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Abstract

A 2−primal ring is one in which the prime radical is exactly the set of nilpotent

elements. A ring is clean, provided every element is the sum of a unit and an idempotent.

Keith Nicholson introduced clean rings in 1977 and proved the following: “Every clean ring

is an exchange ring. Conversely, every exchange ring in which all idempotents are central,

is clean.” In this paper, we investigate some of the relationships among ring-theoretic

properties and topological conditions, such as a 2-primal weakly exchange ring and its

prime spectrum Spec(R).

1. Introduction

Throughout this paper, R denotes an associative ring with identity and

Spec(R) (resp. Max(R)) denotes the set of all prime (resp. maximal) ideals

of R. In addition, P(R), J (R) and N (R) are used to denote the prime radi-

cal, Jacobson radical and the set of all nilpotent elements of R, respectively.

From Birkenmeier, Heatherly and Lee [2], a ring R is called 2-primal if

P(R) = N (R). Every reduced rings are 2-primal, but the converse is not

true. According to Crawley and Jonsson [4], a left R-module M is said

to have the exchange property if, for every left R-module A and any two

decompositions of A

A = M ′
⊕

N =
⊕

i∈I

Ai,
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where M ′ ∼= M, there exists submodules A′

i ⊆ Ai such that

A = M ′
⊕

(

⊕

i∈I

A′

i

)

.

A left R-module M has the finite exchange property if the above condi-

tion is satisfied whenever the index set is finite. Warfield [14] called a ring R

an exchange ring when RR has the finite exchange property. Nicholson [10]

gave characterization of exchange rings: R is an exchange ring if and only

if R/J (R) is an exchange ring and idempotents can be lifted modulo J (R),

if and only if for any a ∈ R there exists an idempotent e ∈ Ra such that

1− e ∈ R(1− a).

A ring R is said to be suitable [10] if for any a ∈ R, there exists an

idempotent e ∈ R such that e ∈ Ra and 1 − e ∈ R(1 − a). Nicholson

[10] proved that the suitable rings and the exchange rings are the same.

We adopted the definition of a suitable ring instead of the definition of an

exchange ring.

A ring is called a clean ring if every element is the sum of a unit and

an idempotent. Nicholson [10] introduced clean rings in 1977 and proved:

Every clean ring is an exchange ring. Conversely, every exchange ring in

which all idempotents are central is clean. Lu and Yu [8] characterized clean

rings by topological properties of their prime spectrums in the commutative

case.

In this paper, we characterize weakly exchange rings by topological prop-

erties of their prime spectrums in non commutative case by proving the re-

sults that if R is a 2-primal ring, then Spec(R) is strongly zero-dimensional,

if and only if R = R/P(R) is a weakly exchange ring, if and only Spec(R)

is strongly zero-dimensional.

We use a and I to denote a+ P(R) and I/P(R), where a ∈ R and I is

an ideal of R containing P(R), respectively.

2. Preliminaries

In this section we recall basic definitions that are needed for our purpose.
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An ideal P of a ring R is said to be prime (resp. completely prime)

if for any a, b ∈ R, aRb ⊆ P (resp. ab ∈ P ) implies either a ∈ P or b ∈ P.

A ring R is called a strongly 2-primal ring [12] if P (R/I) = N (R/I) for all

proper ideal I of R, where the term proper means only I 6= R. Note that

every strongly 2-primal is 2-primal. A ring is reduced provided it has no

non zero nilpotent elements. An element e ∈ R is said to be idempotent if

e2 = e. Let I be any ideal of R, we say that idempotents lift modulo I if

every idempotents in R/I can be lifted to R (i.e., for any idempotent a+ I

of R/I, there exists an idempotent e of R such that a+ I = e+ I). A ring R

is called a pm ring if each prime ideal of R is contained in a unique maximal

ideal of R.

A ring R is called π-regular if for every x ∈ R, there exists a natural

number n = n(x), depending on x, such that xn ∈ xnRxn. A ring R is called

right (left) weakly π-regular if for any x ∈ R, there exists a natural number

n such that xn ∈ xnRxnR (xn ∈ RxnRxn). A set S ⊆ R is m-system if

for any a, b ∈ S, there exists r ∈ R such that arb ∈ S. For any ideal I

of R,P(I) = {a ∈ R | every m-system containing a meets I}. Note that

P(I) ⊆ {a ∈ R | an ∈ I for some n ≥ 1} and P(I) is the intersection of all

prime ideals which contain I. An ideal I is called a radical ideal if P(I) = I.

For any ideal I of R and a ∈ R, we set V (a) = {P ∈ Spec(R) | a ∈ P}

and V (I) = {P ∈ Spec(R) | I ⊆ P}. Hence the sets V (I) =
⋂

a∈I

V (a), where

I is the ideal of R, satisfy the axioms for the closed sets of a topology on

Spec(R), called Zariski topology. Dually we set

U(a) = {P ∈ Spec (R) | a /∈ P} and

U (I) = {P ∈ Spec (R) | I * P} .

We say that a space X is zero-dimensional if it has a base consisting of

clopen sets, and is strongly zero-dimensional if for any closed set A and open

set V containing A, there exists a clopen set U such that A ⊆ U ⊆ V. Note

that these are equivalent to the concepts defined in McGovern [9] and Samei

[11], respectively, for a Tychonoff space. Since a space satisfies T1 if and only

if every singleton set is closed, any strongly zero-dimensional space with T1
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is always zero-dimensional and converse holds for a compact T1-space by

Gillman and Jerision [6, Theorem 16.16], or being proven directly.

3. Prime spectrums of 2-primal rings

In this section, we introduce the notion of weakly exchange rings. We

begin with the following definition.

Definition 3.1. A ring R is called a weakly exchange ring if for any a ∈ R,

there exists an idempotent e ∈ R such that e ∈ RaR and 1− e ∈ R(1− a)R.

Example 3.2.

(1) Let Q be the ring of all rational numbers and L is the set of all rational

numbers with odd denominators. Then clearly L is a sub ring of Q.

Define

R=R (Q,L)={(x1, x2, . . . , xn, s, s, . . .) |n ≥ 1, xi∈Q, for 1≤ i≤n, s∈L}

with componentwise operations. It can be easily seen that R is a weakly

exchange ring.

(2) Let R = M2(D), whereD is a division ring. Then R is a weakly exchange

ring. For, if x =

(

0 0

0 0

)

∈ R, then choose e =

(

0 0

0 0

)

. It is clear that

e2 = e, e ∈ RxR and 1− e ∈ R(1− x)R. If x =

(

1 0

0 1

)

, then choose e =

(

1 0

0 1

)

. Clearly e2 = e, e =

(

1 0

0 1

)

=

(

1 0

0 1

)

x

(

1 0

0 1

)

∈ RxR. Since

1−x =

(

0 0

0 0

)

, we have 1−e =

(

0 0

0 0

)

∈ R(1−x)R. Therefore, assume

that x =

(

a b

c d

)

∈ R−

{(

1 0

0 1

)

,

(

0 0

0 0

)}

. Since x 6= 0, any one of a, b, c

and d is non-zero. If a 6= 0, then choose e =

(

1 1

0 0

)

. It can be checked
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that e2 = e, e =

(

1 1

0 0

)

=

(

1
a

0

0 0

)(

a b

c d

)(

1 1

0 0

)

=

(

1
a

0

0 0

)

x

(

1 1

0 0

)

∈

RxR and 1 − e =

(

0 −1

0 1

)

=

(

− 1
1−a

0

− 1
1−a

0

)(

1− a −b

−c 1− d

)(

0 1

0 0

)

=

(

− 1
1−a

0
1

1−a
0

)

(1−x)

(

0 1

0 0

)

∈ R(1−x)R. Similarly, we can prove that the

same idempotent works for b 6= 0, c 6= 0 and d 6= 0. Thus R is a weakly

exchange ring.

Lemma 3.3. Let R be a 2-primal ring. For any prime ideal P of R, there

is a completely prime ideal Q of R such that P(R) ⊆ Q ⊆ P.

Proof. Assume that R is a 2-primal ring. Then R = R/P(R) is reduced

and hence every minimal prime ideal of R is completely prime by [12, Propo-

sition 1.11], since any reduced ring is 2-primal. Clearly P is a prime ideal of

R if and only if P = P/P(R) is a prime ideal of R. For every P ∈Spec(R),

there is a minimal prime ideal Q of R such that P(R) ⊆ Q ⊆ P. We claim

that Q is a completely prime ideal of R. Since Q is minimal prime such that

P(R) ⊆ Q, Q = Q/P(R) is minimal prime in R. Hence Q is completely

prime in R and consequently Q is a completely prime ideal of R. ���

The following is Theorem 3.5 of Zhang et al. [15]. But we prove it in a

different way.

Lemma 3.4. Let R be a 2-primal ring. Then

(i) U(x) = V (1− x) and V (x) = U(1− x) for any idempotent x in R.

(ii) U(e) = V (1− e) and V (e) = U(1− e) for any idempotent e in R.

Proof. (i) Let x be an idempotent in R. It is clear that V (1− x) ⊆ U(x).

Let P ∈ U(x). Then x /∈ P. Suppose that P /∈ V (1−x). Since R is 2 primal,

there is a completely prime ideal Q of R such that P(R) ⊆ Q ⊆ P by Lemma

3.3. Since x /∈ P and 1 − x /∈ P, x2 − x /∈ Q and hence x2 − x /∈ P(R).

This shows that x is not an idempotent in R, a contradiction. Therefore

1−x ∈ P . So P ∈ V (1−x). Thus U(x) = V (1−x). Similarly, we can prove

that V (x) = U(1− x).
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(ii) It is clear that V (1 − e) ⊆ U(e) for any idempotent e of R. Let

P ∈ U(e). Then e /∈ P. Suppose that P /∈ V (1− e). By the similar argument

used in part (i), there is a completely prime ideal Q of R such that e2−e /∈ Q,

i.e., 0 /∈ Q, a contradiction. Therefore U(e) = V (1 − e). Similarly, we can

prove that V (e) = U(1− e). ���

Note that clop(Spec(R)) denotes the set of all clopen (ie., both open

and closed) sets of Spec(R). Idempotents always lift modulo any nil ideal [1,

Proposition 27.1], and 2-primality guarantees that P(R) is a nil ideal. The

following lemma shows that every clopen subset of Spec(R) is from V (e),

where e ∈ R is an idempotent as proved in [15, Theorem 3.6]. However, it

is proved using a different approach in this paper.

Lemma 3.5.

(i) Let R be a 2-primal ring. Then

clop(Spec(R)) =
{

V (x) |x is an idempotent in R
}

and

clop(Spec(R)) =
{

V (x) |x is an idempotent in R
}

.

(ii)

clop(Spec(R)) = {V (e) | e is an idempotent in R}.

Proof. (i) Let V (I) ∈ clop(Spec(R)), where I is an ideal of R. Then there

exists an ideal J of R such that V (I)∩V (J) = ∅ and V (I)∪V (J) = Spec(R).

It can be seen that I + J = R and IJ ⊆ P(R). So that there exist a ∈ I and

1− a ∈ J such that a(1− a) ∈ P(R). Hence a is an idempotent in R. Since

a ∈ I, V (I) ⊆ V (a). Let P ∈ V (a). If 1− a ∈ P, then 1 ∈ P, a contradiction.

So that 1 − a /∈ P, but 1 − a ∈ J. This shows that P /∈ V (J) and conse-

quently P ∈ V (I). Therefore V (I) = V (a). Thus clop(Spec(R)) ⊆ {V (x) |x

is an idempotent in R}. On the other hand, let ā be an idempotent in R.

It is enough to prove that the complement of V (a) is closed, i.e., U(a) is

closed. Since U(a) = V (1 − a), by Lemma 3.4 (i), U(a) is closed. Thus we

get clop(Spec(R)) = {V (x) | x̄ an idempotent in R}. Similarly, we can prove

that clop(Spec(R)) = {V (x̄) | x̄ is an idempotent in R} by using Lemma
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3.4(ii) and the fact that P(R) = 0̄, where 0̄ = P(R), since R is 2-primal.

(ii) Let V (I) ∈ clop(Spec(R)), where I is an ideal of R. By the similar

argument used in part (i), we get an idempotent ā in R such that a ∈ I and

an ideal J of R such that V (I)∩V (J) = ∅, V (I)∪V (J) = Spec(R), 1−a ∈ J.

Since idempotents lift modulo P(R), there exists an idempotent e of R such

that ā = ē. Our claim is that V (I) = V (e). Let P ∈ V (e), then a ∈ P,

because ā = ē. Hence 1 − a /∈ P, but 1 − a ∈ J . So that P /∈ V (J) and

consequently P ∈ V (I). Clearly V (I) ⊆ V (e) because a ∈ I. Thus

clop(Spec(R)) ⊆ {V (e) | e is an idempotent in R}.

On the other hand, let e be an idempotent in R. It is enough to prove that

the complement of V (e) is closed, i.e., U(e) is closed. Since U(e) = V (1−e),

by Lemma 3.4 (ii), U(e) is closed. Thus clop(Spec(R))= {V (e) | e is an

idempotent in R}. ���

Theorem 3.6. Let R be a 2-primal ring. If R is π-regular, then Spec(R)

is zero-dimensional.

Proof. Assume that R is π-regular. Let U(I) be any open set in Spec(R).

For any a ∈ I, there exist a positive integer n and b ∈ R such that an = anban

because of π-regularness. Take e = anb, then e is an idempotent of R. We

claim that U(a) = U(e). Let P ∈ U(a). Then a /∈ P . Since R is π-regular,

R is right weakly π-regular and hence R/P(R) is right weakly π-regular. So

every prime ideal of R is maximal by [7, Lemma 6]. Hence every prime ideal

of R is minimal by [3, Proposition 3.6]. From this we obtain every prime

ideal of R is completely prime by [12, Proposition 1.11]. So that an /∈ P. If

e ∈ P, then anb ∈ P and hence b ∈ P, which shows that an = anban ∈ P, a

contradiction and consequently e /∈ P , P ∈ U(e). Therefore U(a) ⊆ U(e). It

is clear that U(e) ⊆ U(a). Thus U(a) = U(e). Since U(e) = V (1 − e), by

Lemma 3.4(ii), U(a) is a clopen set. Again since U(I) =
⋃

a∈I

U(a), the result

follows. ���

Lemma 3.7. Let a and b be elements of a ring R such that U(a) ⊆ U(b).

Then there exists a positive integer n such that an ∈ RbR. In particular, if

e is an idempotent with V (e) ⊆ V (b), then e ∈ RbR.
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Proof. Suppose that an /∈ RbR for all n. Let S = {a, a2, . . .}. Then S is an

m-system which contains a and does not intersect RbR. So that a /∈ P(RbR).

Since P(RbR) equals the intersection of all prime ideals which contain RbR,

there exists P ∈ Spec(R) such that a /∈ P and RbR ⊆ P. Hence P ∈ U(a)

and P /∈ U(b), a contradiction to hypothesis. Therefore an ∈ RbR for some

n.

Now suppose that e /∈ RbR, then en /∈ RbR for all n, since e is an

idempotent of R. Hence the result follows from the above. ���

The following is Lemma 2.5 of Lu et al. [8].

Lemma 3.8. For a space X, the following statements are equivalent:

(i) The space X is strongly zero-dimensional;

(ii) Any two disjoint closed sets are separated by clopen sets, i.e., if A,B

are disjoint closed sets, then there exist disjoint clopen sets, C1, C2 such

that A ⊆ C1 and B ⊆ C2;

(iii) If U1, U2 are open sets covering X, then there exist clopen sets C1, C2

such that Ci ⊆ Ui, i = 1, 2 , C1 ∩ C2 = ∅ and C1 ∪C2 = X.

Proof. Straight forward. ���

Lemma 3.9. Let X and Y be two spaces and f : X → Y a homeomor-

phic function. If X is strongly zero-dimensional, then Y is strongly zero-

dimensional.

Proof. Assume that X is strongly zero-dimensional. Let U1 and U2 be two

open sets which cover Y . Since f is continuous, f−1(U1) and f−1(U2) are

open sets which cover X. Since X is strongly zero-dimensional, there exist

clopen sets C1 and C2 such that C1 ⊆ f−1(U1), C2 ⊆ f−1(U2), C1 ∩ C2 = ∅

and C1 ∪ C2 = X. Hence it can be easily verified that f(C1) ⊆ U1, f(C2) ⊆

U2, f(C1) ∩ f(C2) = ∅ and f(C1) ∪ f(C2) = Y. It is enough to prove that

f(Ci)(i = 1, 2) is clopen. Since C1, C2 are open and f is an open map,

f(C1), f(C2) are open. Again since f(C1)
C = f(C2), f(C1) is closed, where

f(C1)
C is the complement of f(C1). Thus f(C1) is clopen. Similarly, we

can prove that f(C2) is clopen. Thus, by Lemma 3.8 (iii), Y is strongly

zero-dimensional. ���

The main result is now ready to be obtained.
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Theorem 3.10. Let R be a 2-primal ring. Then the following statements

are equivalent:

(i) Spec(R) is strongly zero-dimensional;

(ii) R is a weakly exchange ring;

(iii) Spec(R) is strongly zero-dimensional.

Proof. (i) implies (ii):

Assume that Spec(R) is strongly zero-dimensional and a is any element

of R. Since U(a) ∪ U(1 − a) = Spec(R), there exist clopen sets C1, C2 such

that C1 ⊆ U(1 − a) and C2 ⊆ U(a), C1 ∩ C2 = ∅, C1 ∪ C2 = Spec(R) by

Lemma 3.8 (iii). Hence there exist idempotent ē1 and ē2 in R̄ such that

C1 = V (e1) and C2 = V (e2) by Lemma 3.5 (i). By Lemma 3.4 (i), we

obtain V (e1) = U(1 − e1). Again since V (e2) = V (e1)
C , V (e2) = U(e1).

Hence U(1 − e1) ⊆ U(1 − a) and U(e1) ⊆ U(a). From Lemma 3.7, we have

en1 ∈ RaR and (1 − e1)
m ∈ R(1 − a)R for some positive integers n and m.

Hence ēn1 ∈ R̄āR̄ and (1̄− ē1)
n ∈ R̄(1̄− ā)R̄. Since ē1 is an idempotent in R̄,

ē1 ∈ R̄āR̄ and 1̄− ē1 ∈ R̄(1̄− ā)R̄. Thus R̄ is a weakly exchange ring.

(ii) implies (iii):

Assume that R̄ is a weakly exchange ring. Let Ī and J̄ be two ideals in R̄

such that U(Ī)U(J̄) = Spec(R̄). Observe that Ī + J̄ = R̄. So there exists

ā ∈ Ī such that 1̄− ā ∈ J̄ . Since R̄ is a weakly exchange ring, there exists

an idempotent x̄ ∈ R̄ such that x̄ ∈ R̄āR̄ and 1̄− x̄ ∈ R(1̄− ā)R̄.

It is clear that U(x̄) ⊆ U(Ī), U(1̄ − x̄) ⊆ U(J̄) , U(x̄) ∪ U(1̄ − x̄) =

Spec(R̄), and by Lemma 3.3, U(x̄) ∩ U(1̄ − x̄) = ∅. Since U(x̄) = V (1̄ − x̄)

and U(1̄− x̄) = V (x̄), U(x̄) and U(1̄− x̄) are clopen sets of R̄ by Lemma 3.5

(i). Thus, by Lemma 3.8 (iii), Spec(R) is strongly zero-dimensional .

(iii) implies (i):

Since Spec(R) is homeomorphic to Spec(R̄), by Lemma 3.9, Spec(R) is

strongly zero-dimensional. ���

Lemma 3.11. Let X be compact T1-space. Then X is strongly zero-dimen-

sional space if and only if X is zero-dimensional.



82 C. SELVARAJ AND S. PETCHIMUTHU [March

Proof. Any strongly zero-dimensional space with T1 is always zero-dimensional

and the converse holds for a compact T1-space by [6, Theorem 16.16]. ���

Although the proof of (i) ⇔ (ii) part in the following theorem is almost

similar to that of Theorem 3.10, we have given to avoid difficulties. Note

that Max(R) ⊆ Spec(R), so we may assume that Max(R) is a subspace of

Spec(R).

Theorem 3.12. Let R be a 2-primal ring. Then the following statements

are equivalent:

(i) R is a weakly exchange ring;

(ii) Spec(R) is strongly zero-dimensional;

(iii) R is a pm ring and Max(R) is zero-dimensional;

(iv) R is a pm ring and Max(R) is strongly zero-dimensional.

Proof. (i) ⇔ (ii):

Assume that Spec(R) is strongly zero dimensional and a is any element of R.

Since U(a) ∪ U(1 − a) = Spec(R), there exists clopen sets C1, C2 such that

C1 ⊆ U(1 − a), C2 ⊆ U(a), C1 ∩ C2 = ∅ and C1 ∪ C2= Spec(R) by Lemma

3.8 (iii). Hence there exist idempotents e1 and e2 such that C1 = V (e1)

and C2 = V (e2) by Lemma 3.5 (ii). As in the proof of Theorem 3.10, we

get en1 ∈ RaR and (1 − e1)
m ∈ R(1 − a)R. Since e1 is an idempotent of

R, e1 ∈ RaR and 1− e1 ∈ R(1− a)R. Thus R is a weakly exchange ring.

Conversly, assume that R is a weakly exchange ring. Let I, J be ideals such

that U(I) ∪ U(J) = Spec(R). Observing that I + J = R, so there exists

an idempotent e of R such that e ∈ RaR and 1 − e ∈ R(1 − a)R. It is

clear that U(e) ⊆ U(I), U(1− e) ⊆ U(J), U(e)∪U(1− e) = Spec(R) and by

Lemma 3.3, U(e)∩U(1− e) = ∅. Thus Spec(R) is strongly zero-dimensional

by Lemma 3.8 (iii).

(iii) ⇔ (iv):

Since Max(R) is a compact T1-space, the results follow from Lemma 3.11.

(ii) ⇔ (iv):

If Spec(R) is strongly zero-dimensional, then Spec(R) is normal by

Lemma 3.8 (ii). Hence R is pm and also Max(R) is a continuous retract

of Spec(R) by [13, Theorem 2.3]. Therefore the results follow from the fact

that the function µ : Spec(R)→ Max(R) given by sending each prime ideal
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P to the unique maximal ideal containing it is a continuous closed map [5,

Theorem 1.2]. ���

Since the strongly 2-primal rings are 2-primal, we have the following

corollary.

Corollary 3.13. Let R be a strongly 2-primal ring. If Spec(R) is zero-

dimensional, then R is a weakly exchange ring.

Proof. Assume that Spec(R) is zero-dimensional and a is any element

of R. Then U(a) is the union of some clopen sets {U(Iλ)/λ ∈ Λ}, where

each Iλ is an ideal. Let I =
∑

Iλ. Then a ∈ P(I) , for otherwise, there

is a prime ideal P containing I and a /∈ P, which is impossible. So that

an ∈ I for some positive integer n. Let λ1, λ2, · · · , λk ∈ Λ such that an ∈

Iλ1
+ Iλ2

+ · · ·+ Iλk
, then U(an) ⊆

k
⋃

i=1

U(Iλi
) ⊆ U(a). Since R is strongly 2-

primal, every prime ideal of R is completely prime [12, Proposition 1.13], and

so for any P ∈ Spec(R) such that P ∈ U(a) implies P ∈ U(an). Therefore

U(a) =
k
⋃

i=1

U(Iλi
). Thus U(a) is a clopen set for all a ∈ R. Hence Spec(R)

is a T1-space by [12, Theorem 4.2]. But always Spec(R) is compact. This

shows that Spec(R) is strongly zero-dimensional by Lemma 3.11. Thus R is

a weakly exchange ring by Theorem 3.12. ���

Corollary 3.14. Let R be a strongly 2-primal ring. Then R is a weakly

exchange ring if and only if idempotents lift modulo I for any radical ideal

I of R.

Proof. Assume that R is a weakly exchange ring. Then idempotents inR/I

can be lifted to every left ideal I of R by [10, Corollary 1.3]. In particular,

idempotents in R/I can be lifted to R for every radical ideal I of R.

Conversely, let A1 and A2 be two disjoint closed sets in Spec(R). Take

I1 =
⋂

P∈A1

P and I2 =
⋂

Q∈A2

Q. Then I1, I2 are radical ideals, because R is

strongly 2-primal. Since A1 ∩A2 = ∅, I1 + I2 = R. Choose a ∈ I1 and b ∈ I2
such that a + b = 1, then ab = a(1 − a) ∈ I1 ∩ I2. So ā is an idempotent

in R/(I1 ∩ I2). Since I1 ∩ I2 is a radical ideal, there exists an idempotent

e ∈ R such that e− a ∈ I1 ∩ I2 by hypothesis. Since a ∈ I1, e ∈ I1 and again

since b ∈ I2, 1− e ∈ I2. Therefore V (I1) ⊆ V (e) and V (I2) ⊆ V (1− e). Since



84 C. SELVARAJ AND S. PETCHIMUTHU [March

V (e) and V (1 − e) are clopen sets, Spec(R) is strongly zero-dimensional by

Lemma 3.8 (ii). Thus R is a weakly exchange ring by Theorem 3.12. ���
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