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Abstract

An M-space is a metric space (X, d) having the property

that for each pair of points p, q ∈ X with d(p, q) = λ and for

each real number α ∈ [0, λ], there is a unique rα ∈ X such that

d(p, rα) = α and d(rα, q) = λ − α. In an M-space (X, d), we say

that metric segments have unique prolongations if points p, q, r,

s satisfy d(p, q) + d(q, r) = d(p, r), d(p, q) + d(q, s) = d(p, s) and

d(q, r) = d(q, s) then r = s.

This paper mainly deals with some results on best approx-

imation in metric spaces for which metric segments have unique

prolongations.

Rotundity or strict convexity has been studied extensively in Banach

spaces (see e.g., [6]). It is well known that metric lines are unique in a Ba-

nach space B if and only if B is strictly convex ([1], [2], [3], [10]). This result

is not valid in the metric space setting. There are complete convex, exter-

nally convex metric spaces (see [4], [5], [7]) in which the concepts of strict

convexity and unique metric lines are not equivalent. However, Freese and

Murphy [4], Freese, Murphy and Andalafte [5] and Khalil [7] have shown that

unique metric lines (metric segments have unique prolongations) and strict

convexity (redefined in purely metric terms) are equivalent in a larger class
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of spaces. This paper mainly deals with some results on best approximation

in metric spaces for which metric segments have unique prolongations.

Following Khalil [7], we call a metric space (X, d) an M-space provided

for every two points p, q ∈ X with d(p, q) = λ and every real number α ∈

[0, λ], there is a unique point rα ∈ X such that d(p, rα) = α and d(rα, q) =

(λ − α). It is easy to show that M-spaces have unique between points and

hence unique metric segments, but do not necessarily have unique metric

lines or metric lines at all (see [7]).

A metric space (X, d) is called strictly convex [5] or has strictly convex

spheres [4] provided if p, q, r ∈ X with d(p, q) = d(p, r), then for every point

s metrically between q and r, d(p, s) < d(p, q).

An M-space (X, d) is externally convex [5] provided for each two distinct

points p, q ∈ X, there exists a point r ∈ X, r 6= q such that d(p, q)+d(q, r) =

d(p, r). The space X is called strongly externally convex [5] provided for all

distinct points p, q ∈ X such that d(p, q) = λ and for k > λ, there exists a

unique point r ∈ X such that d(p, q) + d(q, r) = d(p, r) = k.

If (X, d) is an M-space, we say that metric segments in X have unique

prolongations [5] if points p, q, r, s satisfy d(p, q)+d(q, r) = d(p, r), d(p, q)+

d(q, s) = d(p, s) and d(q, r) = d(q, s) then r = s.

A subset V of a metric space (X, d) is said to be proximinal provided

for each p ∈ X there is at least one point ν in V , called a foot of p on V

(or a best approximation of p in V ), such that d(p, ν) = inf{d(p, q) : q ∈ V }.

If this point ν is also unique for each p ∈ X then V is called a Chebyshev

set. The set of all such ν ∈ V is denoted by PV (p). The mapping PV which

takes each element of X into its sets of best approximations in V is called

metric projection.

A proximinal set V is said to be a semi-sun [8] if for each x ∈ X \ V

and r > 0 there exists z ∈ X and ν ∈ PV (z) such that d(z, x) = r and

x ∈ G[ν, z] ≡ {u ∈ X : d(ν, u) + d(u, z) = d(ν, z)}, the metric segment

joining ν and z.

A proximinal set V is called a sun [8] if for all x ∈ X \ V , there is

ν ∈ PV (x), such that ν ∈ PV (z) for all z ∈ G(ν, x,−) ≡ the largest line

segment joining G[x, ν] for which x is an extreme point i.e., the ray starting

from ν and passing through x.
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A normed linear space X is called strictly convex (see [6]) if x, y ∈ X,

x 6= 0, y 6= 0 and ‖x + y‖ = ‖x‖ + ‖y‖ imply x = λy, λ > 0. Equivalently,

whenever x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y, then
∥

∥

∥

x+ y

2

∥

∥

∥

< 1.

The following two propositions show that in a strictly convex normed

linear space, metric segments have unique prolongations.

Proposition 1. A strictly convex normed linear space is an M-space.

Proof. Let X be a strictly convex normed linear space and z1, z2 ∈

B[x, r]∩B[y, λ−r], where λ = d(x, y). This gives ‖x−z1‖ ≤ r, ‖x−z2‖ ≤ r,

‖y− z1‖ ≤ λ− r, ‖y− z2‖ ≤ λ− r. Consider ‖x− y‖ ≤ ‖x− z1‖+‖z1− y‖ ≤

r + λ − r = λ = ‖x − y‖. Therefore equality holds throughout and so

‖x− y‖ = ‖x− z1‖+ ‖z1 − y‖. By the strict convexity, z1− y = t(x− z1) for

some t > 0 (see [9], p.4) i.e., z1 =
1

1 + t
y+

t

1 + t
x i.e., z1 lies in between x and

y. Similarly, z2 lies in between x and y. Since ‖x− y‖ = ‖x− z1‖+ ‖z1− y‖,

‖x−z1‖ = r and ‖y−z1‖ = λ−r. Similarly, ‖x−z2‖ = r and ‖y−z2‖ = λ−r.

Consider

‖z1 − z2‖ =
∣

∣

∣
‖x− z2‖ − ‖x− z1‖

∣

∣

∣
= |r − r| = 0

and so z1 = z2. �

Proposition 2. If X is a strictly convex normed linear space then

metric segments in X have unique prolongations.

Proof. Let p, q, r, s ∈ X be such that

‖p − q‖+ ‖q − r‖ = ‖p− r‖ (1)

‖p − q‖+ ‖q − s‖ = ‖p− s‖ (2)

and ‖q − r‖ = ‖q − s‖.

Since X is strictly convex, (1) gives p − q = t(q − r) and (2) gives

p−q = λ(q−s) (see [9], p.4) i.e., q =
1

1 + t
p+

t

1 + t
r and q =

1

1 + λ
p+

λ

1 + λ
s

i.e., q lies on the line segment joining p and r and q lies on the line segment

joining p and s.

Now ‖r − s‖ =
∣

∣‖q − r‖ − ‖q − s‖
∣

∣ = 0 gives r = s. �

Remarks 1. A strictly convex metric space is an M-space [5].
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2. In a strictly convex metric space, metric segments need not have unique

prolongations. (see [5])

There are some metric spaces in which metric segments have unique

prolongations.

Example 1. Let X be the union of two distinct half lines of the Eu-

clidean plane with common origin O. The metric d of x, y is defined to be

their Euclidean distance if they lie on the same half line but their distance

is defined to be the sun of their respective distances from O if they lie on

different half lines.

Take any two points x and y on different half lines then d(x, y) =

d(x, 0) + d(0, y). Suppose y1 is such that d(x, y1) = d(x, 0) + d(0, y1) to-

gether with d(0, y) = d(0, y1) then y must be equal to y1.

Other cases are trivial. Hence metric segments in (X, d) have unique

prolongations.

The following examples show that in an externally convex metric space,

metric segments need not have unique prolongations:

Example 2. Let X be the union of two lines in the cartesian plane

whose equations are y = 1 and y = 2. Let the distance d(A,B) for A =

(x1, y1), B = (x2, y2) be given by |x1 − x2| if y1 = y2 and 1 + |x1| + |x2| if

y1 6= y2.
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Consider points P1 = (−3, 2), P2 = (0, 2), P3 = (3, 2), P4 = (1, 1). Then

d(P1, P4) = 5 = d(P1, P2) + d(P2, P4), d(P3, P4) = 5 = d(P3, P2) + d(P2, P4),

d(P1, P2) = d(P3, P2) but P1 6= P3.

Example 3. Let X be the union of three distinct half lines given by

x = y, x = −2y, x = 2y of the Euclidean plane with common origin O. The

metric d of x, y is defined to be their Euclidean distance if they lie on the

same half line but their distance is defined to be the sun of their respective

distances from O if they lie on different half lines.

Consider points P1 = (1, 1), P2 = (−2, 1), P3 = (−2,−1), O = (0, 0).

Then

d(P1, P2) = d(P1, O) + d(O,P2),

d(P1, P3) = d(P1, O) + d(O,P3),

d(O,P2) = d(O,P3), but P2 6= P3.

However, we have the following proposition giving another class of metric

spaces in which metric segments have unique prolongations:

Proposition 3. If (X, d) is a metric space with strong external convex-

ity then metric segments in X have unique prolongations.

Proof. Let p, q, r, s ∈ X be such that

d(p, q) + d(q, r) = d(p, r), d(p, q) + d(q, s) = d(p, s) (∗)

and d(q, r) = d(q, s). This gives d(p, r) = d(p, s) = k (say) and d(p, r) >

d(p, q) i.e., k > d(p, q) ≡ λ. Therefore by the strong external convexity of

X, there exists unique element satisfying (∗) and so r = s. �

Next proposition deals with best approximation in metric spaces in

which metric segments have unique prolongations.

Proposition 4. Let (X, d) be a convex metric space, V ⊆ X, x ∈ X,

ν0 ∈ PV (x) and xλ ∈ G[ν0, x] then ν0 ∈ PV (xλ). If (X, d) is an M-space in

which metric segments have unique prolongations then PV (xλ) is a singleton.
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Proof. Consider

d(xλ, ν0) = d(x, ν0)− d(x, xλ)

≤ d(x, ν)− d(x, xλ) for all ν ∈ V

≤ d(x, xλ) + d(xλ, ν)− d(x, xλ) for all ν ∈ V

= d(xλ, ν) for all ν ∈ V.

This gives ν0 ∈ PV (xλ).

Now suppose metric segments in X have unique prolongations. Let

ν0, ν1 ∈ PV (xλ). Consider

d(x, ν1) ≤ d(x, xλ) + d(xλ, ν1)

= d(x, xλ) + d(xλ, ν0) = d(x, ν0) = d(x, ν1).

Therefore equality holds throughout and so

d(x, ν1) = d(x, xλ) + d(xλ, ν1),

d(x, ν0) = d(x, xλ) + d(xλ, ν0).

Also d(xλ, ν1) = d(xλ, ν0). By unique prolongations, we have ν0 = ν1. �

Corollary 1. Let (X, d) be a strongly externally convex metric space,

V ⊆ X, x ∈ X, ν0 ∈ PV (x) and xλ ∈ G[ν0, x] then PV (xλ) = {ν0}.

Corollary 2.([8], Lemma 3, p.371) Let V be a subset of a normed linear

space X and x ∈ X \ V . If ν0 ∈ PV (x) and xλ = ν0 + λ(x − ν0) for some

λ ∈ [0, 1[ is a point of ]x, ν0], then ν0 ∈ PV (xλ). Moreover, if X is strictly

convex and xλ ∈]x, ν0] then PV (xλ) is the singleton {ν0}.

Clearly every sun is a semi-sun. However, it is not known whether every

semi-sun is a sun. The following proposition gives conditions under which a

semi-sun is a sun:

Proposition 5. If (X, d) is an M-space in which metric segments have

unique prolongations, V is a semi-sun and PV is compact valued (i.e., PV (x)

is compact for each x ∈ X) then V is a sun.
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Proof. Let x ∈ X \ V . Since V is a semi-sun, for each n ∈ N , we

can pick zn ∈ X and νn ∈ PV (zn) such that x ∈ G[νn, zn] and d(zn, x) =

nd(x, V ). Then νn ∈ PV (x) for all n i.e., {νn} ⊆ PV (x) for all n. Since

PV (x) is compact, there is a subsequence {vnk
} converging to ν in PV (x).

Let z ∈ G(ν, x,−) be such that d(z, x) = λd(x, ν) = λd(x, V ). For V to be

a sun, we show that ν ∈ PV (z).

Let wn ∈ G(νn, x,−) be such that d(wn, x) = λd(x, νn) = λd(x, V ).

Now zn, wn ∈ G(νn, x,−) are such that d(zn, x) = nd(x, V ) and d(wn, x) =

λd(x, V ). For n ≥ λ, wn ∈ G[νn, zn]. Now

d(wn, νn) = d(νn, x) + d(x,wn)

implies

d(limwnk
, ν) = d(ν, x) + d(x, limwnk

)

and so, limwnk
∈ G(ν, x,−). Also z ∈ G(v, x,−) and d(limwnk

, x) =

λd(x, V ) = d(z, x). By unique prolongations, we get limwnk
= z and

nk ≥ λ eventually. As wnk
∈ G[νnk

, znk
], νnk

∈ PV (wnk
) eventually i.e.,

d(wnk
, νnk

) = d(wnk
, V ). On taking limit, this gives d(z, ν) = d(z, V ) i.e.,

ν ∈ PV (z) and hence V is a sun. �

Note. For Banach spaces, Proposition 5 is given in [8], p.471.

The following theorem gives conditions under which a sun is a Chebyshev

set:

Theorem 1. If (X, d) is an M-space in which metric segments have

unique prolongations then every sun in X is a Chebyshev set.

Proof. Let V be a sun in X and x ∈ X. Suppose u0, u1 ∈ PM (x)

i.e., d(x, uo) = d(x, u1) = d(x, V ). Let xt ∈ G(u0, x,−) then u0 ∈ PV (xt).

Consider

d(xt, u1) ≤ d(xt, x) + d(x, u1)

= d(xt, x) + d(x, u0) = d(xt, u0) ≤ d(xt, u1)

and so equality holds throughout. Consequently, d(xt, u1) = d(xt, u0). Also

d(xt, u1) = d(xt, x) + d(x, u1), d(xt, u0) = d(xt, x) + d(x, u0). Since metric
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segments in X have unique prolongations, u0 = u1 and hence V is Cheby-

shev. �

Corollary.([8], p.470) If X is a strictly convex normed linear space then

every sun in X is Chebyshev.

Combining Proposition 5 and Theorem 1, we get

Theorem 2. If (X, d) is an M-space in which metric segments have

unique prolongations, V is a semi-sun and PV is compact valued then V is

Chebyshev.
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