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Abstract

We consider the following standard problems appearing in

optimal mass transportation theory:

• when a transference plan is extremal,

• when a transference plan is the unique transference plan con-

centrated on a set A,

• when a transference plan is optimal.

We study these three problems with a general approach:

(1) choose some necessary conditions, depending on the problem

we are considering;

(2) find a partition into sets Bα where these necessary conditions

become also sufficient;

(3) show that all the transference plans are concentrated on

∪αBα.

Explicit procedures are provided in the three cases above, the

principal one being that the problem has an hidden structure of

linear preorder with universally measurable graph.

As by sides results, we study the disintegration theorem

w.r.t. a family of equivalence relations, the construction of optimal

potentials, a natural relation obtained from c-cyclical monotonic-

ity.
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1. Introduction

Let (X,Ω, µ), (Y,Σ, ν) be two countably generated probability spaces,

and let (X × Y,Ω ⊗ Σ) be the product measurable space. Using standard

results on measure space isomorphisms (see for example the proof of the

last theorem of [13]), in the following we assume that (X,Ω) = (Y,Σ) =

([0, 1],B), where B is the Borel σ-algebra.

Let P([0, 1]2) be the set of Borel probability measures on [0, 1]2, and let

Π(µ, ν) be the subset of P([0, 1]2) satisfying the marginal conditions (P1)♯π =

µ, (P2)♯π = ν, where P1(x, y) = x, P2(x, y) = y are the projection on X, Y :

Π(µ, ν) :=
{

π ∈ P([0, 1]2) : (P1)♯π = µ, (P2)♯π = ν
}

.

For π ∈ Π(µ, ν) we will denote by Γ ⊂ [0, 1]2 a set such that π(Γ) = 1:

as a consequence of the inner regularity of Borel measures, it can be taken

σ-compact.

For any Borel probability measure π on [0, 1]2, let Θπ ⊂ P([0, 1]2) be the

π-completion of the Borel σ-algebra. We denote with Θ(µ, ν) ⊂ P([0, 1]2)

the Π(µ, ν)-universally measurable σ-algebra: it is the intersection of all

completed σ-algebras of the probability measures in Π(µ, ν):

Θ(µ, ν) :=
⋂{

Θπ, π ∈ Π(µ, ν)
}

. (1.1)

We define the functional I : Π(µ, ν) → R by

I(π) :=

∫

c(x, y)π(dxdy), (1.2)

where c : [0, 1]2 → [0,+∞] is a Θ(µ, ν)-measurable cost function. The set

Πf (µ, ν) ⊂ Π(µ, ν) is the set of probability measures belonging to Π(µ, ν)

and satisfying the geometrical constraint I(π) < +∞.

The problems we are considering in the next sections are whether a

given measure π ∈ Π(µ, ν) satisfies one of the following properties:

• it is extremal in Π(µ, ν);

• it is the unique measure in Π(µ, ν) concentrated on a given set A ∈
Θ((µ, ν));
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• it is minimizing the functional I(π) in Π(µ, ν).

We can restrict our analysis to the set Πf (µ, ν), by

• defining c(x, y) = 1IΓ for a particular set Γ with π(Γ) = 1 in the first

case,

• defining c(x, y) = 1IA in the second case,

• assuming that I(π) < +∞ to avoid trivialities in the third case.

In all the above cases a necessary condition can be easily obtained, namely

• π is acyclic in the first case (Definition 3.2),

• π is A-acyclic in the second case (Definition 4.2),

• π is c-cyclically monotone in the third case (Definition 5.1).

Nevertheless, there are explicit examples showing that this condition is only

necessary.

The kernel is the following idea (Lemma 2.5). Let π ∈ Π(µ, ν) be a

transference plan.

Theorem 1.1. Assume that there are partitions {Xα}α∈[0,1], {Yβ}β∈[0,1]

such that

(1) for all π′ ∈ Πf (µ, ν) it holds π′(∪αXα × Yα) = 1,

(2) the disintegration π =
∫
παm(dα) of π w.r.t. the partition {Xα×Yα}α∈[0,1]

is strongly consistent,

(3) in each equivalence class Xα×Yα the measure πα is extremal/unique/op-

timal in Π(µα, να), where

µα := (P1)♯πα, να := (P2)♯πα.

Then π is extremal/unique/optimal.

The main tool is the Disintegration Theorem A.7 presented in Appendix

A and applied to the partition {Xα × Yβ}α,β∈[0,1]. This partition is con-

structed in order to satisfy Point (3).

Before explaining the meaning of the above conditions, we consider the

following corollaries. Instead of partitions, we will equivalently speak of

equivalence classes and relative equivalence relations.
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Corollary 1.2.(Extremality (Theorem 3.8)) Let π concentrated on a σ-

compact acyclic set Γ. If we partition the set Γ into axial equivalence classes

(Definition 3.4), then π is extremal in Π(µ, ν) if the disintegration is strongly

consistent.

We show in Theorem 3.9 that the strong consistency assumption in the

above corollary is nothing more than the countable Borel limb condition of

[12].

Denote with hX , hY the quotient maps w.r.t. the partitions {Xα}α∈[0,1],

{Yβ}β∈[0,1]. In Lemma 2.4 it is shown that if Conditions (1) and (2) of

Theorem 1.1 are valid for π, then there exists m ∈ P([0, 1]) such that

(I, I)♯m = (hX , hX)♯µ = (hY , hY )♯ν = (hX ⊗ hY )♯π.

Let now A be an analytic set and define the image set

A′ := (hX ⊗ hY )(A).

Corollary 1.3.(Uniqueness (Page 386)] Let π concentrated on a σ-

compact A-acyclic set Γ. If we partition the set Γ into axial equivalence

classes, then π is the unique measure in Π(µ, ν) concentrated on A if

(1) the disintegration is strongly consistent,

(2) there exists a set B ∈ Θ(m,m), B ⊃ A′, which is a linear order.

Notice that one can always take as a quotient space a subset of [0, 1], by

the Axiom of Choice, but the image σ-algebra does not contain in general all

Borel sets. Moreover, by Lemma 4.7, A′ is by construction a partial order,

which again by the Axiom of Choice can be always completed to a linear

order. The two assumptions above are therefore a measurability assumption,

made precise in Remark 4.19: A and Γ induce a preorder on [0, 1] which is

contained in a linear (or total) preorder with universally measurable graph.

Finally, let c : [0, 1]2 → [0,+∞] be a coanalytic cost.

Corollary 1.4.(Optimality (Theorem 5.6)) Let π concentrated on a σ-

compact c-cyclically monotone set Γ and partition Γ w.r.t. the cycle equiv-

alence relation (Definition 5.4). Then, π c-cyclically monotone is optimal

if
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(1) the disintegration is strongly consistent,

(2) the image set A′ := (hX ⊗ hY )({c < +∞}) is a set of uniqueness.

If we use as condition for uniqueness the linear order condition, then

the interpretation of this corollary in terms of order relation is analogous to

the one above and it is performed in Remark 5.10: {c < +∞} and Γ induce

a preorder on [0, 1] which is contained in a linear preorder with universally

measurable graph.

The above result generalizes the previous known cases:

(1) if µ or ν are atomic ([19]): clearly m must be atomic;

(2) if c(x, y) ≤ a(x) + b(y) with a ∈ L1(µ), b ∈ L1(ν) ([20]): m is a single δ;

(3) if c : [0, 1]2 → R is real valued and satisfies the following assumption ([2])

ν

({

y :

∫

c(x, y)µ(dx) < +∞
})

> 0,

µ

({

x :

∫

c(x, y)ν(dy) < +∞
})

> 0 :

in this case m is a single δ;

(4) If {c < +∞} is an open set O minus a µ⊗ν-negligible set N ([3]): in this

case every point in {c < +∞} has a squared neighborhood of positive

π-measure satisfying condition (5.4b) below.

In each case the equivalence classes are countably many Borel sets, so that

the disintegration is strongly consistent and the acyclic set A′ is a set of

uniqueness (Lemma 4.18).

1.1. Explanation of the approach

The three conditions listed in Theorem 1.1 have interesting interpreta-

tions in terms of measurability, marginal conditions and acyclic perturba-

tions.

We first observe that the necessary conditions considered in all three

cases can be stated as follows: the transference plan π is unique/optimal

w.r.t. the affine space generated by π + λc, where λc is a cyclic perturbation

of π.
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Moreover, the partitions have a natural crosswise structure w.r.t. Γ: if

{Xα}α, {Yβ}β are the corresponding decompositions of [0, 1], then

Γ ∩ (Xα × Y ) = Γ ∩ (X × Yα) = Γ ∩ (Xα × Yα). (1.3)

This is clearly equivalent to Γ ⊂ ∪αXα×Yα, so that Condition (1) is satisfied

at least for π and for its cyclic perturbations.

This and consequently Condition (1) are conditions on the geometry

of the carriage Γ, since the specific construction depends on it. In fact,

fixed a procedure to partition a set Γ, it is easy to remove negligible sets

obtaining different partitions: sometimes Theorem 1.1 can be satisfied or

not depending on Γ, i.e. on the partition. A possible solution is to make the

partition independent of Γ (Appendix A.1), but maybe this decomposition

does not satisfy the hypotheses of Theorem 1.1, while others do.

A consequence of the above discussion is that in the corollaries a proce-

dure is proposed to test a particular measure π. Some particular cost may

however imply that there is a partition valid for all transference plans: in

this case the c-cyclical monotonicity becomes also sufficient, as in the known

cases of Points (1)–(4) above.

Notice however that the statement is that the necessary condition be-

comes sufficient if there exists a carriage Γ such that the corollaries apply,

or more generally if there exists a partition such that Theorem 1.1 applies.

When there is no such carriage, then one can modify the cost in such a way

that there are transport plans satisfying the necessary condition, giving the

same quotient set A′ and which can be either extremal/unique/optimal or

not (Proposition 6.9).

The strong consistency of the disintegration is a measure theoretic as-

sumption: it is equivalent to the fact that the quotient space can be taken

to be ([0, 1],B), up to negligible sets. This is important in order to give

a meaning to the optimality within the equivalence classes: otherwise the

conditional probabilities πα are useless and Condition (3) without meaning.

From the geometrical point of view, we are saying that π can be represented

by weighted sum of probabilities in Xα × Yα, and Condition (1) yields that

we can decompose the problem into smaller problems in Xα×Yα. When the

assumption is not satisfied, then one can modify the cost in order to have



2009] ON TRANSFERENCE PLANS 359

the same quotient measure but both c-cyclically monotone optimal and c-

cyclically monotone non optimal transport plans (Example 6.5).

Finally, we illustrate the linear preorder condition of Corollary 1.3. The

sets Γ and A (or {c < +∞}) yield a natural preorder by saying x 4 x′ if

there exists an axial path connecting them:

∃(xi, yi)∈Γ, i=0, . . . , I : (xi+1, yi)∈A ∀i=0, . . . , I and x0 =x, xI+1 =x′.

The equivalence classes {x 4 x′∧x′ 4 x} are the points connected by closed

cycles. This holds in general, but a strong requirement is that this preorder

can be embedded into a linear preorder (i.e. every two points are compara-

ble) with Borel (universally measurable) graph having the same equivalence

classes {x 4 x′ ∧ x′ 4 x}. If this holds, then Theorem 4.9 implies two

things:

(1) the disintegration with respect to the equivalence classes {x 4 x′ ∧ x′ 4

x} is strongly consistent,

(2) and the image set A′ is contained in Bα := {s, t ∈ [0, 1]α, s E t}, with

α ∈ ω1 and E being the lexicographic ordering.

The last point and Lemma 4.13 (Bα is a set of uniqueness) prove that the

assumption of Theorem 1.1 are verified.

We conclude by noticing the following. The problem of linearization

of a given Borel preorder has been considered also in [14, 11] where the

immersion in 2α, α ∈ ω1, is proved in a different way. Their approach does

not rely on a given measure on the initial space, but it cannot be generalized

to universally measurable linear preorders.

1.2. Structure of the paper

The paper is organized as follows.

In Section 2 we show the general scheme of our approach. We do not

specify the particular necessary conditions for optimality, but we prove that

under the above three conditions the transference plan π is extremal/unique/

optimal. In Section 2, page 366, we collect the results into 4 steps which will

be used to obtain the results in the next sections.
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In Section 3 we address the problem of extremality. The results obtained

with our approach are already known in the literature: this part can be seen

as an exercise to understand how the procedure works. The difficulties of

both approaches are the same: in fact the existence of a Borel rooting set up

to negligible sets is equivalent to the strong consistency of the disintegration.

In Section 4, we consider the problem of verifying if an analytic set A

can carry more than one transference plan. In this case, not only the disin-

tegration should be strongly consistent, but we must verify also Condition

(1) of Theorem 1.1. Condition (2) in Corollary 1.3 implies this fact. Es-

sentially, we are just showing (Theorem 4.9) that in the quotient space the

uniqueness problem can be translated into the uniqueness problem in [0, 1]α,

with α ∈ ω1 enumerable ordinal, and

Bα =
{
(s, t) : s, t ∈ [0, 1]α, sE t

}
,

where E is the lexicographic order. Lemma 4.13 proves that the above Bα

is a set of uniqueness.

In Section 5 we consider the optimality of a transference plan. In this

case, the easiest equivalence relation is the cycle equivalence relation of Def-

inition 5.4, introduced also in [3]. The optimality within each class is imme-

diate from the fact that there exists a couple of A-optimal potentials φ,ψ,

and after the discussion of the above two problems the statement of Corol-

lary 1.4 should be clear. If one chooses the existence of optimal potentials as

sufficient criterion, or even more general criteria, it is in general possible to

construct other equivalence relations, such that in each class the conditional

probabilities πα are optimal. Under strong measure theoretic assumptions

(ZFC+CH+PD), an example of this construction is shown in Appendix C.

In Section 6 we give several examples: for historical reasons, we restrict

to examples concerning the optimality of π, but trivial variations can be

done in order to adapt them to the other two problems. We split the section

into 2 parts. In Section 6.1 we study how the choice of Γ can affect our

construction: it turns out that in pathological cases a wrong choice of Γ

may lead to situations for which either the disintegration is not strongly

consistent or in the quotient space there is no uniqueness. This may happen

both for optimal or not optimal transference plans. In Section 6.2 instead we

consider if one can obtain conditions on the problem in the quotient space
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less strict than the uniqueness condition: the examples show that this is not

the case in general.

In Section 7 we address the natural question: if we have optimal poten-

tials in each set Xα×Yα, is it possible to construct an optimal couple (φ,ψ)

in ∪αXα × Yα? We show that under the assumption of strong consistency

this is the case. The main tool is Von Neumann’s Selection Theorem, and

the key point is to show that the set

{

(α, φα, ψα) : φα, ψα optimal couple in Xα × Yα

}

is analytic in a suitable Polish space. The Polish structure on the family of

optimal couples is obtained identifying each µ-measurable function φ with

the sequence of measures {(φ ∨ (−M)) ∧M)µ}M∈N, which is shown to be a

Borel subset of MN.

In Appendix A we give a short proof of the Disintegration Theorem in

countably generated measure spaces. All the results of this section can be

found in Section 452 of [10] (with much greater generality). In particular,

the fact that consistent disintegrations exist and are unique, and the explicit

representation of the conditional probabilities. As an application of these

methods, we show that if one has a family of equivalence relations E closed

under countable intersection, then there is an equivalence relation E ∈ E

which is the sharpest one in the following sense: the σ-algebra of saturated

sets w.r.t. any other E′ ∈ E can be embedded into the σ-algebra of saturated

sets w.r.t. E (Point (1) Theorem A.11). Applied to our problem, we can

make the disintegration independent of the particular carriage Γ, but the

examples show that maybe this is not the best choice, or it is even the

trivial one x• = {x}!
In Appendix B we give a meaning to the concepts of cyclic perturbations

and acyclic perturbations. After recalling the properties of projective sets in

Polish spaces in Section B.1 and the duality results of [15] (Section B.2), we

show how to define the n-cyclic part of a signed measure λ with 0 marginals:

this is the largest measure λn ≪ λ which can be written as λn = λ+
n − λ−n

with

λ+
n =

1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wm(dw), λ−n =
1

n

∫

Cn

n∑

i=1

δP(2i+1,2i mod 2n)wm(dw),
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where Cn ⊂ [0, 1]2n is the set of n-closed cycles and m ∈ M+(Cn). This

approach leads to the definition of cyclic perturbations λ: these are the

signed measures with 0 marginals which can be written as sum (without

cancellation) of cyclic measures. The acyclic measures are those measures for

which there are not n-cyclic measures λn ≪ λ for all n ≥ 2: in particular they

are concentrated on an acyclic set. This approach leads naturally to the well

known results on the properties of sets on which extremal/unique/optimal

measures are concentrated: in fact, in all cases we ask that there are not

cyclic perturbations which either are concentrated on the carriage set Γ, or

on the set of uniqueness A, or diminish the cost of the measure π. One then

deduces the well known criteria that Γ is acyclic, Γ is A-acyclic and Γ is

c-cyclically monotone.

The last Appendix C is more set theoretical: its aim is just to show

that there are other possible decompositions for which our procedure can

be applied, and in particular situations where a careful analysis may give

the validity of Theorem 1.1 for this new decomposition, but not of Corollary

1.4 for the cycle decomposition. The main result is that under PD and CH

we can construct a different equivalence relation satisfying Condition (3) of

Theorem 1.1 and (1.3).

2. Setting and General Scheme

Let {Xα}α∈[0,1] be a partition of X into pairwise disjoint sets, and sim-

ilarly let {Yβ}β∈[0,1] be a partition of Y into pairwise disjoint sets. Let

moreover {Xα × Yβ}α,β∈[0,1] be the induced pairwise disjoint decomposition

on X × Y .

Since it is clear that the decomposition X = ∪αXα with Xα pairwise

disjoint induces an equivalence relation E by defining xEx′ if and only if

x, x′ ∈ Xα for some α, we will also refer to Xα, Yβ and Xα×Yβ as equivalence

classes. We will often not distinguish an equivalence relation E on X and

its graph

graph(E) := {(x, x′) : xEx′} ⊂ X ×X.

We will denote by hX : X → [0, 1], hY : Y → [0, 1] the quotient maps:

clearly (hX ⊗ hY ) : X × Y → [0, 1]2 is the quotient map corresponding to

the decomposition Xα × Yβ, α, β ∈ [0, 1], of X × Y .
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Assumption 1. The maps hX , hY are µ-measurable, ν-measurable

from (X,Ω, µ), (Y,Σ, ν) to ([0, 1],B), respectively, where B is the Borel σ-

algebra.

We will consider the following disintegrations:

µ =

∫ 1

0
µαmX(dα), mX = (hX )♯µ; (2.1a)

ν =

∫ 1

0
νβmY (dβ), mY = (hY )♯ν; (2.1b)

π =

∫

[0,1]2
παβn(dαdβ), n = (hX ⊗ hY )♯π. (2.1c)

Note the fact that under the assumptions of measurability of hX , hY
Theorem A.7 implies that — up to a redefinition of µα, να, πα on respectively

mX , mY , n negligible sets — the conditional probabilities µα, νβ and πα,β
satisfy

µα(Xα) = νβ(Yβ) = παβ(Xα × Yβ) = 1

for all (α, β) ∈ [0, 1]2, i.e. they are concentrated on equivalence classes: in the

following we will say that the disintegration is strongly consistent when the

conditional probabilities are supported on the respective equivalence classes

(see [10], Chapter 45, Definition 452E).

The next Lemma 2.1 is valid also in the case the disintegration is not

strongly consistent but just consistent, by considering the quotient measure

space of Definition A.5.

Lemma 2.1. The measure n belongs to Π(mX ,mY ).

Proof. This is a trivial consequence of the computation

n(A× [0, 1])
(2.1c)
= π(h−1

X (A) × Y )
π∈Π(µ,ν)

= µ(h−1
X (A))

(2.1a)
= mX(A).

The same computation works for n([0, 1] ×B). �

In the next sections, a special choice of the equivalence classes will

lead to the following particular case, which under Assumption 1 is mean-

ingful: indeed, as direct consequence of the properties of product σ-algebra

(Theorem 3 in [13]), the set {α = β} belongs to the product σ-algebra
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(hX)♯(Ω)⊗(hY )♯(Σ) if and only if Assumption 1 holds (up to measure spaces

isomorphisms).

Assumption 2. We assume n = (I, I)♯mX .

In particular the marginals mX and mY coincide: we will denote this prob-

ability measure by m.

Hence the image of Π(µ, ν) under (hX ⊗ hY ) is contained in the set

Π(m,m) by Lemma 2.1. Moreover:

Lemma 2.2. Under Assumption 2, one has πα ∈ Π(µα, να).

Proof. By the marginal conditions, for any A ∈ Θm and Borel S

∫

A
µα(S)m(dα) = µ(h−1

X (A) ∩ S)
π∈Π(µ,ν)

= π((h−1
X (A) ∩ S) × [0, 1])

=

∫

A
πα(S × [0, 1])m(dα).

Thus (P1)♯πα = µα for m-a.e. α. For να it is analogous. �

Under Assumption 1, a necessary and sufficient condition for Assump-

tion 2 is the following.

Definition 2.3. We say that a set Γ ⊂ [0, 1]2 satisfies the crosswise

condition w.r.t. the family {Xα}α∈[0,1], {Yβ}β∈[0,1] if

Γ ∩ (Xα × Y ) = Γ ∩ (X × Yα) = Γ ∩ (Xα × Yα) ∀α ∈ [0, 1]. (2.2)

Lemma 2.4. Assume that there exists Γ ⊂ [0, 1]2 such that π(Γ) = 1

and it satisfies the crosswise condition (2.2). Then n = (I, I)♯m, where

m = mX = mY . Conversely, if n = (I, I)♯m, then there exists Γ ⊂ [0, 1]2

such that π(Γ) = 1 and satisfying (2.2).

Proof. The proof follows the same line of the proof of Lemma 2.1.

The set Γ′ = (hX ⊗ hY )−1({α = β}) has full π measure if and only if

n = (hX ⊗ hY )♯π = (I, I)♯m. Since (2.2) implies immediately Γ ⊂ Γ′, then

n = (I, I)♯m.
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Conversely, by the definition of Γ′

(Xα × Y ) ∩ Γ′ = Γ′ ∩ (X × Yα) = Xα × Yα.

This implies the (2.2) for the set Γ′. �

Along with the strong consistency of the disintegration (Assumption 1),

the main assumption is the following. This assumption requires Assump-

tion 1 and implies Assumption 2.

Assumption 3. For all π ∈ Πf (µ, ν), the image measure n = (hX ⊗
hY )♯π is equal to (I, I)♯m.

So far we have not specified the criteria to choose the partitions Xα, Yβ.

The next lemma, which is the key point of the argument, specifies it.

Lemma 2.5. Assume that the decompositions Xα, Yβ satisfy Assump-

tion 3 and the following:

Assumption 4. For m-a.e α ∈ [0, 1] the probability measure πα ∈
Π(µα, να) satisfies sufficient conditions for extremality/uniqueness/optimality.

Then π ∈ Π(µ, ν) is extremal/unique/optimal.

Proof. We consider the cases separately.

Extremality. If π1, π2 ∈ Π(µ, ν) are such that π = (1 − λ)π1 + λπ2,

λ ∈ (0, 1), then it follows from Assumption 3 that the disintegration of these

measures is given by

π1 =

∫ 1

0
π1,αm(dα), π2 =

∫ 1

0
π2,αm(dα)

with π1,α, π2,α ∈ Π(µα, να) by Lemma 2.2.

It follows that πα = (1 − λ)π1,α + λπ2,α for m-a.e. α, so that from

Assumption 4 we conclude that πα = π1,α = π2,α.

Uniqueness. The computations are similar to the previous case, only

using the fact that in each class the conditional probability πα is unique.
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Optimality. For π1 ∈ Πf (µ, ν)

I(π1) =

∫

c(x, y)π1(dxdy)
(2.1c)
=

∫ 1

0

(∫

c(x, y)π1,α(dxdy)

)

m(dα).

From Assumption 3 it follows that π1,α, πα ∈ Π(µα, να), so that from As-

sumption 4 one has

∫

c(x, y)π1,α(dxdy) ≥
∫

c(x, y)πα(dxdy) for m-a.e. α.

The conclusion follows. �

We are thus left to perform the following steps for each problem consid-

ered in the next sections.

Procedure to verify the sufficiency of the necessary conditions

(1) Fix the necessary conditions under consideration.

(2) Fix a measure π ∈ Πf (µ, ν) which satisfies the necessary conditions

respectively for being extremal, being the unique measure concentrated

on A, being optimal.

(3) Construct partitions Xα, Yβ of X, Y such that:

(a) the disintegrations of µ, ν w.r.t. X = ∪αXα, Y = ∪βYβ are strongly

consistent. This implies that the quotient maps hX , hY can be as-

sumed to be measurable functions taking values in ([0, 1],B), by The-

orem A.7;

(b) in each equivalence class Xα × Yα the necessary conditions become

sufficient: the measure παα satisfies the sufficient conditions for ex-

tremality, uniqueness or optimality among all π̃ ∈ Π(µα, να).

(4) Verify that the image measure nπ′ ∈ Π(m,m) of all π′ ∈ Πf (µ, ν) coin-

cides with (I, I)♯m, where m = (hX)♯µ = (hY )♯ν.

If the above steps can be performed, then from Lemma 2.5 we deduce

that π is respectively extremal, unique or optimal. In our applications, the

necessary conditions reduce to a single condition on the structure of a set

where π is concentrated.

Remark 2.6. It is important to note that in general the decomposition

depends on the particular measure π under consideration: the procedure will
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be used to test a particular measure π, even if in some cases it works for

the whole Πf (µ, ν). In the latter case, we can test e.g. the optimality of all

measures in Πf (µ, ν) using only the necessary conditions: this means that

these conditions are also sufficient.

3. Extremality of Transference Plans

The first problem we will consider is to give sufficient conditions for

the extremality of transference plans in Π(µ, ν). The results obtained are

essentially the same as the ones of [12].

We first recall the following fact ([7, 16]). As in Appendix B.3, we denote

with Λ ⊂ M([0, 1]2) the set

Λ :=
{

λ ∈ M([0, 1]2) : (P1)♯λ = (P2)♯λ = 0
}

.

Proposition 3.1. The transference plan π ∈ Π(µ, ν) is extremal if and

only if L1(µ) + L1(ν) is dense in L1(π).

Proof. We first prove that if f1 ∈ L1(µ), f2 ∈ L1(ν) and (f1 − f2)π ∈ Λ,

then f1 − f2 = 0 π-a.e..

Writing

π =

∫

πxµ(dx) =

∫

πyν(dy)

for the disintegration of π w.r.t. µ, ν respectively, the above conditions mean

f1(x) =

∫

f2(y)πx(dy) µ-a.e. x,

f2(y) =

∫

f1(x)πy(dx) ν-a.e. y.

We then have

∫

|f1|µ =

∫ ∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣
µ(dx)

=

∫

|f2|ν +

∫ (∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣
−

∫

|f2(y)|πx(dy)
)

µ(dx)

≤
∫

|f2|ν,
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and similarly

∫

|f2|ν =

∫

|f1|µ+

∫ (∣
∣
∣
∣

∫

f1(x)πy(dx)

∣
∣
∣
∣
−

∫

|f1(x)|πy(dx)
)

ν(dy)

≤
∫

|f1|µ.

We thus conclude that
∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣

=

∫

|f2(y)|πx(dy) µ a.e. x,

∣
∣
∣
∣

∫

f1(x)πy(dx)

∣
∣
∣
∣

=

∫

|f1(x)|πy(dx) ν a.e. y,

i.e. π is concentrated on the set

{f1 < 0} × {f2 < 0} ∪ {f1 = 0} × {f2 = 0} ∪ {f1 > 0} × {f2 > 0}.

Since if (f1, f2) satisfies (f1 − f2)π ∈ Λ also [(f1 − k) − (f2 − k)]π ∈ Λ

for all k ∈ R, it follows that π is concentrated on the sets

{f1 < k} × {f2 < k} ∪ {f1 = k} × {f2 = k} ∪ {f1 > k} × {f2 > k}.

Hence one concludes that f1 − f2 = 0 π a.e..

⇐= The previous step implies that if L1(µ) + L1(ν) is dense in L1(π),

then π should be extremal. In fact, it is fairly easy to see that if π is not

extremal, then there exists 0 ≤ g ∈ L1(π) such that gπ ∈ Π(µ, ν): hence for

some sequence {(f1,n, f2,n)}n∈N ∈ L1(µ) × L1(ν) it holds

lim
n→∞

∫

|g − f1,n − f2,n|π = 0. (3.1)

Define the L1(µ)-function m1,n and the L1(ν)-function m2,n by

m1,nµ := (P1)♯
(
g − f1,n − f2,n

)
π, m2,nµ := (P2)♯

(
g − f1,n − f2,n

)
π.

From (3.1), it follows that

lim
n→+∞

‖m1,n‖L1(µ) + ‖m2,n‖L1(ν) = 0. (3.2)
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Trivially we have

f1,n +m1,n + f2,n +m2,n ∈ L1(π),
(
f1,n +m1,n + f2,n +m2,n

)
π ∈ Π(µ, ν).

Hence by the first part up to a π-negligible set

f1,n + f2,n = 1 − (m1,n +m2,n).

From (3.2) it follows that f1,n + f2,n → 1 in L1(π).

=⇒ If instead L1(µ) + L1(ν) ( L1(π), then by Hahn-Banach Theorem

there exists an L∞(π) function g 6= 0, |g| ≤ 1, such that

∫

g(x, y)(f1(x) + f2(y))π(dxdy) = 0

for all f1 ∈ L1(µ), f2 ∈ L1(ν). In particular gπ ∈ Λ, g 6= 0 on a set of

positive π-measure and

π =
1 + g

2
π +

1 − g

2
π,

where the two addends in the r.h.s. above belong to Π(µ/2, ν/2). �

The second result is a consequence of Proposition B.15. A cyclic per-

turbation λ of a measure π ∈ Π(µ, ν) is specified in Definitions B.6, B.14; in

particular π + λ ∈ Π(µ, ν).

Definition 3.2.(Acyclic set and measure) We say that Γ ⊂ [0, 1]2 is

acyclic if for all finite sequences (xi, yi) ∈ Γ, i = 1, . . . , n, with xi 6= xi+1modn

and yi 6= yi+1modn it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ Γ.

A measure is acyclic if it is concentrated on an acyclic set.

Lemma 3.3.(Theorem 3 of [12]) Suppose that there is no cyclic pertur-

bation of the measure π ∈ Π(µ, ν) on [0, 1]2. Then π is concentrated on an

acyclic σ-compact set Γ.

We specify now necessary and sufficient conditions for extremality:
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necessary condition the measure π is acyclic;

sufficient condition the measure π is concentrated on a Borel limb num-

bering system, [12] page 223: there are two disjoint families {Ck}k∈N,

{Dk}k∈N0 of Borel sets and Borel measurable functions fk : Ck → Dk−1,

gk : Dk → Ck, k ∈ N, such that π is concentrated on the union of the

following graphs (see Figure 1)

Fk = graph(fk), Gk = graph(gk).

We verify directly the second condition, [12] Theorem 20: clearly due

to the σ-additivity and inner regularity, we can always replace measurable

with σ-compact sets up to a negligible set.

Proof of sufficiency of the condition. Assume first that there are only

finitely many Gk, Fk, k ≤ N . In this case, the uniqueness of the transference

plan π follows by finite recursion, since the marginality conditions yield,

setting FN+1 := ∅, that π must be defined by

πxFk
= (I, fk)♯(µ− (P1)♯πxGk

),

πxGk
= (gk, I)♯(ν − (P2)♯πxFk+1

),
k ∈ {1, . . . , N}. (3.3)

For the general case, let π ∈ Π(µ, ν) such that π(∪kFk∪Gk) = 1. Define

the measures πN by means of (3.3) starting at N : let

(πN )xFN+1
:= (I, fN+1)♯µxFN+1

and for k ∈ {1, . . . , N}

(πN )xFk
:= (I, fk)♯(µ− (P1)♯(πN )xGk

),

(πN )xGk
:= (gk, I)♯(ν − (P2)♯(πN )xFk+1

).

Since
∑

k>N µ(Fk) + ν(Gk) → 0 as N → ∞, it is fairly easy to see that

up to subsequences πN converges strongly to π — just by the fact that if
∑

i ai < +∞ there exists a subsequence i(j) s.t. i(j)ai(j) → 0.

Using the uniqueness of the limit and the fact that the approximating

sequence does not depend on π, the uniqueness of π follows. �

The equivalence classes in order to apply Theorem 1.1 are the following.
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Definition 3.4.(Axial equivalence relation) We define (x, y)E(x′, y′) if

there are (xi, yi) ∈ Γ, 0 ≤ i ≤ I finite, such that

(x, y) = (x0, y0), (x
′, y′) = (xI , yI) and (xi+1 − xi)(yi+1 − yi) = 0. (3.4)

In the language of [12], page 222, each equivalence class is an axial path.

The next lemma is an elementary consequence of Definition 3.4.

Lemma 3.5. The relation E of Definition 3.4 defines an equivalence

relation on the acyclic set Γ. If Γ = ∪αΓα is the partition of Γ in equivalence

classes, and Xα = P1Γα, Yα = P2Γα are the projections of the equivalence

classes, then the crosswise condition (2.2) holds.

By setting

X0 = [0, 1] \ P1(Γ), Y0 = [0, 1] \ P2(Γ),

we have a partition of X, Y into disjoint classes.

We can thus use Theorem A.7 to disintegrate the marginals µ, ν and

every transference π plan supported on Γ. From (2.1) and Lemmas 2.2, 2.4

one has immediately the following proposition.

Proposition 3.6. The following disintegrations w.r.t. the partitions

X = ∪αXα, Y = ∪αYα hold:

µ =

∫

µαm(dα), ν =

∫

ναm(dα), m = (hX)♯µ.

Moreover, if π is a transference plan supported on Γ and the disintegration

is strongly consistent, then the disintegration of π w.r.t. the partition Γ =

∪α∈AΓα is given by

π =

∫

παm(dα) with πα ∈ Π(µα, να).

The next lemma shows that in each equivalence class the sufficient con-

dition holds.

Lemma 3.7. Each equivalence class satisfies the Borel limb numbering

condition.
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D0

D0D1

D1

D2

D2

C3 C3C1 C1C2 C2

F1

F2G1

G2

f1

g1

Γ

Figure 1. A limb numbering system and the axial path of a point.

Proof. The proof is elementary: if (xα, yα) ∈ Γα, α ∈ A, then one defines

recursively (Figure 1)

D0,α = {yα}, C1,α = P1(Γ ∩ ([0, 1] × {yα})),
Dk,α = P2

(
Γ ∩ (Ck,α × ([0, 1] \Dk−1,α))

)
,

Ck+1,α = Γ ∩ (([0, 1] \ Ck,α) ×Dk,α).

From the assumption of acyclicity, it is a straightforward verification that

each

Γ ∩ (Ck,α ×Dk−1,α), Γ ∩ (Ck,α ×Dk,α)

is the graph of a function fk,α : Ck,α → Dk−1,α, gk,α : Dk,α → Ck,α. More-

over, Γα is covered by the graphs Gk,α, Fk,α because of the definition of the

equivalence class Γα.

It remains to study the Borel measurability of the functions gk,α, fk,α.

We show the induction step of the argument. D0,α is a point and C1,α a

section of the Borel set Γ, thus is itself Borel. Assume the Ck,α, Dk−1,α are

Borel. Then Γ∩(Ck,α×([0, 1]\Dk−1,α) is the Borel antigraph Gk,α: hence its

horizontal section is compact, being a point, and by Novikov Theorem 4.7.11

its projection Dk,α is Borel. Finally by Theorem 4.5.2 of [21] the function

gk,α is Borel. The argument for Ck+1,α is analogous with Fk+1,α. �
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From Lemma 2.5, it follows the following theorem.

Theorem 3.8. If the disintegration of Proposition 3.6 is strongly con-

sistent, then π is extremal.

We now conclude the section showing that the existence of a Borel limb

numbering systems is equivalent to the existence of an acyclic set Γ where

the transference plan π is concentrated and such that the disintegration is

strongly consistent.

Theorem 3.9. The transference plans π is concentrated on a limb

numbering system Γ with Borel limbs if and only if the disintegration of π

into the equivalence classes of some acyclic carriage Γ is strongly consistent.

Proof. Assume first that π satisfies the Borel limb condition. Then from

[12], Theorem 20, it follows we can take as quotient space a Borel root set A.

In particular Γ can be taken as the union of the orbits of points in A, and it is

immediate to verify that the orbit of a Borel subset of A is an analytic subset

of [0, 1]2. Hence the disintegration is consistent by the fact that (A,B(A),m)

is a countably generated measure space.

Conversely, suppose that the disintegration is strongly consistent w.r.t. the

axial equivalence relation E on an acyclic carriage Γ. Then, as a consequence

of Proposition A.9, by eventually removing a set of π-measure 0 from Γ, one

can assume that the equivalence relation E has a Borel section S. One

constructs finally Borel limbs as in Lemma 3.7 from {(x(α), y(α)}α∈[0,1]. �

Remark 3.10. We observe that by adding to Γ the set G0 = {x0}×D0,

where x0 /∈ ∪kCk, there is just one equivalence class.

4. Uniqueness of Transport Plans

In this section we address the question of uniqueness of transference

plans concentrated on a set A.

Definition 4.1.(Set of uniqueness) We say that A ∈ Θ(µ, ν) is a set of

uniqueness of Π(µ, ν) if there exists a unique measure π ∈ Π(µ, ν) such that

π(A) = 1.
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In Section 5 of [12] (or using directly the proof of the sufficient condition,

page 370) it is shown that if Γ satisfies the Borel limb condition, then Γ

supports a unique transference plan.

The first lemma is a consequence of Proposition B.15.

Definition 4.2. A set Γ ⊂ A is A-acyclic if for all finite sequences

(xi, yi) ∈ Γ, i = 1, . . . , n, with xi 6= xi+1modn and yi 6= yi+1modn it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ A.

A measure is A-acyclic if it is concentrated on an A-acyclic set.

Lemma 4.3. If an analytic set A is a set of uniqueness for Π(µ, ν),

then the unique π ∈ Π(µ, ν) is concentrated on a A-acyclic Borel set Γ ⊂ A.

Necessary and sufficient conditions for uniqueness are then given by:

necessary condition: there exist a measure π ∈ Π(µ, ν) and an A-acyclic

Borel set Γ ⊂ A such that π(Γ) = 1;

sufficient condition: A is a Borel limb numbering system (Page 370).

We will state a more general sufficient condition later at Page 386.

Let Γ be an A-acyclic σ-compact carriage of π. In particular, Γ is acyclic.

We will thus use the equivalence classes of the axial equivalence relation E

on Γ, Definition 3.4, assuming w.l.o.g. that PX(Γ) = PY (Γ) = [0, 1].

Let hX : X → [0, 1], hY : Y → [0, 1] be the quotient maps. In general

the image of A

A′ :=
{

(α, β) : (hX ⊗ hY )−1(α, β) ∩A 6= ∅
}

(4.1)

is not a subset of {α = β}. However, for the equivalence classes in the

diagonal {α = β}, we have the following lemma.

Lemma 4.4. For all α ∈ [0, 1],

(hX ⊗ hY )−1(α,α) ∩A = (hX ⊗ hY )−1(α,α) ∩ Γ.
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Proof. The definition implies that if x, x′ ∈ h−1
X (α), then there exist

(xi, yi) ∈ Γ, i = 0, . . . , I, with x0 = x, such that denoting xI = x′ then (3.4)

holds. A completely similar condition is valid for y, y′ ∈ h−1
Y (α).

Let (x̄, ȳ) ∈ (h−1
X (α)×h−1

Y (α))∩ (A \Γ). Then there are (x, y), (x′, y′) ∈
Γ such that x = x̄, y′ = ȳ. Consider then the axial path (xi, yi) ∈ Γ,

i = 0, . . . , I = 2(n − 1), connecting them inside the class α: removing by

chance some points, we can assume that (x0, y0) = (x, y), (xI , yI) = (x′, y′)

and

x2j − x2j−1 = 0, y2j−1 − y2j−2 = 0, j = 1, . . . , n.

Hence if we add the point (xI+1, yI+1) = (x̄, ȳ) we obtain a closed cycle,

contradicting the hypotheses of acyclicity of Γ in A. �

The above lemma together with Lemma 2.5 and Lemma 3.7 implies that

non uniqueness occurs because of the following two reasons:

(1) either the disintegration is not strongly consistent,

(2) or the push forward of some transference plan π ∈ Π(µ, ν) such that

π(A) = 1 is not supported on the diagonal in the quotient space.

Indeed, differently from the previous section, the consistency of the disinte-

gration is not sufficient to deduce the uniqueness of the transference plan.

Example 4.5. (Pratelli) Consider µ = L1 and the set

A = {x = y} ∪ {y − x = αmod1}, Γ = {x = y} with α ∈ [0, 1] \ Q.

In this case the quotient map is the identity, but the measure (x, x+αmod1)♯L1

is not concentrated on the diagonal and still belongs to Π(L1,L1).

In the following we address the second point, and we assume that the

disintegration is strongly consistent — which is equivalent to assume that

the quotient maps hX , hY can be taken Borel (up to a µ, ν negligible set,

respectively, as a consequence of Proposition A.9).

Lemma 4.6. The set A′ defined in (4.1) is analytic if A is analytic.

Proof. Since A′ = (hX , hY )(A), the proof is a direct consequence of the

fact that Borel images of analytic sets are analytic, being the projection of

a Borel set. �
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The next lemma is a consequence of the acyclicity of Γ in A.

Lemma 4.7. In the quotient space, the diagonal is A′-acyclic.

Proof. We prove the result only for 2-cycles, the proof being the same

for the n-cycles.

Assume that A′ has a 2-cycle, between the classes (α,α) and (α′, α′).

This means that there are points (x, y) ∈ (hX⊗hY )−1(α,α′)∩A and (x′, y′) ∈
(hX ⊗ hY )−1(α′, α) ∩A.

By definition of equivalence class, there are points (xi, yi) ∈ (hX ⊗
hY )−1(α,α), i = 1, . . . , n, and (x′j, y

′
j) ∈ (hX ⊗ hY )−1(α′, α′), j = 1, . . . , n′,

forming an axial path in Γ and connecting (x, y) to (x′, y′) in (hX⊗hY )−1(α,α)

and (x, y) to (x′, y′) in (hX ⊗ hY )−1(α′, α′).

The composition of the two axial paths yields a closed cycle, contradict-

ing the assumption of acyclicity of Γ in A. �

We now give a sufficient condition for the implication

n ∈ Π(m,m), n(A′) = 1 =⇒ n({α = β}) = 1,

where m = (hX)♯µ = (hY )♯ν.

Definition 4.8. A relation R ⊂ [0, 1]2 is a preorder if

(x, y), (y, z) ∈ R ⇒ (x, z) ∈ R.

A preorder R is a linear preorder if R ∪R−1 = [0, 1]2.

When the preorder is linear we are thus requiring that every couple is

comparable. This means that R is a linear order when [0, 1] is quotiented

w.r.t. the equivalence relation

E := R ∩R−1. (4.2)

We will also write x 4 y or xRy when (x, y) ∈ R and R is a preorder.

Notice that since A′ is acyclic w.r.t. the diagonal (Lemma 4.7), it defines

an analytic partial order on [0, 1] (Lemma 4.6).
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Theorem 4.9. Let B be a Borel linear preorder 4 on [0, 1]. Then the

disintegration w.r.t. the equivalence relation E in (4.2) is strongly consistent

for all µ ∈ P([0, 1]), and the image set B′ in the quotient space is a set of

uniqueness of Π(m,m), where m is the image measure of µ w.r.t. E.

In the proof, at Page 381, we use the following lemmas.

Lemma 4.10. Let m ∈ P([0, 1]) and B ∈ B([0, 1]2). Then the function

x 7→ hB(x) := m(B(x)) is Borel.

Proof. First observe that if

B=
n⋃

i=1

Ai ×A′
i,

with

Ai ×A′
i ∩Aj ×A′

j=∅ for i 6= j, Ai, A
′
i∈B([0, 1]) ∀i∈1, . . . , n,

then hB is Borel:

hB(x) =

n∑

i=1

m(A′
i)χAi

(x).

Hence hB is Borel on the algebra of simple products.

Moreover, if {Bn}n∈N is an increasing sequence of Borel sets, then by

the σ-additivity of the measure

hB(x) = sup
n
hBn(x).

The same computation holds for a decreasing family of Borel sets {Bn}n∈N,

hB(x) = infn hBn(x).

It thus follows that the family of sets A such that hB is Borel

contains the simple products and it is a monotone class. From the

Monotone Class Theorem (Proposition 3.1.14, page 85 of [21]) it follows

that A ⊃ B([0, 1]2). �

Clearly, if B ⊂ [0, 1]2 is µ⊗m-measurable then by Fubini Theorem the

function x 7→ hB(x) is µ-measurable.
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Lemma 4.11. If [0, 1] ∋ t 7→ mt ∈ P([0, 1]) is Borel, then for all

B ∈ B([0, 1]) the function t 7→ mt(B) is Borel.

Proof. Let A ⊂ P([0, 1]) be the family of sets such that t 7→ mt(B) is

Borel for B ∈ A .

If O is open, then the function t 7→ mt(O) is l.s.c., being the supremum

of continuous functions

mt(O) = sup
φ∈C([0,1])

{∫

φmt, φ ≤ χO

}

,

so that open sets belong to A .

Using the equivalences

mt([0, 1] \B) = 1 −mt(B),

mt

(
⋃

i∈N

Bi

)

= lim
i→∞

mt(Bi) {Bi}i increasing,

it follows that A is a σ-algebra. �

Lemma 4.12. Let [0, 1] ∋ t 7→ mt ∈ P([0, 1]) be Borel and B ∈
B([0, 1]2). Then the function

h : [0, 1]2 → [0, 1]

(t, x) 7→ h(t, x) := mt(B(x))

is Borel.

Proof. If B is a finite union of disjoint products of Borel sets Ai × A′
i,

i = 1, . . . , n, then

hB(t, x) =
n∑

i=1

mt(A
′
i)χAi

(x),

so that by Lemma 4.11 the function hB is Borel on the algebra of simple

products. As in Lemma 4.10, the family A of sets for which hB(t, x) =

mt(B(x)) is Borel is a monotone class, so that the conclusion follows. �

In the following we will consider the set [0, 1]α, where α is an ordinal
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number. The linear order on this set is the lexicographic ordering E:

s, t∈ [0, 1]α, sEt, s 6= t⇐⇒∃β≤α
((
∀γ<β(Pγ(s)=Pγ(t))

)
∧

(
Pβ(s)<Pβ(t)

))

.

(4.3)

We recall that Pγ : [0, 1]α → [0, 1] is the projection on the γ-coordinate.

Lemma 4.13. If α ∈ ω1, then

Bα :=
{
(s, t) ∈ [0, 1]α × [0, 1]α : sE t

}
⊂ ([0, 1]α)2

is a set of uniqueness for π ∈ Π(m,m) for all m ∈ P([0, 1]α).

Proof. The proof will be done by induction over α.

Step 0. First of all, if α = 1, the result follows from the observation that

B1 = {(s, t) : s ≤ t} is a set of uniqueness by elementary computations.

Step 1. Assume that Bα :=
{
(s, t) : sE t

}
⊂ ([0, 1]α)2 is a set of unique-

ness, and consider the set Bα+1. By the definition of lexicographic ordering,

(Pγ≤α ⊗ Pγ≤α)(Bα+1) = Bα, so that we can write by the Disintegration

Theorem

mα := (Pγ≤α)♯m, m =

∫

mtmα(dt), π =

∫
(
δ(t,t) ⊗ πt

)
mα(dt),

with mt ∈ P([0, 1]), πt ∈ P([0, 1]2). We have used the fact that

πα := (Pγ≤α ⊗ Pγ≤α)♯π ∈ Π(mα,mα),

and then the uniqueness property of Bα implies that πα = (I, I)♯mα =
∫
δ(t,t)mα(dt).

Note now that for mα-a.e. t ∈ [0, 1]α it holds πt ∈ Π(mt,mt) and that

Bα+1 ∩
(
P−1
γ≤α, P

−1
γ≤α

)
(t)

=
{

(s, s′) : Pγ≤α(s) = Pγ≤α(s′) = t, Pα+1(s) ≤ Pα+1(s
′)
}

= {(t, t) ×B1}.

This is clearly a set of uniqueness, by Step 0, so that πt = (I, I)♯mt. We thus

conclude that also Bα+1 is a set of uniqueness.
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Step 2. Let α ∈ ω1 be a limit ordinal. Then for all β < α the set

Bβ = Pγ≤β(Bα) is a set of uniqueness. Using the fact that

{
(s, t) ∈ [0, 1]α × [0, 1]α : s = t

}
=

⋂

β<α

{
(t, s) : Pγ≤β(t) = Pγ≤β(s)

}
,

and observing that

(Pγ≤β ⊗ Pγ≤β)♯π = (Pγ≤β , Pγ≤β)♯m,

we conclude that π({s = t}) = 1, i.e. Bα is a set of uniqueness.

Step 3. By transfinite induction, we conclude that for every α ∈ ω1 the

set Bα = {(s, t) : sE t} ⊂ ([0, 1]α)2 is a set of uniqueness. �

As noticed before Assumption 2 in the discussion concerning the diago-

nal, {s E t} does not belong to the product σ-algebra if α = ω1, so that the

uniqueness question for α = ω1 is meaningless.

Lemma 4.14. Let B ∈ Θm⊗m be a linear preorder 4 and m ∈ P([0, 1])

a probability measure such that for some κ ∈ [0, 1]

m(B−1(x)) = κ for m-a.e. x ∈ [0, 1]. (4.4)

Then m is concentrated on an equivalence class E0 for E = B ∩ B−1 and

κ = 1. If (4.4) holds for all x

∀x ∈ E0,∀y ∈ [0, 1] x 4 y. (4.5)

See Example C.12 for an example where the assumption B ∈ Θm⊗m is

not satisfied and the thesis is false.

Proof. Step 1. Let us prove the thesis for κ = 1. In this case, we do not

need the assumption that the preorder B is linear.

By Fubini Theorem it follows that

m⊗m(B−1) =

∫

m(B−1(x))m(dx) = 1.
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Thus m⊗m is concentrated on B−1. Using the formula

B−1(x) ∩ (B \ E)(x) = {y : y 4 x} ∩ {y : y ≻ x} = ∅

one has B−1∩(B\E) = ∅, and then m⊗m(B\E) ≤ m⊗m([0, 1]\B−1) = 0.

Since m ⊗ m is invariant for the reflection w.r.t. the diagonal, m ⊗
m(B−1 \E) = m⊗m(B \E) = 0, finding that m⊗m is concentrated on E.

Again by Fubini Theorem,

m⊗m =

∫

mxE(x)m(dx) =⇒ m(E(x)) 6= 0 m-a.e. x,

which implies that the image measure w.r.t. E is purely atomic.

Under the present assumption that κ = 1 there can be at most one

equivalence class with positive measure: denoting this class by E0, clearly

m(E0) = 1 and (4.5) holds if m(B−1(x)) = 1 for all x.

Step 2. Notice first how the assumption that the preorder is linear

implies κ > 0. Indeed,

B ∪B−1 = [0, 1]2

yieldsm⊗m(B)+m⊗m(B−1) ≥ 1. Sincem⊗m is invariant for the reflection

w.r.t. the diagonal, m⊗m(B) = m⊗m(B−1), and then 2·m⊗m(B) ≥ 1 > 0.

By Fubini and (4.4) we conclude

κ = m⊗m(B) > 0.

Let X = B−1(x̄) such that m(B−1(x̄)) = κ. For m-a.e. x ≻ x̄ by (4.4)

and B−1(x̄) ⊂ B−1(x) one has

mx[0,1]\X(B−1(x)) = m(B−1(x) \B−1(x̄)) = 0.

If m([0, 1] \X) = 1 − κ > 0 we would reach an absurd, as (4.4) would hold

with κ = 0 for the probability measure m̃ := (mx[0,1]\X)/(1−κ). This yields

κ = 1, proving the thesis by the first step. �

We can now prove the main theorem of the section.

Proof of Theorem 4.9. The following steps of the proof show that given

any measure µ ∈ P([0, 1]) there exists an ordinal ᾱ ∈ ω1 and an order
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preserving Borel map

hᾱ : ([0, 1],4) → ([0, 1]ᾱ,E)

such that

µ =

∫

µtm(dt) m := (hᾱ)♯µ

with µhᾱ(x) concentrated on the single equivalence class E(x) ⊂ h−1
ᾱ (hᾱ(x)),

defined in (4.2), for µ-a.e. x. We prove that if one removes a µ-negligible set

hᾱ is the quotient projection w.r.t. E.

Since the map is order preserving, the image set B′ of B in the quotient

space is clearly a subset of
{
(s, t) ∈ [0, 1]α× [0, 1]α : sE t

}
. The fact that B′

is a set of uniqueness of Π(m,m), for all m Borel, follows then immediately

from Lemma 4.13, proving the last part of the theorem.

Step 1. Define the function

[0, 1] ∋ x 7→ h1(x) := µ({z : z 4 x}) = µ(B−1(x)) ∈ [0, 1].

Since B is Borel, by Lemma 4.10 h1 is Borel and

x 4 y =⇒ h1(x) ≤ h1(y).

Step 2. Let α ∈ ω1 and assume that there exists a Borel order preserv-

ing map hα : [0, 1] → [0, 1]α, where [0, 1]α is ordered by the lexicographic

ordering E.

Since [0, 1]α is Polish because |α| = ℵ0, then the disintegration

µ =

∫

µt(hα)♯(dt)

is well defined and strongly consistent.

By redefining µt on a set of measure 0 w.r.t. (hα)♯µ, we can assume that

[0, 1]α ∋ t 7→ µt ∈ P([0, 1]) is Borel, so that the map

[0, 1] × [0, 1]α ∋ (x, t) 7→ µt(B
−1(x)) ∈ [0, 1]

is Borel by Lemma 4.12 and the Borel Isomorphism Theorem (Theorem

3.3.13, page 99 of [21]).
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Step 3. Consider the function

hα+1 : [0, 1] → [0, 1]α+1

x 7→ hα+1(x) := (hα(x), µhα(x)(B
−1(x)))

Since t 7→ hα(t) is Borel, then (t, x) 7→ µhα(t)(B
−1(x)) is Borel by Lemma 4.12,

being the composition of two Borel maps. It is clearly order preserving if hα

is and [0, 1]α+1 is ordered lexicographically. Note that Pβ≤α ◦ hα+1 = hα.

Step 4. Assume that α is a limit ordinal, and that the Borel functions

hβ : [0, 1] → [0, 1]β , β < α, have been constructed in such a way that

Pγ≤β ◦ hδ = hβ for all β ≤ δ. Then we construct the Borel order preserving

map

hα : [0, 1] → [0, 1]α

x 7→ (Pβ ◦ hα)(x) := Pβ(hβ(x)) ∀β < α

By transfinite induction, we can construct a Borel order preserving map

h : [0, 1] → [0, 1]ω1 , where [0, 1]ω1 is equipped with the Borel σ-algebra.

Step 5. Consider the family of Borel equivalence relations

E :=
{

Eα = {x ∼ y ⇔ hα(x) = hα(y)}, α ∈ ω1

}

.

We observe that if {αn} ⊂ ω1 and α = supn αn ∈ ω1, then ∩nEαn = Eα by

the definition of hα. By Theorem A.11, there exists ᾱ ∈ ω1 such that the

disintegration

µ =

∫

µt((hᾱ)♯µ)(dt)

is the sharpest one, in the sense that any other disintegration w.r.t. hβ,

β ∈ ω1, namely

µ =

∫

µs((hβ)♯µ)(ds),

can be written by means of

µxh−1
ᾱ (B([0,1]ᾱ))=

∫

rs((hβ)♯µ)(ds),

µ =

∫

µs((hβ)♯µ)(ds) =

∫ (∫

µtrs(dt)

)

((hβ)♯µ)(ds).
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We write here µxC for the restriction of a measure to the σ-algebra C ⊂ B.

By (A.5), we conclude that there exists a Borel function

s : [0, 1]ᾱ → [0, 1]β

such that (hβ)♯µ is concentrated on the graph of s = s(t), t ∈ [0, 1]ᾱ.

Step 6. From the definition of hᾱ+1 and Step 5, it follows that

µt(B
−1(x)) = s(t) for (hᾱ)♯µ-a.e. t, ∀x ∈ h−1

ᾱ (t),

i.e. µt(B
−1(x)) is constant on h−1

ᾱ (t), for (hᾱ)♯µ-a.e t ∈ [0, 1]ᾱ: in particular

removing a µ-negligible saturated set we can assume that by Lemma 4.14

the measure µt is concentrated on the first equivalence class contained in

B(h−1
ᾱ (t)), denote it with Ehᾱ .

Step 7. Define the function h̄ : [0, 1] → [0, 1]ᾱ+1 as

h̄(x) :=
(
hᾱ(x), 1 − µhᾱ(x)(B(x))

)
.

The (ᾱ + 1)-component is 0 only on the unique class Ehᾱ(x) of E on which

µhᾱ(x) is concentrated. From the disintegration formula w.r.t. hᾱ then

µ
(
h̄−1(P−1

ᾱ+1((0, 1]))
)

= 0.

We conclude that, up to the above µ-negligible set, hᾱ is the quotient

map w.r.t. E and using the fact that [0, 1]ᾱ is Polish

µ =

∫

µt((hᾱ)♯µ)(dt)

is a strongly consistent disintegration for E. �

Corollary 4.15. If B is a Borel linear order, then B is a set of unique-

ness in Π(m,m) for every m ∈ P([0, 1]).

Proof. It is sufficient to obseve that

E := B ∩B−1 = {x = y}.
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Hence the map hᾱ : [0, 1] → [0, 1]ᾱ constructed in the previous proof is order

preserving and moreover

m =

∫

δx(t)((hᾱ)♯m)(dt).

Removing the cross negligible set N where hᾱ⊗hᾱ is not invertible, we

have that the uniqueness problem can be stated as a uniqueness problem

in [0, 1]ᾱ with the lexicographic ordering E. By Lemma 4.13 uniqueness of

π follows. �

Remark 4.16. In Theorem 4.9 and Corollary 4.15 one can assume that

B ∈ Θ(µ, µ). The proof is analogous to the one above, but relies on the

following lemma instead of Lemmas 4.10−4.12

Lemma 4.17. Let B ∈ Θ(m,m), with m ∈ P([0, 1]), and h : ([0, 1],Θm) →
([0, 1],B) a measurable map. Let m =

∫
mtξ(dt) be the disintegration of m

w.r.t. h. Then

(1) the map x 7→ mt(B(x)) is m-measurable for ξ-a.e. t;

(2) the map (x, t) 7→ mt(B(x)) is π-measurable for π ∈ Π(m, ξ);

(3) the map x 7→ mh(x)(B(x)) is m-measurable.

For simplifying the notation, in the following we will denote the disin-

tegration of η ∈ P(X1 ×X2) w.r.t. the projection P1 as

∫

φη =

∫ ( ∫

φ(x1, x2)ηx1(dx2)

)

((P1)♯η)(dx1).

Proof. Step 1 : Point (1). By the Disintegration Theorem A.7 (x, t) 7→
mt(B

−1(x)) is m⊗ ξ-measurable, where ξ := (hα)♯m:

m⊗m(B−1) =

∫

m(B−1(x))m(dx)

=

∫ { ∫

mt(B
−1(x))ξ(dt)

}

m(dt) =

∫

mt(B
−1(x))(m⊗ ξ)(dx, dt).

By Fubini Theorem x 7→ mt(B(x)) is therefore m-measurable for ξ-a.e. t ∈
[0, 1].

Step 2 : Point (2). Let π̂ ∈ Π(m, ξ) and π̂ =
∫
π̂tξ(dt) its disintegration

w.r.t. the projection on the second variable. Define the Borel measure on
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[0, 1]3

η :=

∫

mtπ̂(dxdt) =

∫

mt ⊗ π̂tξ(dt).

Notice that (P1)♯η =
∫
mtξ(dt) = m. Similarly, (P2)♯η = (P1)♯π̂ = m.

In particular, (P12)♯η ∈ Π(m,m). Since (P12)
−1(Θ(m,m)) ⊂ Θη, then B ×

[0, 1] ∈ Θη. By the Disintegration Theorem one finds that (x, t) 7→ mt(B(x))

is π̂-measurable and

η(B × [0, 1]) =

∫

mt(B(x))π̂(dxdt).

Step 3: Point (3). Finally by taking π := (I, h)♯m ∈ Π(m, ξ) one has

the last point of the statement. �

Hence, our sufficient condition for uniqueness is the following:

Sufficient condition for uniqueness: A′ is a subset of a linear order

B ∈ Θ(m,m).

As the diagonal is A′-acyclic, and therefore by the Axiom of Choice it

can be completed to a linear order, this is again a measurability assumption.

An easy case is covered by the next lemma.

Lemma 4.18. If A′ is acyclic and m purely atomic, then A′ is a subset

of a Borel linear order on [0, 1] and hence a set of uniqueness.

Proof. If m is purely atomic with atoms on {αi}i∈N, it is enough to

prove that we can find a linear order on the set {(αi, αj), i, j ∈ N}. In fact

it is fairly easy to extend its graph R to a Borel linear order on [0, 1] by

defining

α 4 β ⇐⇒







αRβ α, β ∈ {αi}i∈N

α ∈ {αi}i∈N β /∈ {αi}i∈N

α ≤ β α, β /∈ {αi}i∈N

Now, every acyclic set A′ on {(αi, αj)}i,j∈N containing {(αi, αi), i ∈ N}
defines a partial order relation by setting

αi 4 αj ⇐⇒ (αi, αj) ∈ A′.
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x

y

C1 C2 C3

D0

D1

D2

Γ

A

Figure 2. The set where A should be contained in order to have that A′ is a subset
of the standard order ≤ on [0, 1]. The bold curves are the limbs of Γ, and two axial
path are represented.

By countably many operations one can complete this partial order into a

linear one. �

An example of a set A for which A′ is a set of uniqueness is presented

in Figure 2. By setting

c(x, y) =







1 Γ

0 A \ Γ

+∞ [0, 1]2 \A

the uniqueness of the transport plan in A is related to a problem of optimal-

ity.

Remark 4.19. We observe here that given an A-acyclic set Γ, and

assuming for simplicity that P1(Γ) = [0, 1], one can define a preorder on
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[0, 1] by

x 4 x′ ⇐⇒ ∃{(xi, yi)}i=0,...,I ⊂ Γ, (xi+1, yi) ∈ A, x0 = x, xI+1 = x′,

i.e. x, x′ are connected by an axial path. The equivalence relation E defined

in (4.2) corresponds to the axial equivalence relation (3.4), so that we can

state equivalently that if 4 can be extended to a linear preorder, then A is

a set of uniqueness.

5. Optimality

The last problem we want to address is the problem of optimality of a

measure π ∈ Π(µ, ν) w.r.t. the functional I defined in (1.2). We recall that

a plan π ∈ Π(µ, ν) is said to be optimal if

I(π) =

∫

c(x, y)π(dxdy) = min
π̃∈Π(µ,ν)

I(π̃).

In this section the function c is assumed to be a positive Π1
1-function.

Definition 5.1.(Cyclical monotonicity) A subset Γ of [0, 1]2 is c-cycli-

cally monotone when for all I, i = 1, . . . , I, (xi, yi) ∈ Γ, xI+1 := x1 we

have
I∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
≥ 0.

A transference plan π ∈ Π(µ, ν) is c-cyclically monotone if there exists a

c-cyclically monotone set Γ such that π(Γ) = 1.

As usual, by inner regularity and by the fact that for π fixed c coincides

with a Borel function up to a negligible set, the set Γ for that given measure

π can be taken σ-compact and cxΓ Borel.

We recall that a necessary condition for being optimal is that the mea-

sure is concentrated on a c-cyclically monotone set. A proof is provided for

completeness in Proposition B.16.

Lemma 5.2. If π is optimal, then it is c-cyclically monotone.
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Having a necessary condition which gives some structure to the problem,

we have to specify a sufficient condition which should be tested in each

equivalence class. We list some important remarks.

(1) The optimality is implied by the fact that there exists a sequence of

functions φn ∈ L1(µ), ψn ∈ L1(ν) such that φn(x) +ψn(y) ≤ c(x, y) and

∫

φnµ+

∫

ψnν =

∫

(φn + ψn)π ր
∫

cπ.

(2) For l.s.c. costs or costs satisfying c(x, y) ≤ f(x) + g(y), f ∈ L1(µ) and

g ∈ L1(ν)-measurable, the converse of Point (1) holds.

(3) Another condition is that there is an optimal pair φ,ψ : [0, 1] → [−∞,

+∞), respectively µ-measurable and ν-measurable, such that φ(x) +

ψ(y) ≤ c(x, y) for all (x, y) ∈ [0, 1]2 and φ(x) + ψ(y) = c(x, y) π-a.e..

For completeness we show the sufficiency of the last condition, proved

also in [4].

Lemma 5.3. Suppose there exists Borel functions φ,ψ : [0, 1] → [−∞,

+∞) and Γ ⊂ [0, 1]2 such that

φ(x) + ψ(y) < c(x, y) ∀(x, y) ∈ [0, 1]2 \ Γ

φ(x) + ψ(y) = c(x, y) ∀(x, y) ∈ Γ.

If ∃π ∈ Πf (µ, ν) such that π(Γ) = 1, then

π ∈ Π(µ, ν) optimal ⇐⇒ π(Γ) = 1.

It is trivial to extend the proposition to the case of φ : [−∞,+∞) µ-

measurable and ψ : [−∞,+∞) ν-measurable, just redefining the functions

on negligible sets in order to be Borel.

Proof. Let π̄ be an optimal transference plan and π ∈ Πf (µ, ν) con-

centrated on Γ. Hence µ and ν are concentrated on the sets {φ > −∞},
{ψ > −∞} respectively.

Step 1. We prove that if λ ∈ Λ and ψλ, (φ + ψ)λ are Borel measures

(assuming eventually the value ∞) concentrated on {φ + ψ > −∞}, then
∫ {

φ+ ψ
}
λ = 0.
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Since (φ+ ψ)λ is a Borel measure, one can consider the following integrals

∫

[0,1]2

{
φ+ ψ

}
λ = lim

M→∞

∫

{|φ|<M}

{
φ+ ψ

}
λ.

Since also ψλ is a Borel measure and φχ|φ|<Mλ ∈ M([0, 1]2),

lim
M→∞

∫

{|φ|<M}

{
φ+ ψ

}
λ = lim

M→∞

{∫

{|φ|<M}
φλ+

∫

{|φ|<M}
ψλ

}

λ∈Λ
= lim

M→∞

∫

{|φ|<M}
ψλ =

∫

ψλ = lim
M→∞

∫

{|ψ|<M}
ψλ = 0.

Step 2. Let λ := π̄ − π, with π̄ ∈ Πf (µ, ν).

Define φM := (φ∧M)∨ (−M) and ψM := (ψ ∧M)∨ (−M): it is immediate

to verify that from φ+ ψ = c on Γ

Γ({φ ≤M}) ⊂ {ψ ≥ −M}, Γ−1({ψ ≤M}) ⊂ {φ ≥ −M},

and then

φM (x) + ψM (y) ≤ c(x, y), φM (x) + ψM (y) ≥ 0 on Γ.

In particular, φMλ and (φM + ψM )λ are finite Borel measures.

Since φM , ψM converge pointwise, then φM + ψM converges to c in

L1(π), yielding immediately

∫

[0,1]2
cλ ≥ lim

M

∫

[0,1]2

{
φM + ψ−M

}
λ.

The r.h.s. vanishes by Step 1, showing the optimality of π:

0 ≥ I(π̄) − I(π) =

∫

[0,1]2
cλ ≥ lim

M

∫

[0,1]2

{
φM + ψ−M

}
λ = 0. �

From the formulas

φ(x, x̄, ȳ) = inf

{ I∑

i=0

c(xi+1, yi) − c(xi, yi), (xi, yi) ∈ Γ finite,

(x0, y0) = (x̄, ȳ), xI+1 = x

}

, (5.2a)
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ψ(y, x̄, ȳ) = c(x, y) − φ(x, x̄, ȳ), with (x, y) ∈ Γ, (5.2b)

it is always possible to construct an optimal couple φ, ψ in an analytic subset

of Γ containing (x̄, ȳ) such that (−φ,ψ) are Σ1
1-functions. In Remarks C.3,

C.6 it is shown that φ, ψ are A-functions, but using the facts that

g ∈ Π1
1(X × Y ) ⇒ inf

y
g(x, y) ∈ Π1

1(X), cxΓ is Borel,

the above better estimate follows.

In Remark 5.10 we show that φ defines a natural linear preorder on

[0, 1], and that we can state a particularly coincise condition. In Section C,

instead, the idea of extending φ(x, x̄, ȳ), ψ(y, x̄, ȳ) to larger sets is developed

in a general framework.

Here we consider the easiest equivalence relation for which the procedure

at Page 366 can be applied. This equivalence relation has been also used in

[3].

Definition 5.4.(Closed cycles equivalence relation) We say that (x, y)

Ē(x′, y′) or (x, y) is equivalent to (x′, y′) by closed cycles if there is a closed

cycle with finite cost passing through them: there are (xi, yi) ∈ Γ such that

(x0, y0) = (x, y) and (xj , yj) = (x′, y′) for some j ∈ {0, . . . , I} such that

I∑

i=1

c(xi, yi) + c(xi+1, yi) < +∞, xI+1 := x0.

It is easy to show that this is an equivalence relation, and it follows

directly from (5.2) or the analysis of Section C that in each equivalence class

there are optimal potentials φ, ψ.

Lemma 5.5. The equivalence relation Ē satisfies the following.

(1) Its equivalence classes are in Σ1
1.

(2) It satisfies the crosswise structure (2.2).

The above lemma can be seen as a straightforward consequence of Lemma

C.5 and Corollary C.7 of Section C. Since it is elementary, we give here a

direct proof.
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Proof. For the Point (1), just observe that for all I ∈ N

I∑

i=0

c(xi, yi) + c(xi+1, yi), xI+1 = x0

is a Π1
1-function, so that

ZI(x̄, ȳ) =

{

(x1, y1, . . . , xI , yI) ∈ ΓI :

I∑

i=1

c(xi, yi) + c(xi+1, yi) + c(x̄, ȳ) + c(x1, ȳ) < +∞, xI+1 = x̄

}

is in Σ1
1.

The equivalence class of (x̄, ȳ) is then given by

⋃

I∈N

I⋃

i=1

P2i−1,2i(ZI) ∈ Σ1
1,

where we used the fact that Σ1
1 is closed under projection and countable

union (see Appendix B.1 or Chapter 4 of [21]).

The proof of Point (2) follows from the straightforward observations

that (x, y)Ē(x′, y) and (x, y)Ē(x, y′) whenever (x, y), (x′, y), (x, y′) ∈ Γ: just

consider the closed cycle with finite cost made of the two points (x0, y0) :=

(x, y) and (x1, y1) := (x′, y), or (x1, y1) := (x, y′). �

Let now π ∈ Πf (µ, ν) be a c-cyclically monotone transference plan, and

let Γ be a c-cyclically monotone set where π is concentrated. Let Ē be the

equivalence class of Definition 5.4.

As in the previous section, non optimality can occur because of two

reasons:

(1) either the disintegration is not strongly consistent,

(2) or the push forward of some measure π′ ∈ Πopt(µ, ν) is not supported on

the diagonal in the quotient space.

In the next section we give examples which show what can happen when

one of the two situations above occurs. Here we conclude with two results,

which yield immediately the optimality of π.
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Let hX , hY be the quotient maps. By redefining them on a set of measure

0, the condition of strong consistency implies that hX , hY can be considered

as Borel maps with values in [0, 1]. In particular, the set

A′ := (hX ⊗ hY )({c < +∞}) (5.3)

is analytic. Note that

(hX ⊗ hY )♯π̃(A′) = 1 ∀π̃ ∈ Πf (µ, ν),

i.e. the transport plans with finite cost are concentrated on A′, and moreover

for the π under consideration

(hX ⊗ hY )♯π = (I, I)♯m,

where m = (hX )♯µ = (hY )♯ν by Lemma 5.5 and Lemma 2.4.

Theorem 5.6. Assume that the disintegration w.r.t. the equivalence

relation Ē is strongly consistent. If A′ is a set of uniqueness in Π(m,m),

then π is optimal.

The proof is a simple application of Lemma 2.5.

The next corollary is a direct consequence of Lemma 4.18.

Corollary 5.7. If m = (hX)♯µ is purely atomic, then the c-cyclical

monotone measure π is optimal.

We now give a simple condition which implies that the image measure

m is purely atomic.

Proposition 5.8. Assume that π satisfies the following assumption:

there exists a countable family of Borel sets Ai, Bi ⊂ X, i ∈ N, such that

π

(
⋃

i

Ai ×Bi

)

= 1, (5.4a)

and

µ⊗ ν
(
∪i (Ai ×Bi) ∩ {c = +∞}

)
= 0. (5.4b)

Then the image measure m is purely atomic.
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Proof. First of all, we can assume that Γ ⊂ ∪iAi × Bi, where Γ is a

c-cyclically monotone set such that π(Γ) = 1.

Step 1. The assumption (5.4b) and Fubini Theorem imply that there is

x̄i ∈ Ai such that

B̄i := P2

(
(Ai ×Bi ∩ {c < +∞})x̄i

)

has full νxBi
-measure, where for C ⊂ [0, 1]2 we define

Cx := C ∩ {x} × [0, 1].

Then there is ȳi ∈ B̄i such that

Āi := P2

(
(Ai ×Bi ∩ {c < +∞})ȳi

)

has full µxAi
-measure. The functions φ, ψ given by formula (5.2) starting

from (x̄i, ȳi) provide then optimal potentials on the sets Āi × B̄i.

Step 2. It is now fairly easy to show that the new sets Āi, B̄i, i ∈ N,

satisfy again conditions (5.4), and that in Γ ∩ ∪iĀi × B̄i each equivalence

class for the closed cycles equivalence relation contains at least one Āi× B̄i.

Then it follows that m is purely atomic. �

The case of Point (3) of page 357 corresponds to a single global class.

Remark 5.9. Let Γ be a c-cyclically monotone set where π is concen-

trated. The proof shows actually that in each set Γ ∩ (Ai ×Bi)

φ(x) + ψ(y) = c(x, y)

up to a cross-negligible set. This is clearly stronger than cxΓ< +∞ µ⊗ν-a.e..

Remark 5.10. From the definition of the potentials (φ(·, x̄, ȳ), ψ(·, x̄, ȳ)),
we can define the following relation on P1(Γ).

Definition 5.11. We say that x ≥c x
′ if ∃y ∈ Γ(x) such that φ(x′, x, y) <

+∞: equivalently there are points (xi, yi) ∈ Γ, i = 0, . . . , I such that x0 = x,

xI+1 = x′ and
∑

i c(xi+1, xi) + c(xi, yi) < +∞.

When we consider as uniqueness condition the Borel linear order condi-

tion of page 386, the results of this section can be rephrased as the fact that
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≤c can be completed into a Borel linear preorder ≤c such that x ≤c x
′ and

x′ ≤c x implies that they belong to a closed cycle with finite cost.

In fact, by using Theorem 4.9 it follows that the disintegration w.r.t.

the equivalence classes is strongly supported and that the image set A′ is a

set of uniqueness: just observe that if x ≤c x
′, then there is an axial path

connecting them, so that A′ is contained in a Borel linear order on [0, 1].

5.1. Extension of the construction

The approach we are proposing can be generalized as follows.

Assumption 5. Assume that for any (x̄, ȳ) ∈ Γ there exist univer-

sally measurable subsets A(x̄,ȳ), B(x̄,ȳ) of [0, 1] and universally measurable

functions φ(x̄,ȳ), ψ(x̄,ȳ) satisfying

(x̄, ȳ) ∈ A(x̄,ȳ) ×B(x̄,ȳ) (5.5a)

φ(x̄,ȳ)(x) + ψ(x̄,ȳ)(y) ≤ c(x, y) ∀(x, y) ∈ A(x̄,ȳ) ×B(x̄,ȳ) (5.5b)

φ(x̄,ȳ)(x) + ψ(x̄,ȳ)(y) = c(x, y) ∀(x, y) ∈ A(x̄,ȳ) ×B(x̄,ȳ) ∩ Γ. (5.5c)

We can define the relation R

(x, y)R(x′, y′) ⇐⇒ (x′, y′) ∈ A(x,y) ×B(x,y).

Assume that there exist partitions {Xα}α, {Yα}α of [0, 1] such that each

Xα × Yα ⊂ A(xα,yα) ×B(xα,yα) for some (xα, yα) ∈ Γ. Then optimality holds

if the equivalence relation induced by {Xα×Yβ}α,β satisfies Assumptions 1,

2, 3, i.e. if the disintegrations w.r.t. {Xα × Yβ}α,β is strongly consistent,

π(∪αXα × Yα) = 1 and A′ of (5.3) is a set of uniqueness.

A method for constructing a relation R satisfying Assumption 5 and the

crosswise condition w.r.t. Γ (Definition 2.3) is exploited in Appendix C.

6. Examples

In this section we study the dependence of our construction w.r.t. the

choice of Γ, and the necessity of the assumptions in Theorem 5.6.
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6.1. Dependence w.r.t. the set Γ

We consider the situation where the assumptions of Theorem 5.6 do not

hold, so that either we do not have the strong consistency of the disintegra-

tion, or the set A′ is not a set of uniqueness. Keeping fixed µ, ν, c and the

plan π ∈ Π(µ, ν), varying Γ, the following cases are possible:

(1) Strong consistency of the disintegration is not satisfied for any choice of

Γ, and the plan we are testing can either be optimal or not (Example

6.1, Example 6.2).

(2) Strong consistency can be satisfied or not, depending on Γ, and, when it

is, the quotient problem can be both well posed (A′ is a set of uniqueness)

or not (Example 6.3, Example 6.2). We are testing an optimal plan.

(3) Strong consistency is always satisfied, but the image measure m is not

atomic (Example 6.4). The plan we are testing can either be optimal or

not.

In Figure 3, for each example we draw the pictures of the set in [0, 1]2

where c is finite.

Example 6.1. Consider µ = ν = L1 with the cost given by

c(x, y)=







c0 y−x=0

c1 y−x=α (mod 1)

c−1 y−x=−α (mod 1)

+∞ otherwise

with α ∈ [0, 1] \ Q, c1+c−1≥2c0.

Three extremal points in Π(µ, ν) are, for i ∈ {0, 1,−1},

πi =
(
Id, Id + iα(mod 1)

)

♯
L1 =⇒

∫

c(x, y)πi(dxdy) = ci,

the optimal one will be the one corresponding to the lowest ci.

Fix the attention on π0, which is c-cyclically monotone when c1 + c−1 ≥
2c0. Take as Γ the diagonal {x = y}: the equivalence classes are given

by {x + nα mod 1}n∈N, the quotient is a Vitali set, and thus the unique

consistent disintegration is the trivial disintegration

L1 =

∫

L1m(dt).
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0

0

1

1 x

y

α

α

c0c1

c1

c−1

c−1

0

0

2

2

1

1

1 x

y

α

(a) When α /∈ Q, the cycle decom-
position of the plan π = (Id, Id)♯L1

gives only a consistent disintegration
(Ex. 6.1).

(b) Disintegration sometimes only con-
sistent, sometimes strongly consistent,
but with no answer (Ex. 6.2).

0

0

0

0

2

2

1

1

1 x

y

α

0

0

1

1 x

y c(x, y) = 1 −√
y − x

(c) Disintegration either only con-
sistent or strongly consistent, quo-
tient problem either well posed or not
(Ex. 6.3).

(d) A set of uniqueness with no optimal
pair and well posed quotient problem
(Ex. 6.4).

Figure 3. The dependence on Γ. In the picture you find, in bold, a set where π is
concentrated.
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Moreover, one can verify that there is no choice of Γ for which the disintegra-

tion is strongly consistent. When c1 < c0, we have a c-cyclically monotone

transference plan π for which the decomposition gives a disintegration which

is not strongly consistent and π is not optimal. When c1, c2 > c0, we have an

optimal c-cyclically monotone transference plan π for which the disintegra-

tion consistent with the decomposition in cycles is not strongly consistent.

Example 6.2. Consider an example given in [2], page 135: µ = ν = L1

with the cost given by

c(x, y) =







1 y − x = 0

2 y − x = α (mod 1)

+∞ otherwise

with α ∈ [0, 1].

The extremal plans in Π(µ, ν) with finite costs are, for i ∈ {0, 1},

πi =
(
Id, Id + iα(mod 1)

)

♯
L1 =⇒

∫

c(x, y)πi(dxdy) = 1 + i;

both are c-cyclically monotone, and the optimal one is π0. Take Γ = {x =

y}: then there is no cycle of finite cost, therefore the cycle decomposition

gives classes consisting in singletons, the quotient space is the original one,

m = L1, πα = δ{(x,y)}, where α is the class of (x, y). This means that the

measurability condition is satisfied, but the quotient problem (which here is

essentially the original one) has not uniqueness. Take instead Γ = {c <∞}:
now we have cycles, all with zero cost, obtained by going on and coming

back along the same way; consider for example the cycle

(w1, w1)=(0, 0) → (w2, w2)=(0, α) → (w3, w3)=(α,α) → (w4, w4)=(0, 0).

The situation is similar to Example 6.1 and, as it was there, the disintegra-

tion is not strongly consistent. Thus we have that, depending on Γ, strong

consistency can be satisfied or not, and when it is, the quotient problem has

not uniqueness. This behavior holds when testing either π0 or π1, thus it

does not depend on the optimality of the plan we are testing.

Example 6.3. Consider the same setting as in Example 6.2, but put

the cost to be finite, say zero, also on the lines {x = 1} and {y = 1}. Now,

considering π = (Id, Id)♯L1,
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- with Γ containing (1, 1), all the points are connected by a cycle of finite

cost, we have just one class and optimality follows by c-cyclical mono-

tonicity;

- with Γ = {(x, x) : x ∈ [0, 1)} the classes are made of single points, the

disintegrations is trivially measurable, the quotient problem is essentially

the original one and we are in the non-uniqueness case;

- when you consider instead

Γ =
{
(x, x) : x ∈ [0, 1)

}
∪

{
(x, x+ α) : x ∈ [0, 1] \ {1 − α}

}
,

again the quotient space is a Vitali set, the strong consistency of the

disintegration is lost.

Depending on the choice of Γ, we can have or not strong consistency; more-

over, when we have strong consistency, the quotient space can have unique-

ness or non-uniqueness. Notice that since there exists Γ for which Theorem

5.6 holds, π must optimal: the first argument does not hold for (Id, Id+α)♯L1,

since Γ = {(x, x + αmod 1), x ∈ [0, 1]} is not c-cyclically monotone.

Example 6.4.(A set of uniqueness with nonexistence of φ, ψ) Consider

µ = ν with the cost given by

c(x, y) =







1 y = x

1 −√
y − x y − x = 2−n

+∞ otherwise

with n ∈ N.

Unless µ is purely atomic with a finite number of atoms, there is no optimal

potential. However, applying the procedure one can deduce optimality: {c <
∞} is acyclic and therefore the cycle decomposition consists in singletons,

the quotient spaces are the original ones, and therefore A′ of (5.3) is a set

of uniqueness, being contained in {x ≤ y}, and π{(x,x)} = δ{(x,x)}, m = µ.

Example 6.5. The final example shows that in the case of consistency

only, then we can construct a cost c̃ such that the image measure m is the

same but there are non optimal transference plans. We just sketch the main

steps.

Let hX , hY : [0, 1] → [0, 1] be the Borel quotient maps for the equivalence

relation of Definition A.5.
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Step 1. The conditional probabilities µα, νβ cannot be purely atomic

for m-a.e. α, β.

By the Borel regularity of the map α 7→ µα, one can in fact show ([5])

that there exists a Borel set B such that B ∩ h−1
X (α) is countable and the

atomic part of µα is concentrated on B. Hence if µα is purely atomic we can

reduce to the case where h−1
X (α) is countable for all α.

Assume by contradiction that each equivalence class has countably many

counterimages. We can use Lusin Theorem (Theorem 5.10.3 in [21]) to find

a countable family of Borel maps h′n : [0, 1] ⊃ Bn → [0, 1], Bn ∈ B([0, 1]),

n ∈ N, such that hX ◦ h′n = IxBn and

graph(hX) =
⋃

n

graph(h′n), graph(h′n)
⋂

graph(h′m) = ∅.

Define the analytic Ē-saturated sets (Ē is the closed cycles equivalence re-

lation, Definition 5.4)

Zn = P1

(
Ē ∩ [0, 1] × h′n(Bn)

)
\
n−1⋃

i=1

Zi.

By construction, h′n(Bn)∩Zn is an analytic section of Zn, so that Proposition

A.9 implies that the disintegration is strongly consistent. The same clearly

holds for ∪nZn.

Step 2. We restrict to the case where µα, να have no atoms.

The previous step shows that there is a set of positive m-measure for

which the conditional probability µα is not purely atomic. Let µα,c be the

continuous part of µα: in [5] it is shown that

∫

µα,cm(dα) = µxC

for some Borel set C, so that we can assume C compact and restrict the

transport to C × [0, 1].

Repeating the procedure for Y , there exists D compact such that for

the transport problem in C × D the conditional probabilities µα, να are

continuous.
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Step 3. We redefine the cost in the set C ×D is order to have the same

equivalence classes for hX , hY but for which there are non optimal cyclically

monotone costs.

Define the map

HX(α, x) = µα((0, x)), HY (β, y) = νβ((0, y)).

By Lemma 4.11, we can assume that HX , HY are Borel in (α, x) and (β, y),

respectively. If c̄ is the cost of Example 6.2, then define

c̃(x, y) =

{

c̄(HX(α, x),HY (α, y)) (x, y) ∈ (hX ⊗ hY )−1(α,α)

c otherwise
.

With the notation of Example 6.2 for π0 and π1, for any pseudoinverse

H−1
X (α), H−1

Y (α) it is fairly easy to verify that

π =

∫

(H−1
X (α) ⊗H−1

Y (α))♯π1m(dα)

is a c̃-cyclically monotone transference plan which is not optimal: the optimal

one is

π′ =

∫

(H−1
X (α) ⊗H−1

Y (α))♯π0m(dα).

6.2. Analysis of the transport problem in the quotient space

In this section we consider some examples related to the study of the

quotient transport problem. The examples are as follows.

(1) The regularity properties of the original cost (e.g. l.s.c.) are in general

not preserved (Example 6.6).

(2) In general, there is no way to construct a quotient cost c independently

of the transference plan π and different from 1IA′ (Example 6.7).

(3) The set Πf (m,m) strictly contains the set (hX⊗hY )♯Π
f (µ, ν) (Examples

6.7, 6.8).

(4) If the uniqueness assumption of Theorem 5.6 does not hold, then we can

construct a cost c′ which gives the same equivalence classes and quotient
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µ

ν

π c = 0

c = 1

c = 1

c = 1

c = 0

c = 1

m

m

Figure 4. The cost of Example 6.6. Outside the diagonal segments the cost is +∞.

transport problem and such that the original π is c′-cyclically monotone

but not optimal for c′ (Proposition 6.9).

Example 6.6.(Fig. 4) Consider the cost

c(x, y) =







0 y = x, x ∈ [0, 1/2]

1 y = x+ 1/2 mod1

1 y = x, x ∈ (1/2, 1]

and the measures

µ = ν =
+∞∑

i=1

2−i−1δ

(

x− 1

2
+ 2−i

)

+
1

2
δ(x− 3/2), π = (x, x)♯µ.

If we require that in each equivalence class

cπ(α,α) =

∫

c(x, y)πα(dxdy), πα ∈ Π(µα, να), (6.1)

one obtains

c(α, β) =

{

0 β = α = 1/2 − 2−i, i ∈ N

1 β = α = 1/2

Clearly this cost is not l.s.c., and there is no way to make it l.s.c. under

(6.1). This example shows that we cannot preserve regularity properties for
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µ = L
1

ν = L
1

π0

π0

π1

π1

π1

π1

π0, π1

c=0

c=0

c=0

c=0

c=0

c=1

c=1

c=1

c=1

c=1+d

c=1+d

c=1+d

c=1+d

c=e

c=e

c1

c1

m=2L1

m=2L1

m=2L1

m=2L1

Figure 5. The cost of Example 6.7. Outside the segments the cost is +∞, while

for the two different tranference plans the quotient costs are given by (6.2), (6.3).

the quotient cost c.

Example 6.7.(Fig. 5) Let r ∈ [0, 1/4] \ Q and consider the cost

c(x, y) =







1 x = y, x ∈ [0, 1)

1 + d y = x+ 1/2, x ∈ [0, 1/2)

1 + d y = x− 1/2, x ∈ [1/2, 1)

0 y = x+ r, x ∈ [0, 1/2 − r)

e y = x+ r, x ∈ [1/2, 1 − r)

0 y = x− 1/2 + r, x ∈ [1 − r, 1)

+∞ otherwise

d, e ≥ 0.

The settings are

µ = ν = L1, Γ = {y = x}.

The equivalence relation is (x, x)E(x+ 1/2, x+ 1/2): for simplicity we con-

sider the quotient space as [0, 1/2).

In the quotient space, the cost cπ is finite only on y = x and y =

x+ rmod 1/2. We now consider two particular transference plans.
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The easiest one is π0 = (x, f0(x))♯L1, where

f0(x) =







x x ∈ [0, 1
2)

x+ r x ∈ [12 , 1 − r)

x− 1
2 + r x ∈ [1 − r, 1)

,

for which by formula (6.1) we obtain a quotient cost of

c0 =







1 β = α,α ∈ [0, 1/2)

e β = α+ r, α ∈ [0, 1
2 − r)

0 β = α− 1
2 + r, α ∈ [12 − r, 1

2)

. (6.2)

Another cost is obtained by π1 = (x, f1(x))♯L1, where

f1(x) =







x+ r x ∈ [0, 1
2 − r)

x+ 1
2 x ∈ [12 − r, 1

2)

x− 1
2 x ∈ [12 ,

1
2 + r)

x x ∈ [12 + r, 1 − r)

x− 1
2 + r x ∈ [1 − r, 1)

.

In this case the cost is by (6.1)

c1 =







1 + d β = α,α ∈ [0, r) ∪ [1/2 − r, 1/2)

1 β = α,α ∈ [r, 1/2 − r)

0 β = α+ r mod 1/2

. (6.3)

Since it is impossible to have a transference plan π in the original coor-

dinates such that

cπ =

{

1 β = α,α ∈ [0, 1/2)

0 β = α+ r mod 1/2
,

there is no clear way to associate the cost c in the quotient space indepen-

dently of the transport plan π.

We note that there is no transference plan whose image is concentrated

only on β = α+ r mod 1, so that in general the image of Πf (µ, ν) under the
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µ

ν

c = 1
c = 1 + d

c = 1 + d

c = e

c = f m

m

c

Figure 6. The cost of Example 6.8.

map (hX ⊗ hY ) is a strict subset of Πf (m,m).

Example 6.8.(Fig. 6) We consider the cost for r ∈ [14 ,
1
2 ] \ Q

c(x, y) =







1 y = x, x ∈ [0, 1)

1 + d y = x
2 + 1

2 , x ∈ [0, 1)

1 + d y = 2x− 1, x ∈ [0, 1)

e y = x+ r, x ∈ [0, 1
2 − r)

f y = x− 2−i(1
2 − r), x ∈ (1 − 2−i) + 2−i[12 − 2−i+1r,

1
2 − 2−ir), i ∈ N

+∞ otherwise

.

We consider the measures

µ = ν =
3

2

+∞∑

i=0

2−iL1x[1−2−i,1−2−i−1).

Since the measure of the segment [1− 2−i, 1− 2−i−1) is 2−2i−1, all mea-

sures π with finite cost in Π(µ, ν) are concentrated on the segments

{
y = x, x ∈ [0, 1]

}
∪

{
y = x/2 + 1/2, x ∈ [0, 1]

}
∪

{
y = 2x− 1, x ∈ [1/2, 1]

}
.
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This can be seen in the quotient space, because

m = L1,

and every measure m̃ ∈ Πf (m,m) is of the form

m̃ = a1(x, x)♯L1 + a2(x, x+ r mod1)♯L1,

with a1, a2 ≥ 0 and a1 + a2 = 1. But clearly this cannot be any image of a

measure with finite cost in Πf (µ, ν).

The next proposition shows that if A′ is not a set of uniqueness, then

the problem of optimality cannot be decided by just using c-cyclical mono-

tonicity.

Proposition 6.9. If there exists a transference plan m̃ ∈ Πf (m,m)

different from (I, I)♯m, then there exists a cost ĉ(x, y) for which the following

holds:

(1) the set Γ is ĉ-cyclically monotone;

(2) there are two measures π, π̃ in Π(µ, ν) such that

π(Γ) = 1,

∫

ĉπ̃ <

∫

ĉπ < +∞.

A variation of the following proof (using Lusin Theorem and inner reg-

ularity) allows to construct a cost which is also l.s.c. if the original cost is

l.s.c..

Proof. Let m̃ ∈ Πf (m,m) \ {(I, I)♯m}, and consider a Borel cost c such

that

c

(
[0, 1]2 \ (hX ⊗ hY )({c < +∞})

)
= +∞,

∫

cm̃ <

∫

cm < +∞.

It is fairly easy to construct such a cost.

Define now

Γ := (hX ⊗ hY )−1({α = β}), ĉ(x, y) := c(hX(x), hY (y)),
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π :=

∫

µα ⊗ ναm(dα), π̃ :=

∫

µα ⊗ νβm̃(dαdβ).

It follows that
∫

ĉπ̃ =

∫

cm̃ <

∫

cm =

∫

ĉπ < +∞.

Moreover, since hX ⊗ hY ({c < +∞}) is acyclic w.r.t. {α = β} (by the

same proof of Lemma 4.7), the equivalence classes w.r.t. the closed cycles

equivalence relation Ē do not change, so that Γ is acyclic. �

7. Existence of an Optimal Potential

Let π ∈ P([0, 1]2) be concentrated on a c-cyclically monotone set Γ.

Assume that there exist partitions {Xα}α∈[0,1], {Yβ}β∈[0,1] of [0, 1] into Borel

sets such that

- Γ ⊂ ∪α∈[0,1]Xα × Yα — i.e. Γ satisfies the crosswise condition of Defini-

tion 2.3 w.r.t. the partition;

- in each set Xα × Yα, α ∈ [0, 1], there exist Borel optimal potentials φα,

ψα:

φα + ψα ≤ c on Xα × Yα φα + ψα = c on Γ ∩Xα × Yα.

Is it possible to find a Borel couple of functions φ, ψ s.t.

φ + ψ ≤ c on ∪α∈[0,1]Xα × Yα φ + ψ = c π-a.e.?

We show that this is the case under Assumption 1, i.e. if the disinte-

gration of π w.r.t the partition {Xα × Yα}α∈[0,1] is strongly consistent. If

{c < +∞} ⊂ ∪α∈[0,1]Xα × Yα this provides clearly an optimal couple.

The approach is to show that the set

{

(α, φ̃, ψ̃) : φ̃, ψ̃ optimal couple in Xα × Yα

}

is an analytic subset of a suitable Polish space, that we are first going to

define. We then apply a selection theorem to construct an optimal couple.

In order to structure the ambient space with a Polish topology, we need

some preliminary lemmas.
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Lemma 7.1. For every nonnegative function ϕ̄ ∈ C0([0, 1]) the map

Gϕ̄ : M([0, 1]) ∋ µ 7→
∫
ϕ̄µ+ ∈ R

is convex l.s.c. is w.r.t. weak∗-topology.

Proof. Since for every µ ∈ M([0, 1])

sup

{ ∫

ϕµ : 0 ≤ ϕ ≤ ϕ̄

}

=

∫

ϕ̄µ+,

then Gϕ̄ is the supremum of bounded linear functionals, proving the

thesis. �

Corollary 7.2. The map

M([0, 1]) ∋ µ 7→ µ+ ∈ M+([0, 1])

is Borel w.r.t. weak∗-topology. For every nonnegative measure ξ the sublevel

set {µ : µ+ ≤ ξ} is closed and convex: in fact µ 7→ µ+ is order convex,

meaning that

(λµ+ (1 − λ)ν)+ ≤ λµ+ + (1 − λ)ν+.

Proof. It is enough to observe that any function f : M([0, 1]) →
M([0, 1]) is Borel if and only if the function µ 7→

∫
ϕf(µ) is Borel for ev-

ery nonnegative ϕ ∈ C0([0, 1]): the Borel measurability then follows by

Lemma 7.1. As well, f is order convex if and only if µ 7→
∫
ϕf(µ) is convex

∀ϕ ∈ C0([0, 1]; R+). �

Corollary 7.3. The function

M([0, 1]) ×M([0, 1]) ∋ (µ1, µ2) 7→ µ1 ∧ µ2 ∈ M([0, 1])

is Borel w.r.t. weak∗-topology.

Proof. The thesis follows by the relation µ1 ∧ µ2 = µ1 − [µ1 − µ2]
+ and

Corollary 7.2. �
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Lemma 7.4. The function

M+([0, 1])3 × C0([0, 1]; R+) → [0,+∞]

(µ1, µ2, µ3, φ) 7→
∫

φ
dµ2

dµ1

dµ3

dµ1
µ1

is Borel w.r.t. weak∗-topology.

Proof. Let {hj,I}2I

j=1 be a partition of [0, 1] into continuous functions

such that 0 ≤ hj,I ≤ 1, and

2I
∑

j=1

hj,I = 1, supphj,I ⊂
[
(j − 1)2−I − 2−I−2, j2−I + 2−I−2

]
.

Define the l.s.c. and continuous functions, respectively,

R+ ∋ x 7→ x−1∗ :=

{

0 x = 0

1/x x > 0

M([0, 1]) × C0([0, 1]) ∋ (µ, φ) 7→
(∫

hj,Iφµ

)2I

j=1

∈ R2I

If µ2 = (dµ2/dµ1)µ1, then

gI(µ1, µ2) :=

2I
∑

j=1

hj,I(x)

(∫

hj,Iµ1

)−1∗(∫

hj,Iµ2

)

→ dµ2

dµ1

in L1(µ): in fact, for continuous functions the resut follows by uniform

continuity, and for the general case one observes that

∫ ∣
∣
∣
∣

2I
∑

j=1

hj,I(x)

( ∫

hj,Iµ1

)−1∗(∫

hj,Ifµ1

)∣
∣
∣
∣
µ1(dx) ≤

2I
∑

j=1

∣
∣
∣
∣

∫

hj,Ifµ1

∣
∣
∣
∣

≤ ‖f‖L1(µ1).

For φ ∈ C0([0, 1]) and 0 ≤ µ2, µ3 ≤ kµ1 it follows

∫

φ
dµ2

dµ1

dµ3

µ1
µ1 = lim

I→+∞

∫

φgI(µ1, µ2)gI(µ1, µ3)µ1.
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We finally reduce to the case µ2 ≤ kµ1 and µ3 ≤ kµ1: indeed

∫

φ
dµ2

dµ1

dµ3

µ1
µ1 = lim

k→∞
lim

I→+∞

∫

φgI(µ1, µ2 ∧ (kµ1))gI(µ1, µ3 ∧ (kµ1))µ1

and by Corollary 7.3 the map

(µ1, µ2, µ3) 7→
(

µ1, (kµ1) ∧ µ2, (kµ1) ∧ µ3

)

is Borel. By composition of the above Borel maps, the statement of the

lemma is proved. �

Lemma 7.5. The function

HM :M+([0, 1])2×M([0, 1])2×M+([0, 1]2)→ [0,+∞]

(µ, ν, η, ξ, π) 7→ HM :=
∫ (d(η+Mµ)+

dµ

)(d(P1)♯π
dµ

)
µ

+
∫ (d(ξ+Mν)+

dν

)(d(P2)♯π
dν

)
ν

is Borel w.r.t. weak∗-topology for all k ∈ R+.

Proof. It follows immediately from Corollary 7.2 and Lemma 7.4. �

Lemma 7.6. The subset of sequences in RN converging to zero is ana-

lytic w.r.t. the product topology.

Proof. The family on nondecreasing sequences mn is a closed subset of

NN, with the product topology. The sequences of RN converging to zero are

then the projection of the subset of RN × NN

C :=
{

({fℓ}ℓ∈N, {mn}n∈N) : |fi| ≤ 2−n ∀i≥mn

}

.

We now show that C is closed in the product topology, from which the result

follows.

Consider sequences {fℓ,k}ℓ, {mn,k}n converging pointwise to {fℓ}ℓ,
{mn}n, with ({fℓ,k}ℓ, {mn,k}n) ∈ C. Then for each n ∈ N there exists

k(n) such that the sequence {mn,k}k is constantly mn for k > k(n). As

a consequence, for all k > k(n) one has |fi,k| ≤ 2−n for i ≥ mn. Since

{fi,k}i converges pointwise, it follows that |fi| ≤ 2−n for i ≥ mn. Hence

({fℓ}ℓ, {mn}n) ∈ C. �
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Given a subset J of R ∪ {±∞}, we denote by L(µ;J) the µ-measurable

maps from [0, 1] to J . If not differently stated, µ-measurable functions are

equivalence classes of functions which coincide µ-a.e..

Proposition 7.7. There exists a Polish topology on linear space

L =

{

(µ,ϕ) : µ ∈ P([0, 1]), ϕ ∈ L(µ; R ∪ {±∞})
}

such that the map

I : L → P([0, 1]) × ∏∞
M=1 M([0, 1])

(µ,ϕ) 7→
(
µ,

{
(ϕ ∧M) ∨ (−M)µ

}

M∈N

)

is continuous.

Proof. We inject L in P([0, 1]) × ∏∞
M=1 M([0, 1]) by the map I. The

image of L is the set

Im(I) =

{

(µ, ηM ) : ηN = (ηM ∧Nµ) ∨ (−Nµ) for M > N

}

. (7.1)

Notice that the compatibility condition ηN = (ηM ∧ Nµ) ∨ (−Nµ) implies

that the Radon-Nikodym derivative ϕN := dηN

dµ converges µ-a.e. to a uniquely

identified ϕ ∈ L(µ; R ∪ {±∞}).
We observe that by Corollary 7.3 the function

(µ, η) 7→ FN (µ, η) := −(−(η ∧Nµ) ∧Nµ)

is Borel and Im(I) is the intersection of the following countably many graphs

Im(I) =
⋂

N<M

{

(µ, {ηQ}Q) : FN (µ, ηM ) = ηN

}

.

Being a Borel subset of a Polish space, by Theorem 3.2.4 of [21] there is

a finer Polish topology on P([0, 1]) × ∏∞
M=1 M([0, 1]) such that Im(I) itself

is Polish, and this Polish topology can be pulled back to L by the injective

map I. The continuity of I, also w.r.t. the product weak∗ topology on the

image space, is then immediate. �
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Lemma 7.8. The subset Lf := {(µ,ϕ) : ϕ ∈ L(µ; R)} of L is analytic.

Proof. If ϕ ∈ L(µ; R ∪ {±∞}), the condition ϕ ∈ L(µ; R) is clearly

equivalent to limM‖µ‖(|ϕ| > M) = 0. Since the injection I is continuous

and I(L) is Borel by Proposition 7.7, it is enough to prove that

I(Lf ) =
{

(µ, {ξM}M ) : lim
M→+∞

‖ξM+1 − ξM‖ = 0
}

is analytic. By Lemma 7.6 this follows by the l.s.c. of the map

P([0, 1]) × ∏∞
M=1 M([0, 1]) → RN

(µ, {ξM}M ) 7→
{
‖ξM+1 − ξM‖

}

M

.

�

Theorem 7.9. Let c be l.s.c.. Assume that the disintegration of π

w.r.t. a partition {Xα × Yα}α∈[0,1] is strongly consistent and that there exist

optimal potentials φα ∈ B(Xα,R∪{−∞}), ψα ∈ B(Yα; R∪{−∞}), α ∈ [0, 1]:

φα + ψα ≤ c on Xα × Yα φα + ψα = c on Γ ∩Xα × Yα.

Then there exist Borel optimal potentials on ∪α∈[0,1]Xα × Yα.

Proof. We prove the theorem by means of Von Neumann’s selection

principle.

Step 1. Consider the Polish space

Z := L× L× P([0, 1]2).

We first prove the analyticity of the set A ⊂ Z made of those

((µ,ϕ), (ν, ψ), π) ∈ Lf × Lf × P([0, 1]2)

satisfying the relations

(1) (P1)♯π = µ, (P2)♯π = ν;

(2) φ+ ψ ≤ c out of cross-negligible sets w.r.t. the measures µ, ν;

(3) φ+ ψ = c π-a.e..

Since Σ1
1 is closed under countable intersections, it suffices to show that each

of the conditions above defines an analytic set.



2009] ON TRANSFERENCE PLANS 413

Constraint (1) defines a closed set, by the continuity of the immersion

I in Proposition 7.7 and because {(µ, ν, π) : π ∈ Π(µ, ν)} is compact in

P([0, 1]) × P([0, 1]) × P([0, 1]2).

Setting φM = ((φ ∧M) ∨ (−M)), ψM = ((ψ ∧M) ∨ (−M)) for M ∈ N,

Condition (2) is equivalent to

∫

φM (P1)♯π +

∫

ψM (P2)♯π ≤
∫

cπ ∀π ∈ Π≤(µ, ν),∀M ∈ N. (7.2)

Indeed, suppose that Condition (2) is not satisfied, i.e. the set {(x, y) :

φ(x) +ψ(y) > c(x, y)} is not cross-negligible. Then, since φM , ψM converge

pointwise to φ, ψ, the set {(x, y) : φM (x)+ψM (y) > c(x, y)} cannot be cross-

negligible. By the Duality Theorem B.2 there exists a non-zero π ∈ Π≤(µ, ν)

concentrated on {(x, y) : φM (x)+ψM (y) > c(x, y)} and therefore (7.2) does

not hold. The converse is immediate, as φM + ψM ≤ c.

We consider the Borel set (Lemma 7.5)

Cn,M :=

{

(µ, ν, ξ, η, π) : HM(µ, ν, ξ, η, π)−
∫

(c+2M)π≥2−n, π∈Π≤(µ, ν)

}

.

(7.3)

Since for π ∈ Π≤(µ, ν) one has

HM (µ, ν, ξ, η, π) =

∫
d(ξ +Mµ)+

dµ
(P1)♯π +

∫
d(η +Mν)+

dν
(P2)♯π,

then for fixed (µ, ν, η, ξ) the function

π 7→
{

HM(µ, ν, ξ, η, π) −
∫
(c+ 2M)π π ∈ Π≤(µ, ν)

−∞ otherwise

is u.s.c. for l.s.c. cost c: we have used the fact that

{
m ∈ M([0, 1]) : 0 ≤ m ≤ µ

}
∋ m 7→

∫

fm ∈ R

is continuous for all f ∈ L1(µ) and {0 ≤ m ≤ µ} is closed. In particular the

section

Cn,M ∩ {(µ, ν, ξ, η)} × P([0, 1]2)
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is closed, hence compact. By Novikov Theorem (Theorem 4.7.11 of [21]), it

follows that

P1234(Cn,M) =
{

(µ, ν, η, ξ) : ∃π ∈ Π≤(µ, ν),

HM(µ, ν, η, ξ, π) −
∫

(c+ 2M)π ≥ 2−n
}

is Borel. Finally, the set

DM :=
⋃

n∈N

P1234(Cn,M ) =

{

(µ, ν, η, ξ) : ∃π ∈ Π≤(µ, ν),

HM (µ, ν, η, ξ, π) −
∫

(c+ 2M)π > 0

}

is Borel.

Condition (7.2) thus can be rewritten as

{
(
µ, ν, {ξM}M , {ηM}M

)
∈ P([0, 1])2 ×

( ∞∏

M=1

M([0, 1])

)2

:

(µ, ν, ξM , ηM ) /∈DM

}

,

and the above discussion implies that this is a Borel set.

We prove finally that Condition (3) identifies an analytic set. Consider

the map

(
∏∞
M=1 M([0, 1]) ×M([0, 1])

)

× P([0, 1]2) → RN

({ξM , ηM}M , π) 7→
{

∫
ξM +

∫
ηM −

∫
cπ

}

M

.

This function is clearly Borel. Moreover, by Lemma 7.6 the family of se-

quences converging to 0 is an analytic subset of RN, and therefore his coun-

terimage is analytic. The thesis follows again by the continuity of the im-

mersion I of Proposition 7.7.

Step 2. Since the set A of Step 1 is analytic, and the map [0, 1] ∋ α 7→
πα ∈ P([0, 1]2) can be assumed to be Borel, then the set

B = [0, 1] ×A ∩
{
(α, (µ,ϕ), (ν, ψ), π : π = πα)

}
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is analytic.

Step 3. By Von Neumann’s selection principle applied to B, there exists

an analytic map

[0, 1] ∋ α 7→
(
(µα, φα), (να, ψα)

)
∈ L× L .

Hence, by the immersion of I of Proposition 7.7 we can define the sequence

of measures

ξM :=

∫

ξM,αm(dα) ηM :=

∫

ηM,αm(dα).

It is not difficult to show that
(
µ,

{
ξM

}

M∈N

)
and

(
ν,

{
ηM

}

M∈N

)
belong to

the image (7.1) of I: by the formula

ξM =
dξM
dµ

µ =

∫ (
dξM
dµ

µα

)

m(dα) =

∫

ξM,αm(dα)

it follows that (µ, {ξM}M ) ∈ Lf and satisfies the compatibility condition.

Therefore taking the counterimage with I one can define functions φ ∈ L(µ),

ψ ∈ L(ν) which are global potentials. �

Remark 7.10. Theorem 7.9 does not provide an optimal couple for a

generic equivalence relation different from the axial one, and in particular it

does not apply for the cycle equivalence relation (see Example 6.4).

Remark 7.11. Even if every two points are connected by an axial path

and there exist Borel potentials, in general there is no point (x̄, ȳ) such that

the extensions of Corollary C.7 define Borel potentials φ̃, ψ̃.

Remark 7.12. In the proof one can observe that we can replace the cost

c with any other cost c′, just requiring that for m-a.e. α it holds φα + ψα ≤
c′. In particular, we can take a cost whose graph is σ-compact in each

equivalence class and prove that the sets Cn,M of (7.3) are σ-compact.

This shows how Theorem 7.9 can be extended to π-measurable costs.
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Appendix A. Disintegration Theorem in Countably Generated

Probability Spaces

In this section we prove the Disintegration Theorem for measures in

countably generated σ-algebras, with some applications. The results of this

sections can be deduced from Section 452 of [10]; for completeness we give

here self-contained proofs.

We consider the following objects:

(1) (X,Ω, µ) a countably generated probability space;

(2) X = ∪α∈AXα a partition of X;

(3) A = X/ ∼ the quotient space, where x1 ∼ x2 if and only if there exists

α such that x1, x2 ∈ Xα;

(4) h : X → A the quotient map h(x) = x• = {α : x ∈ Xα}.
We can give to A the structure of probability space as follows:

(1) define the σ-algebra A = h♯(Ω) on A as the quotient σ-algebra

A ∈ A ⇐⇒
⋃

α∈A

{x : h(x) = α} = h−1(A) ∈ Ω;

(2) define the probability measure m = h♯µ.

We can rephrase (1) by saying that A is the largest σ-algebra such that

h : X → A is measurable: it can be considered as the subalgebra of Ω made

of all saturated measurable sets.

Definition A.1. The σ-algebra A is essentially countably generated if

there is a countable family of sets An ∈ A , n ∈ N, such that for all A ∈ A

there exists Â ∈ A, where A is the σ-algebra generated by An, n ∈ N, which

satisfies m(A △ Â) = 0.

The first result of this section is the structure of A as a σ-algebra.

Proposition A.2. The σ-algebra A is essentially countably generated.

Notice that we cannot say that the σ-algebra A is countably generated:

for example, take ([0, 1],B) and x• = {x + Q} ∩ [0, 1]. We are stating that

the measure algebra A /Nm, where Nm is the σ-ideal of m-negligible sets,

is countably generated.
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The proposition is a consequence of Maharam Theorem, a deep result

in measure theory, and can be found in [9], Proposition 332T(b). We give a

direct proof of Proposition A.2. The fundamental observation is the following

lemma.

Lemma A.3. Let fn be a countable sequence of measurable functions

on A. Then there is a countably generated σ-subalgebra A of A such that

each fn is measurable.

Proof. The proof is elementary, since this σ-algebra is generated by the

countable family of sets

{

f−1
n (qm,+∞), qm ∈ Q,m ∈ N

}

.

This is actually the smallest σ-algebra such that all fn are measurable. �

Proof.(Proof of Proposition A.2) The proof will be given in 3 steps.

Step 1. Define the map Ω ∋ B → fB ∈ L∞(m) by

h♯µxB= fBm. (A.1)

The map is well defined by Radon-Nikodym theorem, and 0 ≤ fB ≤ 1 m-a.e..

Given an increasing sequence of Bi ∈ Ω, then

∫

A
f∪iBi

m = µ(h−1(A) ∩ ∪iBi) = lim
i
µ(h−1(A) ∩Bi)

= lim
i

∫

A
fBi

m =

∫

A
lim
i
fBi

m,

where we have used twice the Monotone Convergence Theorem and the fact

that fBi
is increasing m-a.e.. Hence f∪iBi

= limi fBi
. By repeating the

same argument and using the fact that m is a probability measure, the

same formula holds for decreasing sequences of sets, and for disjoint sets one

obtains in the same way f∪iBi
=

∑

i fBi
.

Step 2. Let B = {Bn, n ∈ N}, be a countable family of sets generating Ω:

without any loss of generality, we can assume that B is a Boolean algebra.

Let A be the σ-algebra generated by the functions fBn , Bn ∈ B: it is

countably generated by Lemma A.3.
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From Step 1 and the Monotone Class Theorem (Proposition 3.1.14, page

85 of [21]), it follows that the family of sets B such that fB defined in (A.1)

is A-measurable up the an m-negligible set is a σ-algebra containing Ω.

Step 3. Applying the last step to the set B = h−1(A) with A ∈ A ,

we obtain that there exists a function f in L∞(m), measurable w.r.t. the

σ-algebra A such that χA = f m-a.e., and this concludes the proof, be-

cause up to negligible set f is the characteristic function of a measurable set

in A. �

Remark A.4. We observe that the result still holds if Ω is the µ-

completion of a countably generated σ algebra. More generally, the same

proof shows that every σ-algebra A ⊂ Ω is essentially countably generated.

In general, the atoms of A are larger than the atoms of A . It is then

natural to introduce the following quotient space.

Definition A.5. Let (A,A ,m) be a measure space, A ⊂ A a σ-

subalgebra. We define the quotient (L,L , ℓ) as the image space by the

equivalence relation

α1 ∼1 α2 ⇐⇒ ∀A ∈ A
(
α1 ∈ A ⇐⇒ α2 ∈ A

)
.

We note that (L , ℓ) is isomorphic as a measure algebra to (A,m), so

that in the following we will not distinguish the σ-algebras and the measures,

but just the spaces A and L = A/ ∼1. The quotient map will be denoted by

p : A → L.

We next define a disintegration of µ consistent with the partition X =

∪α∈AXα ([10], Definition 452E).

Definition A.6.(Disintegration) The disintegration of the probability

measure µ consistent with the partition X = ∪α∈AXα is a map A ∋ α 7→
µα ∈ P(X,Ω) such that

(1) for all B ∈ Ω, µα(B) is m-measurable;

(2) for all B ∈ Ω, A ∈ A ,

µ(B ∩ h−1(A)) =

∫

A
µα(B)m(dα), (A.2)
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where h : X → A is the quotient map and m = h♯µ.

We say that the disintegration is unique if for all two measure valued

functions α 7→ µ1,α, α 7→ µ2,α which satisfy points (1), (2) it holds µ1,α =

µ2,α m-a.e. α.

The measures µα, α ∈ A, are called conditional probabilities.

We say that the disintegration is strongly consistent if for m-a.e. α

µα(X \Xα) = 0.

We make the following observations.

(1) At this level of generality, we do not require µα(Xα) = 1, i.e. that µα is

concentrated on the class Xα: in fact, we are not even requiring Xα to

be µ-measurable.

(2) The choice of the σ-algebra A in A is quite arbitrary: in our choice it

is the largest σ-algebra which makes point (2) of Definition A.6 mean-

ingful, but one can take smaller σ-algebras, for example Λ considered in

Definition A.5.

(3) If A ∈ A is an atom of the measure space (A,A ,m), then the measura-

bility of µh(B) implies that µh(B) is constant m-a.e. on A for all B ∈ Ω.

In particular, if we want to have µh concentrated on the smallest possible

set, we need to check µh with the largest σ-algebra on A: equivalently,

this means that the atoms of the measure space (A,A ,m) are as small

as possible. However, negligible sets are useless to this extent.

(4) The formula (A.2) above does not require to have Ω countably gener-

ated, and in fact there are disintegration results in general probability

spaces (see Section 452 of [10] for general results). However, no general

uniqueness result can be expected in that case.

(5) The formula (A.2) can be easily extended to integrable functions by

means of monotone convergence theorem: for all µ-integrable functions

f , f is µα-integrable for m-a.e. α,
∫
fµα is m-integrable and it holds

∫

fµ =

∫ (∫

fµα

)

m(dα). (A.3)

We are ready for proving the general disintegration theorem.

Theorem A.7.(Disintegration Theorem) Assume (X,Ω, µ) countably

generated probability space, X = ∪α∈AXα a decomposition of X, h : X → Xα
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the quotient map. Let (A,A ,m) the measure space defined by A = h♯Ω,

m = h♯µ.

Then there exists a unique disintegration α 7→ µα consistent with the

partition X = ∪α∈AXα.

Moreover, if A is a countably generated σ-algebra such that Proposition

A.2 holds, and L is the quotient space introduced in Definition A.5, p : A → L

the quotient map, then the following properties hold:

(1) X = Xλ = (p ◦ h)−1(λ) is µ-measurable, and X = ∪λ∈LXλ;

(2) the disintegration µ =
∫

L
µλm(dλ) is strongly consistent;

(3) the disintegration µ =
∫

A
µαm(dα) satisfies µα = µp(α) m-a.e..

The last point means that the disintegration µ =
∫

A
µαm(dα) has con-

ditional probabilities µα constant on each atom of L in A, precisely given

by µα = µλ for α = p−1(λ) m-a.e.: i.e. µα is the pullback of the measure µλ.

Proof. We base the proof on well known Disintegration Theorem for

measurable functions from Rd into Rd−k, see for example [1], Theorem 2.28.

Step 1: Uniqueness. To prove uniqueness, let B = {Bn}n∈N be a count-

able algebra of sets generating Ω. We observe that the L∞(m) functions

given by
∫

A fn(α)m(dα) = µ(h−1(A) ∩Bn) are uniquely defined up to a m-

negligible set. This means that µα(Bn) is uniquely defined on B m-a.e., so

that it is uniquely determined on the σ-algebra Ω generated by B.

Step 2: Existence. By measurable space isomorphisms (see for example

the proof of the last theorem of [13]), we can consider (X,Ω) = (L,A) =

([0, 1],B), so that there exists a unique strongly consistent disintegration

µ =
∫

L
µλm(dλ) by Theorem 2.28 of [1] and Step 1 of the present proof.

Step 3: Point (3) Again by the uniqueness of Step 1, we are left in

proving that
∫
µp(α)m(dα) is a disintegration on X = Xα.

Since p : A → L is measurable and p is measure preserving, α 7→ µp(α)(B)

is m-measurable for all B ∈ Ω. By Proposition A.2, for all A ∈ A there

exists Â ∈ L such that m(A △ Â) = µ(h−1(A) △ h−1(Â)) = 0: then

∫

A

µp(α)(B)m(dα) =

∫

Â
µp(α)(B)m(dα) =

∫

Â
µλ(B)m(dλ)

= µ(h−1(Â) ∩B) = µ(h−1(A) ∩B). �
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The final result concerns the existence of a section S for the equivalence

relation X = ∪αXα, under the additional assumption that the atoms of Ω

are singletons.

Definition A.8. We say that S is a section for the equivalence relation

X = ∪α∈AXα if for α ∈ A there exists a unique xα ∈ S ∩Xα.

We say that Sµ is a µ-section for the equivalence relation induced by the

partition X = ∪α∈AXα if there exists a Borel set Γ ⊂ X of full µ-measure

such that the decomposition

Γ =
⋃

α∈A

Γα =
⋃

α∈A

Γ ∩Xα

has section Sµ.

Clearly from the Axiom of Choice, there is certainly a section S, and

by pushing forward the σ-algebra Ω on S we can make (S,S ) a measurable

space. The following result is a classical application of selection principles.

Proposition A.9. The disintegration of µ consistent with the partition

X = ∪α∈AXα is strongly consistent if and only if there exists a Ω-measurable

µ-section S such that the σ-algebra S contains B(S).

Proof. Since we are looking for a µ-section, we can replace (X,Ω) with

([0, 1],B) by a measurable injection.

If the disintegration is strongly consistent, then the map x 7→ {α : x ∈
Xα} is a µ-measurable map by definition, where the measurable space (A,A )

can be taken to be ([0, 1],B) (Step 2 of Theorem A.7). By removing a set of

µ-measure 0, we can assume that h is Borel, so that by Proposition 5.1.9 of

[21] it follows that there exists a Borel section.

The converse is a direct consequence of Theorem A.7 and the Isomor-

phism Theorem among Borel spaces, Theorem 3.3.13 of [21]. �

A.1. Characterization of the disintegration for a family of equiva-

lence relations

Consider a family of equivalence relations on X

E =
{

Ee ⊂ X ×X : Ee equivalence relation, e ∈ E
}
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closed under countable intersection. By Theorem A.7, to each Ee ∈ E,

inducing the partition X = ∪α∈AeXα, we can associate the disintegration

µ =

∫

Ae

µαme(dα), me := (he)♯µ, he : X → Ae quotient map.

The key point of this section is the following easy lemma. For simplic-

ity we will use the language of measure algebras: their elements are the

equivalence classes of measurable sets w.r.t. the equivalence relation

A ∼ A′ ⇐⇒ µ(A △ A′) = 0.

Let Z = {Cz, z ∈ Z} be a family of countably generated σ-algebras such

that Cz ⊂ A , where A is a given countably generated σ-algebra on X. Let

C be the σ-algebra generated by ∪Z = ∪z∈ZCz.

Lemma A.10. There is a countable subfamily Z′ ⊂ Z such that the

measure algebra generated by Z′ coincides with the measure algebra of C .

Proof. The proof follows immediately by observing that C is essentially

countably generated because it is a σ-subalgebra of A : one can repeat the

proof of Proposition A.2, see also Remark A.4, or [9], Proposition 332T(b).

Let An, n ∈ N, be a generating family for C : it follows that there

is a countable subfamily Zn ⊂ Z such that An belongs to the σ-algebra

generated by ∪Zn = ∪Cz∈ZnCz. Let Azm, m ∈ N, be the countable family of

sets generating Cz ∈ Z: it is straightforward that {Azm,m ∈ N,Cz ∈ ∪nZn}
essentially generates C . �

We can then state the representation theorem.

Theorem A.11. Assume that the family E of equivalence relations is

closed w.r.t. countable intersection: if Een ∈ E for all n ∈ N, then

⋂

n

Een ∈ E.

Then there exists Eē ∈ E such that for all Ee, e ∈ E, the following holds:

(1) if Ae, Aē are the σ-subalgebras of Ω made of the saturated sets for Ee,

Eē respectively, then for all A ∈ Ae there is A′ ∈ Aē s.t. µ(A △ A′) = 0;
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(2) if me, mē are the restrictions of µ to Ae, Aē respectively, then Ae can

be embedded (as measure algebra) in Aē by Point (1):let

mē =

∫

mē,αme(dα)

be the disintegration of mē consistent with the equivalence classes of Ae

in Aē.

(3) If

µ =

∫

µe,αme(dα), µ =

∫

µē,βmē(dβ)

are the disintegrations consistent with Ee, Eē respectively, then

µe,α =

∫

µē,βmē,α(dβ). (A.4)

for me-.a.e. α.

The last point essentially tells us that the disintegration w.r.t. Eē is

the sharpest one, the others being obtained by integrating the conditional

probabilities µē,β w.r.t. the probability measures mē,α.

Note that the result is useful but it can lead to trivial result if E =

{(x, x), x ∈ X} belongs to E: in this case

µē,β = δβ , mē,α = µe,α.

Proof. Point (1). We first notice that if Ee1 , Ee2 ∈ E and A ∈ Ae1 ,

the σ-algebra of saturated sets generated by Ee1 , then A ∈ Ae12 , the σ-

algebra of saturated sets generated by Ee1 ∩ Ee2 . Hence, if E is closed

under countable intersection, then for every family of equivalence relations

Een ∈ E there exists Eē ∈ E such that the σ-algebras Aen made of the

saturated measurable sets w.r.t. Een are σ-subalgebras of the σ-algebra Aē

made of the saturated measurable sets w.r.t. the equivalence relation Eē.

By Lemma A.10 applied to the family Z = {Ae|e ∈ E}, we can take a

countable family of equivalence relations such that the σ-algebra of saturated

sets w.r.t. their intersection satisfies Point (1).
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Point (2). This point is a consequence of the Disintegration Theorem

A.7, using the embedding Ae ∋ A 7→ A′ ∈ Aē given by the condition µ(A △

A′) = 0.

Point (3). Since consistent disintegrations are unique, it is enough

to show that (A.4) is a disintegration for Ee. By definition, for all C ∈
Ω, µē,β(C) is a mē-measurable function, so that by (A.3) it is also mē,α-

measurable for me-a.e. α and

α 7→
∫

µē,β(C)mē,α(dβ)

is me-measurable. Denoting with he the equivalence map for Ee, for all

A ∈ Ae we have

µ(C ∩ h−1
e

(A)) =

∫

A
µē,β(C)mē(dβ) =

∫

A

(∫

µē,β(C)mē,α(dβ)

)

me(dα),

where we used the definition of µē,β in the first equality and (A.3) in the

second one. �

Remark A.12. Using the fact that if A ∈ Ae, then there exists A′ ∈ Aē

such that µ(A △ A′) = 0, then the identity map I : (X,Aē) → (X,Ae) is

µ-measurable. Let he : X → X/E, hē : X → X/Ē be quotient maps. It

is fairly easy to show that there exists a unique (hē)♯µ-measurable map gēe
(defined up to negligible sets) such that the following diagram commutes:

Clearly one then has

(he)♯µ = (gēe)♯
(
(hē)♯µ

)
= (gēe ◦ hē)♯µ. (A.5)
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Appendix B. Perturbation by Cycles

For the particular applications we are considering, the geometrical con-

straints allow only to perturb a given measure π ∈ Π(µ, ν) by means of

bounded measures λ ∈ M([0, 1]2) with 0 marginals, and such that π+λ ≥ 0.

The simplest way of doing this perturbation is to consider closed cycles in

[0, 1]2: we will call this types of perturbation perturbation by cycles (a more

precise definition is given below).

The problem of checking whether a measure µ can be perturbed by cycles

has been considered in several different contexts, see for example [2, 3, 12].

Here we would like to construct effectively a perturbation, which will be (by

definition) a perturbation by cycles.

Since we are using a duality result valid only for analytic sets, in the

following we will restrict to a coanalytic cost c. We first recall some useful

results on analytic subsets of Polish spaces (in our case [0, 1]), and the main

results of [15].

B.1. Borel, analytic and universally measurable sets

Our main reference is [21].

The projective class Σ1
1(X) is the family of subsets A of the Polish space

X for which there exists Y Polish and B ∈ B(X × Y ) such that A = P1(B).

The coprojective class Π1
1(X) is the complement in X of the class Σ1

1(X).

The σ-algebra generated by Σ1
1 is denoted by A.

The projective class Σ1
n+1(X) is the family of subsets A of the Polish

space X for which there exists Y Polish and B ∈ Π1
n(X × Y ) such that

A = P1(B). The coprojective class Π1
n+1(X) is the complement in X of the

class Σ1
n+1(X).

If Σ1
n, Π1

n are the projective, coprojective pointclasses, then the following

holds (Chapter 4 of [21]):

(1) Σ1
n, Π1

n are closed under countable unions and countable intersections

(in particular they are monotone classes);

(2) Σ1
n is closed w.r.t. projections, Π1

n is closed w.r.t. coprojections;

(3) the ambiguous class ∆1
n := Σ1

n ∩Π1
n is a σ-algebra and Σ1

n ∪Π1
n ⊂ ∆1

n+1.
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We recall that a subset of X Polish is universally measurable set if it

belongs to all completed σ-algebras of all Borel measures on X: it can be

proved that every set in A is universally measurable.

Under the axiom of Projective Determinacy (PD) all projective sets are

universally measurable, and PD is undecidable in ZFC ([17, 18]). In the rest

of the present Appendix we assume (PD). One could avoid this assumption

by recovering independently the measurability of the functions we are going

to define by countable limit procedures (see for example [6]), but since our

aim is to describe a construction this analysis is not needed here.

We recall that Borel counterimages of universally measurable sets are

universally measurable.

B.2. General duality results

All the results recalled in this sections are contained in [15].

Let A ⊂ [0, 1]d be a subset of [0, 1]d, and consider Borel probabilities

µi ∈ P([0, 1]), i = 1, . . . , d. We want to know if there is a measure π such that

π∗(A) > 0 and its marginals are bounded by the measure µi: (Pi)♯π ≤ µi.

We recall that

π∗(A) := inf
{
π(A′) : A′ ∈ B([0, 1]d), A ⊂ A′

}
(B.1)

is the outer π measure. For simplicity, we will denote the i-th measure space

in the product with Xi.

Definition B.1. A set A ⊂ [0, 1]d is cross-negligible w.r.t. the measures

µi, i = 1, . . . , d, if there are µi-negligible sets Ni, i = 1, . . . , d, such that

A ⊂ ∪iP−1
i (Ni).

Given A1, A2 ∈ [0, 1]d, we define

dist(A1, A2) := inf

{ d∑

i=1

∫

hiµi : χA1△A2(x) ≤
d∑

i=1

hi(xi), hi ∈ L∞(µi)

}

.

(B.2)

We say that A1, A2 ⊂ [0, 1]d are equivalent and we write A1 ∼dist A2 if

A1 △ A2 is cross negligible, i.e. dist(A1, A2) = 0.
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This definition is the same as the L-shaped sets defined in [3]. Clearly

the cross-negligible sets can be taken to be Gδ-sets. The fact that ∼dist is

an equivalence relation and that (P([0, 1]d)/ ∼dist,dist) is a metric space is

proved in [15], Proposition 1.15. Following again [15], given A ⊂ P([0, 1]d),

we denote A the closure of A w.r.t. the distance dist.

The next theorem collects some of the main results of [15]. This results

are duality results, which compare the supremum of a linear function in the

convex set

Π(µ1, . . . , µd) :=
{

π ∈ P([0, 1]d) : (Pi)♯π = µi, i = 1, . . . , d
}

with the infimum of a convex function in a predual space.

Theorem B.2. If A ∈ Σ1
1(R

d), then the following duality holds

sup
{

π(A) : π ∈ Π(µ1, . . . , µd)
}

= min

{ d∑

i=1

∫

hiµi :

d∑

i=1

hi(xi) ≥ χA(x), 0 ≤ hi ≤ 1

}

. (B.3)

Moreover, if A is in closure w.r.t. d of the family of closed sets, then the

max on the l.h.s. is reached. In particular the maximum is reached when A

is in the class of countable intersections of elements of the product algebra.

Proof. The fact that the duality (B.3) holds with the infimum in the

r.h.s. is a consequence of [15], Theorem 2.14. In our settings the analytic sets

contain all the Borel sets, so that in particular the duality holds for Borel

sets.

The fact that the minimum is reached is a consequence of [15], Theorem

2.21.

Finally, the last assertion follows from [15], Theorem 2.19, and the sub-

sequent remarks. �

A fairly easy corollary is that if the supremum of (B.3) is equal to 0,

then A is cross negligible.

Remark B.3. Note that since we are considering a maximum prob-

lem for a positive linear functional, then the problem is equivalent when



428 STEFANO BIANCHINI AND LAURA CARAVENNA [December

considered in the larger space

Π≤(µ1, . . . , µd) :=
{

0 ≤ π ∈ M([0, 1]d) : (Pi)♯π ≤ µi, i = 1, . . . , d
}

.

B.3. Decomposition of measures with 0 marginals

In this section we decompose a measure with 0 marginals into its cyclic

or essentially cyclic part and acyclic part. The decomposition is not unique,

even if we can determine if a perturbation is essentially cyclic or acyclic.

Let Λ be the convex closed set of Borel measures on [0, 1]2 with 0

marginals:

Λ :=
{

λ ∈ M([0, 1]d) : (Pi)♯λ = 0, i = 1, 2
}

. (B.4)

Definition B.4. We define the following sets.

The configuration set

Cn :=

{

w ∈ [0, 1]2n : P2i−1w 6= (P2i+1mod 2n)w,

P2iw 6= (P2i+2mod 2n)w, i = 1, . . . , n

}

.

The phase set

Dn :=

{

z ∈ [0, 1]4n : (P4i−1, P4i)z = (P4i+1 mod 4n, P4i−2)z, i = 1, . . . , n

}

.

The set of finite cycles of arbitrary length D∞

D∞ :=

{

z ∈ [0, 1]2N : (P4i−1, P4i)z = (P4i+1, P4i−2)z,

∃k : P4k+iz = Piz, i ∈ N

}

.

The projection operator

q : [0, 1]4n → [0, 1]2n, (P2i−1, P2i)q(z) = (P4i−3, P4i−2)z, i = 1, . . . , n.
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The reduced phase set

D̃n := q−1(Cn) ∩Dn.

The narrow configuration set and narrow phase space

Ĉn :=

{

w ∈ [0, 1]2n : (P2i−1, P2i)w 6= (P2j−1, P2k)w, i 6= j, k

}

,

(B.5)
D̂n := q−1(Ĉn) ∩Dn.

Remark B.5. The following remarks are straightforward.

(1) The set Cn is open not connected in [0, 1]2n, and its connected compo-

nents are given by the family of sets

Cn,I :=

{

w ∈ [0, 1]2n : P2i−1w ≷ (P2i+1 mod 2n)w,

P2iw ≷ (P2i+2 mod 2n)w, i = 1, . . . , n

}

for the 4 possible choices of the inequalities and of i ∈ {1, . . . , n}.
(2) The set Dn is compact connected, and the set D̃n can be written as

D̃n :=

{

z ∈ [0, 1]4n : (P4i−1, P4i)z = (P4i+1 mod 4n, P4i−2 mod 4n)z,

P4i−3z 6= (P4i+1 mod 4n)z, P4i−2z 6= (P4i+2 mod 4n)z, i = 1, . . . , n

}

.

(3) Both sets Cn and Dn are invariant for the cyclical permutation of co-

ordinates T defined by (Pi+2 modn)(Tw) = Piw, i = 1, . . . , 2n in [0, 1]2n

and by q−1Tq on Dn.

(4) The narrow phase set is made by cycles of length exactly n.

We give now the following definitions.

Definition B.6. A measure λ is n-cyclic if there exists m ∈ M+(Cn)

such that

λ+ =
1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wm(dw), λ− =
1

n

∫

Cn

n∑

i=1

δP(2i+1 mod 2n,2i)wm(dw).

(B.6)
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A n-cyclic measure λ is a simple n-cycle if m is supported on a set q(Q)

with

Q =

{

z ∈ Dn : (P4i−3, P4i−2)z∈(xi, yi)+[−ǫ, ǫ]2,

min
i,j

{
|xi−xj|, |yi−yj|

}
≥2ǫ

}

.

A measure λ is cyclic if there exist mn ∈ M+(Cn), n ∈ N, such that
∑

nmn(Cn) <∞ and

λ+ =
∑

n

1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wmn(dw),

(B.7)

λ− =
∑

n

1

n

∫

Cn

n∑

i=1

δP(2i+1 mod 2n,2i)wmn(dw).

From the definition of simple n-cycles it follows that there are disjoint

2n sets (xi, yi) + [−ǫ, ǫ]2, (xi+1 modn, yi) + [−ǫ, ǫ]2, i = 1, . . . , n, such that

λ+

( n⋃

i=1

(xi, yi) + [−ǫ, ǫ]2
)

+ λ−
( n⋃

i=1

(xi+1modn, yi) + [−ǫ, ǫ]2
)

= |λ|.

The next lemma is a simple consequence of the separability of [0, 1]4n

and the fact that Ĉn is open.

Lemma B.7. Each n-cyclic measure λ of the form

λ+ =
1

n

∫

Ĉn

n∑

i=1

δP(2i−1,2i)wm(dw), λ− =
1

n

∫

Ĉn

n∑

i=1

δP(2i+1,2i mod 2n)wm(dw)

can be written as the sum of simple n-cycles λi so that

λ+ =
∑

i

λ+
i , λ− =

∑

i

λ−i .

B.3.1. n-cyclic components of a measure

Consider the Jordan decomposition of λ ∈ Λ,

λ = λ+ − λ− λ+ ⊥ λ−, λ+, λ− ≥ 0,
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and the Borel sets A+, A− of the Hahn decomposition:

A+ ∩A− = ∅, A+ ∪A− = [0, 1]2, λ+ = λxA+ , λ− = λxA− .

Define then

µ2i−1 := λ+, µ2i := λ−, (B.8)

with i = 1, . . . , n.

From Theorem B.2 and the fact thatDn is compact, the following propo-

sition follows.

Proposition B.8. Let µi as in (B.8). There exists a solution to the

marginal problem, for n ∈ N,

max
{

π(D̃n) : π ∈ Π(µ1, . . . , µ2n)
}

= min

{ 2n∑

i=1

∫

[0,1]2
hiµi :

2n∑

i=1

hi((P2i−1, P2i)z) ≥ χD̃n
(z)

}

. (B.9)

Proof. It is enough to prove that Dn is in the equivalence class of D̃n

w.r.t. ∼dist: from this it follows that for every measure in Π(µi) one has

π(Dn) = π(D̃n), and then one can apply Theorem B.2.

Step 1. By definition

Dn \ D̃n⊂
n⋃

i=1

{

z : P4i−3z = (P4i+1 mod 4n) or P4i−2z = (P4i+2 mod 4n)z

}

,

so that if z ∈ Dn \ D̃n for at least one i

(P4i−3, P4i−2)z = (P4i−1, P4i)z or
(B.10)

(P4i−1, P4i)z = (P4i+1 mod 4n, P4i+2 mod 4n)z.

Step 2. Consider the functions, for i = 1, . . . , n,

f2i−1 = χ[0,1]2\A+ , f2i = χ[0,1]2\A− .
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Since f2i−1 + f2i ≥ 1, it follows from (B.10) that

n∑

i=1

f2i−1

(
(P4i−3, P4i−2)z

)
+ f2i

(
(P4i−1, P4i)z

)
≥ χDn\D̃n

.

Step 3. Since λ+(A−) = λ−(A+) = 0, then

n∑

i=1

∫

[0,1]2
f2i−1µ2i−1 +

∫

[0,1]2
f2iµ2i =

n∑

i=1

λ+(A−) + λ−(A+) = 0.

Hence dist(Dn, D̃n) = 0. �

We now define the n-cyclic components of λ.

Definition B.9. Let π be a maximizer for (B.9) and define the measure

λn :=
1

n

n∑

i=1

(P4i−3, P4i−2)♯πxD̃n
− 1

n

n∑

i=1

(P4i−1, P4i)♯πxD̃n
.

We say that λn is the (or better a) n-cyclic component of λ.

Remark B.10. The following are easy remarks.

(1) 0 ≤ λ+
n ≤ λ+ and 0 ≤ λ−n ≤ λ−: in fact, by construction

0 ≤ (P4i−3, P4i−2)♯πxD̃n
≤ λ+, 0 ≤ (P4i−1, P4i)♯πxD̃n

≤ λ+.

Moreover, by the definition of Dn, it follows that

∣
∣(P4i−3, P4i−2)♯πxD̃n

∣
∣ =

∣
∣(P4i−1, P4i)♯πxD̃n

∣
∣ = π(Dn),

so that |λn| = 2π(Dn).

(2) If π is a maximum, also the symmetrized measure

π̃ :=
1

n

n−1∑

i=0

(

T ◦ · · · ◦ T
︸ ︷︷ ︸

i−times

)

♯
π

is still a maximum. For this measure π̃ it follows that

λn = (P4i−3, P4i−2)♯π̃xD̃n
−(P4i−1, P4i)♯π̃xD̃n

(B.11)
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for all i = 1, . . . , n. In particular, if we consider again the problem (B.9)

with λ±n as marginals in (B.8), then π̃ is still a maximum. However, there

are maxima which are not symmetric, and for which the projection on a

single component does not exhibit a cyclic structure, as in Example B.17.

(3) The n-cyclic component of λ is a n-cyclic measure, as one can see by the

trivial disintegration

π =

∫

Cn

δq−1(w)m(w), m(w) := (q♯π)(w).

Conversely, if λ is n-cyclic, then πxDn= (q−1)♯m is a maximum for the

problem (B.9).

Note that the condition

λ =
1

n

∫

Cn

n∑

i=1

(

δP(2i−1,2i)w − δP(2i+1 mod 2n,2i)w

)

m(dw)

is not sufficient, because of cancellation, as it can be easily seen by the

measure

λ =






1 −1 0

−1 1 0

0 0 0




 +






0 0 0

0 −1 1

0 1 −1




 =






1 −1 0

−1 0 1

0 1 −1




 .

(4) If λn = 0, it follows from the duality stated in Theorem B.2 that Dn is

cross negligible, so that there exists Borel sets Ni, i = 1, . . . , n such that

λ+(N2i−1) = λ−(N2i) = 0 and Dn ⊂
2n⋃

i=1

(Pi)
−1(Ni).

Hence the sets

N+ =

n⋃

i=1

N2i−1, N− =

n⋃

i=1

N2i

still satisfy λ+(N+) = λ−(N−) = 0 and

Dn ∩
n⋂

i=1

(P2i−1)
−1(N+)c ∩ (P2i)

−1(N−)c = ∅.

We thus conclude that if λn = 0 there exist Borel sets A+, A− such that
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λ+ is concentrated in A+, λ− is concentrated in A− and there is no n-

cycle {(xi, yi), i = 1, . . . , n} such that (xi, yi) ∈ A+ and (xi+1modn, yi) ∈
A− for all i = 1, . . . , n.

Define the measure λ6n := λ− λn.

Lemma B.11. The n-cyclic component of λ6n is zero. Equivalently, λ6n

satisfies

max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

= 0 (B.12)

for the marginal problem

µi =

{

λ+
6n i odd

λ−6n i even
.

Proof. If in (B.12) we have a positive maximum π′, then we can assume

this maximum to be symmetric, so that (B.11) holds. Let π be a symmetric

positive maximum of the original (B.9): by construction we have that

0 ≤ λ+
n = (P(1,2))♯πxDn≤ λ+, 0 ≤ λ−n = (P(3,4))♯πxDn≤ λ−

0 ≤ (P(1,2))♯π
′ ≤ λ+ − λ+

n , 0 ≤ (P(3,4))♯π
′ ≤ λ− − λ−n ,

so that

0 ≤ λ+
n + (P(1,2))♯π

′ = (P(1,2))♯(π + π′) ≤ λ+,

0 ≤ λ−n + (P(3,4))♯π
′ = (P(3,4))♯(π + π′) ≤ λ−,

and (π + π′)(Dn) > π(Dn), contradicting the maximality of π. �

A measure can be decomposed into a cyclic and an acyclic part by

removing n-cyclic components for all n ∈ N (see Remark B.13). However,

when removing a n-cyclic component the m-cyclic components are affected,

for m 6= n. More clearly, the following observations are in order.

For all n, k ∈ N one has

max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

≤ max
{

π(D̃kn), π ∈ Π(µ1, . . . , µ2kn)
}

,
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because if π1 is a measure in Π(µ1, . . . , µ2n), then the measure

π2 =
(

In, . . . , In
︸ ︷︷ ︸

k−times

)

♯
π1

belongs to Π(µ1, . . . , µ2kn) and π2(D̃kn) = π2(Dkn) = π1(Dn) = π1(D̃n).

However, in general

max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

+ max
{

π(D̃n), π ∈ Π(ν1, . . . , ν2kn)
}

< max
{

π(D̃kn), π ∈ Π(µ1, . . . , µ2kn)
}

,

where we define

νi =

{

λ+
6n i odd

λ−6n i even
µi =

{

λ+ i odd

λ− i even
.

This can be seen in Example B.17, by taking n = 2 and k = 4: in fact for

any choice of the maximal solution for n = 2 the remaining measure λ− λ62

does not contain any cycle of length 8, while λ itself is a cycle of length 8.

It follows

max
{

π(D̃n) : π ∈ Π(µ1, . . . , µ2n)
}

+ max
{

π(D̃n) : π ∈ Π(ν1, . . . , ν2kn)
}

=2

< 8 = max
{

π(D̃kn) : π ∈ Π(µ1, . . . , µ2kn)
}

.

An even more interesting example is provided in Example B.18, where it

is shown that a measure can be decomposed into a cyclic and an acyclic part

in different ways, and the mass of each part depends on the decomposition

one chooses.

B.3.2. Cyclic and essentially cyclic measures

Given a sequence of marginals µi, let

Π∞({µi}i) =

{

π ∈ P([0, 1]2N) : (Pi)♯π = µi, i ∈ N

}

,
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Consider following problem in [0, 1]2N:

sup
{

π(D∞), (P2i−1)♯π = λ+, (P2i)♯π = λ−, i ∈ N
}

.

Definition B.12. We say that a measure λ ∈ Λ is essentially cyclic if

sup
{

π(D∞), (P2i−1)♯π=λ+, (P2i)♯π=λ−, i ∈ N
}

=λ+([0, 1]2)=λ−([0, 1]2).

It is clear that if λ is cyclic, then the maximum exists, and viceversa

(Remark B.10, Point (3), observing that Dn →֒ D∞). If λ is acyclic, then

the supremum is equal to 0. Since D∞ is not closed in [0, 1]2N, we cannot

state that such a maximum exists.

Remark B.13. We now construct a special decomposition, whose cyclic

part however is not necessary maximal.

Define recursively the marginal problem in Dn by

µ2n−1 := λ+ −
n−1∑

i=2

λ+
i , µ2n := λ− −

n−1∑

i=2

λ−i , (B.13)

where λi is given at the i-th step and λn is obtained by

λn :=
1

n

n∑

i=1

(P4i−3, P4i−2)♯πxD̃n
− 1

n

n∑

i=1

(P4i−1, P4i)♯πxD̃n

solving the problem

max
{

π(D̂n), π ∈ Π(µ1, . . . , µ2n)
}

= min

{ 2n∑

i=1

∫

[0,1]2
hi(x)µi,

2n∑

i=1

hi((P2i−1, P2i)z) ≥ χD̂n

}

. (B.14)

Let {πn}n∈N be the sequence of maxima for (B.14). There is a canonical

way to embed πn in Π∞({µi}i), with µi given by (B.13) for i ∈ N (here we

assume that ‖λ‖ = 2). In fact, it is enough to take

Tn : [0, 1]4n → [0, 1]2N, z 7→ Tn(z) = (z, z, z, . . .), π̃n = (Tn)♯πn.



2009] ON TRANSFERENCE PLANS 437

Hence the measure π̃ =
∑

n π̃n belongs to π∞, the series being strongly

converging, and since every map Tn takes values in D∞, the measure π̃

satisfies

π̃(D∞) =
∑

n

πn(Dn).

Example B.18 implies that in general π̃ it is not a supremum.

Similarly, the measures
∑n

i λ
+
i ,

∑n
i λ

−
i are strongly convergent to mea-

sures λ+
c , λ−c .

The sets Dn are cross negligible for the marginals

µi =

{

λ+
a = λ+ − λ+

c i odd

λ−a = λ− − λ−c i even

This follows easily from (B.12) and the fact that the series of λn is converging.

Hence, from Point (4) of Remark B.10, one concludes that λ+
a , λ−a are

supported on two disjoint sets A+
a , A−

a , respectively, so that there are no

closed cycles {(xi, yi), i = 1, . . . , n}, n ∈ N, such that (xi, yi) ∈ A+
a and

(xi+1, yi) ∈ A−
a for all i = 1, . . . , n and (xn+1, yn+1) = (x1, y1).

B.3.3. Perturbation of measures

For a measure π ∈ P([0, 1]2) and an analytic set A ⊂ [0, 1]2 such that

π(A) = 1, we give the following definition.

Definition B.14. A cyclic perturbation on A of the measure π is a

cyclic, nonzero measure λ concentrated on A and such that λ− ≤ π.

Proposition B.15. If there is no cyclic perturbation of π on A, then

there is Γ with π(Γ) = 1 such that for all finite sequences (xi, yi) ∈ Γ,

i = 1, . . . , n, with xi 6= xi+1modn and yi 6= yi+1modn it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ A.

Proof. Define the set on n-cycles in A as

Cn,A := q

(

Dn ∩
2n∏

A

)

.
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The fact that there is no cyclic perturbation means that for all n ∈ N

sup
{

m(q(Dn ∩ Π2nA)) : m ∈ Π(π, . . . , π)
}

= 0.

Then Cn,A is cross-negligible by Theorem B.2: there exist π-negligible sets

Ni such that
( n∏

Γ \ (∪iNi)

)

∩ Cn,A = ∅.

The set Γ \ (∪iNi) satisfies the statement of the proposition. �

Let c ≥ 0 be a Π1
1-cost function: in the next proposition we follow the

ideas of [3], which reduce to ones in [19] for atomic marginals (see [15] for

the general result).

Proposition B.16. If there is no cyclic perturbation λ of π such that

I(π + λ) < I(π), then there is Γ with π(Γ) = 1 such that for all finite

sequences (xi, yi) ∈ Γ, i = 1, . . . , I, xI+1 := x1 it holds

I∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
≥ 0. (B.15)

Proof. Let Γ a σ-compact carriage of π such that cxΓ is Borel. The set

Zn =

{

(x1, y1, . . . , xn, yn) ∈ Γn :

n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
< 0

}

∩ Cn

is analytic: in fact, being the sum of a Borel function and an Π1
1-function,

the function
n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]

is a Π1
1-function.

The fact that there is no cyclic perturbation λ of π which lowers the

cost I means that for all n

sup
{
m(Zn) : m ∈ Π(π, . . . , π)

}
= 0,
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otherwise the projected measure λ given by (B.6) satisfies

∫

cλ =

∫

Zn

1

n

n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
m(dx1dy1 . . . dxndyn) < 0

contradicting optimality of π, as π + λ would be a transference plan with

lower cost.

Theorem B.2 implies that there are π-negligible sets Nn,i ⊂ [0, 1]2, i =

1, . . . , n, such that

Zn ⊂
n⋃

i=1

(P2i−1,2i)
−1(Nn,i).

The set Γ \ ∪ni=1Nn,i satisfies then (B.15) for cycles of length I ≤ n. The

c-cyclically monotone set Γ proving the proposition is finally Γ\∪n∪ni=1Nn,i.

�

B.4. Examples

We give some examples.

Example B.17. Here we show that there are maxima of the prob-

lem (B.9) which are not symmetric, and for which the projection on a single

component does not exhibit any cyclic structure. Consider the following

example (since the measures are atomic, we use a matrix notation):

λ =










0 0 0 0 0 1 −1
0 1 0 0 −1 0 0
1 −1 0 0 1 −1 0
−1 1 0 −1 0 0 1
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0










.

It is easy to verify that the maximum in the problem (B.9) with n = 2 is 2,

by just considering the functions

h1 = h3 = 1 − χsuppλ+ , h2 = h4 = 1 − χsuppλ− + δ{3,2},

and that a maximizer is the measure:

π̄xD̃2
= δ({3,1},{3,2},{4,2},{4,1}) + δ({2,2},{2,5},{3,5},{3,2}).
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It follows that λ2 6= (P1, P2)♯π̄xD̃2
−(P3, P4)♯π̄: indeed

(P1, P2)♯π̄xD̃2
−(P3, P4)♯π̄xD̃2

=













0 0 0 0 0 0 0

0 1 0 0 −1 0 0

1 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0













.

Conversely the symmetrized measure yields

λ2 =













0 0 0 0 0 0 0

0 1/2 0 0 −1/2 0 0

1/2 −1 0 0 1/2 0 0

−1/2 1/2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0













.

This example proves also that we do not have uniqueness, by observing that

{
π : π(D2) = 2, π ∈ Π(λ+, λ−, λ+, λ−)

}

=

{

α1δ({3,1},{3,2},{4,2},{4,1}) + α2δ({4,2},{4,1},{3,1},{3,2})

+ α3δ({2,2},{2,5},{3,5},{3,2})+α4δ({3,5},{3,2},{2,2},{2,5}), αi≥0,
4∑

i=1

αi=1

}

.

Hence the symmetrized set of π and the projected set are

{

α1

(

δ({3,1},{3,2},{4,2},{4,1}) + δ({4,2},{4,1},{3,1},{3,2}))
)

+ α2

(

δ({2,2},{2,5},{3,5},{3,2}) + δ({3,5},{3,2},{2,2},{2,5})

)

, αi ≥ 0,

2∑

i=1

αi =
1

2

}

,







α1












0 0 0 0 0 0 0

0 1 0 0 −1 0 0

0 −1 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0












+α2












0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 −1 0 0 0 0 0

−1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0












, αi ≥ 0,

2∑

i=1

αi=1







.
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Example B.18. Here we decompose the measure

λ :=
















0 0 0 0 −m1 m1

−m1 0 0 m1 m1 −m1

0 0 0 −m2 m1 0

m1 −m1 0 0 0 0

0 m1 −m1 0 0 0

0 0 m1 0 −m1 0
















into an essentially cyclic and an acyclic part in two different ways, and the

two acyclic part will not even have the same mass. Let

m1 := (I, I)♯L1x[0,a], m2 := (I + α mod a, I)♯L1x[0,a],

with α ∈ R \ Q. Depending on n = 2 or n = 4 we obtain the following two

decompositions:

λ =












0 0 0 0 −m1 m1

0 0 0 0 m1 −m1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0












+












0 0 0 0 0 0

−m1 0 0 m1 0 0

0 0 0 −m2 m1 0

m1 −m1 0 0 0 0

0 m1 −m1 0 0 0

0 0 m1 0 −m1 0












,

λ =












0 0 0 0 0 0

−m1 0 0 0 m1 0

0 0 0 0 0 0

m1 −m1 0 0 0 0

0 m1 −m1 0 0 0

0 0 m1 0 −m1 0












+












0 0 0 0 −m1 m1

0 0 0 m1 0 −m1

0 0 0 −m2 m1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0












.

The first measure is cyclic and the second is acyclic, because of m2.

Appendix C. The c-Cyclically Monotone Relation

Let c be a Π1
1([0, 1]

2; [0,+∞])-function and let Γ be a c-cyclically mono-
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tone σ-compact set such that cxΓ is Borel and real valued. In the following

this will be the set where a transference plan is concentrated.

The next definition is not the standard one, but it is useful for our

construction.

Definition C.1.(Cyclically Monotone Envelope) For a given function

f : [0, 1] → (−∞,+∞] define the c-cyclically monotone envelope of f as

φ(x)=







inf

{ I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0), if the infimum is < +∞

(xi, yi)∈Γ, xI+1 =x, I ∈N

}

−∞ otherwise

(C.1)

Similarly, for a given function g : [0, 1] → (−∞,+∞] define the c−1-

cyclically monotone envelope of g as

ψ(y) =







inf

{ I∑

i=0

c(xi, yi+1) − c(xi, yi) + g(y0), if the infimum is < +∞

(xi, yi)∈Γ, yI+1 =y, I∈N

}

−∞ otherwise

(C.2)

In the following we will denote them by

C(f) and C−1(g).

Moreover, we will often call the first case of formulas (C.1), (C.2) as the

inf-formula.

Lemma C.2. If f, g belong to the ∆1
n-pointclass with n ≥ 2, then the

functions φ,ψ : [0, 1] → [−∞,+∞) belong to the ∆1
n+1-pointclass. Moreover

φ(x) ≤ f(x), ψ(y) ≤ g(y) for x ∈ P1(Γ), y ∈ P2(Γ).

Proof. The second part of the lemma holds trivially, because of the

particular path (xi, yi) = (x, y) ∈ Γ for all i.
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Consider the function

φI(x0, y0, . . . , xI , yI , x)=

I∑

i=0

c(xi+1, xi)−c(xi, yi)+f(x0), (xi, yi)∈Γ,

with xI+1 = x. Being the sum of the Π1
1 functions c(xi+1, xi)− c(xi, yi) (cxΓ

is Borel) with the ∆1
n-function f , the function φI(x0, y0, . . . , xI , yI , x) is ∆1

n

with n ≥ 2.

If g(x, y) is a ∆1
n-function, then g̃(x) = infy g(x, y) satisfies

g̃−1(−∞, s) = P1(g
−1(−∞, s)) ∈ Σ1

n,

so that g̃ is in the Π1
n-pointclass.

It follows that

φI(x) = inf

{ I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI+1 = x

}

is Π1
n, and finally infI φI(x) is also Π1

n. We conclude the proof by just

observing that the set {x : infI φI(x) = +∞} is in Π1
n, being the countable

intersection of the Π1
n-sets {x : infI φI(x) > k}. Hence {x : infI φI(x) <

+∞} ∈ Σ1
n, so that the conclusion follows from the fact that ∆1

n+1 ⊃ Σ1
n∪Π1

n

and it is a σ-algebra. �

Remark C.3. In the case n = 1 the same proof shows that φ, ψ are

A-functions.

Definition C.4. A function f : [0, 1] → [−∞,+∞] is c-cyclically mono-

tone if for all x, x′ ∈ [0, 1] such that f(x) > −∞ and for all (xi, yi) ∈ Γ,

i = 0, . . . , I, x0 = x, xI+1 = x′, it holds

f(x′) ≤ f(x) +

I∑

i=0

c(xi+1, yi) − c(xi, yi).

Similarly, a function g : [0, 1] → [−∞,+∞] is c−1-cyclically monotone if

for all y, y′ ∈ [0, 1] such that g(y) > −∞ and for all (xi, yi) ∈ Γ, i = 0, . . . , I,
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y0 = y, yI+1 = y′, it holds

g(y′) ≤ g(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi).

The following are well known results: we give the proof for completeness.

We recall that for any function h : [0, 1] 7→ [−∞,+∞] the set Fh is the set

where h is finite:

Fh := h−1(R) =
{
x ∈ [0, 1] : h(x) ∈ R

}
. (C.3)

Lemma C.5. Let f : [0, 1] → (−∞,+∞] (g : [0, 1] → (−∞,+∞]).

Then following holds:

(1) The function φ := C(f) (ψ := C−1(g)) defined in (C.1) (in (C.2)) is

c-cyclically monotone (c−1-cyclically monotone).

(2) If f is c-cyclically monotone (g is c−1-monotone), then φ(x) = f(x) on

Ff ∩ P1(Γ) (ψ(x) = g(x) on Fg ∩ P2(Γ)).

(3) If we define the function

g′(y) =

{

c(x, y) − φ(x) (x, y) ∈ (Fφ × [0, 1]) ∩ Γ

+∞ otherwise

(

f ′(x) =

{

c(x, y) − ψ(y) (x, y) ∈ ([0, 1] × Fψ) ∩ Γ

+∞ otherwise

)

(C.4)

then g′ is c−1-cyclically monotone (f ′ is c-cyclically monotone) and be-

longs to the ∆1
n+1-pointclass if f is in the ∆1

n-pointclass (belongs to the

∆1
n-pointclass if g is in the ∆1

n+1-pointclass).

A part of the statement is that c(x, y) − φ(x) does not depend on x for

fixed y in (Fφ × [0, 1]) ∩ Γ (c(x, y) − ψ(y) does not depend on y for fixed x

in ([0, 1] × Fφ) ∩ Γ).

Remark C.6. If φ, ψ are A-functions, it is fairly easy to see that g′, f ′

are A-functions.

Proof. The proof will be given only for φ, the analysis for ψ being

completely similar.
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Point (1). The first part follows by the definition: for any axial path as

in Definition C.4 we have

φ(x) +

I∑

i=0

c(xi+1, yi) − c(xi, yi)

= inf

{ I′∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xn+1 = x, I ′ ∈ N

}

+

I∑

i=0

c(xi+1, yi) − c(xi, yi)

≥ inf

{ I′+I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI′+I+1 = x′, I ′ ∈ N

}

≥φ(x′).

Notice that we have used that φ(x) > −∞ to assure that its value is given

by the inf-formula.

Point (2). The second point follows by the definition of c-cyclical mono-

tonicity: first of all, if x ∈ Ff ∩ P1(Γ), the value of φ is computed by the

inf-formula in (C.1) by Lemma C.2. Then we have from the c-cyclical mono-

tonicity of f , for x0 ∈ Ff , (xi, yi) ∈ Γ, xI+1 = x,

f(x) ≤
I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0).

Hence we obtain φ(x) ≥ f(x), and using Lemma C.2 we conclude the proof

of the second point.

Point (3). Assume that for y fixed there are x, x′ ∈ Fφ such that (x, y) ∈
Γ and

c(x, y) − φ(x) ≥ c(x′, y) − φ(x′) + ǫ.

Then, since x, x′ ∈ Fφ, there are points (xi, yi) ∈ Γ, i = 0, . . . , I, xI+1 = x

such that
I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0) < φ(x) +
ǫ

2
.
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Add then the point (xI+1, yI+1) = (x, y) ∈ Γ to the previous path: the

definition of φ implies then for xI+2 = x′.

φ(x′) ≤
I+1∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0)

= c(x′, yI+1) − c(xI+1, yI+1) +

I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0)

< c(x′, y) − c(x, y) + φ(x) +
ǫ

2
,

yielding a contradiction. This shows that the definition of g makes sense.

The proof of the c-cyclical monotonicity is similar: assume that there

exist points (xi, yi) ∈ Γ, i = 0, . . . , I, such that g′(y0) > −∞ and

g′(y′) > g′(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi), y0 = y, yI+1 = y′

Using the fact that g′(y), g′(y′) > −∞, it follows that there exists (x, y),

(x′, y′) ∈ (Fφ× [0, 1])∩Γ such that g′(y) = c(x, y)−φ(x), g′(y′) = c(x′, y′)−
φ(x′) so that for (xI+1, yI+1) = (x′, y′), (x0, y0) = (x, y)

g′(y′) > g′(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi)

= c(x, y) − φ(x) + c(x′, y′) +
I+1∑

i=1

c(xi−1, yi) − c(xi, yi) − c(x0, y0)

≥ c(x′, y′) − φ(x) − φ(x′) + φ(x)

= c(x′, y′) − φ(x′) = g′(y′),

yielding a contradiction. We have used the c-cyclical monotonicity of φ.

Finally, since cxΓ is Borel, then it follows immediately that g′ is in the

∆1
n+1-pointclass. �

For fixed (x̄, ȳ) ∈ Γ, we can thus define recursively for i ∈ N0 the

following sequence of functions ψ2i, φ2i+1.

(1) Set ψ0(y; x̄, ȳ) = −1Iȳ(y) ∈ ∆1
1.
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(2) Assume that ψ2i(x̄, ȳ) ∈ ∆1
2i+1 is given. For i ∈ N0, define then the

function φ2i+1(x; x̄, ȳ) as

φ2i+1(x̄, ȳ) = C

(
(ψ2i)

′(x̄, ȳ)
)
∈ ∆1

2i+2, (C.5)

where (ψ2i(x̄, ȳ))
′ ∈ ∆1

2i+1 is defined in (C.4).

(3) Similarly, if φ2i+1(x̄, ȳ) ∈ ∆1
2i+2 is given, define

ψ2i+2(x̄, ȳ) = C−1

(
(φ2i+1)

′(x̄, ȳ)
)
∈ ∆1

2i+3. (C.6)

Note that φ2i+1 is a ∆1
2i+2-function, ψ2i+2 is a ∆1

2i+3-function for i ∈ N0

(Lemma C.5), so that the sets

A2i+1(x̄, ȳ) = Fφ2i+1(x̄,ȳ), B2i+2(x̄, ȳ) = Fψ2i+2(x̄,ȳ), i ∈ N0, (C.7)

are in ∆1
2i+2, ∆1

2i+3, respectively.

From Lemma C.5 it follows the next corollary.

Corollary C.7. If φ2i+1(x, x̄, ȳ), ψ2i(y, x̄, ȳ) are constructed by (C.5),

(C.6) and A2i+1(x̄, ȳ), B2i(x̄, ȳ) are defined by (C.7), then the following

holds:

(1) A2i+1 ⊂ A2j+1, B2i ⊂ B2j if i ≤ j, and

φ2j+1(x̄, ȳ)xA2i+1(x̄,ȳ)= φ2i+1(x̄, ȳ), ψ2j(x̄, ȳ)xA2i(x̄,ȳ)= ψ2i(x̄, ȳ).

(2) A1(x̄, ȳ) ⊇ P1(Γ ∩ ([0, 1] × {ȳ})) and in general

A2i+1(x̄, ȳ) ⊇ P1

((
[0, 1] ×B2i(x̄, ȳ)

)
∩ Γ

)

,

B2i+2(x̄, ȳ) ⊇ P2

((
A2i+1(x̄, ȳ) × [0, 1]

)
∩ Γ

)

.

(3) On the set (A2i+1(x̄, ȳ) ×A2j(x̄, ȳ)) ∩ Γ it holds

φ2i+1(x, x̄, ȳ) + ψ2j(x, x̄, ȳ) = c(x, y).

Proof. Point (1). Point (3) of Lemma C.5 implies that at each step we

are applying formula (C.1) to the c-cyclically monotone function c(x, y) −
ψ2i(y) or the c−1-cyclically monotone c(x, y) − φ2i+1(y). From Point (2) of

the same lemma we deduce Point (1).
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Point (2). The second point is again a consequence of the c-cyclically

monotonicity or c−1-cyclically monotonicity of the functions c(x, y)−ψ2i(y),

c(x, y)− φ2i+1(y) on the set ([0, 1]×B2i(x̄, ȳ))∩Γ, (A2i+1(x̄, ȳ)× [0, 1]) ∩ Γ,

respectively.

Point (3). The last point follows from Point (2) by Lemma C.5. �

For all (x, y) ∈ Γ, define the set Γ(x,y) as

Γ(x,y) := Γ ∩
(

⋃

i

A2i+1(x, y) ×B2i(x, y)

)

.

Observe that under (PD) Γ(x,y) is measurable for all Borel measures (Sec-

tion B.1).

We then define the following relations in [0, 1]2.

Definition C.8.(c-cyclically monotone relation) We say that (x, y)R(x′,

y′) if (x′, y′) ∈ Γ(x,y). We call this relation R the c-cyclically monotone

relation.

Clearly Ē ⊂ R, where Ē is the closed cycle equivalence relation given

in Definition 5.4: actually the equivalence class of (x̄, ȳ) w.r.t. Ē is already

contained in (A1 × [0, 1]) ∩ Γ.

Remark C.9. The following are easy observations.

(1) If (x, y)R(x′, y′), then from Point (2) of Corollary C.7 also (x, y)R(Γ ∩
({x′} × [0, 1])) and (x, y)R(Γ ∩ ([0, 1] × {y′})): this means that Γ sat-

isfies the crosswise condition w.r.t. R (Definition 2.3). In particular to

characterize R it is enough to define the projected relations

xR1x
′ ⇔ x′ ∈

⋃

i∈N0

A2i+1(x, y), yR2y
′ ⇔ y′ ∈

⋃

i∈N0

B2i(x, y).

(2) The relation R is nor transitive neither symmetric, as the following ex-

ample shows (see Figure 7).
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x

y

Γ

p

15/8 − x + y

A1(1/4, 1/2)

B2(0, 1/4)

A1(1/2, 3/4)

B2(1/2, 3/4)

A3(1/2, 3/4)

Figure 7. The cost of Point (2) of Remark C.9.

Consider the cost

c(x, y) =







0 (x, y) ∈ A
1 −

√

x− y − 7/8 7/8 ≤ y + 7/8 ≤ x ≤ 1

+∞ otherwise

where

A =
{

(0, 0), (0, 1/4), (0, 1/2), (1/4, 1/2), (1/2, 1/2), (1/2, 3/4), (1/2, 1),

(3/4, 1), (1, 1)
}

.

Let Γ be the set

Γ =
{
(0, 1/4), (1/4, 1/2), (1/2, 3/4), (3/4, 1)

}
∪

{
(x, x−7/8), x ∈ [7/8, 1]

}
.
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It is easy to see that

Γ(1/4,1/2) = Γ ∩ ({0, 1/4, 1/2, 3/4, 7/8} × [0, 1])

6= Γ ∩ ([0, 1] × {1/8, 1/4, 1/2, 3/4, 1}) = Γ(1/2,3/4).

(3) Another possible definition can for example be the following symmetric

relation on Γ.

Definition C.10. We say that (x′, y′)R(x′′, y′′) if there exists Borel

functions φ,ψ : [0, 1] 7→ R ∪ {−∞} such that ∀(x, y) ∈ [0, 1]2

φ(x′)+ψ(y′)=c(x′, y′), φ(x′′)+ψ(y′′)=c(x′′, y′′), φ(x)+ψ(y)≤c(x, y) .

However, the following points are in order.

(a) The relation R depends deeply on the choice of Γ.

(b) We observe that even if Rx = {y : yRx} = [0, 1] for some x, this does not

mean that the measure is optimal. As an example, consider (Figure 8)

c(x, y) =







1 0 < x = y < 1

0 1 > x = y − α mod 1

0 y = 0

+∞ otherwise

with α ∈ [0, 1] \Q, and the transport problem µ = δ1 +L1, ν = δ0 +L1.

The transference plan π = δ(1,0) + (I, I)♯L1 is clearly not optimal, but

since the set

Γ =
{
(x, x), x ∈ [0, 1)

}
∪ {(1, 0)}

has not closed cycles, it follows that it is c-cyclically monotone and more-

over R1 = [0, 1].

The main use of the c-cyclically monotone relation R is that any cross-

wise equivalence relation whose graph is contained in R and such that the

disintegration is strongly consistent can be use to apply Theorem 5.6: the

relation Ē of Definition 5.4 is a possible choice. Note that the strong con-

sistency of the disintegration allows to replace the universally measurable

equivalence classes with Borel one, up to a π-negligible set.
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x

y

0

0

1

1

Figure 8. The cost function considered in Point (d) at Page 450.

Remark C.11. Under (CH) we can give a procedure to construct an

equivalence relation E′ ⊂ R maximal w.r.t. inclusion: if Rα, α ∈ ω1, is an

ordering of the partition R(x̄,ȳ) = {(x, y) : (x̄, ȳ)R(x, y)}, one then defines

the partition

Eα = Γ ∩
[(

P1Rα \
⋃

β<α

P1Rβ

)

× [0, 1]

]

.

Being Rβ universally measurable and ♯{β < α} = ω0, we have that each Eα

is universally measurable. Moreover it is a partition, and from the definition

of R it follows that in each class there are optimal φ, ψ. Finally it is clearly

maximal w.r.t. graph inclusion among all equivalence relations containing Ē

and contained in R.

However, the above well ordering 4 of R cannot be m⊗m-measurable

for any non purely atomic measure m (see Example C.12 below).

Example C.12. Under (CH), there exists a well ordering 4 of [0, 1] such

that ♯{x : x 4 y} ≤ ℵ0 (see the construction of Remark C.11). Denoting
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with ma the absolutely continuous part of m, one has therefore

ma({x : x 4 y}) = 0

for all y ∈ R. If the relation R of 4 is m⊗m-measurable, then it is ma⊗ma-

measurable and by Fubini Theorem ma⊗ma(R) = 0 (see Lemma 4.14). This

means that m is purely atomic.

Appendix D. Notation

B or B(X) Borel σ-algebra of the topological space (X, T )

M(X) or M(X, Ω) signed measures on a measurable space (X, Ω)

M+(X) orM+(X, Ω) positive measures on a measurable space (X, Ω)

P(X) or P(X, Ω) probability measures on a measurable space (X, Ω)

L(µ; J) µ-measurable maps from the measure space (X, Ω, µ) to J ⊂ R∪{±∞}

Π(µ1, . . . , µI) π ∈ P(ΠI
i=1Xi,⊗

I
i=1Σi) with marginals (Pi)♯π = µi ∈ P(Xi)

Π≤(µ1, . . . , µI) π ∈ M(ΠI
i=1Xi,⊗

I
i=1Σi), π ≥ 0, with (Pi)♯π ≤ µi ∈ P(Xi)

Πf (µ, ν) π ∈ Π(µ, ν) for which I(π) ∈ R

Πopt(µ, ν) π ∈ Π(µ, ν) for which I(π) is minimal

Pi1...iI
projection of x ∈ Πk=1,...,KXk into its (i1, . . . , iI) coordinates

dµ2/dµ1 Radon-Nikodym derivative of (the a.c. part of) µ2 w.r.t. µ1

h♯µ push forward of the measure µ through h, h♯µ(A) = µ(h−1(A))

P(X) power set of X

I(π) cost function (1.2)

χA the characteristic function of A, x 7→ δx(A)

1IA the indicator function of A, 1IA(x) = 1−χA(x)
χA(x)

∈ {0, +∞}

A △ B the symmetric difference between two sets A, B

E the lexicographic ordering (4.3) on [0, 1]α, α ordinal number

dist(A, B) distance defined in B.2

graph(f) graph of the function f , graph(f) = {(x, y), y = f(x)}

epi(f) epigraph of the function f , epi(f) = {(x, y), y ≥ f(x)}

I, Id identity operator on a set and on the space Rd

Λ measures λ ∈ M([0, 1]d) with 0 marginals, see (B.4)

N, N0 natural numbers, natural numbers with 0

Q, R rational numbers, real numbers

Γ c-cyclically monotone σ-compact subset of [0, 1]2

Γ(A), Γ−1(B) the sets Γ(A) = P2(Γ ∩ P−1
1 (A)), Γ(B) = P1(Γ ∩ P−1

2 (B))

Cn configuration set of n-cycles (B.4)

Dn phase set of n-cycles (B.4)

q projection operator (B.4)
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D̃n reduced phase set of n-cycles (B.4)

T cyclical permutation of coordinates, Point (3) at Page 429

Ax, Ax the sections {y : (x, y) ∈ A}, {y : (y, x) ∈ A} for A ⊂ X × Y

fxA the restriction of the function f to A

µxA the restriction of the measure µ to the σ-algebra A ∩ Σ

Ld Lebesgue measure on Rd

π∗ outer measure (B.1)

‖µ‖ norm of µ ∈ M([0, 1])

|µ|, (µ)+ the nonnegative measures variation and positive part of µ ∈ M(X)

µ ∧ ν, µ ∨ ν the measures minimum and maximum of µ, ν ∈ M(X)

Θπ π-completion of the Borel σ-algebra

Θ(µ, ν) Π(µ, ν)-universal σ-algebra (1.1)

xRy, R a binary relation R over X

graph(R) graph of the binary relation R, graph(R) = {(x, y) : xRy}

x ∼ y or xEy, E an equivalence relation over X with graph E

x• equivalence class of x, x• = Ex

A• saturated set for an equivalence relation, A• = ∪x∈Ax•

X•, X/ ∼ quotient space of an equivalence relation

Σ1
1, Σ1

1(X) the pointclass of analytic subsets of Polish space X

Π1
1 the pointclass of coanalytic sets, i.e. complementary of Σ1

1

Σ1
n, Π1

n the pointclass of projections of Π1
n−1-sets, its complementary

∆1
n the ambiguous class Σ1

n ∩ Π1
n

A σ-algebra generated by Σ1
1

A-function f : X → R such that f−1((t, +∞]) belongs to A

Fh the set where the function h is finite (C.3)

Σ1
n(Π1

n, ∆1
n)-function f : X → R such that f−1((t, +∞]) ∈ Σ1

n (Π1
n, ∆1

n)
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