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Abstract

Links of balancing and cobalancing numbers with Pell and associated Pell numbers

are established. It is proved that the n
th balancing number is product of the n

th Pell

number and the n
th associated Pell number. It is further observed that the sequences of

balancing and cobalancing numbers are very closely related to the Pell sequence whereas,

the sequences of Lucas-balancing and Lucas-cobalancing numbers constitute the associated

Pell sequence. The solutions of some Diophantine equations including Pythagorean and

Pythagorean-type equations are obtained in terms of these numbers.

1. Introduction

The study of number sequences has been a source of attraction to the

mathematicians since ancient times. From that time many mathematicians

have been focusing their attention on the study of the fascinating triangu-

lar numbers (numbers of the form n(n + 1)/2 where n ∈ Z
+ are known as

triangular numbers). Behera and Panda [1], while studying the Diophan-

tine equation 1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r) on

triangular numbers, obtained an interesting relation of the numbers n in
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the solutions (n, r), which they call balancing numbers, with square trian-

gular numbers. The number r in (n, r) is called the balancer corresponding

to n. They also explored many important and interesting results on bal-

ancing numbers. Later on, Panda [4] identified many fascinating properties

of balancing numbers, some of which are equivalent to the corresponding

properties of Fibonacci numbers, and some others are more interesting than

those of Fibonacci numbers. Subsequently, Liptai [2] added another inter-

esting result to the theory of balancing numbers by proving that the only

balancing number in the Fibonacci sequence is 1.

Behera and Panda [1] proved that the square of any balancing number

is a triangular number. Subramaniam [6, 7, 8] explored many interesting

properties of square triangular numbers without linking them to balancing

numbers. In [8], he considered almost square triangular numbers (triangular

numbers that differ from squares by unity) and established relationships with

square triangular numbers. Panda and Ray [3] studied another Diophantine

equation 1+2+· · ·+n = (n+1)+(n+2)+· · ·+(n+r) on triangular numbers

and call n a cobalancing number and r the cobalancer corresponding to n.

The cobalancing numbers are associated with another category of triangular

numbers that are expressible as product of two consecutive natural numbers

or approximately as the arithmetic mean of squares of two consecutive nat-

ural numbers [3, p.1189]. It is worth mentioning that the numbers of the

form n(n+ 1) where n ∈ Z
+ are called pronic numbers.

Panda [5] further enriched the literature on balancing and cobalanc-

ing numbers by introducing sequence balancing and cobalancing numbers, in

which, the sequence of natural numbers used in the definition of balanc-

ing and cobalancing numbers is replaced by an arbitrary sequences of real

numbers.

In this paper, we establish many important association of balancing

numbers, cobalancing numbers, and other numbers associated balancing and

cobalancing numbers with Pell and associated Pell numbers. We also study

some simple Diophantine equations whose solutions are closely associated

with balancing numbers, cobalancing numbers, Pell numbers and associated

Pell numbers.
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2. Auxilliary Results

We need the following definitions and results for proving some important

results in the subsequent sections.

For n = 1, 2, . . ., let Pn be the nth Pell number andQn, the n
th associated

Pell number. It is well known that

P1 = 1, P2 = 2, Pn+1 = 2Pn + Pn−1, (1)

Q1 = 1, Q2 = 3, Qn+1 = 2Qn +Qn−1, (2)

and their Binet forms are

Pn =
αn
1 − αn

2

2
√
2

, Qn =
αn
1 + αn

2

2
, (3)

where α1 = 1 +
√
2 and α2 = 1−

√
2.

Further, as usual, for n = 1, 2, . . ., let Bn be the nth balancing number

and bn, the n
th cobalancing number. The following are the linear recurrence

relations for balancing and cobalancing numbers [1, 3].

B1 = 1, B2 = 6, Bn+1 = 6Bn −Bn−1, (4)

b1 = 0, b2 = 2, bn+1 = 6bn − bn−1 + 2. (5)

The nonlinear recurrences are [1, 3]

B1 = 1, Bn+1 = 3Bn +
√

8B2
n + 1, (6)

and

b1 = 0, bn+1 = 3bn +
√

8b2n + 8bn + 1 + 1. (7)

Also

Bn−1 = 3Bn −
√

8B2
n + 1, (8)

and

bn−1 = 3bn −
√

8b2n + 8bn + 1 + 1. (9)
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Their Binet forms are

Bn =
α2n
1 − α2n

2

4
√
2

, bn =
α2n−1
1 − α2n−1

2

4
√
2

−
1

2
. (10)

Using (8) one can easily get B0 = 0.

The following theorem connects balancing numbers, cobalancing num-

bers, balancers and cobalancers [3, Theorems 6.1 and 6.2].

Theorem 2.1. Every balancing number is a cobalancer and every cobalanc-

ing number is a balancer. More specifically, Bn = rn+1 and Rn = bn for

n = 1, 2, . . ., where Rn is the nth balancer and rn is the nth cobalancer.

We call

Cn =
√

8B2
n + 1,

the nth Lucas-balancing number and

cn =
√

8b2n + 8bn + 1,

the nth Lucas-cobalancing number. The interested readers are advised to

refer [4] for the justification of these names.

The following theorem establishes the similarity of Lucas-balancing and

Lucas-cobalancing numbers with balancing numbers in terms of their recur-

rence relations.

Theorem 2.2. The sequences of Lucas-balancing and Lucas-cobalancing

numbers satisfy recurrence relations identical with balancing numbers. More

precisely, C1 = 3, C2 = 17, Cn+1 = 6Cn − Cn−1 and c1 = 1, c2 = 7,

cn+1 = 6cn − cn−1 for n = 2, 3, . . ..

Proof. From (6) we have

C2
n+1 = 8B2

n+1 + 1

= 8
(

3Bn +
√

8B2
n + 1

)2
+ 1

=
(

3
√

8B2
n + 1 + 8Bn

)2

= (3Cn + 8Bn)
2.
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Hence

Cn+1 = 3Cn + 8Bn. (11)

Similarly using (8) one can easily show that

Cn−1 = 3Cn − 8Bn. (12)

Adding (11) and (12) we obtain

Cn+1 = 6Cn − Cn−1.

In a fashion similar to the derivation of (11) and (12) one can have

cn+1 = 3cn + 8bn + 4, (13)

and

cn−1 = 3cn − 8bn − 4. (14)

Combining (13) and (14) we get

cn+1 = 6cn − cn−1. (15)

This ends the proof. ���

Remark 2.3. Using the recurrence relations for Cn and cn, the Binet forms

for Cn and cn are given as follows.

Cn =
α2n
1 + α2n

2

2
, cn =

α2n−1
1 + α2n−1

2

2
. (16)

3. Some Important Links

In this section we establish many important links of balancing and cobal-

ancing numbers with Pell and associated Pell numbers. Pell and associated

Pell numbers not only have direct relations with balancing numbers and

cobalancing numbers, they also occur in the factorization of these numbers.

Even the greatest common divisors of balancing numbers and cobalancing

numbers of same order and of consecutive cobalancing numbers are also Pell

or associated Pell numbers.
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Throughout this section α1 = 1 +
√
2, α2 = 1 −

√
2 and the greatest

common divisor of two positive integers m and n is denoted by (m,n). We

observe that α1α2 = −1, and this will be used as and when necessary without

any further mention.

We start with the following important theorem, which gives a direct

relation of balancing numbers with Pell and associated Pell numbers.

Theorem 3.1. For n = 1, 2, . . ., the nth balancing number is product of the

nth Pell number and the nth associated Pell number.

Proof. Using the Binet forms of Pn and Qn from (3) and Bn from (10), we

obtain

Bn =
α2n
1 − α2n

2

4
√
2

=
αn
1 − αn

2

2
√
2

·
αn
1 + αn

2

2
= PnQn. ���

This is not the only relationship among balancing numbers, Pell numbers

and associated Pell numbers. Truly speaking, the sequences of balancing

and cobalancing numbers are contained in a sequence obtained from the

Pell sequence dividing each term by 2, whereas, the sequences of Lucas-

balancing and Lucas-cobalancing numbers are absorbed by the associated

Pell sequence.

The following theorem closely relates the balancing and cobalancing

numbers with Pell numbers.

Theorem 3.2. If P is a Pell number, then [P/2] is either a balancing num-

ber or a cobalancing number, where [ · ] denotes the greatest integer function.

More specifically, P2n/2 = Bn and [P2n−1/2] = bn, n = 1, 2, . . ..

Proof. Using the Binet form for Pn from (3) and Bn and bn from (10) we

get

P2n

2
=

α2n
1 − α2n

2

4
√
2

= Bn,

and since P2n−1 is odd,

[P2n−1

2

]

=
P2n−1

2
−

1

2
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=
α2n−1
1 − α2n−1

2

4
√
2

−
1

2
= bn. ���

The following theorem establishes the fact that the union of the se-

quences of Lucas-balancing and Lucas-cobalancing numbers is nothing but

the sequence of associated Pell numbers.

Theorem 3.3. Every associated Pell number is either a Lucas-balancing

number or a Lucas-cobalancing number. More specifically, Q2n = Cn and

Q2n−1 = cn, n = 1, 2, . . ..

Proof. The proof of the first part follows directly from the Binet forms

for Qn and Cn from (3) and (16) respectively and the proof of the second

part follows directly from the Binet forms for Qn and cn from (3) and (16)

respectively. ���

It is known that if n is a balancing number with balancer r, then the (n+

r)th triangular number is n2 [1, p.98]. The following theorem demonstrates

the association of this number n+ r with the partial sums of Pell numbers.

Theorem 3.4. The sum of first 2n− 1 Pell numbers is equal to the sum of

nth balancing number and its balancer.

Proof. Using the Binet forms for Pn from (3), and Bn and bn from (10) we

get

P1 + P2 + · · ·+ P2n−1 =
α1 − α2

2
√
2

+
α2
1 − α2

2

2
√
2

+ · · ·+
α2n−1
1 − α2n−1

2

2
√
2

=
α1(

α
2n−1

1
−1

α1−1 )− α2(
α
2n−1

2
−1

α2−1 )

2
√
2

=
α1(α

2n−1
1 − 1) + α2(α

2n−1
2 − 1)

4

=
α2n
1 + α2n

2

4
−

1

2

=
α2n
1 (1− α2)− α2n

2 (1− α1)

4
√
2

−
1

2

=
α2n
1 − α2n

2

4
√
2

+
α2n−1
1 − α2n−1

2

4
√
2

−
1

2

= Bn + bn.
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By virtue of Theorem 2.1, bn = Rn and the proof is complete. ���

It is also known that if n is a cobalancing number with cobalancer r,

then the (n + r)th triangular number is the nth pronic number [3, p.1190].

The following theorem demonstrates the association of this number n + r

with the partial sums of Pell numbers.

Theorem 3.5. The sum of first 2n Pell numbers is equal to the sum of

(n+ 1)st cobalancing number and its cobalancer.

Proof. Using the Binet forms for Pn from (3), Bn and bn from (10) we get

P1 + P2 + · · ·+ P2n =
α1 − α2

2
√
2

+
α2
1 − α2

2

2
√
2

+ · · · +
α2n
2 − α2n

2

2
√
2

=
α1(

α2n

1
−1

α1−1 )− α2(
α2n

2
−1

α2−1 )

2
√
2

=
α1(α

2n
1 − 1) + α2(α

2n
2 − 1)

4

=
α2n+1
1 + α2n+1

2

4
−

1

2

=
α2n+1
1 (1− α2)− α2n+1

2 (1− α1)

4
√
2

−
1

2

=
α2n+1
1 − α2n+1

2

4
√
2

−
1

2
+

α2n
1 − α2n

2

4
√
2

= bn+1 +Bn.

By virtue of Theorem 2.1, Bn = rn+1 and the proof is complete. ���

The last two theorems establishes the links among sums of Pell numbers

up to odd and even order with balancing and cobalancing numbers. The

next two theorems provides relationships among partial sums of odd ordered

and even ordered Pell numbers with balancing and cobalancing numbers

respectively.

The following theorem establishes direct link between partial sums of

odd ordered Pell numbers and balancing numbers.

Theorem 3.6. The sum of first n odd ordered Pell numbers is equal to the

nth balancing number ((n+ 1)st cobalancer).
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Proof. Using the Binet forms for Pn from (3) and Bn, from (10) we get

P1 + P3 + · · ·+ P2n−1 =
α1 − α2

2
√
2

+
α3
1 − α3

2

2
√
2

+ · · ·+
α2n−1
1 − α2n−1

2

2
√
2

=
α1(

α2n

1
−1

α2

1
−1

)− α2(
α2n

2
−1

α2

2
−1

)

2
√
2

=
(α2n

1 − 1)− (α2n
2 − 1)

4
√
2

=
α2n
1 − α2n

2

4
√
2

= Bn. ���

The following theorem establishes direct link between partial sums of

even ordered Pell numbers and cobalancing numbers.

Theorem 3.7. The sum of first n even ordered Pell numbers is equal to the

(n+ 1)st cobalancing number (balancer).

Proof. Using the Binet forms for Pn from (3) and bn from (10) we get

P2 + P4 + · · ·+ P2n =
α2
1 − α2

2

2
√
2

+
α4
1 − α4

2

2
√
2

+ · · ·+
α2n
1 − α2n

2

2
√
2

=
α2
1(

α2n

1
−1

α2

1
−1

)− α2
2(

α2n

2
−1

α2

2
−1

)

2
√
2

=
α1(α

2n
1 − 1)− α2(α

2n
2 − 1)

4
√
2

=
α2n+1
1 − α2n+1

2

4
√
2

−
1

2
= bn+1.

By virtue of Theorem 2.1, bn+1 = Rn+1 and the proof is complete. ���

The following theorem relates partial sums of odd ordered associated

Pell numbers to sums of balancing numbers and their respective balancers.

Theorem 3.8. The sum of first n odd ordered associated Pell numbers is

equal to the sum of nth balancing number and its balancer.
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Using the Binet forms for Qn from (3), Bn and bn from (10) we get

Q1 +Q3 + · · · +Q2n−1 =
α1 + α2

2
+

α3
1 + α3

2

2
+ · · ·+

α2n−1
1 + α2n−1

2

2

=
α1(

α2n

1
−1

α2

1
−1

) + α2(
α2n

2
−1

α2

2
−1

)

2

=
(α2n

1 − 1) + (α2n
2 − 1)

4

=
α2n
1 + α2n

2

4
−

1

2
.

In the proof of Theorem 3.4, it has been shown that the last expression is

equal to Bn +Rn. ���

Similarly, the following theorem relates partial sums of even ordered as-

sociated Pell numbers with sums of cobalancing numbers and their respective

cobalancers.

Theorem 3.9. The sum of first n even ordered associated Pell numbers is

equal to the (n+ 1)st cobalancing number and its cobalancer.

Using the Binet forms for Qn from (3) we get

Q2 +Q4 + · · · +Q2n =
α2
1 + α2

2

2
+

α4
1 + α4

2

2
+ · · ·+

α2n
1 + α2n

2

2

=
α2
1(

α2n

1
−1

α2

1
−1

) + α2
2(

α2n

2
−1

α2

2
−1

)

2

=
α1(α

2n
1 − 1) + α2(α

2n
2 − 1)

4

=
α2n+1
1 + α2n+1

2

4
−

1

2
.

In the proof of Theorem 3.5, it has been shown that the last expression is

equal to bn+1 + rn+1. ���

The sums of associated Pell numbers up to even and odd order are also

related to balancing and cobalancing numbers respectively.

The following theorem links partial sums of associated Pell numbers up

to odd order with balancing numbers.
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Theorem 3.10. The sum of first 2n− 1 associated Pell numbers is equal to

twice the nth balancing number decreased by one.

Proof. Using the Binet forms for Qn from (3) and Bn from (10), we get

Q1 +Q2 + · · ·+Q2n−1 =
α1 + α2

2
+

α2
1 + α2

2

2
+ · · ·+

α2n−1
1 + α2n−1

2

2

=
α1(

α
2n−1

1
−1

α1−1 ) + α2(
α
2n−1

2
−1

α2−1 )

2

=
α1(α

2n−1
1 − 1)− α2(α

2n−1
2 − 1)

2
√
2

=
α2n
1 − α2n

2

2
√
2

− 1

= 2Bn − 1. ���

The following theorem links partial sums of associated Pell numbers up

to even order with cobalancing numbers.

Theorem 3.11. The sum of first 2n associated Pell numbers is equal to the

twice the (n+ 1)st cobalancing number.

Proof. Using the Binet forms for Qn from (3) and bn from (10) we get

Q1 +Q2 + · · ·+Q2n =
α1 + α2

2
+

α2
1 + α2

2

2
+ · · · +

α2n
1 + α2n

2

2

=
α1(

α2n

1
−1

α1−1 ) + α2(
α2n

2
−1

α2−1 )

2

=
α1(α

2n
1 − 1)− α2(α

2n
2 − 1)

2
√
2

=
α2n+1
1 − α2n+1

2

2
√
2

− 1

= 2bn+1. ���

The following theorem establishes links between differences of Lucas-

balancing numbers and cobalancing numbers.

Theorem 3.12. The difference of nth and (n−1)st Lucas-balancing numbers

is equal to the difference of the (n+1)st and (n−1)st cobalancing numbers.



52 G. K. PANDA AND PRASANTA KUMAR RAY [March

Proof. From (11) we have

Cn = 8Bn−1 + 3Cn−1.

Now using the recurrence relation (6) we get

Cn − Cn−1 = 8Bn−1 + 2Cn−1

= 2[Bn−1 + (Cn−1 + 3Bn−1)]

= 2(Bn−1 +Bn).

Since

2(B1 +B2 + · · ·+Bn−1) = bn

[3, Theorem 4.1], it follows that

bn+1 − bn−1 = 2(Bn−1 +Bn)

from which the result follows. ���

The following corollary, the proof of which is contained in the proof of

the above theorem, links differences of Lucas-balancing numbers and sums

of balancing numbers.

Corollary 3.13. The difference of nth and (n− 1)st Lucas-balancing num-

bers is equal to twice the sum of nth and (n− 1)st balancing numbers.

Theorem 3.12 is a link between differences of Lucas-balancing numbers

and cobalancing numbers. The following theorem establishes link between

differences of Lucas-cobalancing numbers and balancing numbers.

Theorem 3.14. The difference of nth and (n−1)st the Lucas-cobalancing

numbers is equal to the difference of nth and the (n−2)nd balancing numbers.

Proof. From (13) we have

cn = 8bn−1 + 3cn−1 + 4.

Now using the recurrence relation (7) and Theorem 2.1, we get

cn − cn−1 = 8bn−1 + 2cn−1 + 4
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= 2[bn−1 + (3bn−1 + cn−1 + 1) + 1]

= 2(bn−1 + bn + 1)

= 2(Rn−1 +Rn + 1)

= (2Rn−1 + 1) + (2Rn + 1).

Since

Rn =
−(2Bn + 1) +

√

8B2
n + 1

2

[1, p.98], we have

2Rn + 1 = −2Bn +
√

8B2
n + 1

= −2Bn + Cn.

Hence,

cn − cn−1 = Cn + Cn−1 − 2(Bn +Bn−1). (17)

Use of Binet forms of Bn and Cn from (10) and (16) respectively gives

Cn +
√
8Bn = α2n

1

and

Cn −
√
8Bn = α2n

2 .

Thus, for n = 1 we get

3 +
√
8 = α2

1,

and replacement of n by n− 1 gives

Cn−1 −
√
8Bn−1 = α

2(n−1)
2 . (18)

On the other hand,

(3 +
√
8)(Cn −

√
8Bn) = (3Cn − 8Bn) +

√
8(Cn − 3Bn)

= α2
1(Cn −

√
8Bn)

= α2
1α

2n
2 = α

2(n−1)
2 . (19)
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Using (17) and (18), we get

Cn−1 −
√
8Bn−1 = (3Cn − 8Bn) +

√
8(Cn − 3Bn). (20)

Comparison of rational and irrational parts from left hand and right hand

sides of (20) yields

Cn−1 = 3Cn − 8Bn, (21)

and

Bn−1 = 3Bn − Cn. (22)

Now using (21) and (22), we find

Bn−2 = 3Bn−1 − Cn−1

= 3(3Bn − Cn)− (3Cn − 8Bn)

= 17Bn − 6Cn. (23)

Inserting (21) and (22) into (17) and using (23) we get

cn − cn−1 = 6Cn − 16Bn

= Bn − (17Bn − 6Cn)

= Bn −Bn−2. ���

The following theorem gives a relation between sums of Lucas-balancing

and Lucas-cobalancing numbers of same order and differences of squares of

two Pell numbers.

Theorem 3.15. The sum of nth Lucas-balancing and nth Lucas-cobalancing

number is equal to the difference of squares of the (n+1)st and (n−1)st Pell

numbers.

Proof. Using the Binet form for Pn from (3) we get

P 2
n+1 − P 2

n−1 =

[

αn+1
1 − αn+1

2

2
√
2

]2

−
[αn−1

1 − αn−1
2

2
√
2

]2

=
α2n+2
1 + α2n+2

2 − α2n−2
1 − α2n−2

2

8
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=
(α2n

1 − α2n
2 )(α2

1 − α2
2)

8
=

α2n
1 − α2n

2√
2

.

Observing that

1− α2 = −(1− α1) =
√
2,

and using the Binet forms of Cn and cn from (16), we get

α2n
1 − α2n

2√
2

=
α2n
1 (1− α2) + α2n

2 (1− α1)

2

=
α2n
1 + α2n

2 + α2n−1
1 + α2n−1

2

2

=
α2n
1 + α2n

2

2
+

α2n−1
1 + α2n−1

2

2

=Cn + cn. ���

The following theorem establishes relations of Lucas-cobalancing num-

bers with sums of two consecutive balancing numbers.

Theorem 3.16. The nth Lucas-cobalancing number is equal to the sum of

(n− 1)st and nth balancing numbers.

Proof. Using the Binet form for Bn from (10) and cn from (16) respectively,

we find

Bn−1 +Bn =
α
2(n−1)
1 − α

2(n−1)
2

4
√
2

+
α2n
1 − α2n

2

4
√
2

=
α2n
1 (1 + α2

2)− α2n
2 (1 + α2

1)

4
√
2

=
α2n
1 (−2

√
2α2)− α2n

2 (2
√
2α1)

4
√
2

=
α2n−1
1 + α2n−1

2

2
= cn. ���

Remark 3.17. The following alternative forms are also available for cn.

Using (8) we can have

Bn−1 = 3Bn − Cn,
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and since P2n = 2Bn and Q2n = Cn by Theorems 3.2 and 3.3, it follows that

cn = 4Bn − Cn = 2P2n −Q2n.

In some previous theorems, links among sums and differences of certain

class of numbers are discussed. The following theorem links the arithmetic

means of Pell and associated Pell numbers with balancing and cobalancing

numbers respectively.

Theorem 3.18. The arithmetic mean of nth odd ordered Pell number and

associated Pell number is equal to the nth balancing number and the arith-

metic mean of nth even ordered Pell number and associated Pell number is

1/2 more than the (n+ 1)st cobalancing number.

Proof. Using the Binet forms for Pn, Qn from (3) and bn from (10) we get

P2n−1 +Q2n−1

2
=

1

2

[

α2n−1
1 − α2n−1

2

2
√
2

+
α2n−1
1 + α2n−1

2

2

]

=
−α2n

1 α2(1 +
√
2) + α2n

2 α1(1−
√
2)

4
√
2

=
−α2n

1 α1α2 + α2n
2 α1α2

4
√
2

=
α2n
1 − α2n

2

4
√
2

= Bn.

Further,

P2n +Q2n

2
=
1

2

[

α2n
1 − α2n

2

2
√
2

+
α2n
1 + α2n

2

2

]

=
α2n
1 (1 +

√
2)− α2n

2 (1−
√
2)

4
√
2

=
α2n+1
1 − α2n+1

2

4
√
2

=

[

α
2(n+1)−1
1 − α

2(n+1)−1
2

4
√
2

−
1

2

]

+
1

2
= bn+1 +

1

2
. ���

In Section 1, we have observed that n is a balancing number if and only

if n2 is a triangular number and n is a cobalancing number if and only if
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n(n+ 1) is a triangular number. It is worth mentioning here that if n2 is a

triangular number then n + n = 2n is an even ordered Pell number, and if

n(n+1) is a triangular number then n+ (n+1) = 2n+1 is an odd ordered

Pell number. The following theorem demonstrates these assertions.

Theorem 3.19. If n2 is a triangular number (i.e. if n is a balancing

number) then 2n is an even ordered Pell number, and if n(n + 1) is a tri-

angular number (i.e. if n is a cobalancing number) then 2n + 1 is an odd

ordered Pell number. Conversely, if P is an even ordered Pell number then

P 2/4 is a square triangular number and if P is an odd ordered Pell number

then (P 2 − 1)/4 is a pronic triangular number.

Proof. If n2 is a triangular number then n is a balancing number, say

n = Bk for some k. By virtue of Theorem 3.2,

2n = 2Bk = P2k.

Conversely, for every even ordered Pell number P2k, P2k/2 is a balancing

number and hence P 2
2k/4 is a square triangular number.

Further using the Binet form for Pn and bn from (3) and (10) respectively

we get

P2k−1 − 1

2
=

1

2

[

α2k−1
1 − α2k−1

2

2
√
2

− 1

]

=
α2k−1
1 − α2k−1

2

4
√
2

−
1

2
= bk. (24)

It is well known that [3, p.1189] n is a cobalancing number if and only if

n(n + 1) is a triangular number. Hence if n(n + 1) is a triangular number

then n = bk for some k and using the Binet form for bn from (10) we find

2n+ 1 = 2bk + 1 =
α2k−1
1 − α2k−1

2

2
√
2

= P2k−1.

Conversely, if P is an odd ordered Pell number say P = P2k−1 for some

k, then by (24),

(P 2 − 1)/4 =
[P − 1

2

][P + 1

2

]
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= bk(bk + 1),

which is a pronic triangular number [3, p.1190]. ���

The following theorem establishes the associations of Pell and associated

Pell numbers in the factorization of cobalancing numbers (balancers).

Theorem 3.20. For n = 1, 2, . . ., the 2nth balancer (cobalancing number)

is equal to the product of 2nth Pell number and the (2n−1)st associated Pell

number and the (2n+1)st balancer is equal to the product of 2nth Pell number

and the (2n + 1)st associated Pell number. More precisely R2n = P2nQ2n−1

and R2n+1 = P2nQ2n+1.

Proof. Using Theorem 2.1, the Binet forms of Pn and Qn from (3) and that

for bn from (10), we obtain

P2nQ2n−1 =
α2n
1 − α2n

2

2
√
2

·
α2n−1
1 + α2n−1

2

2

=
α4n−1
1 − α4n−1

2 − α1 + α2

4
√
2

=
α4n−1
1 − α4n−1

2

4
√
2

−
1

2
= R2n,

and

P2nQ2n+1 =
α2n
1 − α2n

2

2
√
2

·
α2n+1
1 + α2n+1

2

2

=
α4n+1
1 − α4n+1

2 − α1 + α2

4
√
2

=
α
2(2n+1)−1
1 − α

2(2n+1)−1
2

4
√
2

−
1

2
= R2n+1. ���

Theorem 3.1 gives the basic relationships among balancing numbers, Pell

numbers and associated Pell numbers in a nonlinear fashion. The following

theorem establishes the presence of Pell and associated Pell numbers as the

greatest common divisors of balancing and cobalancing numbers (balancers).

Theorem 3.21. The greatest common divisor of a balancing number and a

cobalancing number (balancer) of same order is either a Pell number or an
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associated Pell number of the same order. More precisely, (B2n−1, R2n−1) =

Q2n−1 and (B2n, R2n) = P2n.

Proof. By virtue of Theorems 3.1 and 3.20, and using the fact that for each

n, Pn and Pn−1 are relatively prime to each other, we obtain

(B2n−1, R2n−1) = (P2n−1Q2n−1, P2n−2Q2n−1)

= Q2n−1(P2n−1, P2n−2) = Q2n−1.

Further using Theorem 3.1 and 3.20, once again and the fact that for each

n, Qn and Qn−1 are also relatively prime, we obtain

(B2n, R2n) = (P2nQ2n, P2nQ2n−1)

= P2n(Q2n, Q2n−1) = P2n. ���

The following theorem, which is similar to Theorem 3.21, establishes

the presence of Pell and associated Pell numbers with the greatest common

divisors of consecutive cobalancing numbers (balancers).

Theorem 3.22. The greatest common divisor of two consecutive cobalancing

numbers (balancers) is either twice of an odd ordered associated Pell number

or is an even ordered Pell number. More precisely, (R2n−1, R2n) = 2Q2n−1

and (R2n, R2n+1) = P2n.

Proof. Using Theorem 3.20 and the fact that consecutive Pell numbers are

relative primes and the greatest common divisor of consecutive even ordered

Pell numbers is 2, we find

(R2n−1, R2n) = (P2n−2Q2n−1, P2nQ2n−1)

= Q2n−1(P2n−2, P2n) = 2Q2n−1,

and

(R2n, R2n+1) = (Q2n−1P2n, P2nQ2n+1)

= P2n(Q2n−1, Q2n+1)

= P2n(Q2n−1, 2Q2n +Q2n−1)

= P2n(Q2n−1, 2Q2n) = P2n. ���
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4. Solutions of Some Diophantine Equations

In this section, we consider some simple Diophantine equations whose

solutions are expressed as suitable combinations of balancing numbers, cobal-

ancing numbers, Pell numbers and associated Pell numbers.

The following theorem deals with the solution of a beautiful Diophan-

tine equation consists of finding two natural numbers such that the sum of

all natural numbers from the smaller number to the larger is equal to the

product of these two numbers.

Theorem 4.1. The solutions of the Diophantine equation x + (x + 1) +

(x + 2) + · · · + (x + y) = x(x + y) are x = Rn + 1 and y = Bn − Rn − 1,

n = 1, 2, . . ..

Proof. B is a balancing number with balancer R if

1 + 2 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ (B +R).

Thus,

(R + 1) + (R+ 2) + · · ·+ (B − 1)

= (B + 1) + (B + 2) + · · ·+ (B +R)− (1 + 2 + · · ·+R) = RB.

Adding B to both sides we get

(R+ 1) + (R+ 2) + · · ·+B = (R+ 1)B.

Thus,

x = R+ 1, x+ y = B,

from which the result follows.

An alternative proof of this theorem can be obtained using Pell’s equa-

tion:

The Diophantine equation

x+ (x+ 1) + · · ·+ (x+ y) = x(x+ y)
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is equivalent to

(2y + 1)2 − 2(2x− 1)2 = −1.

Setting u = 2y + 1 and v = 2x− 1, we get the Pell’s equation

u2 − 2v2 = −1.

The fundamental solution of this equation is u = 1 and v = 1. Hence the

totality of solutions is given by

un +
√
2vn = (1 +

√
2)n, n = 1, 2, . . . .

Since

un −
√
2vn = (1−

√
2)n, n = 1, 2, . . . ,

it follows that

un =
(1 +

√
2)n + (1−

√
2)n

2
= Qn,

and

vn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

= Pn.

Since both un and vn are odd and Pn is odd only when n is odd, we must

have

un = Q2n−1, vn = P2n−1; n = 1, 2, . . . .

Thus,

2y + 1 = Q2n−1, 2x− 1 = P2n−1,

implying that

y = (Q2n−1 − 1)/2, x = (P2n−1 + 1)/2.

Using the Binet forms in (3) and (10), it can be easily verified that

x =
(P2n−1 + 1)

2
= Rn + 1,
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and using Theorem 3.18, we find

x+ y =
(P2n−1 +Q2n−1)

2
= Bn,

from which the conclusion of the theorem follows. ���

The following theorem, which resembles the previous theorem, deals

with the solution of a Diophantine equation, consists of finding two natural

numbers such that the sum of all natural numbers from next to the smaller

number to the larger number is equal to the product of the two numbers.

Theorem 4.2. The solutions of the Diophantine equation (x + 1) + (x +

2) + · · ·+ (x+ y) = x(x+ y) are x = Bn and y = Rn+1 −Bn, n = 1, 2, . . ..

Proof. If b is a cobalancing number with cobalancer r, then

1 + 2 + · · ·+ b = (b+ 1) + (b+ 2) + · · ·+ (b+ r),

which implies

(r + 1) + (r + 2) + · · ·+ b

= (b+ 1) + (b+ 2) + · · ·+ (b+ r)− (1 + 2 + · · ·+ r)

= rb.

Thus, x = r and x + y = b. Now using Theorem 2.1, we conclude that if

x = Bn then x+ y = Rn+1.

Also, in this case, an alternative proof can be given using the Pell’s

equation:

The Diophantine equation

(x+ 1) + (x+ 2) + · · ·+ (x+ y) = x(x+ y)

is equivalent to

(2y + 1)2 − 2(2x)2 = 1,

Setting

u = 2y + 1, v = 2x,
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we get the Pell’s equation

u2 − 2v2 = 1, u is odd, v is even.

The fundamental solution of this equation is u = 3 and v = 2. Hence the

totality of solutions is given by

un +
√
2vn = (3 + 2

√
2)n, n = 1, 2, . . . .

This implies

un −
√
2vn = (3− 2

√
2)n, n = 1, 2, . . . .

By virtue of the last two equations and Theorems 3.2 and 3.3, we have

un =
(3 + 2

√
2)n + (3− 2

√
2)n

2

=
α2n
1 + α2n

2

2
= Cn = Q2n.

and

vn =
(3 + 2

√
2)n − (3− 2

√
2)n

2
√
2

=
α2n
1 − α2n

2

2
= 2Bn = P2n.

We observe that Q2n is always odd and P2n is always even. Thus

2y + 1 = Cn, 2x = 2Bn,

implying that

y = (Cn − 1)/2, x = Bn.

Thus

x+ y =
2Bn + Cn − 1

2
.

But by virtue of Corollary 6.4 of [3],

2Bn + Cn − 1

2
= Rn+1. ���



64 G. K. PANDA AND PRASANTA KUMAR RAY [March

The following theorem deals with the solution of a Diophantine equation,

consists of finding two natural numbers, the larger one being even, such that

the sum of all natural up to the larger number is equal to square of the

smaller number.

Theorem 4.3. The solutions of the Diophantine equation 1+2+· · ·+2x = y2

are x = P 2
2n = 4B2

n and y = P2nQ2n = B2n, n = 1, 2, . . ..

Proof. The Diophantine equation

1 + 2 + · · ·+ 2x = y2

is equivalent to

x(2x+ 1) = y2.

Since x and 2x + 1 are relatively prime to each other, both x and 2x + 1

must be squares. Letting

2x+ 1 = (2l + 1)2,

we find

x = 4 ·
l(l + 1)

2
.

Since x is a square it follows that l(l + 1)/2 is a square triangular number.

Hence

x = 4B2
n = P 2

2n, n = 1, 2, . . . .

[1, p.98], and by virtue of Theorem 3.1

y =
√

x(2x+ 1)

=
√

4B2
n(8B

2
n + 1)

=
√

4B2
nC

2
n = 2BnCn

= B2n = P2nQ2n. ���

Like the previous theorem, the following theorem deals with the solution

of a Diophantine equation, consists of finding two natural numbers, the larger

one being odd, such that the sum of all natural numbers up to the larger

number is equal square of the smaller number.
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Theorem 4.4. The solutions of the Diophantine equation 1+2+ · · ·+(2x−
1) = y2 are x = P 2

2n−1 and y = B2n−1, n = 1, 2, . . ..

Proof. The Diophantine equation

1 + 2 + · · ·+ (2x− 1) = y2

is equivalent to

x(2x− 1) = y2.

Since x and 2x − 1 are relatively prime to each other, both x and 2x − 1

must be squares. Letting

2x− 1 = (2k + 1)2,

we get

x = 2k2 + 2k + 1 = k2 + (k + 1)2.

Letting x = l2 the last equation takes the form

k2 + (k + 1)2 = l2.

The solutions of this Diophantine equation are [3, p.1199]

k = bn + rn = Bn−1 +Rn, n = 1, 2, . . . ,

and

l =
√

2k2 + 2k + 1.

Using Binet forms for Bn and bn from (10) it can be seen that

l = P2n−1.

Thus

x = P 2
2n−1,

and using Theorem 3.1 and the fact that

2P 2
2n−1 − 1 = Q2

2n−1,
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we get

y =
√

P 2
2n−1(2P

2
2n−1 − 1) = P2n−1Q2n−1 = B2n−1. ���

In the last two theorems, if we keep the larger number unrestricted, then

we have the following theorem.

Theorem 4.5. The solutions of the Diophantine equation 1+2+· · ·+x = y2

are x = Bn +Rn which is approximately equal to Q2
n, and y = PnQn = Bn.

Proof. The Diophantine equation

1 + 2 + · · · + x = y2

is equivalent to

x(x+ 1)

2
= y2,

implying that y2 is a square triangular number. Taking y = Bn and using

the Binet forms from (3) and (10) it can be easily verified that

x = Bn +Rn =

{

Q2
n, if n is odd,

Q2
n − 1, if n is even. ���

In the following theorem we consider finding two natural numbers such

that the sum of natural numbers up to the larger number decreased by the

smaller number is equal to square of the smaller number.

Theorem 4.6. The solutions of the Diophantine equation 1+2+ · · ·+(y−
1) + (y + 1) + · · ·+ x = y2 are x = bn + rn and y = bn, n = 1, 2, . . ..

Proof. The Diophantine equation

1 + 2 + · · ·+ (y − 1) + (y + 1) + · · ·+ x = y2

is equivalent to

x(x+ 1)

2
= y(y + 1),
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implying that y(y + 1) is a pronic triangular number. Taking y = bn [3,

p.1190] and using Theorem 2.1 we get

x =
−1 +

√

8b2n + 8bn + 1

2
= bn + rn,

n = 1, 2, . . .. ���

Like Theorem 4.6, in the following theorem, we consider finding two

natural numbers such that the larger one is even and the sum of natural

numbers up to the larger number decreased by the smaller number is equal

to square of the smaller number.

Theorem 4.7. The Diophantine equation 1 + 2 + · · · + (y − 1) + (y + 1) +

· · ·+2x = y2 has no solution if x is odd. If x is even, the solutions are given

by x = (b2n + r2n)/2 and y = b2n, n = 1, 2, . . ..

Proof. The Diophantine equation

1 + 2 + · · ·+ (y − 1) + (y + 1) + · · · + 2x = y2

is equivalent to

x(2x+ 1) = y(y + 1).

If x is odd, then left hand side is also odd, but the right hand side is even.

Hence in this case no solution exists. If x is even then solving the above

equation for x we get

x =
−1 +

√

8y2 + 8y + 1

4
.

Since y(y+1) is a pronic triangular number, it follows that y is a cobalancing

number [3, p.1190], say y = bn and since

rn =
−(2bn + 1) +

√

8b2n + 8bn + 1

2
,

[3, p.1190], we have

x = (bn + rn)/2.
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But bn + rn is even only when n is even. Hence the totality of solutions is

given by

x = (b2n + r2n)/2, y = b2n, n = 1, 2, . . . . ���

Like Theorem 4.7, in the following theorem, we consider finding two

natural numbers such that the larger one is odd and the sum of natural

numbers up to the larger number decreased by the smaller number is equal

to square of the smaller number.

Theorem 4.8. The Diophantine equation 1 + 2 + · · · + (y − 1) + (y + 1) +

· · ·+(2x− 1) = y2 has no solution if x is odd. If x is even, the solutions are

given by x = (b2n−1 + r2n−1 + 1)/2 and y = b2n, n = 1, 2, . . ..

Proof. The Diophantine equation

1 + 2 + · · · + (y − 1) + (y + 1) + · · ·+ (2x− 1) = y2

is equivalent to

x(2x− 1) = y(y + 1).

If x is odd, then left hand side is also odd, but the right hand side is even.

Hence in this case no solution exists. If x is even, then solving the above

equation for x we get

x =
1 +

√

8y2 + 8y + 1

4
.

Since y(y+1) is a pronic triangular number, it follows that y is a cobalancing

number [3, p.1190], say y = bn and then

x = (bn + rn + 1)/2.

But bn + rn +1 is even only when n is odd. Hence the solutions in this case

are given by

x = (b2n−1 + r2n−1 + 1)/2, y = b2n−1, n = 1, 2, . . . . ���
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The Diophantine equation x2 + y2 = z2, where x, y, z ∈ Z
+ is known as

the Pythagorean equation and is available extensively in the literature. The

particular case x2 + (x + 1)2 = y2 has been studied in [1, 3], wherein, the

solutions are obtained in terms of balancing and cobalancing numbers. Let

us call the equation x2 + y2 = z2 ± 1, an almost Pythagorean equation. In

the following theorem we consider the Diophantine equations x2+(x+1)2 =

y2 ± 1, which is a particular case of the almost Pythagorean equation.

Theorem 4.9. The almost Pythagorean equation x2+(x+1)2 = y2+1 has

the solutions x = Bn + bn and y = 2Bn = P2n, n = 1, 2, . . ., whereas, the

equation x2 + (x+ 1)2 = y2 − 1 has no solution.

Proof. The Diophantine equation

x2 + (x+ 1)2 = y2 + 1

is equivalent to

x(x+ 1)

2
=

y2

4
,

showing that
x(x+ 1)

2
is a square triangular number. Hence

x(x+ 1)

2
= B2

n,

[see 1, p. 99]. Thus y = 2Bn = P2n and then

x =
−1 +

√

8B2
n + 1

2
.

Since from the definition of balancing numbers and balancers [1, p.99]

Rn =
−1 +

√

8B2
n + 1

2
,

and by Theorem 2.1, Rn = bn for each n, it follows that x = Bn + bn.

The equation

x2 + (x+ 1)2 = y2 − 1
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is equivalent to

2(x2 + x+ 1) = y2.

Thus, y2 is an even number and hence is divisible by 4. This indicates that

x2 + x+1 is also even. But the pronic number x2 + x is always even, hence

x2 + x+ 1 is always odd. Hence, in this case, no solution exists. ���

The following theorem links the solutions of a Pythagorean equation

with balancing numbers, cobalancing numbers and Pell numbers.

Theorem 4.10. The Pythagorean equation x2 + (x + 2)2 = y2 has the

solutions x = 2(Bn−1 + bn) = cn − 1 and y = 2P2n+1, n = 1, 2, . . ..

Proof. The Diophantine equation

x2 + (x+ 2)2 = y2

is equivalent to

2(x2 + 2x+ 2) = y2,

which indicates that y is even and hence x2+2x+2 is also even, and thereby

x is also even. Taking x = 2u and y = 2v the above equation reduces to

2u2 + 2u+ 1 = v2,

which is the Pythagorean equation

u2 + (u+ 1)2 = v2.

The solutions of this equation are given by [3, p.1199],

u = bn + rn, v =
√

2u2 + 2u+ 1.

Using the Binet forms of bn, rn and Pn, it can be easily verified that

2(bn + rn)
2 + 2(bn + rn) + 1 = P 2

2n+1.

Since rn = Bn−1 by Theorem 2.1, it follows that the solutions of

u2 + (u+ 1)2 = v2
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are given by

u = Bn−1 + bn, v = P2n+1, n = 1, 2, . . . .

Thus, the solutions of the Diophantine equation x2+(x+2)2 = y2 are given

by

x = 2(Bn−1 + bn), y = 2P2n+1, n = 1, 2, . . . .

Using the Binet form for bn, rn and cn, it can be easily seen that

2(bn + rn) + 1 = cn.

Hence x can be alternatively given by x = cn − 1. ���

Replacing x by x− 1 in the above theorem, we get the following inter-

esting result:

Corollary 4.11. The Pythagorean equation (x− 1)2+(x+1)2 = y2 has the

solutions x = cn = Q2n−1 and y = 2P2n+1, n = 1, 2, . . ..

The following theorem establishes a link of solutions of a Pythagorean

equation involving consecutive triangular numbers with balancing numbers,

associated Pell numbers and Lucas-cobalancing numbers.

Theorem 4.12. The Pythagorean equation
[x(x− 1)

2

]2
+
[x(x+ 1)

2

]2
= y2

has the solutions x = Q2n−1 = cn and y = B2n−1, n = 1, 2, . . ..

Proof. The Pythagorean equation

[

x(x− 1)

2

]2

+

[

x(x+ 1)

2

]2

= y2

is equivalent to

x2(x2 + 1)

2
= y2, (25)

indicating that y2 is a square triangular number, hence y is a balancing

number [1, p.99], say y = Bn for some n. Now solving (25) for x2 and using
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the relationships between Bn and Rn [1, p.99], we get

x2 =
−1 +

√

8B2
n + 1

2
= Bn +Rn.

In the proof of Theorem 4.5, we have shown that Bn+Rn is a perfect square

only when n is odd and is equal to Q2
n. Hence the totality of solutions of

the Pythagorean equation

[

x(x− 1)

2

]2

+

[

x(x+ 1)

2

]2

= y2

are given by x = Q2n−1 and y = B2n−1, n = 1, 2, . . .. Indeed, by virtue of

Theorem 3.3, Q2n−1 = cn. ���
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