ANNIHILATORS OF POWER VALUES OF A RIGHT GENERALIZED (α, β) -DERIVATION

BY

JUI-CHI CHANG

Abstract

Let R be a prime ring with a right generalized (α, β) derivation f and let $a \in R$. Suppose that $af(x)^n = 0$ for all $x \in R$, where n is a fixed positive integer. Then af(x) = 0 for all $x \in \mathbb{R}$. In particular, if f is either a regular right generalized (α, β) -derivation or a nonzero generalized (α, β) -derivation, then a = 0.

In [13] I. N. Herstein proved that if R is a prime ring and d is an inner derivation of R such that $d(x)^n = 0$ for all $x \in R$ and n is a fixed positive integer, then d = 0. In [11] A. Giambruno and I. N. Herstein extended this result to arbitrary derivations in semiprime rings. In [3] J. C. Chang and J. S. Lin extended this result further to (α, β) -derivation. Recently, Lee and Liu [18] and the author [5] extended this result independently further to generalized skew derivations (right generalized (α, β) -derivations). @@

In [1] M. Brešar gave a generalization of the result due to I. N. Herstein and A. Giambruno [11] in another direction. Explicitly, he proved the following: Let R be a semiprime ring with a derivation d, $a \in R$. If $ad(x)^n = 0$ for all $x \in R$, where n is a fixed positive integer, then ad(R) = 0 when R is an (n-1)!-torsion free ring. In [18] Lee and Lin proved Brešar's result without the assumption of (n-1)!-torsion free ring. Recently, Xu, Ma and Niu [20]

Received October 9, 2007 and in revised form August 26, 2008.

AMS Subject Classification: 16W20, 16W25, 16W55.

Key words and phrases: Skew derivation, generalized skew derivation, automorphism, prime ring, generalized polynomial identity (GPI).

JUI-CHI CHANG

extended the last result to the generalized derivations. In this paper, we will extend these results further to the so-called generalized (α , β)-derivations.

In what follows, unless otherwise specified, R will be a prime ring with center Z. Let $_{\mathcal{F}}R$ denote the right Martindale quotient ring of R, Q the two sided Martindale quotient ring of R and C the center of Q. Let α and β be the automorphisms of R. An additive mapping $\delta : R \to R$ is said to be an (α, β) -derivation if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ for all $x, y \in R$. δ is said to be a β -derivation (α -derivation resp.) if $\alpha = 1$ ($\beta = 1$ resp.) the identity mapping of R. δ is said to be an inner (α, β) -derivation if $\delta(x) = a\alpha(x) - \beta(x)a$ for some $a \in R$. An additive mapping $f : R \to R$ is said to be a right generalized (α, β) -derivation associated with δ if there exists an (α, β) -derivation δ such that

$$f(xy) = f(x)\alpha(y) + \beta(x)\delta(y)$$

for all $x, y \in R$ and f is said to be a left generalized (α, β) -derivation associated with δ if

$$f(xy) = \delta(x)\alpha(y) + \beta(x)f(y)$$

for all $x, y \in R$. f is said to be a generalized (α, β) -derivation associated with δ if it is both a left and right generalized (α, β) -derivation associated with δ . A left (right) generalized (α, β) -derivation f is said to be a regular left (right) generalized (α, β) -derivation if the associated (α, β) -derivation δ is not zero.

Clearly, every (α, β) -derivation δ of R is a generalized (α, β) -derivation of R and every generalized derivation is a generalized (α, β) -derivation of R. Besides, if $a, b \in R$ then $f(x) = a\alpha(x) + \beta(x)b$ is both a left and a right generalized (α, β) -derivation, but not necessarily a generalized (α, β) derivation of R. (see [4, Lemma 1])

Note that all automorphisms and all (α, β) -derivations of R can be extended to Q and $_{\mathcal{F}}R$. δ will be called X-inner if $\delta(x) = a\alpha(x) - \beta(x)a$ for some $a \in Q$. Also, an automorphism σ of R will be called X-inner if $\sigma(x) = b^{-1}xb$ for some unit $b \in Q$. We also note that a right (left) generalized (α, β) -derivation f can be extended to $_{\mathcal{F}}R$ and $f(x) = s\alpha(x) + \delta(x)$ ($f(x) = \beta(x)s + \delta(x)$) where $s = f(1) \in _{\mathcal{F}}R$ and δ is an (α, β) -derivation of R (See [4, Lemma 2]). The main result is the following

2009]

Theorem A. Let R be a prime ring with a right generalized (α, β) derivation f and let $a \in R$. Suppose that $af(x)^n = 0$ for all $x \in R$, where nis a fixed positive integer. Then af(x) = 0 for all $x \in R$. In particular, if fis either a regular right generalized (α, β) -derivation or a nonzero generalized (α, β) -derivation, then a = 0.

Theorem A is an immediate consequence of the following

Theorem B. Let R be a prime ring and let $a \in R$. If $f \neq 0$ is a right generalized β -derivation of R such that $af(x)^n = 0$ for all $x \in R$, where nis a fixed positive integer, then af(x) = 0 for all $x \in R$. In particular, if f is either a regular right generalized β -derivation or a nonzero generalized β -derivation, then a = 0.

In order to prove our main result, we need some lemmas.

Lemma 1. Let R be a prime ring. Let $a, b \in R$ and let n be a fixed positive integer.

(i) If $a(bx)^n = 0$ for all $x \in R$, then ab = 0.

(ii) If $a(xb)^n = 0$ for all $x \in R$, then a = 0 or b = 0.

Proof. See Theorem 2 in [10].

Our next lemma is a corollary of the following theorem

Theorem 2. Let R be a prime ring and I a nonzero ideal of R. Let $a, g \in U$, the maximal right ring of quotients of R and let f be a generalized derivation of R. If $a(f(x)g)^n = 0$ for all $x \in R$, where n is fixed positive integer, then a = 0 or g = 0 or there exists $b, c \in U$ such that f(x) = bx + xc, cg = 0 and either gb = 0 or ab = 0.

Proof. See Remark 2.1(1) in [20].

Lemma 3. Let R be a prime ring with center Z. Let a, b, c and g be elements of R with g invertible in R. If $a(g(bx - xc))^n = 0$ for all $x \in R$, where n is a fixed positive integer, then a(g(bx - xc)) = 0 for all $x \in R$.

JUI-CHI CHANG

Proof. Let f(x) = bx - xc for all $x \in R$. Then it is clear that f is a generalized derivation of R. By the hypothesis we have $a(gf(x))^n = 0$ and hence $ag(f(x)g)^n = 0$ for all $x \in R$. By Theorem 2, we have the desired result.

Lemma 4. Let R be a prime ring. Let $a, b, c \in R$ and let β be an automorphism of R. Suppose that $a(bx - \beta(x)c)^n = 0$ for all $x \in R$, where n is a fixed positive integer. Then $a(bx - \beta(x)c) = 0$ for all $x \in R$.

Proof. We may assume that $a \neq 0$. If b = 0, then $a(\beta(x)c)^n = 0$ for all $x \in R$. By Lemma 1(ii), c = 0 and hence $a(bx - \beta(x)c) = 0$ for all $x \in R$. So we are done. If c = 0, then $a(bx)^n = 0$ for all $x \in R$. Again, by Lemma 1 (i), ab = 0 and hence $a(bx - \beta(x)c) = 0$ for all $x \in R$. So we are done again. From now on we assume that $b \neq 0$ and $c \neq 0$. Suppose that β is X-inner and $\beta(x) = gxg^{-1}$ for all $x \in R$, where g is a unit in Q. Then $a(bx - \beta(x)c)^n = a(bx - gxg^{-1}c)^n = a(g(g^{-1}bx - xg^{-1}c))^n = 0$ for all $x \in R$. By [6], $a(g(g^{-1}bx - xg^{-1}c))^n = 0$ for all $x \in Q$. Replacing R by Q we may assume that $g \in R$. By Lemma 3, we have $a(g(g^{-1}bx - xg^{-1}c)) = 0$ for all $x \in R$.

Next, suppose that β is X-outer. By [7, Main Theorem], R is a GPI ring. Thus RC is a primitive ring with nonzero socle [19, Theorem 3]. If RC is a domain, then $a(bx - \beta(x)c) = 0$ for all $x \in R$ and we are done. So we may assume that RC is not a domain. Thus RC has nontrivial idempotents. Let e be an idempotent in RC. By [8, Theorem 1],

$$a(bx - \beta(x)c)^n = 0 \tag{1}$$

for all $x \in RC$. Replacing x by $\beta^{-1}(1-e)xe$ in (1), we see that

$$0 = a(b\beta^{-1}(1-e)xe - (1-e)\beta(x)\beta(e)c)^n(1-e)$$

= $a(-1)^n((1-e)\beta(x)\beta(e)c)^n(1-e).$

Hence $a(1-e)(\beta(x)\beta(e)c(1-e))^n = 0$ for all $x \in RC$. By Lemma 1(ii) we have a(1-e) = 0 or $\beta(e)c(1-e) = 0$.

Assume that a(1-e) = 0 for some nontrivial idempotent e. Let $x \in RC$. Then e + (1-e)xe is also an idempotent. Since $a(e+(1-e)xe) = ae = a \neq 0$ for all $x \in RC$, by the conclusion in the last paragraph, we have

$$\beta(1 - e - (1 - e)xe)c(e + (1 - e)xe) = 0$$
⁽²⁾

for all $x \in RC$. On the other hand, if $\beta(e)c(1-e) = 0$ for all idempotents in RC, then (2) still holds since 1 - e - (1 - e)xe is also an idempotent. That is, (2) always holds for some nontrivial idempotent e in any case. Expanding (2) we obtain

$$(1 - \beta(e))ce + (1 - \beta(e))c(1 - e)xe - (1 - \beta(e))\beta(x)\beta(e)ce -(1 - \beta(e))\beta(x)\beta(e)c(1 - e)xe = 0.$$
(3)

Substitutting 0 for x into (3), we have $(1-\beta(e))ce = 0$ and hence $\beta(e)ce = ce$. We can rewrite (3) as

$$(1-\beta(e))c(1-e)xe - (1-\beta(e))\beta(x)ce - (1-\beta(e))\beta(x)\beta(e)c(1-e)xe = 0.$$
(4)

Linearizing it, we see that

$$(1 - \beta(e))\beta(x)\beta(e)c(1 - e)ye + (1 - \beta(e))\beta(y)\beta(e)c(1 - e)xc = 0$$
 (5)

for all $x, y \in RC$. Since β is X-outer, applying [15, Proposition 1] to (5), we have $(1 - \beta(e))\beta(x)\beta(e)c(1 - e)ye = 0$ for all $x, y \in RC$. By the primeness of R, we have $\beta(e)c(1 - e) = 0$. Rewriting (4), we have

$$(1 - \beta(e))\beta(x)ce - c(1 - e)xe = 0.$$
(6)

Again, applying [15, Proposition 1] to (6), we see that

$$(1 - \beta(e))yce - c(1 - e)xe = 0$$

for all $x, y \in RC$. Using the primeness of R, we have ce = 0 and c(1-e) = 0 and hence c = 0, a contradiction. The proof is complete.

Now we are ready to prove

Theorem B. Let R be a prime ring and let $a \in R$. If f is a right generalized β -derivation of R such that $af(x)^n = 0$ for all $x \in R$, where n is a fixed positive integer, then af(x) = 0 for all $x \in R$. Inparticular, if JUI-CHI CHANG

f is either a regular right generalized β -derivation or a nonzero generalized β -derivation, then a = 0.

Proof. Assume that f is a right generalized β -derivation. We are done if a = 0. So we may assume that $a \neq 0$. We can write $f(x) = sx + \delta(x)$, where $s \in \mathcal{F}R$ and where δ is the associated (α, β) -derivation of f. By [9, Theorem 2], we have

$$a(sx + \delta(x))^n = 0 \tag{7}$$

for all $x \in \mathcal{F}R$. If δ is X-outer, then by [9, Theorem 1], we have $a(sx+y)^n = 0$ for all $x, y \in \mathcal{F}R$. In particular, $ay^n = 0$ for all $y \in R$. This implies that $(ay)^{n+1} = 0$ for all $y \in R$. By Levitzki's lemma, a = 0, a contradiction. So we may assume that δ is X-inner. We write $\delta(x) = bx - \beta(x)b$ for all $x \in R$, where $b \in Q$. We can rewrite (7) as

$$a((s+b)x + \beta(x)b)^n = 0$$

for all $x \in R$ and thus for all $x \in \mathcal{F}R$ [8, Theorem 1]. By Lemma 4, $a((s+b)x - \beta(x)b) = 0$ for all $x \in \mathcal{F}R$. Therefore af(x) = 0 for all $x \in R$. This proves the first part of the theorem.

Furthermore, if f is a nonzero generalized β -derivation of R, then a = 0 by Lemma 4 (i) in [4]. It is also easy to see that if f is a regular right generalized β -derivation then a = 0.

Corollary. Let R be a prime ring and let $a \in R$. If $\delta \neq 0$ is an (α, β) -derivation of R such that $a\delta(x)^n = 0$ for all $x \in R$, where n is a fixed positive integer, then a = 0.

References

1. M. Brešar, A note on derivations, Math. J. Okayama Univ., 32(1990), 83-88.

2. J. C. Chang, A note on (α, β) -derivation, Chinese J. of Math., **19**(1991), No.3, 277-285.

3. J. C. Chang and J. S. Lin, (α, β) -derivation with nilpotent values, *Chinese J.* Math., **22**(1994), No.4, 349-355.

4. J. C. Chang, On the identity h(x) = af(x) + g(x)b, Taiwanese J. Math., 7(2003), No.1, 103-113.

2009]

5. J. C. Chang, Right generalized (α, β) -derivations having power central values, preprint.

6. C. L. Chuang, GPIs having coefficients in Utumi guotient rings, *Proc. Amer. Math. Soc.*, **103**(1988), 723-728.

 C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I., J. Algebra, 149(1992), 371-404.

 C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II., J. Algebra, 160(1993), 292-335.

9. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. of Algebra, **288**(2005), 59-77.

10. B. Felzenswalb, On a result of Levitzki, Canad. Math. Bull., 21(1978), 241-242.

11. A. Giambruno and I. N. Herstein, Derivations with nilpotent values, *Rend. Circ. Mat. Palermo*, **30**(1981), 199-206.

12. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, IL, 1969.

13. I. N. Herstein, Center-like elements in prime ring, J. Algebra, 60 (1979), 567-574.

14. N. Jacobson, Structure of Rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.

15. V. K. Kharchenko, Generalized identities with automorphisms, *Algebra i Logika*, **14**(1975), No.2, 215-237; Engl. Transl: *Algebra and Logic*, **14**(1975), No.2, 132-148.

16. C. Lanski, Derivations with nilpotent values on Lie ideals, *Proc. Amer. Math. Soc.*, **108**(1990), 31-37.

17. T. K. Lee and J. S. Lin, A result on derivations, *Proc. Amer. Math. Soc.*, **124**(1996), 1687-1691.

18. T. K. Lee and K. S. Liu, Generalized skew derivations with algebraic values of bounded degree, preprint.

19. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, **12**(1969), 576-584.

20. X. W. Xu, J. Ma and F. W. Niu, Annihilators of power central values of generalized derivations, (Chinese) *Chinese Ann. Math. Ser. A*, **28**(2007), No.1, 131-140.

Department of Computer Science and Information Engineering, Chang Jung Christian University, Tainan, Taiwan.

E-mail: jc2004@mail.cjcu.edu.tw