ∗0
ζ̇
(2),r
0 (0)}+O(ε)

≡ Y0(A,B,D) +O(ε),

where

Y0(A,B,D) = ζ̇
(2),r
1 (0)− ζ̇

(3)
1 (0)−

τ∗1
τ∗0
ζ̇
(2),r
0 (0).

From the similar argument, we have

ζ̇
(2),r
1 (0) =

Q
(2)
0 (τ∗0 )

Φ̇2(0)
(g(h+(v

∗), v∗)− g(Φ2(0), v
∗))

−

∫ 0

−∞

Φ̇2

Φ̇2(0)

{(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ̇
(2),r
0 + 2

τ∗1
τ∗0
fu(Φ2, v

∗)ζ
(2),r
0

+gu(Φ2, v
∗)η

(2),r
0 + fuu(Φ2, v

∗)(sU
(2)
0

′
(τ∗0 ) + U

(2)
1 (τ∗0 ) + φ

(2),r
1 )ζ

(2),r
0

+fuv(Φ2, v
∗)(sV

(2)
0

′
(τ∗0 ) + V

(2)
1 (τ∗0 ) + ψ

(2),r
0 )ζ

(2),r
0

}

ds.

Here we note that

∫ 0

−∞
Φ̇2ζ̇

(2),r
0 ds = Φ̇2(0)ζ

(2),r
0 (0) −

∫ 0

−∞
Φ̈2ζ

(2),r
0 ds,

∫ 0

−∞
Φ̇2gu(Φ2, v

∗)η
(2),r
0 ds = g(Φ2(0), v

∗)η
(2),r
0 (0)

+
1

c∗0

∫ 0

−∞
g(Φ2, v

∗)fv(Φ2, v
∗)ζ

(2),r
0 ds.
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Also, φ
(2),r
1 satisfies

...
φ
(2),r
1 − c∗0φ̈

(2),r
1 + fu(Φ2, v

∗)φ̇
(2),r
1

=

(

c∗1 + c∗0
τ∗1
τ∗0

)

Φ̈2 − 2
τ∗1
τ∗0
fu(Φ2, v

∗)Φ̇2

−fuu(Φ2, v
∗)(ξU

(2)
0

′
(τ∗0 ) + U

(2)
1 (τ∗0 ) + φ

(2),r
1 )Φ̇2

−fu(Φ2, v
∗)U

(2)
0

′
(τ∗0 )− fuv(Φ2, v

∗)(ξV
(2)
0

′
(τ∗0 ) + V

(2)
1 (τ∗0 )

+ψ
(2),r
0 )Φ̇2 − fv(Φ2, v

∗)(V
(2)
0

′
(τ∗0 ) + ψ̇

(2),r
0 ).

Multiplying this by ζ
(2),r
0 , integrating it on (−∞, 0) and using c∗0V

(2)
0

′
(τ∗0 ) +

c∗0ψ̇
(2),r
0 = g(Φ2, v

∗), we get

Bφ̈
(2),r
1 (0)−Bφ̇

(2),r
1 (0)

Φ̈2(0)

Φ̇2(0)

=

∫ 0

−∞
ζ
(2),r
0

{(

c∗1 + c∗0
τ∗1
τ∗0

)

Φ̈2 − 2
τ∗1
τ∗0
fu(Φ2, v

∗)Φ̇2

−fuu(Φ2, v
∗)(sU

(2)
0

′
(τ∗0 ) + U

(2)
1 (τ∗0 ) + φ

(2),r
1 )Φ̇2 − fu(Φ2, v

∗)U
(2)
0

′
(τ∗0 )

−fuv(Φ2, v
∗)(sV

(2)
0

′
(τ∗0 ) + V

(2)
1 (τ∗0 )+ψ

(2),r
0 )Φ̇2−

1

c∗0
fv(Φ2, v

∗)g(Φ2, v
∗)
}

ds.

Noting

B
Φ̈2(0)

Φ̇2(0)
= −

∫ 0

−∞
ζ
(2),r
0 fu(Φ2, v

∗)ds

and using the relations above, we get

ζ̇
(2),r
1 (0) = Q

(2)
0 (τ∗0 )

g(h+(v
∗), v∗)− g(Φ2(0), v

∗)

Φ̇2(0)
−

(

c∗1 + c∗0
τ∗1
τ∗0

)

ζ
(2),r
0 (0)

−η
(2),r
0 (0)

g(Φ2(0), v
∗)

Φ̇2(0)
+B

φ̈
(2),r
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(2),r
1 (0)

(Φ̇2(0))2

−B
Φ̈2(0)

(Φ̇2(0))2
U

(2)
0

′
(τ∗0 ).

Next we calculate ζ̇
(3)
1 (0).

ζ̇
(3)
1 (0) =

∫ ∞

0

Φ̇2

Φ̇2(0)
(c∗1ζ̇

(3)
0 + gu(Φ2, v

∗)η
(3)
0



2008] EIGENFUNCTIONS OF THE ADJOINT OPERATOR 653

+fuu(Φ2, v
∗)(sU

(3)
0

′
(0) + U

(3)
1 (0) + φ

(3)
1 )ζ

(3)
0

+fuv(Φ2, v
∗)(sV

(3)
0

′
(0) + V

(3)
1 (0) + ψ

(3)
0 )ζ

(3)
0 )ds.

Here we note that
∫ ∞

0
Φ̇2ζ̇

(3)
0 ds=−Φ̇2(0)ζ

(3)
0 (0) −

∫ ∞

0
Φ̈2ζ

(3)
0 ds,

∫ ∞

0
Φ̇2gu(Φ2, v

∗)η
(3)
0 ds=−g(Φ2(0), v

∗)η
(3)
0 (0)+

1

c∗0

∫ ∞

0
g(Φ2, v

∗)fv(Φ2, v
∗)ζ

(3)
0 ds.

Here we note

...
φ
(3)
1 − c∗0φ̈

(3)
1 + fu(Φ2, v

∗)φ̇
(3)
1

= c∗1Φ̈2 − fuu(Φ2, v
∗)(ξU

(3)
0

′
(0) + U

(3)
1 (0) + φ

(3)
1 )Φ̇2 − fu(Φ2, v

∗)U
(3)
0

′
(0)

−fuv(Φ2, v
∗)(ξV

(3)
0

′
(0) + V

(3)
1 (0)+ψ

(3)
0 )Φ̇2−fv(Φ2, v

∗)(V
(3)
0

′
(0)+ψ̇

(3)
0 ).

Multiplying this by ζ
(3)
0 , integrating it on (0,∞) and using c∗0V

(3)
0

′
(0)+c∗0ψ̇

(3)
0

= g(Φ2, v
∗), we get

−Bφ̈
(3)
1 (0) +Bφ̇

(3)
1 (0)

Φ̈2(0)

Φ̇2(0)

=

∫ ∞

0
ζ
(3)
0 {c∗1Φ̈2 − fuu(Φ2, v

∗)(sU
(3)
0

′
(0) + U

(3)
1 (0) + φ

(3)
1 )Φ̇2

−fu(Φ2, v
∗)U

(3)
0

′
(0)− fuv(Φ2, v

∗)(sV
(3)
0

′
(0) + V

(3)
1 (0) + ψ

(3)
0 )Φ̇2

−
1

c∗0
fv(Φ2, v

∗)g(Φ2, v
∗)}ds.

Using these relations, we obtain

ζ̇
(3)
1 (0) = −c∗1ζ

(3)
0 (0)− g(Φ2(0), v

∗)
η
(3)
0 (0)

Φ̇2(0)
+B

φ̈
(3)
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(3)
1 (0)

(Φ̇2(0))2

−

∫ ∞

0

ζ
(3)
0

Φ̇2(0)
fu(Φ2, v

∗)U
(3)
0

′
(0)ds.

Moreover, by noting

B
Φ̈2(0)

Φ̇2(0)
=

∫ ∞

0
ζ
(3)
0 fu(Φ2, v

∗)dζ,
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we get

ζ̇
(3)
1 (0) = −c∗1ζ

(3)
0 (0) − η

(3)
0 (0)

g(Φ2(0), v
∗)

Φ̇2(0)

+B
φ̈
(3)
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(3)
1 (0)

(Φ̇2(0))2
−B

Φ̈2(0)

(Φ̇2(0))2
U

(3)
0

′
(0).

Thus

Y0(A,B,D)

= Q
(2)
0 (τ∗0 )

g(h+(v
∗), v∗)− g(Φ2(0), v

∗)

Φ̇2(0)
−B

(

c∗1 + c∗0
τ∗1
τ∗0

)

−η
(2),r
0 (0)

g(Φ2(0), v
∗)

Φ̇2(0)
+B

φ̈
(2),r
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(2),r
1 (0)

(Φ̇2(0))2

−B
Φ̈2(0)

(Φ̇2(0))2
U

(2)
0

′
(τ∗0 )−

[

−Bc∗1 − η
(3)
0 (0)

g(Φ2(0), v
∗)

Φ̇2(0)
+B

φ̈
(3)
1 (0)

Φ̇2(0)

−B
Φ̈2(0)φ̇

(3)
1 (0)

(Φ̇2(0))2
−B

Φ̈2(0)

(Φ̇2(0))2
U

(3)
0

′
(0)
]

−B
τ∗1
τ∗0

(

− c∗0 +
Φ̈2(0)

Φ̇2(0)

)

= Q
(2)
0 (τ∗0 )

g(h+(v
∗), v∗)−g(Φ2(0), v

∗)

Φ̇2(0)
−(η

(2),r
0 (0)−η

(3)
0 (0))

g(Φ2(0), v
∗)

Φ̇2(0)

+B
φ̈
(2),r
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(2),r
1 (0)

(Φ̇2(0))2
−B

Φ̈2(0)

(Φ̇2(0))2
U

(2)
0

′
(τ∗0 )

−

[

B
φ̈
(3)
1 (0)

Φ̇2(0)
−B

Φ̈2(0)φ̇
(3)
1 (0)

(Φ̇2(0))2
−B

Φ̈2(0)

(Φ̇2(0))2
U

(3)
0

′
(0)

]

−B
τ∗1
τ∗0

Φ̈2(0)

Φ̇2(0)
.

Furthermore, by noting

φ̈
(2),r
1 (0)− φ̈

(3)
1 (0)− 2

τ∗1
τ∗0

Φ̈2(0) = 0,

φ̇
(2),r
1 (0) + U

(2)
0

′
(τ∗0 )−

τ∗1
τ∗0

Φ̇2(0) − U
(3)
0

′
(0) − φ̇

(3)
1 (0) = 0,

we obtain

Y0(A,B,D) = Q
(2)
0 (τ∗0 )

g(h+(v
∗), v∗)− g(Φ2(0), v

∗)

Φ̇2(0)

−(η
(2),r
0 (0) − η

(3)
0 (0))

g(Φ2(0), v
∗)

Φ̇2(0)
. (4.13)
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Thirdly, we calculate Z(A,B,D; ε).

Z(A,B,D; ε) = Q
(2)
0 (τ∗0 ) + η

(2),r
0 (0)− η

(3)
0 (0) +O(ε)

= Z0(A,B,D) +O(ε),

where

Z0(A,B,D) ≡ Q
(2)
0 (τ∗0 ) + η

(2),r
0 (0) − η

(3)
0 (0).

Easy calculations give us

Q
(2)
0 (τ∗0 ) = (D − η

(2),l
0 (0)) exp

{ 1

c∗0

∫ τ∗
0

0

(fv(U
(2)
0 , V

(2)
0 )gu(U

(2)
0 , V

(2)
0 )

fu(U
(2)
0 , V

(2)
0 )

−gv(U
(2)
0 , V

(2)
0 )

)

dx
}

,

η
(2),r
0 (0) = −

B

c∗0

∫ 0

−∞
e−c∗

0
s fv(Φ2, v

∗)Φ̇2

Φ̇2(0)
ds,

η
(3)
0 (0) =

B

c∗0

∫ ∞

0
e−c∗

0
s fv(Φ2, v

∗)Φ̇2

Φ̇2(0)
ds.

Therefore

Z0(A,B,D) = (D − η
(2),l
0 (0)) exp

{ 1

c∗0

∫ τ∗
0

0

(fv(U
(2)
0 , V

(2)
0 )gu(U

(2)
0 , V

(2)
0 )

fu(U
(2)
0 , V

(2)
0 )

−gv(U
(2)
0 , V

(2)
0 )

)

dx
}

−
B

c∗0

∫ ∞

−∞
e−c∗

0
s fv(Φ2, v

∗)Φ̇2

Φ̇2(0)
ds.

From the equations
{

X0(A,B,D) = 0,

Z0(A,B,D) = 0,
(4.14)

we obtain

D∗ = η
(2),l
0 (0) =

A

c∗0

∫ ∞

0
e−c∗

0
sfv(Φ1, 0)

Φ̇1

Φ̇1(0)
ds, B∗ = 0.

Also, (4.13) implies that

Y0(A,B
∗,D∗) = 0.
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Now we apply the implicit function theorem to the equations

{

X(A,B,D; ε) = 0,

Z(A,B,D; ε) = 0.

Then, for any constant A, there exist

B = B(ε;A) (B∗ = B(0;A)),

D = D(ε;A) (D∗ = D(0;A)),

such that
{

X(A,B(ε;A),D(ε;A); ε) = 0,

Z(A,B(ε;A),D(ε;A); ε) = 0.

Since the adjoint equation must have a bounded solution that is unique (up

to multiplications by constants), the equality

Y (A,B(ε;A),D(ε;A); ε) = 0

must automatically hold. Thus the proof is complete.
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Appendix

In Appendix, we shall show Theorems 3 and 4.

First we show Theorem 3. Putting ξ = z/ǫ, we set

u(ξ; ε, c1) = φ0(ξ)+εφ1(ξ; c1)+εR(ξ; ε, c1), v(ξ; ε, c1) = εψ0(ξ)+εS(ξ; ε, c1).
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Substituting these into (3.6), we put



















T1(t; ε, c1) ≡
1

ε
(φ̈0 + εφ̈1 + εR̈)−

1

ε
(c∗0 + εc1)(φ̇0 + εφ̇1 + εṘ)

+
1

ε
f(φ0 + εφ1 + εR, εψ0 + εS),

T2(t; ε, c1) ≡ (c∗0 + εc1)(Ṡ + ψ̇0)− g(φ0 + εφ1 + εR, εψ0 + εS)

and consider the boundary conditions

R(−∞) = 0, R(0) = 0, S(−∞) = 0.

Here we put t = (R,S) and T (t; ε, c1) = (T1, T2) for simplicity of notations.

Then T (t; ε, c1) is a continuous mapping from Xµ × (0,∞) × Λδ to Yµ and

continuously differentiable with respect to t, where Xµ and Λδ were given in

Section 3.2, and Yµ = X0
µ ×X0

µ.

Now we outline the proof of Theorem 3. From Lemma 1 given below,

we have the invertibility of Tt(0; ε, c1) and set

F (t; ε, c1) = T (t; ε, c1)− T (0; ε, c1)− Tt(0; ε, c1)t,

G(t; ε, c1) = T−1
t (0; ε, c1)[T (0; ε, c1) + F (t; ε, c1)].

Then G : Bγ(0) → Bγ(0) is a contraction map with respect to t, where Bγ(0)

is a closed ball in Xµ with a radius γ > 0 and a center at 0 for a small γ > 0.

Indeed, if ε is sufficiently small,

‖G(t0; ε, c1)‖Xµ
≤ 2Kε, ‖G(t1; ε, c1)−G(t2; ε, c1)‖Xµ

≤
1

2
‖t1 − t2‖Xµ

for any ‖ti‖Xµ
≤ γ for i = 0, 1, 2, c1 ∈ Λδ, where K > 0 is a constant inde-

pendent of ε, given in Lemma 1. Therefore G(t; ε, c1) = t, namely, T (t; ε, c1)

has a unique solution t(ε, c1) in Bγ(0) for small ε > 0 by contraction map-

ping theorem. In the following lemma, we shall use ‖ · ‖Xµ
, a norm for Xµ

defined by ‖t‖Xµ
= ‖R‖X2

µ
+ ‖S‖X1

µ
for t = (R,S).

We follow the argument above and show Theorem 3. At first, we com-

pute the Fréchet derivative of T1 and T2 with respect to t and have

T1t(0; ε, c1)[R,S]= R̈−(c∗0+εc1)Ṙ+fu(φ0+εφ1, εψ0)R+fv(φ0 + εφ1, εψ0)S,

T2t(0; ε, c1)[R,S]=(c∗0+εc1)Ṡ−εgu(φ0+εφ1, εψ0)R−εgv(φ0+εφ1, εψ0)S.
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We see the invertibility of Tt(0; ε, c1) by the next lemma.

Lemma 1. Tt(0; ε, c1) : X → Y is invertible. Moreover, there is a con-

stant K > 0 independent of ε > 0 such that ‖T−1
t (0; ε, c1)‖ ≤ K uniformly

in c1 ∈ Λδ and small ε > 0, where ‖ · ‖ represents the usual operator norm.

Proof. Since ‖Tt(0; 0, c1)−Tt(0; ε, c1)‖ is small, it is sufficient to see that

Tt(0; 0, c1) is invertible. Set Tt(0; 0, c1)[R,S] = 0. Then We have

{

R̈− c∗0Ṙ+ fu(φ0, 0)R + fv(φ0, 0)S = 0,

c∗0Ṡ = 0.

The second equation and boundary condition imply that S = 0. Any solution

of the first equation must be a multiplicity of Φ̇1 so that R ≡ 0 because

Φ̇1 > 0 and we impose the boundary condition of R(0) = 0. Hence Tt(0; 0, c1)

is one-to-one. Thus it is clear that Tt(0; 0, c1) is onto. �

The following lemma is obvious from the definition of T .

Lemma 2. Fix δ > 0 independent of ε and c1. Then, ‖T (0; ε, c1)‖Xµ
=

O(ε) uniformly in c1 ∈ Λδ as ε→ 0.

Finally, we obtain the following lemma, which complete the proof of

Theorem 3.

Lemma 3. Fix δ > 0. Then, there exists ε0 > 0 such that the equation

T (t; ε, c1) = 0

has a unique solution t(ε, c1) ∈ Bγ(0) for any ε ∈ (0, ε0) and c1 ∈ Λδ,

Moreover,

‖t(ε, c1)‖Xµ
= O(ε)

uniformly in c1 ∈ Λδ as ε→ 0.

Next we prove Theorem 4. We denote θl(y) = θ(y/τ∗0 ) and θr(y) =

θ((1− y)/τ∗0 ). Substituting these into (3.10), we get

T1(t; ε, c1, τ1)
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= ε{U0 + εU1 + θl
(

φl0 + εφl1

)

+ θr (φr0 + εφr1) + εR+ εh′+(V0)S}yy

−(c∗0 + εc1)

(

1 + ε
τ1
τ∗0

)

{U0 + εU1 + θl
(

φl0 + εφl1

)

+ θr (φr0 + εφr1)

+εR+ εh′+(V0)S}y +
1

ε

(

1 + ε
τ1
τ∗0

)2

f(U0 + εU1 + θl(φl0 + εφl1)

+θr(φr0 + εφr1) + εR + εh′+(V0)S, V0 + εV1 + εθl(ψl
0 + εψl

1)

+εθr(ψr
0 + εψr

1) + εS + εθl(S(1)(0)− εψl
1(0))),

T2(t; ε, c1, τ1)

=
1

ε
(c∗0 + εc1){V0 + εV1 + εθl

(

ψl
0 + εψl

1

)

+ εθr (ψr
0 + εψr

1)

+εS + εθl(S(1)(0) − εψl
1(0))}y −

1

ε

(

1 + ε
τ1
τ∗0

)

g(U0 + εU1

+θl(φl0 + εφl1) + θr(φr0 + εφr1) + εR+ εh′+(V0)S, V0 + εV1

+εθl(ψl
0 + εψl

1) + εθr(ψr
0 + εψr

1) + εS + εθl(S(1)(0) − εψl
1(0)))

with the boundary conditions

R(0) = R(τ∗0 ) = S(0) = 0.

Here we put t = (R,S) and T = (T1, T2) for simplicity. We regard T (t; ε, c1, τ1)

as an operator from Xε × (0,∞) × Ξδ to Yε, where Xε and Ξδ are given in

Section 3.3, and Yε = C(0, τ∗0 )× C1
ε (0, τ

∗
0 ) and

C1
ε (0, τ

∗
0 ) =

{

ϕ ∈ C1(0, τ∗0 )
∣

∣

∣
‖ϕ‖C1

ε
=

1
∑

i=0

max
[0,τ∗

0
]

∣

∣

∣

(

ε
d

dy

)i
ϕ
∣

∣

∣
<∞

}

.

We prove Theorem 4 by the same argument as in the proof of Theorem

3. We first show the invertibility of Tt(0; ε, c1, τ1).

Lemma 4. Fix δ > 0, and let α− h+(0) and β − h+(v
∗) be sufficiently

small and fixed. Then there exists a constant ε0 > 0 such that Tt(0; ε, c1, τ1) :

Xε → Yε is invertible for any ε ∈ (0, ε0) and (c1, τ1) ∈ Ξδ. Also, there exists

a constant M > 0 independent of ε, c1 and τ1 such that

‖T−1
t (0; ε, c1, τ1)‖ ≤M.
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We divide Tt(0; ε, c1, τ1) into two parts such as

Tt(0; ε, c1, τ1) = L+K,

where L is a main part of Tt(0; ε, c1, τ1) defined by

L

(

R

S

)

=

(

L1R −εc∗0h
′
+(V0)S

′

−guR L2S

)

and K is a small part of Tt(0; ε, c1, τ1) and satisfies

‖K‖ ≤ c(ε+ |φl0|+ |φr0|).

The differential operators L1 and L2 are defined by

L1R = ε2R′′ − εc∗0R
′ + fuR, L2S = c∗0S

′ − (guh
′
+(V0) + gv)S

and fu, gu, gv are defined by

fu = fu(U0 + θlφl0 + θrφr0, V0),

gu = gu(U0 + θlφ0 + θrφ0, V0),

gv = gv(U0 + θlφ0 + θrφ0, V0).

If both α − h+(0) and β − h+(v
∗) are small, we know that ‖K‖ is small

for small ε > 0. From the above calculations, it suffices to show that L is

invertible and ‖L−1‖ ≤ K. We first consider L1.

Proposition 1. L1(ε, c1, τ1) : C
2
ε (0, τ

∗
0 ) → C(0, τ∗0 ) is invertible. More-

over, there is a constant M > 0 independent of ε such that ‖L−1
1 ‖ ≤M .

Proof. Note that

fu < 0 (5.1)

in [0, τ∗0 ] because α − h+(0) and β − h+(v
∗) are small. Suppose L1R = 0.

Multiplying R to the both sides of L1R = 0 and integrating it by parts, we

obtain

ε2
∫ τ∗

0

0
|R′|2dy −

∫ τ∗
0

0
fu|R|

2dy = 0,

which implies that R ≡ 0. From the Fredholm’s alternative, L1 is invertible.
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Next we assume that for F ∈ Cε, there is a solution of L1R = F in

R ∈ C2
ε . If R has a maximum at τ ∈ (0, τ∗0 ), we have

fuR ≥ F

because of R′′ ≤ 0 and R′ = 0 at τ . From (5.1), R ≤ C‖F‖L∞ for a constant

C > 0 independent of ε. Similarly, if R has a minimum in τ ∈ (0, τ∗0 ),

R ≥ −C‖F‖L∞ holds. Therefore we have |R| ≤ C‖F‖L∞ in [0, τ∗0 ]. From

the same argument and using L1R = F , we prove

|εR′| ≤ C‖F‖L∞ , |ε2R′′| ≤ C‖F‖L∞ .

This completes the proof. �

Proposition 2. L2(ε, c1, τ1) : C2
1,ε(0, τ0) → C1

ε (0, τ0) is invertible.

Moreover, there is a constant M > 0 independent of ε such that ‖L−1
2 ‖ ≤M .

Proof. The invertibility of L2 is obvious. We suppose that for h ∈ C1
ε ,

there is a solution S ∈ C2
1,ε such that

c∗0S
′ − (guh

′
+(V0) + gv)S = h.

This equation can be written as an integral form of

S(y) =

∫ y

0
exp

{
∫ y

s
(guh

′
+(V0) + gv)dx

}

h

c∗0
ds.

Hence

|S(y)| ≤ C‖h‖L∞ .

Similarly, we have

|S′(y)| ≤ C‖h‖L∞ , |εS′′(y)| ≤ C‖h‖C1
ε
.

This completes the proof. �

From the above two propositions, we can prove Lemma 4.

Proof. Consider L[R,S] = (F,G) for any given F ∈ C(0, τ∗0 ) and G ∈
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C1
ε (0, τ

∗
0 ). Then,

{

ε2R′′ − εc∗0R
′ + fuR− εc∗0h

′
+(V0)S

′ = F,

c∗0S
′ − (guh

′
+(V0) + gv)S − guR = G.

From the second equation,

S′ =
1

c∗0

{

(guh
′
+(V0) + gv)S + guR+G

}

.

Substituting this into the first equation, we have

L1R−
εh′+(V0)

c∗0
{(guh

′
+(V0) + gv)S + guR+G} = F.

Since L1 is invertible,

L̃1 ≡ L1 −
εh′+(V0)

c∗0
gu

is so. We solve the first equation with respect to R, having

R = L̃−1
1

[

εh′+(V0)

c∗0
{(guh

′
+(V0) + gv)S +G}+ F

]

.

We substitute this into the second equation. The result equation is

L2S − εguL̃
−1
1

h′+(V0)

c∗0
(guh

′
+(V0) + gv)S = G+ guL̃

−1
1

(

εh′+(V0)

c∗0
G+ F

)

.

Since L2 is invertible, this equation can be solved and the solution (R,S)

satisfies

‖R‖C2
ε
(0,τ∗

0
) ≤ C(‖F‖L∞ + ‖G‖C1

ε
(0,τ∗

0
)),

‖S‖C2

1,ε
(0,τ∗

0
) ≤ C(‖F‖L∞ + ‖G‖C1

ε
(0,τ∗

0
)).

�

From Lemma 4, we know that Tt(0; ε, c1, τ1) is invertible. The following

lemma is obvious from the definition of T .

Lemma 5. Fix δ > 0, and let α− h+(0) and β − h+(v
∗) be sufficiently

small and fixed. Then, ‖T (0; ε, c1, τ1)‖Yε
= o(1) uniformly in (c1, τ1) ∈ Ξδ

as ε→ 0.



2008] EIGENFUNCTIONS OF THE ADJOINT OPERATOR 663

The proof of this lemma contains only simple calculations and shall be

given below.

Thus we obtain the following lemma by the same argument as in the

proof of Lemma 3.

Lemma 6. Fix δ > 0, and let α− h+(0) and β − h+(v
∗) be sufficiently

small and fixed. Then, there exists ε0 > 0 such that , the equation

T (t; ε, c1, τ1) = 0

has a unique solution t(ε, c1, τ1) ∈ Xε for any ε ∈ (0, ε0) and (c1, τ1) ∈ Ξδ.

Moreover,

‖t(ε, c1, τ1)‖Xε
= o(1)

uniformly in (c1, τ1) ∈ Ξδ as ε→ 0.

We prove Lemma 5.

Proof. We first estimate T1(0; ε, c1, τ1). Since f is continuously differen-

tiable,

T1(0; ε, c1, τ1)

=
1

ε
(φ̈0 − c∗0φ̇0)− c∗0U

′
0 + φ̈1 − c∗0φ̇1 −

(

c1 +
τ1
τ∗0
c∗0

)

φ̇0

+
1

ε
f(U0 + εU1 + φ0 + εφ1, V0 + εV1 + εψ0) + 2

τ1
τ∗0
f(U0 + φ0, V0) +O(ε)

in y ∈ [0, τ∗0 /4]. Recall that θl = 1 and θr = 0 in y ∈ [0, τ∗0 /4]. The

superscript “ l ” is omitted for notational convenience. We expand f around

(U0 + φ0, V0) as

f(U0 + εU1 + φ0 + εφ1, V0 + εV1 + εψ0)

= f(U0+φ0, V0)+εfu(U0+φ0, V0)(U1+φ1)+εfv(U0+φ0, V0)(V1+ψ0)+o(ε).
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From the equations (3.14) and (3.16),

T1(0; ε, c1, τ1)

=
1

ε

(

1 + 2ε
τ1
τ∗0

)

{f(U0 + φ0, V0)− f(U0(0) + φ0, 0)}

+{fv(U0+φ0, V0)−fv(U0, V0)}V1+{fv(U0(0)+φ0, 0)−fv(U0(0), 0)}V1(0)

+{fv(U0(0)+φ0, 0)−fv(U0(0)+φ0, 0)}ψ0+{fu(U0+φ0, V0)

−fu(U0, V0)}U1 + {fu(U0 + φ0, V0)V0 − fu(U0(0) + φ0, 0)V0(0)}φ1

− {fu(U0(0) + φ0, 0) − fu(U0(0), V0)}U1(0) +O(ε).

We estimate each terms of the right-hand side of the above equality. Ex-

panding f(U0 + φ0, V0) around U0 as

f(U0 + φ0, V0) = fu(U0, V0)φ0 +

∫ φ0

0
(φ0 − t)fuu(U0 + t, V0)dt,

we have

f(U0 + φ0, V0)− f(U0(0) + φ0, V0) = (fu(U0, V0)− fu(U0(0), 0))φ0

+

∫ φ0

0
(φ0 − t)(fuu(U0 + t, V0)− fuu(U0(0) + t, 0))dt.

If α−h+(0) is small, there is sufficiently small σ > 0 such that |φ0| ≤ σe−κy/ε

for a constant κ > 0 independent of ε. Moreover, there is a constant C > 0

independent of ε such that |fu(U0, V0)−fu(U0(0), 0)| ≤ Cy. Hence we readily

see that
1

ε
|fu(U0, V0)− fu(U0(0), 0)||φ0 | ≤ Cσ

y

ε
e−κ y

ε ≤ Cσ.

Similarly, it holds that

1

ε

∫ φ0

0
|φ0 − t||fuu(U0 + t, V0)− fuu(U0(0) + t, 0)|dt ≤ Cσ.

We readily see that T1(0; ε, c1, τ1) = O(ε) in y ∈ [τ∗0 /4, τ
∗
0 /2] by using

(3.11), (3.12) and the similar arguments above. Additionally, it is shown

that T1(0; ε, c1, τ
∗
0 ) is small in y ∈ [τ∗0 /2, τ

∗
0 ] from the same argument as in

y ∈ [0, τ∗0 /2].

Next we claim that T2(0; ε, c1, τ1) is small in C2
1,ε. Since g is continuously
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differentiable,

T2(0; ε, c1, τ1) =
1

ε
c∗0(V

′
0 + ψ̇0) + (c1V

′
0 + c∗0V

′
1 + c1ψ̇0)

−
1

ε
g(U0 + εU1 + φ0 + εφ1, V0 + εV1 + εψ0)

−
τ1
τ∗0
g(U0 + φ0, V0) +O(ε),

in y ∈ (0, τ∗0 /4] where “
l” of functions is omitted for notational convenience.

From the similar argument to the above, it is easy to see that |T2(0; ε, c1, τ1)|

is small for sufficiently small ε > 0. On the other hand,

ε(T2(0; ε, c1, τ1))
′ = c∗0V

′′
0 +

1

ε
(c∗0+εc1)ψ̈0+c

∗
0ψ̈1−gu(U0+φ0, V0)(U

′
0+φ̇1)

−
1

ε

(

1+ε
τ1
τ∗0

)

gu(U0+εU1+φ0+εφ1, V0+εV1+εψ0)φ̇0

− gv(U0 + φ0, V0)(V
′
0 + ψ̇0) +O(ε).

Differentiating the both sides of (3.11), (3.12), (3.14) and (3.16), we have

ε(T2(0; ε, c1, τ1))
′

=
1

ε
{gu(U0(0) + φ0, 0)− gu(U0 + φ0, V0)}φ̇0

+ {guu(U0(0) + φ0, 0)(U1(0) + φ1)− guu(U0 + φ0, V0)(U1 + φ1)}φ̇0

+ {guv(U0(0) + φ0, 0)(V1(0) + ψ0)− guv(U0 + φ0, V0)(V1 + ψ0)}φ̇0

+
τ1
τ∗0

{gu(U0(0) + φ0, 0) − gu(U0 + φ0, V0)}φ̇0

+ {gv(U0(0) + φ0, 0)− gv(U0 + φ0, V0)}ψ̇0

+ {gu(U0(0) + φ0, 0)− gu(U0 + φ0, V0)}φ̇1

+ {gu(U0, V0)− gu(U0 + φ0, V0)}U
′
0 + {gv(U0, V0)− gv(U0 + φ0, V0)}V

′
0

+ {gu(U0(0) + φ0, 0)− gu(U0(0), V0(0))}U
′
0(0)

+ {gv(U0(0) + φ0, 0)− gv(U0(0), V0(0))}V
′
0 (0)

+ {guu(U0(0) + φ0, 0)U
′
0(0)guv(U0(0) + φ0, 0)V

′
0(0)}

y

ε
φ̇0 +O(ε).

From the similar argument to the above, it is easy to see that ε(T2(0; ε, c1, τ1))
′

is small for sufficiently small ε > 0. This completes the proof. �
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