ANNIHILATORS OF POWER VALUES OF A RIGHT GENERALIZED (α, β)-DERIVATION

BY

JUI-CHI CHANG

Abstract

Let R be a prime ring with a right generalized (α, β) derivation f and let $a \in R$. Suppose that $a f(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer. Then $a f(x)=0$ for all $x \in \mathrm{R}$. In particular, if f is either a regular right generalized (α, β)-derivation or a nonzero generalized (α, β)-derivation, then $a=0$.

In [13] I. N. Herstein proved that if R is a prime ring and d is an inner derivation of R such that $d(x)^{n}=0$ for all $x \in R$ and n is a fixed positive integer, then $d=0$. In [11] A. Giambruno and I. N. Herstein extended this result to arbitrary derivations in semiprime rings. In [3] J. C. Chang and J. S. Lin extended this result further to (α, β)-derivation. Recently, Lee and Liu [18] and the author [5] extended this result independently further to generalized skew derivations (right generalized (α, β)-derivations). @@

In [1] M. Bres̆ar gave a generalization of the result due to I. N. Herstein and A. Giambruno [11] in another direction. Explicitly, he proved the following: Let R be a semiprime ring with a derivation $d, a \in R$. If $a d(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer, then $\operatorname{ad}(R)=0$ when R is an $(n-1)$!-torsion free ring. In [18] Lee and Lin proved Bres̆ar's result without the assumption of $(n-1)$!-torsion free ring. Recently, Xu, Ma and Niu [20]

Received October 9, 2007 and in revised form August 26, 2008.
AMS Subject Classification: 16W20, 16W25, 16W55.
Key words and phrases: Skew derivation, generalized skew derivation, automorphism, prime ring, generalized polynomial identity (GPI).
extended the last result to the generalized derivations. In this paper, we will extend these results further to the so-called generalized (α, β)-derivations.

In what follows, unless otherwise specified, R will be a prime ring with center Z. Let ${ }_{F} R$ denote the right Martindale quotient ring of R, Q the two sided Martindale quotient ring of R and C the center of Q. Let α and β be the automorphisms of R. An additive mapping $\delta: R \rightarrow R$ is said to be an (α, β)-derivation if $\delta(x y)=\delta(x) \alpha(y)+\beta(x) \delta(y)$ for all $x, y \in R$. δ is said to be a β-derivation (α-derivation resp.) if $\alpha=1$ ($\beta=1$ resp.) the identity mapping of $R . \quad \delta$ is said to be an inner (α, β)-derivation if $\delta(x)=a \alpha(x)-\beta(x) a$ for some $a \in R$. An additive mapping $f: R \rightarrow R$ is said to be a right generalized (α, β)-derivation associated with δ if there exists an (α, β)-derivation δ such that

$$
f(x y)=f(x) \alpha(y)+\beta(x) \delta(y)
$$

for all $x, y \in R$ and f is said to be a left generalized (α, β)-derivation associated with δ if

$$
f(x y)=\delta(x) \alpha(y)+\beta(x) f(y)
$$

for all $x, y \in R . \quad f$ is said to be a generalized (α, β)-derivation associated with δ if it is both a left and right generalized (α, β)-derivation associated with δ. A left (right) generalized (α, β)-derivation f is said to be a regular left (right) generalized (α, β)-derivation if the associated (α, β)-derivation δ is not zero.

Clearly, every (α, β)-derivation δ of R is a generalized (α, β)-derivation of R and every generalized derivation is a generalized (α, β)-derivation of R. Besides, if $a, b \in R$ then $f(x)=a \alpha(x)+\beta(x) b$ is both a left and a right generalized (α, β)-derivation, but not necessarily a generalized (α, β) derivation of R. (see [4, Lemma 1])

Note that all automorphisms and all (α, β)-derivations of R can be extended to Q and ${ }_{F} R$. δ will be called X-inner if $\delta(x)=a \alpha(x)-\beta(x) a$ for some $a \in Q$. Also, an automorphism σ of R will be called X-inner if $\sigma(x)=b^{-1} x b$ for some unit $b \in Q$. We also note that a right (left) generalized (α, β)-derivation f can be extended to ${ }_{\mathcal{F}} R$ and $f(x)=s \alpha(x)+\delta(x)(f(x)=$ $\beta(x) s+\delta(x))$ where $s=f(1) \in{ }_{\mathcal{F}} R$ and δ is an (α, β)-derivation of R (See [4, Lemma 2]).

The main result is the following
Theorem A. Let R be a prime ring with a right generalized (α, β) derivation f and let $a \in R$. Suppose that $a f(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer. Then $a f(x)=0$ for all $x \in R$. In particular, if f is either a regular right generalized (α, β)-derivation or a nonzero generalized (α, β)-derivation, then $a=0$.

Theorem A is an immediate consequence of the following

Theorem B. Let R be a prime ring and let $a \in R$. If $f \neq 0$ is a right generalized β-derivation of R such that af $(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer, then $a f(x)=0$ for all $x \in R$. In particular, if f is either a regular right generalized β-derivation or a nonzero generalized β-derivation, then $a=0$.

In order to prove our main result, we need some lemmas.
Lemma 1. Let R be a prime ring. Let $a, b \in R$ and let n be a fixed positive integer.
(i) If $a(b x)^{n}=0$ for all $x \in R$, then $a b=0$.
(ii) If $a(x b)^{n}=0$ for all $x \in R$, then $a=0$ or $b=0$.

Proof. See Theorem 2 in [10].
Our next lemma is a corollary of the following theorem

Theorem 2. Let R be a prime ring and I a nonzero ideal of R. Let $a, g \in U$, the maximal right ring of quotients of R and let f be a generalized derivation of R. If $a(f(x) g)^{n}=0$ for all $x \in R$, where n is fixed positive integer, then $a=0$ or $g=0$ or there exists $b, c \in U$ such that $f(x)=b x+x c$, $c g=0$ and either $g b=0$ or $a b=0$.

Proof. See Remark 2.1(1) in [20].
Lemma 3. Let R be a prime ring with center Z. Let a, b, c and g be elements of R with g invertible in R. If $a(g(b x-x c))^{n}=0$ for all $x \in R$, where n is a fixed positive integer, then $a(g(b x-x c))=0$ for all $x \in R$.

Proof. Let $f(x)=b x-x c$ for all $x \in R$. Then it is clear that f is a generalized derivation of R. By the hypothesis we have $a(g f(x))^{n}=0$ and hence $a g(f(x) g)^{n}=0$ for all $x \in R$. By Theorem 2, we have the desired result.

Lemma 4. Let R be a prime ring. Let $a, b, c \in R$ and let β be an automorphism of R. Suppose that $a(b x-\beta(x) c)^{n}=0$ for all $x \in R$, where n is a fixed positive integer. Then $a(b x-\beta(x) c)=0$ for all $x \in R$.

Proof. We may assume that $a \neq 0$. If $b=0$, then $a(\beta(x) c)^{n}=0$ for all $x \in R$. By Lemma 1(ii), $c=0$ and hence $a(b x-\beta(x) c)=0$ for all $x \in R$. So we are done. If $c=0$, then $a(b x)^{n}=0$ for all $x \in R$. Again, by Lemma 1 (i), $a b=0$ and hence $a(b x-\beta(x) c)=0$ for all $x \in R$. So we are done again. From now on we assume that $b \neq 0$ and $c \neq 0$. Suppose that β is X-inner and $\beta(x)=g x g^{-1}$ for all $x \in R$, where g is a unit in Q. Then $a(b x-\beta(x) c)^{n}=a\left(b x-g x g^{-1} c\right)^{n}=a\left(g\left(g^{-1} b x-x g^{-1} c\right)\right)^{n}=0$ for all $x \in R$. By [6], $a\left(g\left(g^{-1} b x-x g^{-1} c\right)\right)^{n}=0$ for all $x \in Q$. Replacing R by Q we may assume that $g \in R$. By Lemma 3, we have $a\left(g\left(g^{-1} b x-x g^{-1} c\right)\right)=0$ for all $x \in R$ and hence $a(b x-x c)=0$ for all $x \in R$. We are down in this case.

Next, suppose that β is X-outer. By [7, Main Theorem], R is a GPI ring. Thus $R C$ is a primitive ring with nonzero socle 19, Theorem 3]. If $R C$ is a domain, then $a(b x-\beta(x) c)=0$ for all $x \in R$ and we are done. So we may assume that $R C$ is not a domain. Thus $R C$ has nontrivial idempotents. Let e be an idempotent in $R C$. By [8, Theorem 1],

$$
\begin{equation*}
a(b x-\beta(x) c)^{n}=0 \tag{1}
\end{equation*}
$$

for all $x \in R C$. Replacing x by $\beta^{-1}(1-e) x e$ in (1), we see that

$$
\begin{aligned}
0 & =a\left(b \beta^{-1}(1-e) x e-(1-e) \beta(x) \beta(e) c\right)^{n}(1-e) \\
& =a(-1)^{n}((1-e) \beta(x) \beta(e) c)^{n}(1-e) .
\end{aligned}
$$

Hence $a(1-e)(\beta(x) \beta(e) c(1-e))^{n}=0$ for all $x \in R C$. By Lemma 1(ii) we have $a(1-e)=0$ or $\beta(e) c(1-e)=0$.

Assume that $a(1-e)=0$ for some nontrivial idempotent e. Let $x \in R C$. Then $e+(1-e) x e$ is also an idempotent. Since $a(e+(1-e) x e)=a e=a \neq 0$
for all $x \in R C$, by the conclusion in the last paragraph, we have

$$
\begin{equation*}
\beta(1-e-(1-e) x e) c(e+(1-e) x e)=0 \tag{2}
\end{equation*}
$$

for all $x \in R C$. On the other hand, if $\beta(e) c(1-e)=0$ for all idempotents in $R C$, then (2) still holds since $1-e-(1-e) x e$ is also an idempotent. That is, (2) always holds for some nontrivial idempotent e in any case. Expanding (2) we obtain

$$
\begin{align*}
& (1-\beta(e)) c e+(1-\beta(e)) c(1-e) x e-(1-\beta(e)) \beta(x) \beta(e) c e \\
& \quad-(1-\beta(e)) \beta(x) \beta(e) c(1-e) x e=0 . \tag{3}
\end{align*}
$$

Substitutting 0 for x into (3), we have $(1-\beta(e)) c e=0$ and hence $\beta(e) c e=c e$. We can rewrite (3) as

$$
\begin{equation*}
(1-\beta(e)) c(1-e) x e-(1-\beta(e)) \beta(x) c e-(1-\beta(e)) \beta(x) \beta(e) c(1-e) x e=0 . \tag{4}
\end{equation*}
$$

Linearizing it, we see that

$$
\begin{equation*}
(1-\beta(e)) \beta(x) \beta(e) c(1-e) y e+(1-\beta(e)) \beta(y) \beta(e) c(1-e) x c=0 \tag{5}
\end{equation*}
$$

for all $x, y \in R C$. Since β is X-outer, applying [15, Proposition 1] to (5), we have $(1-\beta(e)) \beta(x) \beta(e) c(1-e) y e=0$ for all $x, y \in R C$. By the primeness of R, we have $\beta(e) c(1-e)=0$. Rewriting (4), we have

$$
\begin{equation*}
(1-\beta(e)) \beta(x) c e-c(1-e) x e=0 . \tag{6}
\end{equation*}
$$

Again, applying [15, Proposition 1] to (6), we see that

$$
(1-\beta(e)) y c e-c(1-e) x e=0
$$

for all $x, y \in R C$. Using the primeness of R, we have $c e=0$ and $c(1-e)=0$ and hence $c=0$, a contradiction. The proof is complete.

Now we are ready to prove
Theorem B. Let R be a prime ring and let $a \in R$. If f is a right generalized β-derivation of R such that af $(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer, then af $(x)=0$ for all $x \in R$. Inparticular, if
f is either a regular right generalized β-derivation or a nonzero generalized β-derivation, then $a=0$.

Proof. Assume that f is a right generalized β-derivation. We are done if $a=0$. So we may assume that $a \neq 0$. We can write $f(x)=s x+\delta(x)$, where $s \in{ }_{\mathcal{F}} R$ and where δ is the associated (α, β)-derivation of f. By [9, Theorem 2], we have

$$
\begin{equation*}
a(s x+\delta(x))^{n}=0 \tag{7}
\end{equation*}
$$

for all $x \in{ }_{\mathcal{F}} R$. If δ is X-outer, then by [9, Theorem 1], we have $a(s x+y)^{n}=0$ for all $x, y \in{ }_{\mathcal{F}} R$. In particular, $a y^{n}=0$ for all $y \in R$. This implies that $(a y)^{n+1}=0$ for all $y \in R$. By Levitzki's lemma, $a=0$, a contradiction. So we may assume that δ is X-inner. We write $\delta(x)=b x-\beta(x) b$ for all $x \in R$, where $b \in Q$. We can rewrite (7) as

$$
a((s+b) x+\beta(x) b)^{n}=0
$$

for all $x \in R$ and thus for all $x \in{ }_{\mathcal{F}} R$ [8, Theorem 1]. By Lemma 4, $a((s+b) x-\beta(x) b)=0$ for all $x \in{ }_{F} R$. Therefore $a f(x)=0$ for all $x \in R$. This proves the first part of the theorem.

Furthermore, if f is a nonzero generalized β-derivation of R, then $a=0$ by Lemma 4 (i) in [4]. It is also easy to see that if f is a regular right generalized β-derivation then $a=0$.

Corollary. Let R be a prime ring and let $a \in R$. If $\delta \neq 0$ is an $(\alpha, \beta)-$ derivation of R such that $a \delta(x)^{n}=0$ for all $x \in R$, where n is a fixed positive integer, then $a=0$.

References

1. M. Bres̆ar, A note on derivations, Math. J. Okayama Univ., 32(1990), 83-88.
2. J. C. Chang, A note on (α, β)-derivation, Chinese J. of Math., 19(1991), No.3, 277-285.
3. J. C. Chang and J. S. Lin, (α, β)-derivation with nilpotent values, Chinese J. Math., 22(1994), No.4, 349-355.
4. J. C. Chang, On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math., $\mathbf{7}(2003)$, No.1, 103-113.
5. J. C. Chang, Right generalized (α, β)-derivations having power central values, preprint.
6. C. L. Chuang, GPIs having coefficients in Utumi guotient rings, Proc. Amer. Math. Soc., 103(1988), 723-728.
7. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I., J. Algebra, 149(1992), 371-404.
8. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II., J. Algebra, 160(1993), 292-335.
9. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. of Algebra, 288(2005), 59-77.
10. B. Felzenswalb, On a result of Levitzki, Canad. Math. Bull., 21(1978), 241-242.
11. A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo, 30(1981), 199-206.
12. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, IL, 1969.
13. I. N. Herstein, Center-like elements in prime ring, J. Algebra, 60 (1979), 567-574.
14. N. Jacobson, Structure of Rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
15. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika, 14(1975), No.2, 215-237; Engl. Transl: Algebra and Logic, 14(1975), No.2, 132-148.
16. C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108(1990), 31-37.
17. T. K. Lee and J. S. Lin, A result on derivations, Proc. Amer. Math. Soc., 124(1996), 1687-1691.
18. T. K. Lee and K. S. Liu, Generalized skew derivations with algebraic values of bounded degree, preprint.
19. W. S. Martindale 3rd, Prime rings satifying a generalized polynomial identity, J. Algebra, 12(1969), 576-584.
20. X. W. Xu, J. Ma and F. W. Niu, Annihilators of power central values of generalized derivations, (Chinese) Chinese Ann. Math. Ser. A, 28(2007), No.1, 131-140.

Department of Computer Science and Information Engineering, Chang Jung Christian University, Tainan, Taiwan.
E-mail: jc2004@mail.cjcu.edu.tw

