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0. Introduction and Statement of Results

0.0. In [6] it was shown that the vector space spanned by the involutions

in a Weyl group carries a natural Hecke algebra action and a certain bar

operator. These were used in [6] to construct a new basis of that vector

space, in the spirit of [2], and to give a refinement of the polynomials Py,w

of [2] in the case where y,w were involutions in the Weyl group in the sense

that Py,w was split canonically as a sum of two polynomials with cofficients

in N. However, the construction of the Hecke algebra action and that of

the bar operator, although stated in elementary terms, were established in

a non-elementary way. (For example, the construction of the bar operator

in [6] was done using ideas from geometry such as Verdier duality for l-adic

sheaves.) In the present paper we construct the Hecke algebra action and

the bar operator in an entirely elementary way, in the context of arbitrary

Coxeter groups.

Let W be a Coxeter group with set of simple reflections denoted by

S. Let l : W → N be the standard length function. For x ∈ W we set

ǫx = (−1)l(x). Let ≤ be the Bruhat order on W . Let w 7→ w∗ be an

automorphism ofW with square 1 which leaves S stable, so that l(w∗) = l(w)

for any w ∈ W . Let I∗ = {w ∈ W ;w∗−1 = w}. (We write w∗−1 instead of

(w∗)−1.) The elements of I∗ are said to be ∗-twisted involutions of W .
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Let u be an indeterminate and let A = Z[u, u−1]. Let H be the free A-

module with basis (Tw)w∈W with the unique A-algebra structure with unit

T1 such that

(i) TwTw′ = Tww′ if l(ww′) = l(w) + l(w′) and

(ii) (Ts + 1)(Ts − u2) = 0 for all s ∈ S.

This is an Iwahori-Hecke algebra. (In [6], the notation H′ is used instead of

H.)

Let M be the free A-module with basis {aw;w ∈ I∗}. We have the

following result which, in the special case where W is a Weyl group or

an affine Weyl group, was proved in [6] (the general case was stated there

without proof).

Theorem 0.1. There is a unique H-module structure on M such that for

any s ∈ S and any w ∈ I∗ we have

(i) Tsaw = uaw + (u+ 1)asw if sw = ws∗ > w;

(ii) Tsaw = (u2 − u− 1)aw + (u2 − u)asw if sw = ws∗ < w;

(iii) Tsaw = asws∗ if sw 6= ws∗ > w;

(iv) Tsaw = (u2 − 1)aw + u2asws∗ if sw 6= ws∗ < w.

The proof is given in §2 after some preparation in §1.

Let ¯ : H → H be the unique ring involution such that unTx = u−nT−1
x−1

for any x ∈W,n ∈ Z (see [2]). We have the following result.

Theorem 0.2. (a) There exists a unique Z-linear map ¯ : M → M such

that hm = h̄m̄ for all h ∈ H,m ∈M and a1 = a1. For any m ∈M we have

m = m.

(b) For any w ∈ I∗ we have aw = ǫwT
−1
w−1aw−1.

The proof is given in §3. Note that (a) was conjectured in [6] and proved

there in the special case where W is a Weyl group or an affine Weyl group;

(b) is new even when W is a Weyl group or affine Weyl group.

0.3. Let A = Z[v, v−1] where v is an indeterminate. We view A as a subring

of A by setting u = v2. Let M = A ⊗A M . We can view M as an A-

submodule of M . We extend ¯ : M → M to a Z-linear map ¯ : M → M
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in such a way that vnm = v−nm for m ∈ M,n ∈ Z. For each w ∈ I∗

we set a′w = v−l(w)aw ∈ M . Note that {a′w;w ∈ I∗} is an A-basis of M .

Let A≤0 = Z[v−1], A<0 = v−1Z[v−1], M≤0 =
∑

w∈I∗
A≤0a

′
w ⊂ M , M<0 =

∑

w∈I∗
A<0a

′
w ⊂M .

Let H = A⊗A H. This is naturally an A-algebra containing H as an A-

subalgebra. Note that the H-module structure on M extends by A-linearity

to an H-module structure onM . We denote by ¯: A → A the ring involution

such that vn = v−n for n ∈ Z. We denote by ¯: H → H the ring involution

such that vnTx = v−nT−1
x−1 for n ∈ Z, x ∈ W . We have the following result

which in the special case where W is a Weyl group or an affine Weyl group

is proved in [6, 0.3].

Theorem 0.4. (a) For any w ∈ I∗ there is a unique element

Aw = v−l(w)
∑

y∈I∗;y≤w

P σ
y,way ∈M

(P σ
y,w ∈ Z[u]) such that Aw = Aw, P

σ
w,w = 1 and for any y ∈ I∗, y < w, we

have degP σ
y,w ≤ (l(w) − l(y)− 1)/2.

(b) The elements Aw (w ∈ I∗) form an A-basis of M .

The proof is given in §4.

0.5. As an application of our study of the bar operator we give (in 4.7)

an explicit description of the Möbius function of the partially ordered set

(I∗,≤); we show that it has values in {1,−1}. This description of the Möbius

function is used to show that the constant term of P σ
y,w is 1, see 4.10. In §5

we study the “K-spherical” submodule MK of M (where K is a subset of

S which generates a finite subgroup WK of S). In 5.6(f) we show that MK

contains any element Aw where w ∈ I∗ has maximal length in WKwWK∗.

This result is used in §6 to describe the action of u−1(Ts + 1) (with s ∈ S)

in the basis (Aw) by supplying an elementary substitute for a geometric

argument in [6], see Theorem 6.3 which was proved earlier in [6] for the

case where W is a Weyl group. In 7.7 we give an inversion formula for the

polynomials P σ
y,w (for finite W ) which involves the Möbius function above

and the polynomials analogous to P σ
y,w with ∗ replaced by its composition

with the opposition automorphism of W . In §8 we formulate a conjecture

(see 8.4) relating P σ
y,w for certain twisted involutions y,w in an affine Weyl
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group to the q-analogues of weight multiplicities in [4]. In §9 we show that

for y ≤ w in I∗, P
σ
y,w is equal to the polynomial Py,w of [2] plus an element

in 2Z[u]. This follows from [6] in the case where W is a Weyl group.

0.6. Notation. If Π is a property we set δΠ = 1 if Π is true and δΠ = 0 if Π

is false. We write δx,y instead of δx=y. For s ∈ S,w ∈ I∗ we sometimes set

s • w = sw if sw = ws∗ and s • w = sws∗ if sw 6= ws∗; note that s • w ∈ I∗.

For any s ∈ S, t ∈ S, t 6= s let ms,t = mt,s ∈ [2,∞] be the order of st.

For any subset K of S let WK be the subgroup of W generated by K. If

J ⊂ K are subsets of S we set W J
K = {w ∈ WK ; l(wy) > l(w) for any y ∈

WJ − {1}}, JWK = {w ∈ WK ; l(yw) > l(w) for any y ∈ WJ − {1}}; note

that JWK = (W J
K)−1. For any subset K of S such that WK is finite we

denote by wK the unique element of maximal length of WK .

Contents

1. Involutions and double cosets.

2. Proof of Theorem 0.1.

3. Proof of Theorem 0.2.

4. Proof of Theorem 0.4.

5. The submodule MK of M .

6. The action of u−1(Ts + 1) in the basis (Aw).

7. An inversion formula.

8. A (−u) analogue of weight multiplicities?

9. Reduction modulo 2.

1. Involutions and Double Cosets

1.1. Let K,K ′ be two subsets of S such that WK ,WK ′ are finite and let Ω

be a (WK ,WK ′)-double coset in W . Let b be the unique element of minimal

length of Ω. Let J = K ∩ (bK ′b−1), J ′ = (b−1Kb) ∩K ′ so that b−1Jb = J ′

hence b−1WJb = WJ ′ . If x ∈ Ω then x = cbd where c ∈ W J
K , d ∈ WK ′ are

uniquely determined; moreover, l(x) = l(c) + l(b) + l(d), see Kilmoyer [3,

Prop. 29]; see also [1, 2.7.4, 2.7.5]. We can write uniquely d = zc′ where
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z ∈ WJ ′ , c′ ∈ J ′

WK ′; moreover, l(d) = l(z) + l(c′). Thus we have x = cbzc′

where c ∈ W J
K , z ∈ WJ ′ , c′ ∈ J ′

WK ′ are uniquely determined; moreover,

l(x) = l(c) + l(b) + l(z) + l(c′). Note that b̃ := wKwJbwK ′ is the unique

element of maximal length of Ω; we have l(b̃) = l(wK)+ l(b)+ l(wK ′)− l(wJ ).

1.2. Now assume in addition that K ′ = K∗ and that Ω is stable under

w 7→ w∗−1. Then b∗−1 ∈ Ω, b̃∗−1 ∈ Ω, l(b∗−1) = l(b), l(b̃∗−1) = l(b̃), and

by uniqueness we have b∗−1 = b, b̃∗−1 = b̃, that is, b ∈ I∗, b̃ ∈ I∗. Also we

have J∗ = K∗ ∩ (b−1Kb) = J ′ hence WJ ′ = (WJ)
∗. If x ∈ Ω ∩ I∗, then

writing x = cbzc′ as in 1.1 we have x = x∗−1 = c′∗−1b(b−1z∗−1b)c∗−1 where

c′∗−1 ∈ (JWK)−1 = W J
K , c∗−1 ∈ (W J∗

K∗)−1 = J∗

WK∗, b−1z∗−1b ∈ b−1WJb =

WJ∗. By the uniqueness of c, z, c′, we must have c′∗−1 = c, c∗−1 = c′,

b−1z∗−1b = z. Conversely, if c ∈ W J
K , z ∈ WJ∗ , c′ ∈ J∗

WK∗ are such that

c′∗−1 = c (hence c∗−1 = c′) and b−1z∗−1b = z then clearly cbzc′ ∈ Ω ∩ I∗.

Note that y 7→ b−1y∗b is an automorphism τ : WJ∗ → WJ∗ which leaves

J∗ stable and satisfies τ2 = 1. Hence Iτ := {y ∈ WJ∗ ; τ(y)−1 = y} is well

defined. We see that we have a bijection

(a) W J
K × Iτ → Ω ∩ I∗, (c, z) 7→ cbzc∗−1.

1.3. In the setup of 1.2 we assume that s ∈ S, K = {s}, so that K ′ = {s∗}.

In this case we have either

sb = bs∗, J = {s}, Ω ∩ I∗ = {b, bs∗ = b̃}, l(bs∗) = l(b) + 1, or

sb 6= bs∗, J = ∅, Ω ∩ I∗ = {b, sbs∗ = b̃}, l(sbs∗) = l(b) + 2.

1.4. In the setup of 1.2 we assume that s ∈ S, t ∈ S, t 6= s, m := ms,t < ∞,

K = {s, t}, so that K∗ = {s∗, t∗}. We set β = l(b). For i ∈ [1,m] we set

si = sts · · · (i factors), ti = tst · · · (i factors).

We are in one of the following cases (note that we have sb = bt∗ if and

only if tb = bs∗, since b∗−1 = b).

(i) {sb, tb} ∩ {bs∗, bt∗} = ∅, J = ∅, Ω ∩ I∗ = {ξ2i, ξ
′
2i(i ∈ [0,m]), ξ0 = ξ′0 =

b, ξ2m = ξ′2m = b̃} where ξ2i = s−1
i bs∗i , ξ

′
2i = t−1

i bti, l(ξ2i) = l(ξ′2i) =

β + 2i.

(ii) sb = bs∗, tb 6= bt∗, J = {s}, Ω ∩ I∗ = {ξ2i, ξ2i+1(i ∈ [0,m − 1])}

where ξ2i = t−1
i bt∗i , l(ξ2i) = β + 2i, ξ2i+1 = t−1

i bs∗i+1 = s−1
i+1bt

∗
i ,

l(ξ2i+1) = β + 2i+ 1, ξ0 = b, ξ2m−1 = b̃.



360 G. LUSZTIG [September

(iii) sb 6= bs∗, tb = bt∗, J = {t}, Ω ∩ I∗ = {ξ2i, ξ2i+1(i ∈ [0,m − 1])} where

ξ2i = s−1
i bs∗i , l(ξ2i) = β + 2i, ξ2i+1 = s−1

i bt∗i+1 = t−1
i+1bs

∗
i , l(ξ2i+1) =

β + 2i+ 1, ξ0 = b, ξ2m−1 = b̃.

(iv) sb = bs∗, tb = bt∗, J = K, m odd, Ω∩I∗ = {ξ0 = ξ′0 = b, ξ2i+1, ξ
′
2i+1(i ∈

[0, (m− 1)/2]), ξm = ξ′m = b̃} where ξ1 = sb, ξ3 = tstb, ξ5 = ststsb, . . .;

x′1 = tb, x′3 = stsb, x′5 = tststb, . . .; l(ξ2i+1) = l(ξ′2i+1) = β + 2i+ 1.

(v) sb = bs∗, tb = bt∗, J = K,m even, Ω∩I∗ = {ξ0 = ξ′0 = b, ξ2i+1, ξ
′
2i+1(i ∈

[0, (m− 2)/2]), ξm = ξ′m = b̃} where ξ1 = sb, ξ3 = tstb, ξ5 = ststsb, . . .;

ξ′1 = tb, ξ′3 = stsb, ξ′5 = tststb, . . .; l(ξ2i+1) = l(ξ′2i+1) = β + 2i + 1,

ξm = ξ′m = bs∗m = bt∗m = smb = tmb, l(ξm) = l(ξ′m) = β +m.

(vi) sb = bt∗, tb = bs∗, J = K, m odd, Ω ∩ I∗ = {ξ0 = ξ′0 = b, ξ2i, ξ
′
2i(i ∈

[0, (m − 1)/2]), ξm = ξ′m = b̃} where ξ2 = stb, ξ4 = tstsb, ξ6 = stststb,

. . .; ξ′2 = tsb, ξ′4 = ststb, ξ′6 = tststsb, . . .; l(ξ2i) = l(ξ′2i) = β + 2i,

ξm = ξ′m = bs∗m = bt∗m = tmb = smb, l(ξm) = l(ξ′m) = β +m.

(vii) sb = bt∗, tb = bs∗, J = K, m even, Ω ∩ I∗ = {ξ0 = ξ′0 = b, ξ2i, ξ
′
2i(i ∈

[0,m/2]), ξm = ξ′m = b̃} where ξ2 = stb, ξ4 = tstsb, ξ6 = stststb, . . .;

ξ′2 = tsb, ξ′4 = ststb, ξ′6 = tststsb, . . .; l(ξ2i) = l(ξ′2i) = β + 2i.

2. Proof of Theorem 0.1

2.1. Let Ṁ = Q(u) ⊗A M (a Q(u)-vector space with basis {aw, w ∈ I∗}).

Let Ḣ = Q(u) ⊗A H (a Q(u)-algebra with basis {Tw;w ∈ W} defined by

the relations 0.0(i),(ii)). The product of a sequence ξ1, ξ2, . . . of k elements

of Ḣ is sometimes denoted by (ξ1ξ2 · · · )k. It is well known that Ḣ is the

associative Q(u)-algebra (with 1) with generators Ts(s ∈ S) and relations

0.0(ii) and

(TsTtTs · · · )m = (TtTsTt · · · )m for any s 6= t in S such that m := ms,t <

∞.

For s ∈ S we set
◦
T s = (u + 1)−1(Ts − u) ∈ Ḣ. Note that Ts,

◦
T s are

invertible in Ḣ: we have
◦
T
−1

s = (u2 − u)−1(Ts + 1 + u− u2).

2.2. For any s ∈ S we define aQ(u)-linear map Ts : Ṁ → Ṁ by the formulas

in 0.1(i)-(iv). For s ∈ S we also define a Q(u)-linear map
◦
T s : Ṁ → Ṁ by

◦
T s = (u+ 1)−1(Ts − u). For w ∈ I∗ we have:
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(i) asw =
◦
T saw if sw = ws∗ > w; asws = Tsaw if sw 6= ws∗ > w.

2.3. To prove Theorem 0.1 it is enough to show that the formulas 0.1(i)-(iv)

define an Ḣ-module structure on Ṁ .

Let s ∈ S. To verify that (Ts + 1)(Ts − u2) = 0 on Ṁ it is enough to

note that the 2× 2 matrices with entries in Q(u)

(

u u+1
u2−u u2−u−1

)

(

0 1
u2 u2−1

)

which represent Ts on the subspace of Ṁ spanned by aw, asw (with w ∈

I, sw = ws∗ > w) or by aw, asws∗ (with w ∈ I, sw 6= ws∗ > w) have eigen-

values −1, u2.

Assume now that s 6= t in S are such that m := ms,t <∞. It remains to

verify the equality (TsTtTs · · · )m = (TtTsTt · · · )m : Ṁ → Ṁ . We must show

that (TsTtTs · · · )maw = (TtTsTt · · · )maw for any w ∈ I∗. We will do this by

reducing the general case to calculations in a dihedral group.

Let K = {s, t}, so that K∗ = {s∗, t∗}. Let Ω be the (WK ,WK∗)-double

coset inW that contains w. From the definitions it is clear that the subspace

ṀΩ of Ṁ spanned by {aw′ ;w′ ∈ Ω ∩ I∗} is stable under Ts and Tt. Hence it

is enough to show that

(a) (TsTtTs · · · )mµ = (TtTsTt · · · )mµ for any µ ∈ ṀΩ.

Since w∗−1 = w we see that w′ 7→ w′∗−1 maps Ω into itself. Thus Ω is as

in 1.2 and we are in one of the cases (i)-(vii) in 1.4. The proof of (a) in the

various cases is given in 2.4-2.10. Let b ∈ Ω, J ⊂ K be as in 1.2. Let si, ti

be as in 1.4.

Let ḢK be the subspace of Ḣ spanned by {Ty; y ∈ WK}; note that ḢK

is a Q(u)-subalgebra of Ḣ.

2.4. Assume that we are in case 1.4(i). We define an isomorphism of

vector spaces Φ : ḢK → ṀΩ by Tc 7→ acbc∗−1 (c ∈ WK). From defini-

tions we have TsΦ(Tc) = Φ(TsTc), TtΦ(Tc) = Φ(TtTc) for any c ∈ WK .

It follows that for any x ∈ ḢK we have TsΦ(x) = Φ(Tsx), TtΦ(x) =

Φ(Ttx), hence (TsTtTs · · · )mΦ(x)− (TtTsTt · · · )mΦ(x) = Φ((TsTtTs · · · )mx−
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(TtTsTt · · · )mx) = 0. (We use that (TsTtTs · · · )m = (TtTsTt · · · )m in ḢK .)

Since Φ is an isomorphism we deduce that 2.3(a) holds in our case.

Assume that we are in case 1.4(ii). We define r, r′ by r = s, r′ = t if m

is odd, r = t, r′ = s if m is even. We have

aξ0
Tt→ aξ2

Ts→ aξ4
Tt→ · · ·

Tr→ aξ2m−2
,

aξ1
Tt→ aξ3

Ts→ aξ5
Ts→ · · ·

Tr→ aξ2m−1
.

We have sξ0 = ξ0s
∗ = ξ1 hence aξ0

Ts→ uaξ0 + (u+ 1)aξ1 . We show that

r′ξ2m−2 = ξ2m−2r
′∗ = ξ2m−1

We have r′ξ2m−2 = · · · tstbt∗s∗t∗ · · · where the product to the left (resp.

right) of b has m (resp. m− 1) factors). Using the definition of m and the

identity sb = bs∗ we deduce r′ξ2m−2 = · · · stsbt∗s∗t∗ · · · = · · · stbs∗t∗s∗ · · ·

(in the last expression the product to the left (resp. right) of b has m − 1

(resp. m) factors). Thus r′ξ2m−2 = ξ2m−1. Using again the definition of m

we have ξ2m−1 = · · · stbt∗s∗t∗ · · · where the product to the left (resp. right)

of b has m− 1 (resp. m) factors. Thus ξ2m−1 = ξ2m−2r
′∗ as required.

We deduce that

aξ2m−2

Tr′→ uaξ2m−2
+ (u+ 1)aξ2m−1

.

We set a′ξ1 = uaξ0 + (u + 1)aξ1 , a
′
ξ3

= uaξ2 + (u + 1)aξ3 , . . ., a
′
ξ2m−1

=

uaξ2m−2
+ (u + 1)aξ2m−1

. Note that aξ0 , aξ2 , aξ4 , . . . , aξ2m−2
together with

a′ξ1 , a
′
ξ3
, . . . , a′ξ2m−1

form a basis of ṀΩ and we have

aξ0
Tt→ aξ2

Ts→ aξ4
Tt→ · · ·

Tr→ aξ2m−2

Tr′→ a′ξ2m−1

aξ0
Ts→ a′ξ1

Tt→ a′ξ3
Ts→ a′ξ5

Ts→ · · ·
Tr→a′ξ2m−1

.

We define an isomorphism of vector spaces Φ : ḢK → ṀΩ by 1 7→ aξ0 ,

Tt 7→ aξ2 , TsTt 7→ aξ4 , . . ., Tr · · ·TsTt 7→ aξ2m−2
(the product has m − 1

factors), Ts 7→ α′
ξ1
, TtTs 7→ a′ξ3 , . . ., Tr · · · TtTs 7→ a′ξ2m−1

(the product has m

factors). From definitions for any c ∈WK we have

(a) TsΦ(Tc) = Φ(TsTc) if sc > c, TtΦ(Tc) = Φ(TtTc) if tc > c,

(b) T−1
s Φ(Tc) = Φ(T−1

s Tc) if sc < c, T−1
t Φ(Tc) = Φ(T−1

t Tc) if tc < c.

Since Ts = u2T−1
s + (u2 − 1) both as endomorphisms of Ṁ and as ele-

ments of Ḣ we see that (b) implies that TsΦ(Tc) = Φ(TsTc) if sc < c.
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Thus TsΦ(Tc) = Φ(TsTc) for any c ∈ WK . Similarly, TtΦ(Tc) = Φ(TtTc)

for any c ∈ WK . It follows that for any x ∈ ḢK we have TsΦ(x) =

Φ(Tsx), TtΦ(x) = Φ(Ttx), hence (TsTtTs · · · )Φ(x) − (TtTsTt · · · )Φ(x) =

Φ((TsTtTs · · · )x−(TtTsTt · · · )x) = 0 where the products TsTtTs · · · , TtTsTt · · ·

have m factors. (We use that TsTtTs · · · = TtTsTt · · · in ḢK .) Since Φ is

an isomorphism we deduce that (TsTtTs · · · )µ − (TtTsTt · · · )µ = 0 for any

µ ∈ ṀΩ. Hence 2.3(a) holds in our case.

2.5. Assume that we are in case 1.4(iii). By the argument in case 1.4(ii)

with s, t interchanged we see that (a) holds in our case.

2.6. Assume that we are in one of the cases 1.4(iv)-(vii). We have J = K

that is, K = bK∗b−1. We have Ω = WKb = bWK∗. Define m′ ≥ 1 by

m = 2m′ + 1 if m is odd, m = 2m′ if m is even. Define s′, t′ by s′ = s, t′ = t

if m′ is even, s′ = t, t′ = s if m′ is odd.

2.7. Assume that we are in case 1.4(iv). We define some elements of ḢK as

follows:

η0 = Tsm′
+ Ttm′

+ (1 + u− u2)(Tsm′−1
+ Ttm′−1

)

+(1 + u− u2 − u3 + u4)(Tsm′−2
+ Ttm′−2

) + · · ·

+(1 + u− u2 − u3 + u4 + u5 − · · · + (−1)m
′−2u2m

′−4

+(−1)m
′−2u2m

′−3 + (−1)m
′−1u2m

′−2)(Ts1 + Tt1)

+(1 + u− u2 − u3 + u4 + u5 − · · · + (−1)m
′−1u2m

′−2

+(−1)m
′−1u2m

′−1 + (−1)m
′

u2m
′

),

η1 =
◦
T sη0, η3 = Ttη1, . . . , η2m′−1 = Tt′η2m′−3, η2m′+1 = Ts′η2m′−1,

η′1 =
◦
T tη0, η

′
3 = Tsη

′
1, . . . , η

′
2m′−1 = Ts′η

′
2m′−3, η

′
2m′+1 = Tt′η

′
2m′−1.

For example if m = 7 we have

η0 = Tsts + Ttst + (1 + u− u2)Tts + (1 + u− u2)Tst

+(1 + u− u2 − u3 + u4)Ts + (1 + u− u2 − u3 + u4)Tt

+(1 + u− u2 − u3 + u4 + u5 − u6),

η1 = (u+ 1)−1(Tstst − uTtst + (−u+ u3)Tts + (−u+ u3)Tst

+(−u+ 2u3 − u5)Ts + (−u+ 2u3 − u5)Tt + (−u+ 2u3 − 2u5 + u7)),

η′1 = (u+ 1)−1(Ttsts − uTsts + (−u+ u3)Tts + (−u+ u3)Tst
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+(−u+ 2u3 − u5)Ts + (−u+ 2u3 − u5)Tt + (−u+ 2u3 − 2u5 + u7)),

η3 = (u+ 1)−1(Ttstst − u3Tst + (−u3 + u5)Ts + (−u3 + u5)Tt

+(−u3 + 2u5 − u7)),

η′3 = (u+ 1)−1(Tststs − u3Tts + (−u3 + u5)Ts + (−u3 + u5)Tt

+(−u3 + 2u5 − u7)),

η5 = (u+ 1)−1(Tststst − u5Tt + (−u5 + u7)),

η′5 = (u+ 1)−1(Ttststs − u5Ts + (−u5 + u7)),

η7 = η′7 = (u+ 1)−1(Tstststs − u7).

One checks by direct computation in ḢK that

(a) ηm = η′m = (u+ 1)−1(Tsm − um)

and that the elements η0, η1, η
′
1, η3, η

′
3, . . . η2m′−1, η

′
2m′−1, ηm are linearly in-

dependent in ḢK ; they span a subspace of ḢK denoted by Ḣ
+
K . From (a) we

deduce:

(b) (Ts′Tt′Ts′ · · ·TtTsTt
◦
T s)m′+1η0 = (Tt′Ts′Tt′ · · ·TsTtTs

◦
T t)m′+1η0.

We have

◦
T
−1

s η1 = η0, T
−1
t η3 = η1, . . . , T

−1
t′ η2m′−1 = η2m′−3, T

−1
s′ η2m′+1 = η2m′−1,

◦
T
−1

t η′1 = η0, T
−1
s η′3 = η′1, . . . , T

−1
s′ η

′
2m′−1 = η′2m′−3, T

−1
t′ η′2m′+1 = η′2m′−1.

It follows that Ḣ
+
K is stable under left multiplication by Ts and Tt hence it

is a left ideal of ḢK . From the definitions we have

aξ1 =
◦
T saξ0 , aξ3 = Ttaξ1 , . . . , aξ2m′−1

= Tt′aξ2m′−3
, aξ2m′+1

= Ts′aξ2m′−1
,

aξ′
1
=

◦
T taξ0 , aξ′3 = Tsaξ′

1
, . . . , aξ′

2m′−1
= Ts′aξ′

2m′−3
, aξ′

2m′+1
= Tt′aξ′

2m′−1
,

◦
T
−1

s aξ1 =aξ0 , T
−1
t aξ3 =aξ1 , . . . , T

−1
t′ aξ2m′−1

=aξ2m′−3
, T−1

s′ aξ2m′+1
=aξ2m′−1

,

◦
T
−1

t aξ′
1
=aξ0 , T

−1
s aξ′

3
=aξ′

1
, . . . , T−1

s′ aξ′2m′−1
=aξ′

2m′−3
, T−1

t′ aξ′
2m′+1

=aξ′
2m′−1

.
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Hence the vector space isomorphism Φ : Ḣ+
K

∼
→ṀΩ given by η2i+1 7→ aξ2i+1

,

η′2i+1 7→ aξ′
2i+1

(i ∈ [0, (m − 1)/2]), η0 7→ aξ0 satisfies Φ(Tsh) = TsΦ(h),

Φ(Tth) = TtΦ(h) for any h ∈ Ḣ
+
K . Since (TsTtTs · · · )mh = (TtTsTt · · · )mh

for h ∈ Ḣ
+
K , we deduce that 2.3(a) holds in our case.

2.8. Assume that we are in case 1.4(v). We define some elements of ḢK as

follows:

η0 = Tsm′−1
+ Ttm′−1

+ (1− u2)(Tsm′−2
+ Ttm′−2

)

+(1− u2 + u4)(Tsm′−3
+ Ttm′−3

) + · · ·

+(1− u2 + u4 − · · · + (−1)m
′−2u2(m

′−2))(Ts1 + Tt1)

+(1− u2 + u4 − · · · + (−1)m
′−1u2(m

′−1)),

(if m ≥ 4), η0 = 1 (if m = 2),

η1 =
◦
T sη0, η3 = Ttη1, . . . , η2m′−1 = Tt′η2m′−3, η2m′ =

◦
T s′η2m′−1,

η′1 =
◦
T tη0, η

′
3 = Tsη

′
1, . . . , η

′
2m′−1 = Ts′η

′
2m′−3, η

′
2m′ =

◦
T t′η

′
2m′−1.

For example if m = 4 we have

η0 = Ts + Tt + (1− u2),

η1 = (u+ 1)−1(Tst − uTs − uTt + (−u+ u2 + u3)),

η′1 = (u+ 1)−1(Tts − uTs − uTt + (−u+ u2 + u3)),

η3 = (u+ 1)−1(Ttst − uTts + u2Ts − u3),

η′3 = (u+ 1)−1(Tsts − uTst + u2Ts − u3),

η4 = η′4 = (u+1)−2(Tstst−uTsts−uTtst+u
2Tst+u

2Tts−u
3Ts−u

3Tt+u
4).

If m = 6 we have

η0 = Tst + Tts + (1− u2)Ts + (1− u2)Tt + (1− u2 + u4),

η1 = (u+ 1)−1(Tsts − uTst − uTts + (−u+ u2 + u3)Ts

+(−u+ u2 + u3)Tt + (−u+ u2 + u3 − u4 − u5)),

η′1 = (u+ 1)−1(Ttst − uTst − uTts + (−u+ u2 + u3)Ts

+(−u+ u2 + u3)Tt + (−u+ u2 + u3 − u4 − u5)),

η3 = (u+ 1)−1(Ttsts − uTtst − u2Tts − u3Ts − u3Tt + (−u3 + u4 + u5)),
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η′3 = (u+ 1)−1(Tstst − uTsts − u2Tst − u3Ts − u3Tt + (−u3 + u4 + u5)),

η5 = (u+ 1)−1(Tststs − uTstst − u2Tsts − u3Tst + u4Ts − u5),

η′5 = (u+ 1)−1(Ttstst − uTtsts − u2Ttst − u3Tts + u4Tt − u5),

η6 = η′6 = (u+ 1)−2(Tststst − uTststs − uTtstst + u2Tstst + u2Ttsts

−u3Tsts − u3Ttst + u4Tst + u4Tts − u5Ts − u5Tt + u6).

If m = 8 we have

η0 = Tsts + Ttst + (1− u2)Tst + (1− u2)Tts + (1− u2 + u4)Ts

+(1− u2 + u4)Tt + (1− u2 + u4 − u6),

η1 = (u+ 1)−1(Tstst − uTsts − uTtst + (−u+ u2 + u3)Tst + (−u+ u2 + u3)Tts

+(−u+ u2 + u3 − u4 − u5)Ts + (−u+ u2 + u3 − u4 − u5)Tt

+(−u+ u2 + u3 − u4 − u5 + u6 + u7)),

η′1 = (u+ 1)−1(Ttsts − uTsts − uTtst + (−u+ u2 + u3)Tst + (−u+ u2 + u3)Tts

+(−u+ u2 + u3 − u4 − u5)Ts + (−u+ u2 + u3 − u4 − u5)Tt

+(−u+ u2 + u3 − u4 − u5 + u6 + u7)),

η3 = (u+ 1)−1(Ttstst − uTtsts + u2Ttst − u3Tst − u3Tts + (−u3 + u4 + u5)Ts

+(−u3 + u4 + u5)Tt + (−u3 + u4 + u5 − u6 − u7)),

η′3 = (u+ 1)−1(Tststs − uTstst + u2Tsts − u3Tst − u3Tts + (−u3 + u4 + u5)Ts

+(−u3 + u4 + u5)Tt + (−u3 + u4 + u5 − u6 − u7)),

η5 = (u+ 1)−1(Tststst − uTststs + u2Tstst − u3Tsts + u4Tst − u5Ts − u5Tt

+(−u5 + u6 + u7)),

η′5 = (u+ 1)−1(Ttststs − uTtstst + u2Ttsts − u3Ttst + u4Tts − u5Ts − u5Tt

+(−u5 + u6 + u7)),

η7 = (u+ 1)−1(Ttststst − uTtststs + u2Ttstst − u3Ttsts + u4Ttst − u5Tts

+u6Tt − u7),

η′7 = (u+ 1)−1(Tstststs − uTststst + u2Tststs − u3Tstst + u4Tsts − u5Tst

+u6Ts − u7),

η8 = η′8 = (u+ 1)−2(Tstststst − uTstststs − uTtststst + u2Ttststs

+u2Tststst − u3Tststs − u3Ttstst + u4Tstst + u4Ttsts − u5Tsts − u5Ttst

+u6Tst + u6Tts − u7Ts − utTt + u8).
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One checks by direct computation in ḢK that

(a) ηm = η′m = (u+ 1)−2
∑

y∈WK

(−u)m−l(y)Ty

and that the elements η0, η1, η
′
1, η3, η

′
3, . . . η2m′−1, η

′
2m′−1, ηm are linearly in-

dependent in ḢK ; they span a subspace of ḢK denoted by Ḣ
+
K . From (a) we

deduce:

(b) (
◦
T s′Tt′Ts′ · · ·TtTsTt

◦
T s)m′+1η0 = (

◦
T t′Ts′Tt′ · · ·TsTtTs

◦
T t)m′+1η0.

We have

◦
T
−1

s η1 = η0, T
−1
t η3 = η1, . . . , T

−1
t′ η2m′−1 = η2m′−3,

◦
T
−1

s′ η2m′ = η2m′−1,

◦
T
−1

t η′1 = η0, T
−1
s η′3 = η′1, . . . , T

−1
s′ η

′
2m′−1 = η′2m′−3,

◦
T
−1

t′ η
′
2m′ = η′2m′−1.

It follows that Ḣ
+
K is stable under left multiplication by Ts and Tt hence it

is a left ideal of ḢK . From the definitions we have

aξ1 =
◦
T saξ0 , aξ3 = Ttaξ1 , . . . , aξ2m′−1

= Tt′aξ2m′−3
, aξ2m′

=
◦
T s′aξ2m′−1

,

aξ′
1
=

◦
T taξ0 , aξ′3 = Tsaξ′

1
, . . . , aξ′

2m′−1
= Ts′aξ′

2m′−3
, aξ′

2m′
=

◦
T t′aξ′

2m′−1
,

◦
T
−1

s aξ1 = aξ0 , T
−1
t aξ3 = aξ1 , . . . , T

−1
t′ aξ2m′−1

= aξ2m′−3
,
◦
T
−1

s′ aξ2m′
= aξ2m′−1

,

◦
T
−1

t aξ′
1
= aξ0 , T

−1
s aξ′

3
= aξ′

1
, . . . , T−1

s′ aξ′2m′−1
= aξ′

2m′−3
,
◦
T
−1

t′ aξ′
2m′

= aξ′
2m′−1

.

Hence the vector space isomorphism Φ : Ḣ+
K

∼
→ṀΩ given by η2i+1 7→

aξ2i+1
, η′2i+1 7→ aξ′

2i+1
(i ∈ [0, (m − 2)/2]), η0 7→ aξ0 , ηm 7→ aξm satisfies

Φ(Tsh) = TsΦ(h), Φ(Tth) = TtΦ(h) for any h ∈ Ḣ
+
K . Since (TsTtTs · · · )mh =

(TtTsTt · · · )mh for h ∈ Ḣ
+
K , we deduce that 2.3(a) holds in our case.

2.9. Assume that we are in case 1.4(vi). We define some elements of ḢK as

follows:

η0 = Tsm′
+ Ttm′

+ (1− u− u2)(Tsm′−1
+ Ttm′−1

)

+(1− u− u2 + u3 + u4)(Tsm′−2
+ Ttm′−2

) + · · ·

+(1− u− u2 + u3 + u4 − u5 − · · ·+ (−1)m
′−2u2m

′−4
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+(−1)m
′−1u2m

′−3 + (−1)m
′−1u2m

′−2)(Ts1 + Tt1)

+(1 + u− u2 − u3 + u4 + u5 − · · ·+ (−1)m
′−1u2m

′−2

+(−1)m
′

u2m
′−1 + (−1)m

′

u2m
′

),

η2 = Tsη0, η4 = Ttη2, . . . , η2m′ = Ts′η2m′−2, η2m′+1 =
◦
T t′η2m′ ,

η′2 = Ttη0, η
′
4 = Tsη

′
2, . . . , η

′
2m′ = Tt′η

′
2m′−2, η

′
2m′+1 =

◦
T s′η

′
2m′ .

For example if m = 7 we have

η0 = Tsts + Ttst + (1 − u− u2)Tts + (1− u− u2)Tst

+(1− u− u2 + u3 + u4)Ts + (1− u− u2 + u3 + u4)Tt

+(1− u− u2 + u3 + u4 − u5 − u6),

η2 = Tstst − uTsts + u2Tst + (u2 − u3 − u4)Ts + (u2 − u3 − u4)Tt

+(u2 − u3 − u4 + u5 + u6),

η′2 = Ttsts − uTtst + u2Tst + (u2 − u3 − u4)Ts + (u2 − u3 − u4)Tt

+(u2 − u3 − u4 + u5 + u6),

η4 = Tststs − uTstst + u2Tsts − u3Tst + u4Ts + u4Tt + (u4 − u5 − u6),

η′4 = Ttstst − uTtsts + u2Ttst − u3Tts + u4Ts + u4Tt + (u4 − u5 − u6),

η6 = Tststst − uTststs + u2Tstst − u3Tsts + u4Tst − u5Ts + u6,

η′6 = Ttststs − uTtstst + u2Ttsts − u3Ttst + u4Tts − u5Tt + u6,

η7 = η′7 = (u+ 1)−1(Tstststs−uTststst−uTtststs+u
2Tststs+u

2Ttstst−u
3Tstst

−u3Ttsts + u4Tsts + u4Ttst − u5Tst − u5Tts + u6Ts + u6Tt − u7).

One checks by direct computation in ḢK that

(a) ηm = η′m = (u+ 1)−1
∑

y∈WK

(−u)m−l(y)Ty

and that the elements η0, η2, η
′
2, η4, η

′
4, . . . η2m′ , η′2m′ , ηm are linearly indepen-

dent in ḢK ; they span a subspace of ḢK denoted by Ḣ
+
K . From (a) we

deduce:

(b) (
◦
T s′Tt′Ts′ · · ·TtTs)m′+1η0 = (

◦
T t′Ts′Tt′ · · ·TsTt)m′+1η0.
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We have

η0 = T−1
s η2, η2 = T−1

t η4, . . . , η2m′−2 = T−1
s′ η2m′ , η2m′ =

◦
T
−1

t′ η2m′+1,

η0 = T−1
t η′2, η

′
2 = T−1

s η′4, . . . , η
′
2m′−2 = T−1

t′ η′2m′ , η′2m′ =
◦
T
−1

s′ η2m′+1.

It follows that Ḣ
+
K is stable under left multiplication by Ts and Tt hence it

is a left ideal of ḢK . From the definitions we have

aξ2 = Tsaξ0 , aξ4 = Ttaξ2 , . . . , aξ2m′
= Ts′aξ2m′−2

, aξ2m′+1
=

◦
T t′aξ2m′

,

aξ′
2
= Ttaξ0 , aξ′4 = Tsaξ′

2
, . . . , aξ′

2m′
= Tt′aξ′

2m′−2
, aξ′

2m′+1
=

◦
T s′aξ2m′

,

aξ0 = T−1
s aξ2 , aξ2 = T−1

t aξ4 , . . . , aξ2m′−2
= T−1

s′ aξ2m′
, aξ2m′

=
◦
T
−1

t′ aξ2m′+1
,

aξ0 = T−1
t aξ′

2
, aξ′

2
= T−1

s aξ′
4
, . . . , aξ′

2m′−2
= T−1

t′ aξ′
2m′

, aξ′
2m′

=
◦
T
−1

s′ aξ2m′+1
.

Hence the vector space isomorphism Φ : Ḣ
+
K

∼
→ṀΩ given by η2i 7→ aξ2i ,

η′2i 7→ aξ′
2i
(i ∈ [0, (m−1)/2]), ηm 7→ aξm satisfies Φ(Tsh) = TsΦ(h), Φ(Tth) =

TtΦ(h) for any h ∈ Ḣ
+
K . Since (TsTtTs · · · )mh = (TtTsTt · · · )mh for h ∈ Ḣ

+
K ,

we deduce that 2.3(a) holds in our case.

2.10. Assume that we are in case 1.4(vii). We define some elements of ḢK

as follows:

η0 = Tsm′
+ Ttm′

+ (1− u2)(Tsm′−1
+ Ttm′−1

)

+(1− 2u2 + u4)(Tsm′−3
+ Ttm′−3

) + · · ·

+(1− 2u2 + 2u4 − · · ·+ (−1)m
′−22u2(m

′−2)

+(−1)m
′−1u2(m

′−1))(Ts1 + Tt1)

+(1− 2u2 + 2u4 − · · ·+ (−1)m
′−12u2(m

′−1) + (−1)m
′

u2m
′

),

η2 = Tsη0, η4 = Ttη2, . . . , η2m′ = Ts′η2m′−2,

η′2 = Ttη0, η
′
4 = Tsη

′
2, . . . , η

′
2m′ = Tt′η

′
2m′−2.

For example if m = 8 we have

η0 = Tstst + Ttsts + (1− u2)Tsts + (1− u2)Ttst + (1− 2u2 + u4)Tst

+(1− 2u2 + u4)Tts + (1−2u2 + 2u4−u6)Ts + (1−2u2 + 2u4−u6)Tt

+(1− 2u2 + 2u4 − 2u6 + u8),
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η2 = Tststs + u2Ttst + (u2 − u4)Tst + (u2 − u4)Tts + (u2 − 2u4 + u6)Ts

+(u2 − 2u4 + u6)Tt + (u2 − 2u4 + 2u6 − u8),

η′2 = Ttstst + u2Tsts + (u2 − u4)Tst + (u2 − u4)Tts + (u2 − 2u4 + u6)Ts

+(u2 − 2u4 + u6)Tt + (u2 − 2u4 + 2u6 − u8),

η4 = Ttststs + u4Tst + (u4 − u6)Ts + (u4 − u6)Tt + (u4 − 2u6 + u8),

η′4 = Tststst + u4Tts + (u4 − u6)Ts + (u4 − u6)Tt + (u4 − 2u6 + u8),

η6 = Tstststs + u6Tt + (u6 − u8),

η′6 = Ttststst + u6Ts + (u6 − u8),

η8 = η′8 = Tstststst + u8.

One checks by direct computation in ḢK that

(a) ηm = η′m = Tsm + um

and that the elements η0, η2, η
′
2, η4, η

′
4, . . . η2m′ , η′2m′ , ηm are linearly indepen-

dent in ḢK ; they span a subspace of ḢK denoted by Ḣ
+
K . From (a) we

deduce:

(c) (Tt′Ts′ · · ·TtTs)m′η0 = (Ts′Tt′ · · ·TsTt)m′η0.

We have

η0 = T−1
s η2, η2 = T−1

t η4, . . . , η2m′−2 = T−1
s′ η2m′ ,

η0 = T−1
t η′2, η

′
2 = T−1

s η′4, . . . , η
′
2m′−2 = T−1

t′ η′2m′ .

It follows that Ḣ
+
K is stable under left multiplication by Ts and Tt hence it

is a left ideal of ḢK . From the definitions we have

aξ2 = Tsaξ0 , aξ4 = Ttaξ2 , . . . , aξ2m′
= Ts′aξ2m′−2

,

aξ′
2
= Ttaξ0 , aξ′4 = Tsaξ′

2
, . . . , aξ′

2m′

= Tt′aξ′
2m′−2

,

aξ0 = T−1
s aξ2 , aξ2 = T−1

t aξ4 , . . . , aξ2m′−2
= T−1

s′ aξ2m′
,

aξ0 = T−1
t aξ′

2
, aξ′

2
= T−1

s aξ′
4
, . . . , aξ′

2m′−2
= T−1

t′ aξ′
2m′
.

Hence the vector space isomorphism Φ : Ḣ
+
K

∼
→ṀΩ given by η2i 7→ aξ2i ,

η′2i 7→ aξ′
2i
(i ∈ [0,m/2]) satisfies Φ(Tsh) = TsΦ(h), Φ(Tth) = TtΦ(h) for any
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h ∈ Ḣ
+
K . Since (TsTtTs · · · )mh = (TtTsTt · · · )mh for h ∈ Ḣ

+
K , we deduce that

2.3(a) holds in our case. This completes the proof of Theorem 0.1. ���

2.11. We show that the Ḣ-module Ṁ is generated by a1. Indeed, from

2.2(i) we see by induction on l(w) that for any w ∈ I∗, aw belongs to the

Ḣ-submodule of Ṁ generated by a1.

3. Proof of Theorem 0.2

3.1. We define a Z-linear map B : M → M by B(unaw) = ǫwu
−nT−1

w∗ aw∗

for any w ∈ I∗, n ∈ Z. Note that B(a1) = a1.

For any w ∈ I∗, s ∈ S we show:

(a) B(Tsaw) = T−1
s B(aw).

Assume first that sw = ws∗ > w. We must show that B(uaw+(u+1)asw) =

T−1
s B(aw) or that

u−1ǫwT
−1
w∗ aw∗ − (u−1 + 1)ǫwT

−1
s∗w∗as∗w∗ = T−1

s ǫwT
−1
w∗ aw∗

or that

T−1
w∗ aw∗ − (u+ 1)T−1

w∗ T−1
s∗ as∗w∗ = uT−1

w∗ T−1
s∗ aw∗

or that

Ts∗aw∗ − (u+ 1)as∗w∗ = uaw∗ .

This follows from 0.1(i) with s,w replaced by s∗, w∗.

Assume next sw = ws∗ < w. We set y = sw ∈ I∗ so that sy > y. We

must show that B((u2 − u− 1)asy + (u2 − u)ay) = T−1
s B(asy) or that

−(u−2 − u−1 − 1)ǫyT
−1
s∗y∗as∗y∗ + (u−2 − u−1)ǫyT

−1
y∗ ay∗ = −T−1

s ǫyT
−1
s∗y∗as∗y∗

or that

−(u−2 − u−1 − 1)T−1
y∗ T

−1
s∗ as∗y∗ + (u−2 − u−1)T−1

y∗ ay∗ = −T−1
y∗ T

−2
s∗ as∗y∗

or that

−(u−2 − u−1 − 1)T−1
s∗ as∗y∗ + (u−2 − u−1)ay∗ = −T−2

s∗ as∗y∗
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or that

−(1− u− u2)as∗y∗ + (1− u)Ts∗ay∗ = −(Ts∗ + 1− u2)as∗y∗ .

Using 0.1(i),(ii) with w, s replaced by y∗, s∗ we see that it is enough to show

that

−(1− u− u2)as∗y∗ + (1− u)(uay∗ + (u+ 1)as∗y∗)

= −(u2 − u− 1)as∗y∗ − (u2 − u)ay∗ − (1− u2)as∗y∗

which is obvious.

Assume next that sw 6= ws∗ > w. We must show that B(asws∗) =

T−1
s B(aw) or that

ǫwT
−1
s∗w∗sas∗w∗s = T−1

s ǫwT
−1
w∗ aw∗

or that

T−1
s T−1

w∗ T−1
s∗ as∗w∗s = T−1

s T−1
w∗ aw∗

or that

as∗w∗s = Ts∗aw∗ .

This follows from 0.1(iii) with s,w replaced by s∗, w∗.

Finally assume that sw 6= ws∗ > w. We set y = sws∗ ∈ I∗ so that

sy > y. We must show that B((u2 − 1)asys∗ + u2ay) = T−1
s B(asys∗) or that

(u−2 − 1)ǫyT
−1
s∗y∗sas∗y∗s + u−2ǫyT

−1
y∗ ay∗ = T−1

s ǫyT
−1
s∗y∗sas∗y∗s

or that

(u−2 − 1)T−1
s T−1

y∗ T
−1
s∗ as∗y∗s + u−2T−1

y∗ ay∗ = T−1
s T−1

s T−1
y∗ T

−1
s∗ as∗y∗s

or (using 0.1(iii) with w, s replaced by y∗, s∗) that

(u−2 − 1)T−1
s T−1

y∗ ay∗ + u−2T−1
y∗ ay∗ = T−1

s T−1
s T−1

y∗ ay∗

or that

(u−2 − 1)T−1
s + u−2 = T−1

s T−1
s
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which is obvious. ���

This completes the proof of (a). Since the elements Ts generate the

algebra H, from (a) we deduce that B(hm) = h̄B(m) for any h ∈ H,m ∈M .

This proves the existence part of 0.2(a).

For n ∈ Z, w ∈ I∗ we have

B(B(unaw)) = ǫwB(u−nT−1
w∗ aw∗) = ǫwǫw∗unTw∗−1T−1

w aw = unaw.

Thus B2 = 1. The uniqueness part of 0.2(a) is proved as in [6, 2.9]. This

completes the proof of 0.2(a). Now 0.2(b) follows from the proof of 0.2(a).

4. Proof of Theorem 0.4

4.1. For w ∈ I∗ we have

a′w =
∑

y∈I∗

ry,wa
′
y

where ry,w ∈ A is zero for all but finitely many y. (This ry,w differs from

that in [6, 0.2(b)].)

For s ∈ S we set T ′
s = u−1Ts. We rewrite the formulas 0.1(i)-(iv) as

follows.

(i) T ′
sa

′
w = a′w + (v + v−1)a′sw if sw = ws∗ > w;

(ii) T ′
sa

′
w = (u− 1− u−1)a′w + (v − v−1)a′sw if sw = ws∗ < w;

(iii) T ′
sa

′
w = a′sws∗ if sw 6= ws∗ > w;

(iv) T ′
sa

′
w = (u− u−1)a′w + a′sws∗ if sw 6= ws∗ < w.

4.2. Now assume that y ∈ I∗, sy > y. From the equality T ′
sa

′
y = T ′

s(a
′
y)

(where T ′
s = T ′

s + u−1 − u) we see that

∑

x

rx,ya
′
x + (v + v−1)

∑

x

rx,sya
′
x (if sy = ys∗) or

∑

x

rx,sys∗a
′
x (if sy 6= ys∗)

is equal to

∑

x;sx=xs∗,sx>x

rx,ya
′
x +

∑

x;sx=xs∗,sx>x

rx,y(v + v−1)a′sx
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+
∑

x;sx=xs∗,sx<x

rx,y(u− 1− u−1)a′x +
∑

x;sx=xs∗,sx<x

rx,y(v − v−1)a′sx

+
∑

x;sx 6=xs∗,sx>x

rx,ya
′
sxs∗ +

∑

x;sx 6=xs∗,sx<x

rx,y(u− u−1)a′x

+
∑

x;sx 6=xs∗,sx<x

rx,ya
′
sxs∗ + (u−1 − u)

∑

x

rx,ya
′
x

=
∑

x;sx=xs∗,sx>x

rx,ya
′
x +

∑

x;sx=xs∗,sx<x

rsx,y(v + v−1)a′x

+
∑

x;sx=xs∗,sx<x

rx,y(u− 1− u−1)a′x +
∑

x;sx=xs∗,sx>x

rsx,y(v − v−1)a′x

+
∑

x;sx 6=xs∗,sx<x

rsxs∗,ya
′
x +

∑

x;sx 6=xs∗,sx<x

rx,y(u− u−1)a′x

+
∑

x;sx 6=xs∗,sx>x

rsxs∗,ya
′
x + (u−1 − u)

∑

x

rx,ya
′
x.

Hence when sy = ys∗ > y and x ∈ I∗, we have

(v + v−1)rx,sy = rsx,y(v − v−1) + (u−1 − u)rx,y if sx = xs∗ > x,

(v + v−1)rx,sy = −2rx,y + rsx,y(v + v−1) if sx = xs∗ < x,

(v + v−1)rx,sy = rsxs∗,y + (u−1 − 1− u)rx,y if sx 6= xs∗ > x,

(v + v−1)rx,sy = −rx,y + rsxs∗,y if sx 6= xs∗ < x;

when sy 6= ys∗ > y and x ∈ I∗, we have

rx,sys∗ = rsx,y(v − v−1) + (u−1 + 1− u)rx,y if sx = xs∗ > x,

rx,sys∗ = rsx,y(v + v−1)− rx,y if sx = xs∗ < x,

rx,sys∗ = rsxs∗,y + (u−1 − u)rx,y if sx 6= xs∗ > x,

rx,sys∗ = rsxs∗,y if sx 6= xs∗ < x.

Applying ¯we see that when sy = ys∗ > y and x ∈ I∗, we have

(a) (v + v−1)rx,sy = rsx,y(v
−1 − v) + (u− u−1)rx,y if sx = xs∗ > x,

(v + v−1)rx,sy = −2rx,y + rsx,y(v + v−1) if sx = xs∗ < x,

(v + v−1)rx,sy = rsxs∗,y + (u− 1− u−1)rx,y if sx 6= xs∗ > x,

(v + v−1)rx,sy = −rx,y + rsxs∗,y if sx 6= xs∗ < x;
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when sy 6= ys∗ > y and x ∈ I∗, we have

(b) rx,sys∗ = rsx,y(v
−1 − v) + (u+ 1− u−1)rx,y if sx = xs∗ > x,

rx,sys∗ = rsx,y(v + v−1)− rx,y if sx = xs∗ < x,

rx,sys∗ = rsxs∗,y + (u− u−1)rx,y if sx 6= xs∗ > x,

rx,sys∗ = rsxs∗,y if sx 6= xs∗ < x.

4.3. Setting r′x,w = v−l(w)+l(x)rx,w, r
′′
x,w = v−l(w)+l(x)rx,w for x,w ∈ I∗ we

can rewrite the last formulas in 4.2 as follows.

When x, y ∈ I∗, sy = ys∗ > y we have

(v + v−1)vr′x,sy = v−1r′sx,y(v
−1 − v) + (u− u−1)r′x,y if sx = xs∗ > x,

(v + v−1)vr′x,sy = −2r′x,y + r′sx,yv(v + v−1) if sx = xs∗ < x,

(v + v−1)vr′x,sy = v−2r′sxs∗,y + (u− 1− u−1)r′x,y if sx 6= xs∗ > x,

(v + v−1)vr′x,sy = −r′x,y + v2r′sxs∗,y if sx 6= xs∗ < x.

When x, y ∈ I∗, sy 6= ys∗ > y, we have

v2r′x,sys∗ = r′sx,yv
−1(v−1 − v) + (u+ 1− u−1)r′x,y if sx = xs∗ > x,

v2r′x,sys∗ = r′sx,yv(v + v−1)− r′x,y if sx = xs∗ < x,

v2r′x,sys∗ = v−2r′sxs∗,y + (u− u−1)r′x,y if sx 6= xs∗ > x,

v2r′x,sys∗ = v2r′sxs∗,y if sx 6= xs∗ < x.

When x, y ∈ I∗, sy = ys∗ > y we have

(v + v−1)vr′′x,sy = v−1r′′sx,y(v − v−1) + (u−1 − u)r′′x,y if sx = xs∗ > x,

(v + v−1)vr′′x,sy = −2r′′x,y + r′′sx,yv(v + v−1) if sx = xs∗ < x,

(v + v−1)vr′′x,sy = v−2r′′sxs∗,y + (u−1 − 1− u)r′′x,y if sx 6= xs∗ > x,

(v + v−1)vr′′x,sy = −r′′x,y + v2r′′sxs∗,y if sx 6= xs∗ < x.

When x, y ∈ I∗, sy 6= ys∗ > y, we have

v2r′′x,sys∗ = r′′sx,yv
−1(v − v−1) + (u−1 + 1− u)r′′x,y if sx = xs∗ > x,

v2r′′x,sys∗ = r′′sx,yv(v + v−1)− r′′x,y if sx = xs∗ < x,

v2r′′x,sys∗ = v−2r′′sxs∗,y + (u−1 − u)r′′x,y if sx 6= xs∗ > x,
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v2r′′x,sys∗ = v2r′′sxs∗,y if sx 6= xs∗ < x.

Proposition 4.4. Let w ∈ I∗.

(a) If x ∈ I∗, rx,w 6= 0 then x ≤ w.

(b) If x ∈ I∗, x ≤ w we have r′x,w ∈ Z[v−2], r′′x,w ∈ Z[v−2].

We argue by induction on l(w). If w = 1 then rx,w = δx,1 so that the

result holds. Now assume that l(w) ≥ 1. We can find s ∈ S such that

sw < w. Let y = s • w ∈ I∗ (see 0.6). We have y < w. In the setup of (a)

we have rx,s•y 6= 0. From the formulas in 4.3 we deduce the following.

If sx = xs∗ then r′sx,y 6= 0 or r′x,y 6= 0 hence (by the induction hypothesis)

sx ≤ y or x ≤ y; if x ≤ y then x ≤ w while if sx ≤ y we have sx ≤ w hence

by [5, 2.5] we have x ≤ w.

If sx 6= xs∗ then r′sxs∗,y 6= 0 or r′x,y 6= 0 hence (by the induction hypoth-

esis) sxs∗ ≤ y or x ≤ y; if x ≤ y then x ≤ w while if sxs∗ ≤ y we have

sxs∗ ≤ w hence by [5, 2.5] we have x ≤ w.

We see that x ≤ w and (a) is proved.

In the remainder of the proof we assume that x ≤ w. Assume that

sy = ys∗. Using the formulas in 4.3 and the induction hypothesis we see that

v(v+ v−1)r′x,w ∈ v2Z[v−2], v(v+ v−1)r′′x,w ∈ v2Z[v−2]; hence r′x,w ∈ Z[[v−2]],

r′′x,w ∈ Z[[v−2]]. Since r′x,w ∈ Z[v, v−1], r′′x,w ∈ Z[v, v−1], it follows that

r′x,w ∈ Z[v−2], r′′x,w ∈ Z[v−2].

Assume now that sy 6= ys∗. Using the formulas in 4.3 and the induction

hypothesis we see that v2r′x,w ∈ v2Z[v−2], v2r′′x,w ∈ v2Z[v−2]; hence r′x,w ∈

Z[v−2], r′′x,w ∈ Z[v−2]. This completes the proof. ���

Proposition 4.5. (a) There is a unique function φ : I∗ → N such that

φ(1) = 0 and for any w ∈ I∗ and any s ∈ S with sw < w we have φ(w) =

φ(sw) + 1 (if sw = ws∗) and φ(w) = φ(sws∗) (if sw 6= ws∗). For any

w ∈ I∗ we have l(w) = φ(w)mod 2. Hence, setting κ(w) = (−1)(l(w)+φ(w))/2

for w ∈ I∗ we have κ(1) = 1 and κ(w) = −κ(s • w) (see 0.6) for any

s ∈ S,w ∈ I∗ such that sw < w.

(b) If x,w ∈ I∗, x ≤ w then the constant term of r′x,w is 1 and the constant

term of r′′x,w is κ(x)κ(w) (see 4.4(b)).
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We prove (a). Assume first that ∗ is the identity map. For w ∈ I∗ let

φ(w) be the dimension of the −1 eigenspace of w on the reflection repre-

sentation of W . This function has the required properties. If ∗ is not the

identity map, the proof is similar: for w ∈ I∗, φ(w) is the dimension of the

−1 eigenspace of wT minus the dimension of the −1 eigenspace of T where

T is an automorphism of the reflection representation of W induced by ∗.

We prove (b). Let n′x,w (resp. n′′x,w) be the constant term of r′x,w (resp.

r′′x,w). We shall prove for any w ∈ I∗ the following statement:

(c) If x ∈ I∗, x ≤ w then n′x,w = 1 and n′′x,w = n′′1,xn
′′
1,w ∈ {1,−1}.

We argue by induction on l(w). If w = 1 we have r′w,w = r′′w,w = 1 and (c)

is obvious. We assume that w ∈ I∗, w 6= 1. We can find s ∈ S such that

sw < w. We set y = s • w. Taking the coefficients of v2 in the formulas in

4.3 and using 4.4(b) we see that the following holds for any x ∈ I∗ such that

x ≤ w:

n′x,w = n′x,y, n
′′
x,w = −n′′x,y if sx > x,

(by [5, 2.5(b)], we must have x ≤ y) and

n′x,w = n′s•x,y, n
′′
x,w = n′′s•x,y if sx < x

(by [5, 2.5(b)], we must have s • x ≤ y).

Using the induction hypothesis we see that n′x,w = 1 and

n′′x,w = −n′′1,xn
′′
1,y if sx > x,

n′′x,w = n′′1,s•xn
′′
1,y if sx < x.

Also, taking x = 1 we see that

(d) n′′1,w = −n′′1,y.

Returning to a general x we deduce

n′′x,w = n′′1,xn
′′
1,w if sx > x,

n′′x,w = −n′′1,s•xn
′′
1,w if sx < x.

Applying (d) with w replaced by x we see that n′′1,x = −n′′1,s•x if sx < x. This

shows by induction on l(x) that n′′1,x = κ(x) for any x ∈ I∗. Thus we have
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n′′x,w = n′′1,xn
′′
1,w = κ(x)κ(w) for any x ≤ w. This completes the inductive

proof of (c) and that of (b). The proposition is proved. ���

4.6. We show:

(a) For any x, z ∈ I∗ such that x ≤ z we have
∑

y∈I∗;x≤y≤z rx,yry,z = δx,z.

Using the fact that ¯ : uM →M is an involution we have

a′z = a′z =
∑

y∈I∗

ry,za′y =
∑

y∈I∗

ry,za′y =
∑

y∈I∗

∑

x∈I∗

ry,zrx,ya
′
x.

We now compare the coefficients of a′x on both sides and use 4.4(a); (a)

follows.

The following result provides the Möbius function for the partially or-

dered set (I∗,≤).

Proposition 4.7. Let x, z ∈ I∗, x ≤ z. Then
∑

y∈I∗;x≤y≤z κ(x)κ(y) = δx,z.

We can assume that x < z. By 4.4(b), 4.5(b) for any y ∈ I∗ such that

x ≤ y ≤ z we have

rx,yry,z = vl(y)−l(x)vl(z)−l(x)r′′x,yr
′
y,z ∈ vl(z)−l(x)(κ(x)κ(y) + v−2Z[v−2]).

Hence the identity 4.6(a) implies that

∑

y∈I∗;x≤y≤z

vl(z)−l(x)κ(x)κ(y) + strictly lower powers of v is 0.

In particular,
∑

y∈I∗;x≤y≤z κ(x)κ(y) = 0. The proposition is proved.

4.8. For any w ∈ I∗ we have

(a) rw,w = 1.

Indeed by 4.4(b) we have rw,w ∈ Z[v−2], rw,w ∈ Z[v−2] hence rw,w is a

constant. By 4.5(b) this constant is 1.

4.9. Let w ∈ I∗. We will construct for any x ∈ I∗ such that x ≤ w an

element ux ∈ A≤0 such that

(a) ux = 1,
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(b) ux ∈ A<0, ux − ux =
∑

y∈I∗;x<y≤w rx,yuy for any x < w.

The argument is almost a copy of one in [5, 5.2]. We argue by induction

on l(w) − l(x). If l(w) − l(x) = 0 then x = w and we set ux = 1. Assume

now that l(w) − l(x) > 0 and that uz is already defined whenever z ≤ w,

l(w) − l(z) < l(w) − l(x) so that (a) holds and (b) holds if x is replaced by

any such z. Then the right hand side of the equality in (b) is defined. We

denote it by αx ∈ A. We have

αx + ᾱx =
∑

y∈I∗;x<y≤w

rx,yuy +
∑

y∈I∗;x<y≤w

rx,yūy

=
∑

y∈I∗;x<y≤w

rx,yuy +
∑

y∈I∗;x<y≤w

rx,y(uy +
∑

z∈I∗;y<z≤w

ry,zuz)

=
∑

y∈I∗;x<y≤w

rx,yuy +
∑

z∈I∗;x<z≤w

rx,zuz

+
∑

z∈I∗;x<z≤w

∑

y∈I∗;x<y<z

rx,yry,zuz

=
∑

z∈I∗;x<z≤w

∑

y∈I∗;x≤y<z

rx,yry,zuz =
∑

z∈I∗;x<z≤w

δx,zuz = 0.

(We have used 4.6(a), 4.8(a).) Since αx + ᾱx = 0 we have αx =
∑

n∈Z γnv
n

(finite sum) where γn ∈ Z satisfy γn + γ−n = 0 for all n and in particular

γ0 = 0. Then ux = −
∑

n<0 γnv
n ∈ A<0 satisfies ūx − ux = αx. This

completes the inductive construction of the elements ux.

We set Aw =
∑

y∈I∗;y≤w uya
′
y ∈M≤0. We have

Aw =
∑

y∈I∗;y≤w

ūya′y =
∑

y∈I∗;y≤w

ūy
∑

x∈I∗;x≤y

rx,ya
′
x

=
∑

x∈I∗;x≤w

(
∑

y∈I∗;x≤y≤w

rx,yūy)a
′
x =

∑

x∈I∗;x≤w

uxa
′
x = Aw.

We will also write uy = πy,w ∈ A≤0 so that

Aw =
∑

y∈I∗;y≤w

πy,wa
′
y.
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Note that πw,w = 1, πy,w ∈ A<0 if y < w and

πy,w =
∑

z∈I∗;y≤z≤w

ry,zπz,w.

We show that for any x ∈ I∗ such that x ≤ w we have:

(c) vl(w)−l(x)πx,w ∈ Z[v] and has constant term 1.

We argue by induction on l(w)−l(x). If l(w)−l(x) = 0 then x = w, πx,w = 1

and the result is obvious. Assume now that l(w) − l(x) > 0. Using 4.4(b)

and 4.5(b) and the induction hypothesis we see that

∑

y∈I∗;x<y≤w

rx,yπy,w =
∑

y∈I∗;x<y≤w

v−l(y)+l(x)r′′x,yπy,w

is equal to

∑

y∈I∗;x<y≤w

v−l(y)+l(x)κ(x)κ(y)v−l(w)+l(y) = v−l(w)+l(x)
∑

y∈I∗;x<y≤w

κ(x)κ(y)

plus strictly higher powers of v. Using 4.7, this is −v−l(w)+l(x) plus strictly

higher powers of v. Thus,

πx,w − πx,w = −v−l(w)+l(x) + plus strictly higher powers of v.

Since πx,w ∈ vZ[v], it is in particular a Z-linear combination of powers of v

strictly higher than −l(w) + l(x). Hence

−πx,w = −v−l(w)+l(x) + plus strictly higher powers of v.

This proves (c).

We now show that for any x ∈ I∗ such that x ≤ w we have:

(d) vl(w)−l(x)πx,w ∈ Z[u, u−1].

We argue by induction on l(w)−l(x). If l(w)−l(x) = 0 then x = w, πx,w = 1

and the result is obvious. Assume now that l(w) − l(x) > 0. Using 4.4(b)

and the induction hypothesis we see that

∑

y∈I∗;x<y≤w

rx,yπy,w =
∑

y∈I∗;x<y≤w

v−l(y)+l(x)r′′x,yπy,w
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belongs to
∑

y∈I∗;x<y≤w

v−l(y)+l(x)v−l(w)+l(y)Z[v2, v−2]

hence to v−l(w)+l(x)Z[v2, v−2]. Thus,

πx,w − πx,w ∈ v−l(w)+l(x)Z[v2, v−2].

It follows that both πx,w and πx,w belong to v−l(w)+l(x)Z[v2, v−2]. This proves

(d).

Combining (c), (d) we see that for any x ∈ I∗ such that x ≤ w we have:

(e) vl(w)−l(x)πx,w = P σ
x,w where P σ

x,w ∈ Z[u] has constant term 1.

We have

Aw = v−l(w)
∑

y∈I∗;y≤w

P σ
y,way.

Also, P σ
w,w = 1 and for any y ∈ I∗, y < w, we have degP σ

y,w ≤ (l(w) −

l(y) − 1)/2 (since πy,w ∈ A<0). Thus the existence statement in 0.4(a) is

established. To prove the uniqueness statement in 0.4(a) it is enough to

prove the following statement:

(f) Let m,m′ ∈ M be such that m̄ = m, m̄′ = m′, m − m′ ∈ M>0. Then

m = m′.

The proof is entirely similar to that in [6, 3.2] (or that of [5, 5.2(e)]). The

proof of 0.4(b) is immediate. This completes the proof of Theorem 0.4.

���

The following result is a restatement of (e).

Proposition 4.10. Let y,w ∈ I∗ be such that y ≤ w. The constant term of

P σ
y,w ∈ Z[u] is equal to 1.

5. The Submodule MK of M

5.1. Let K be a subset of S which generates a finite subgroupWK ofW and

let K∗ be the image of K under ∗. For any (WK ,WK∗)-double coset Ω in W

we denote by dΩ (resp. bΩ) the unique element of maximal (resp. minimal)

length of Ω. Now w 7→ w∗−1 maps any (WK ,WK∗)-double coset in W to
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a (WK ,WK∗)-double coset in W ; let IK∗ be the set of (WK ,WK∗)-double

cosets Ω in W such that Ω is stable under this map, or equivalently, such

that dΩ ∈ I∗, or such that bΩ ∈ I∗. We set

PK =
∑

x∈WK

ul(x) ∈ N[u].

If in addition K is ∗-stable we set

PH,∗ =
∑

x∈WK ,x∗=x

ul(x) ∈ N[u].

Lemma 5.2. Let Ω ∈ IK∗ . Let x ∈ I∗ ∩ Ω and let b = bΩ. Then there exists

a sequence x = x0, x1, . . . , xn = b in I∗ ∩ Ω and a sequence s1, s2, . . . , sn in

S such that for any i ∈ [1, n] we have xi = si • xi−1.

We argue by induction on l(x) (which is ≥ l(b)). If l(x) = l(b) then x = b

and the result is obvious (with n = 0). Now assume that l(x) > l(b). Let

H = K ∩ (bK∗b−1). By 1.2(a) we have x = cbzc∗−1 where c ∈WK , z ∈WH∗

satisfies bz = z∗b and l(x) = l(c)+ l(b)+ l(z)+ l(c). If c 6= 1 we write c = sc′,

s ∈ K, c′ ∈ WK , c′ < c and we set x1 = c′bzc′∗−1. We have x1 = sxs∗ ∈ Ω,

l(x1) < l(x). Using the induction hypothesis for x1 we see that the desired

result holds for x. Thus we can assume that c = 1 so that x = bz. Let

τ : WH∗ → WH∗ be the automorphism y 7→ b−1y∗b; note that τ(H∗) = H∗

and τ2 = 1. We have z ∈ Iτ where Iτ := {y ∈WH∗ ; τ(y)−1 = y}.

Since l(bz) > l(b) we have z 6= 1. We can find s ∈ H∗ such that sz < z.

If sz = zτ(s) then sz ∈ Iτ , bsz ∈ Ω, l(bsz) < l(bz). Using the induction

hypothesis for bsz instead of x we see that the desired result holds for x = bz.

(We have bsz = tbz = bzt∗ where t = (τ(s))∗ ∈ H.)

If sz 6= zτ(s) then szτ(s) ∈ It, bszτ(s) ∈ Ω, l(bszτ(s)) < l(bz). Using

the induction hypothesis for bszτ(s) instead of x we see that the desired

result holds for x = bz. (We have bszτ(s) = tbzt∗ where t = (τ(s))∗ ∈ H.)

The lemma is proved. ���

5.3. For any Ω ∈ IK∗ we set

aΩ =
∑

w∈I∗∩Ω

aw ∈M.
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Let MK be the A-submodule of M spanned by the elements aΩ(Ω ∈ IK∗ ).

In other words, MK consists of all m =
∑

w∈I∗
mwaw ∈ M such that the

function I∗ → A given by w 7→ mw is constant on I∗ ∩ Ω for any Ω ∈ I∗.

Lemma 5.4. (a) We have MK = ∩s∈KM
{s}.

(b) The A-submodule MK is stable under ¯:M →M .

(c) Let S =
∑

x∈WK
Tx ∈ H and let m ∈M . We have Sm ∈MK .

We prove (a). The fact that MK ⊂ M{s} (for s ∈ K) follows from

the fact that any (WK ,WK∗)-double coset in W is a union of (W{s},W{s∗})-

double cosets in W . Thus we have MK ⊂ ∩s∈KM
{s}. Conversely let m ∈

∩s∈KM
{s}. We have m =

∑

w∈I∗
mwaw ∈ M where mw ∈ A is zero for all

but finitely many w and we have mw = ms•w if w ∈ I∗, s ∈ K. Using 5.2 we

see that mx = mbΩ = mx′ whenever x, x′ ∈ I∗ are in the same (WK ,WK∗)-

double coset Ω in W . Thus, m ∈MK . This proves (a).

We prove (b). Using (a), we can assume that K = {s} with s ∈ S. By

1.3, if Ω ∈ I
{s}
∗ , then we have Ω = {w, s•w} for some w ∈ I∗ such that sw >

w. Hence it is enough to show that for such w we have aw + as•w ∈ M{s}.

We have aw + as•w =
∑

x∈I∗
mxax with mx ∈ A and we must show that

mx = ms•x for any x ∈ I∗. If we can show that faw + as•w ∈M{s} for some

f ∈ A− {0} then it would follow that for any x ∈ I∗ we have fmx = fms•x

hence mx = ms•x as desired. Thus it is enough to show that

(d) (u−1 + 1)aw + asw ∈M{s} if w ∈ I∗ is such that sw = ws∗ > w,

(e) aw + asws∗ ∈M{s} if w ∈ I∗ is such that sw 6= ws∗ > w.

In the setup of (d) we have

(u−1 + 1)aw + asw = (u+ 1)(aw + asw) = (Ts + 1)aw = Ts + 1(aw)

= u−2(Ts + 1)aw

(see 0.1(i)); in the setup of (e) we have

aw + asws∗ = (Ts + 1)aw = Ts + 1(aw) = u−2(Ts + 1)(aw)

(see 0.1(iii)). Thus it is enough show that (Ts + 1)(aw) ∈ M{s} for any

w ∈ I∗. Since aw is an A-linear combination of elements ax, x ∈ I∗ it is
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enough to show that (Ts + 1)ax ∈ M{s}. This follows immediately from

0.1(i)-(iv).

We prove (c). Let m′ = Sm =
∑

w∈I∗
m′

waw, m
′
w ∈ A. For any s ∈ K

we have S = (Ts + 1)h for some h ∈ H hence m′ ∈ (Ts + 1)M . This implies

by the formulas 0.1(i)-(iv) that m′
w = w′

s•w for any w ∈ I∗; in other words

we have m′ ∈ M{s}. Since this holds for any s ∈ K we see, using (a), that

m′ ∈MK . The lemma is proved. ���

5.5. For Ω,Ω′ ∈ IK∗ we write Ω ≤ Ω′ when dΩ ≤ dΩ′ . This is a partial order

on IK∗ . For any Ω ∈ IK∗ we set

a′Ω = v−l(dΩ)aΩ =
∑

x∈Ω∩IK
∗

vl(x)−l(dΩ)a′x.

Clearly, {a′Ω′ ; Ω′ ∈ IK∗ } is an A-basis of MK . Hence from 5.4(b) we see that

a′Ω =
∑

Ω′∈IK
∗

rΩ′,Ωa
′
Ω′

where rΩ′,Ω ∈ A is zero for all but finitely many Ω′. On the other hand we

have

(a) a′Ω =
∑

x∈Ω∩I∗,y∈I∗;y≤x

v−l(x)+l(dΩ)ry,xa
′
y

hence

rΩ′,Ω =
∑

x∈Ω∩I∗;dΩ′≤x

vl(x)−l(dΩ)rdΩ′ ,x

It follows that

(b) rΩ,Ω = 1

(we use that rdΩ,dΩ = 1) and

(c) rΩ′,Ω 6= 0 =⇒ Ω′ ≤ Ω.
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Indeed, if for some x ∈ Ω ∩ I∗ we have dΩ′ ≤ x, then dΩ′ ≤ dΩ. We have

a′Ω = a′Ω =
∑

Ω′∈IK
∗

rΩ′,Ωa
′
Ω′ =

∑

Ω′∈IK
∗

rΩ′,Ω

∑

Ω′′∈IK
∗

rΩ′′,Ω′a′Ω′′ .

Hence

(d)
∑

Ω′∈IK
∗

rΩ′′,Ω′rΩ′,Ω = δΩ,Ω′′

for any Ω,Ω′′ in IK∗ .

Note that

(e) a′Ω = a′dΩ modM<0.

Indeed, if x ∈ Ω ∩ IK∗ , x 6= dΩ then l(x)− l(dΩ) < 0.

5.6. Let Ω ∈ IK∗ . We will construct for any Ω′ ∈ IK∗ such that Ω′ ≤ Ω an

element uΩ′ ∈ A≤0 such that

(a) uΩ = 1,

(b) uΩ′ ∈ A<0, uΩ′ − uΩ′ =
∑

Ω′′∈IK
∗
;Ω′<Ω′′≤Ω rΩ′,Ω′′uΩ′′ for any Ω′ < Ω.

The proof follows closely that in 4.9. We argue by induction on l(dΩ)−l(dΩ′).

If l(dΩ) − l(dΩ′) = 0 then Ω = Ω′ and we set uΩ′ = 1. Assume now that

l(dΩ)− l(dΩ′) > 0 and that uΩ1
is already defined whenever Ω1 ≤ Ω, l(dΩ)−

l(dΩ1
) < l(dΩ) − l(dΩ′) so that (a) holds and (b) holds if Ω′ is replaced by

any such Ω1. Then the right hand side of the equality in (b) is defined. We

denote it by αΩ′ ∈ A. We have αΩ′ + αΩ′ = 0 by a computation like that in

4.9, but using 5.5(b),(c),(d). From this we see that αΩ′ =
∑

n∈Z γnv
n (finite

sum) where γn ∈ Z satisfy γn + γ−n = 0 for all n and in particular γ0 = 0.

Then uΩ′ = −
∑

n<0 γnv
n ∈ A<0 satisfies uΩ′ − uΩ′ = αΩ′ . This completes

the inductive construction of the elements uΩ′ .

We set AΩ =
∑

Ω′∈IK
∗
;Ω′≤Ω uΩ′a′Ω′ ∈M≤0 ∩M

K . We have

(c) AΩ = AΩ.
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(This follows from (b) as in the proof of the analogous equality Aw = Aw in

4.9.) We will also write uΩ′ = πΩ′,Ω ∈ A≤0 so that

AΩ =
∑

Ω′∈IK
∗
;Ω′≤Ω

πΩ′,Ωa
′
Ω′ .

We show

(d) AΩ −AdΩ ∈M<0.

Using 5.5(a) and πΩ′,Ω ∈ A<0 (for Ω′ < Ω) we see that AΩ = a′dΩ modM<0;

it remains to use that AdΩ = a′dΩ modM<0.

Applying 4.9(f) to m = AΩ, m
′ = AdΩ (we use (c),(d)) we deduce:

(e) AΩ = AdΩ .

In particular,

(f) For any Ω ∈ IK∗ we have AdΩ ∈MK .

5.7. We define an A-linear map ζ : M → Q(u) by ζ(aw) = ul(w)(u−1
u+1)

φ(w)

(see 4.5(a)) for w ∈ I∗. We show:

(a) For any x ∈W,m ∈M we have ζ(Txm) = u2l(x)ζ(m).

We can assume that x = s,m = aw where s ∈ S,w ∈ I∗. Then we are in one

of the four cases (i)-(iv) in 0.1. We set n = l(w), d = φ(w), λ = u−1
u+1 . The

identities to be checked in the cases 0.1(i)-(iv) are:

u2unλd = uunλd + (u+ 1)un+1λd+1,

u2unλd = (u2 − u− 1)unλd + (u2 − u)un−1λd−1,

u2unλd = un+2λd,

u2unλd = (u2 − 1)unλd + u2un−2λd,

respectively. These are easily verified.
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5.8. Assuming that K∗ = K, we set

RK,∗ =
∑

y∈WK ;y∗=y−1

ul(y)(
u− 1

u+ 1
)φ(y) ∈ Q(u).

Let Ω ∈ IK∗ . Define b,H, τ as in 5.2. Let

WH
K = {c ∈WK ; l(w) ≤ l(wr) for any r ∈WH}.

Using 1.2(a) we have
∑

w∈Ω∩I∗
ζ(aw) =

∑

c∈WH
K
u2l(c)ζ(ab)RH∗,τ (u) hence

(a)
∑

w∈Ω∩I∗

ζ(aw) = PK(u2)PH(u2)−1ζ(ab)RH∗,τ (u).

We have the following result.

Proposition 5.9. Assume that W is finite. We have

(a) RS,∗(u) = PS(u
2)PS,∗(u)

−1.

We can assume that W is irreducible. We prove (a) by induction on |S|.

If |S| ≤ 2, (a) is easily checked. Now assume that |S| ≥ 3. Taking sum over

all Ω ∈ IK∗ in 5.7(a) we obtain

RS,∗(u) = PK(u2)
∑

Ω∈IK
∗

PH(u2)−1ζ(ab)RH∗,τ (u)

where b,H, τ depend on Ω as in 5.2. Using the induction hypothesis we

obtain

RS,∗(u) = PK(u2)
∑

Ω∈IK
∗

ζ(ab)PH∗,τ (u)
−1.

We now choose K ⊂ S so that WK is of type

An−1, Bn−1,Dn−1, A1, B3, A5,D7, E7, I2(5),H3

where W is of type

An, Bn,Dn, G2, F4, E6, E7, E8,H3,H4
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respectively. Then there are few (WK ,WK∗) double cosets and the sum

above can be computed in each case and gives the desired result. (In the

case where W is a Weyl group, there is an alternative, uniform, proof of (a)

using flag manifolds over a finite field.)

5.10. We return to the general case. Let Ω ∈ IK∗ and let b,H, τ be as in

5.2. By 5.4(c) we have Sab ∈ MK . From 0.1(i)-(iv) we see that Sab =
∑

y∈Ω∩I∗
fyay where fy ∈ Z[u] for all y. Hence we must have Sab = faΩ for

some f ∈ Z[u]. Appplying ζ to the last equality and using 5.7(a) we obtain

PK(u2)ζ(ab) = f
∑

y∈Ω∩I∗
ζ(ay). From 5.8(a), 5.9(a) we have

∑

y∈Ω∩I∗

ζ(ay) = PK(u2)ζ(ab)PH∗,τ (u)
−1

where b,H, τ depend on Ω as in 5.8. Thus f = PH∗,τ (u). We see that

(a) Sab = PH∗,τ (u)aΩ.

5.11. In this subsection we assume that K∗ = K. Then Ω := WK ∈ IK∗ .

We have the following result.

(a) AΩ = v−l(wK)aΩ.

By 5.6(f) we have AΩ = faΩ for some f ∈ A. Taking the coefficient of awK

in both sides we get f = v−l(wK) proving (a).

Here is another proof of (a). It is enough to prove that v−l(wK)aΩ is

fixed by .̄ By 5.10(a) we have u−l(wK)Sa1 = u−l(wK)PK,∗(u)aΩ. The left

hand side of this equality is fixed by ¯ since a1 and u−l(wK)S are fixed by

.̄ Hence v−2l(wK)PK,∗(u)aΩ is fixed by .̄ Since v−l(wK)PK,∗(u) is fixed by ¯

and is nonzero, it follows that v−l(wK)aΩ is fixed by ,̄ as desired.

6. The action of u−1(Ts + 1) in the basis (Aw)

6.1. In this section we fix s ∈ S.

Let y,w ∈ I∗. When y ≤ w we have as in 4.9, πy,w = v−l(w)+l(y)P σ
y,w so

that πy,w ∈ A<0 if y < w and πw,w = 1; when y 6≤ w we set πy,w = 0. In any

case we set as in [6, 4.1]:
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(a) πy,w = δy,w + µ′y,wv
−1 + µ′′y,wv

−2mod v−3Z[v−1]

where µ′y,w ∈ Z, µ′′y,w ∈ Z. Note that

(b) µ′y,w 6= 0 =⇒ y < w, ǫy = −ǫw,

(c) µ′′y,w 6= 0 =⇒ y < w, ǫy = ǫw.

6.2. As in [6, 4.3], for any y,w ∈ I∗ such that sy < y < sw > w we define

Ms
y,w ∈ A by:

Ms
y,w = µ′′y,w −

∑

x∈I∗;y<x<w,sx<x

µ′y,xµ
′
x,w − δsw,ws∗µ

′
y,sw + µ′sy,wδsy,ys∗

if ǫy = ǫw,

Ms
y,w = µ′y,w(v + v−1)

if ǫy = −ǫw.

The following result was proved in [6, 4.4] assuming that W is a Weyl

group or affine Weyl group. (We set cs = u−1(Ts + 1) ∈ H.)

Theorem 6.3. Let w ∈ I∗.

(a) If sw = ws∗ > w then csAw = (v + v−1)Asw +
∑

z∈I∗;sz<z<swMs
z,wAz.

(b) If sw 6= ws∗ > w then csAw = Asws∗ +
∑

z∈I∗;sz<z<sws∗ M
s
z,wAz.

(c) If sw < w then csAw = (u+ u−1)Aw.

(In the case considered in [6, 4.4] the last sum in the formula which

corresponds to (b) involves sz < z < sw instead of sz < z < sws∗; but as

shown in loc.cit. the two conditions are equivalent.)

We prove (c). We have sw < w. By 5.6(f) we have Aw ∈ M{s}. Hence

it is enough to show that csm = (u+ u−1)m where m runs through a set of

generators of the A-module M{s}. Thus it is enough to show that cs(ax +

as•x) = (u+ u−1)(ax + as•x) for any x ∈ I∗. This follows immediately from

0.1(i)-(iv).

Now the proof of (a),(b) (assuming (c)) is exactly as in [6, 4.4]. (Note

that in [6, 3.3], (c) was proved (in the Weyl group case) by an argument
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(based on geometry via [6, 3.4]) which is not available in our case and which

we have replaced by the analysis in §5.)

7. An inversion formula

7.1. In this section we assume that W is finite. Let M̂ = HomA(M,A).

For any w ∈ I∗ we define â′w ∈ M̂ by â′w(a
′
y) = δy,w for any y ∈ I∗. Then

{â′w;w ∈ I∗} is an A-basis of M̂ . We define an H-module structure on M̂

by (hf)(m) = f(h♭m) (with f ∈ M̂ , m ∈ M , h ∈ H) where h 7→ h♭ is the

algebra antiautomorphism of H such that T ′
s 7→ T ′

s for all s ∈ S. (Recall that

T ′
s = u−1Ts.) We define a bar operator ¯: M̂ → M̂ by f̄(m) = f(m̄) (with

f ∈ M̂ , m ∈ M); in f(m̄) the lower bar is that of M and the upper bar is

that of A. We have hf = h̄f̄ for f ∈ M̂ , h ∈ H.

Let ⋄ : W → W be the involution x 7→ wSx
∗wS = (wSxwS)

∗ which

leaves S stable. We have I⋄ = wSI∗ = I∗wS . We define the A-module M⋄

and its basis {b′z; z ∈ I⋄} in terms of ⋄ in the same way as M and its basis

{a′w;w ∈ I∗} were defined in terms of ∗. Note that M ⋄ has an H-module

structure and a bar operator ¯:M⋄ →M ⋄ analogous to those of M .

We define an isomorphism of A-modules Φ : M̂ → M ⋄ by Φ(â′w) =

κ(w)b′wwS
. Here κ(w) is as in 4.5(a). Let h 7→ h† be the algebra automor-

phism of H such that T ′
s 7→ −T ′

s
−1 for any s ∈ S. We have the following

result.

Lemma 7.2. For any f ∈ M̂ , h ∈ H we have Φ(hf) = h†Φ(f).

It is enough to show this when h runs through a set of algebra generators

of H and f runs through a basis of M̂ . Thus it is enough to show for any

w ∈ I∗, s ∈ S that Φ(Tsâ
′
w) = −T−1

s Φ(â′w) or that

(a) Φ(Tsâ
′
w) = −κ(w)T−1

s b′wwS
.

We write the formulas in 4.1 with ∗ replaced by ⋄ and a′w replaced by b′wwS
:

T ′
sb

′
wwS

= b′wwS
+ (v + v−1)b′swwS

if sw = ws∗ < w,

T ′
sb

′
wwS

= (u− 1− u−1)b′wwS
+ (v − v−1)b′swwS

if sw = ws∗ > w,

T ′
sb

′
wwS

= b′sws∗wS
if sw 6= ws∗ < w,

T ′
sb

′
wwS

= (u− u−1)b′wwS
+ b′sws∗wS

if sw 6= ws∗ > w.
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Since T ′
s
−1 = T ′

s + u−1 − u we see that

(b) − T ′
s
−1b′wwS

= −(u−1 + 1− u)b′wwS
− (v + v−1)b′swwS

if sw = ws∗<w

−T ′
s
−1b′wwS

= b′wwS
− (v − v−1)b′swwS

if sw = ws∗ > w

−T ′
s
−1b′wwS

= −(u−1 − u)b′wwS
− b′sws∗wS

if sw 6= ws∗ < w

−T ′
s
−1b′wwS

= −b′sws∗wS
if sw 6= ws∗ > w

Using again the formulas in 4.1 for T ′
sa

′
y we see that for y,w ∈ I∗ we have

(T ′
sâ

′
w)(ay) = â′w(T

′
say)

= δsy=ys∗>yδy,w + δsy=ys∗>yδsy,w(v + v−1) + δsy=ys∗<yδy,w(u− 1− u−1)

+δsy=ys∗<yδsy,w(v − v−1) + δsy 6=ys∗>yδsys∗,w + δsy 6=ys∗<yδy,w(u− u−1)

+δsy 6=ys∗<yδsys∗,w

= δsw=ws∗>wδy,w + δsw=ws∗<wδy,sw(v+v
−1)+δsw=ws∗<wδy,w(u−1−u−1)

+δsw=ws∗>wδy,sw(v − v−1) + δsw 6=ws∗<wδy,sws∗

+δsw 6=ws∗<wδy,w(u− u−1) + δsw 6=ws∗>wδy,sws∗

= (δsw=ws∗>wâ
′
w + δsw=ws∗<w(v + v−1)â′sw + δsw=ws∗<w(u− 1− u−1)â′w

+δsw=ws∗>w(v − v−1)â′sw + δsw 6=ws∗<wâ
′
sws∗

+δsw 6=ws∗<w(u− u−1)â′w + δsw 6=ws∗>wâ
′
sws∗)(ay).

Since this holds for any y ∈ I∗ we see that

T ′
sâ

′
w = δsw=ws∗>wâ

′
w + δsw=ws∗<w(v + v−1)â′sw

+δsw=ws∗<w(u− 1− u−1)â′w

+δsw=ws∗>w(v − v−1)â′sw + δsw 6=ws∗<wâ
′
sws∗

+δsw 6=ws∗<w(u− u−1)â′w + δsw 6=ws∗>wâ
′
sws∗.

Thus we have

T ′
sâ

′
w = â′w + (v − v−1)â′sw if sw = ws∗ > w,

T ′
sâ

′
w = (u− 1− u−1)â′w + (v + v−1)â′sw if sw = ws∗ < w,

T ′
sâ

′
w = â′sws∗ if sw 6= ws∗ > w,

T ′
sâ

′
w = (u− u−1)â′w + â′sws∗ if sw 6= ws∗ < w.
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so that

(c) Φ(T ′
sâ

′
w) = κ(w)b′wwS

+ (v − v−1)κ(sw)b′swwS
if sw = ws∗ > w

Φ(T ′
sâ

′
w) = (u−1−u−1)κ(w)b′wwS

+(v+v−1)κ(sw)b′swwS
if sw=ws∗<w

Φ(T ′
sâ

′
w) = κ(sws∗)b′sws∗wS

if sw 6= ws∗ > w

Φ(T ′
sâ

′
w) = (u− u−1)κ(w)b′w + κ(sws∗)b′sws∗wS

if sw 6= ws∗ < w.

From (b), (c) we see that to prove (a) we must show:

κ(w)b′wwS
+ (v − v−1)κ(sw)b′swwS

= κ(w)b′wwS
− κ(w)(v − v−1)b′swwS

if sw = ws∗ > w,

(u− 1− u−1)κ(w)b′wwS
+ (v + v−1)κ(sw)b′swwS

= −κ(w)(u−1 + 1− u)b′wwS
− κ(w)(v + v−1)b′swwS

if sw = ws∗ < w,

κ(sws∗)b′sws∗wS
= −κ(w)b′sws∗wS

if sw 6= ws∗ > w,

(u− u−1)κ(w)b′w + κ(sws∗)b′sws∗wS

= −κ(w)(u−1 − u)b′wwS
− κ(w)b′sws∗wS

if sw 6= ws∗ < w.

This is obvious. The lemma is proved. ���

Lemma 7.3. We define a map B : M̂ → M̂ by B(f) = Φ−1(Φ(f)) where

the bar refers to M⋄. We have B(f) = f̄ for all f ∈ M̂ .

We show that

(a) B(hf) = h̄B(f)

for all h ∈ H, f ∈ M̂ . This is equivalent to Φ−1(Φ(hf)) = h̄Φ−1(Φ(f))

or (using 7.2) to h†Φ(f) = Φ(h̄Φ−1(Φ(f))) or (using 7.2) to h†(Φ(f)) =

(h̄)†Φ(Φ−1(Φ(f))); it remains to use that h† = (h̄)†.

Next we show that

(b) B(â′wS
) = â′wS

.

Indeed the left hand side is

Φ−1(Φ(â′wS
)) = Φ−1(κ(wS)b′1) = κ(wS)Φ

−1(b′1) = â′wS

as required. (We have used that b′1 = b′1 in M⋄.) Next we show:

(c) â′wS
= â′wS

.
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Indeed for y ∈ I∗ we have

â′wS
(a′y) = â′wS

(a′y) = â′wS
(

∑

x∈I∗;x≤y

r̄x,ya′x) = r̄wS ,wS
δy,wS

= δy,wS
= â′wS

(a′y)

(we use that rwS ,wS
= 1). This proves (c).

Since hf = h̄f̄ for all h ∈ H, f ∈ M̂ we see (using (a),(b),(c)) that

the map f 7→ B(f) from M̂ into itself is H-linear and carries â′wS
to itself.

This implies that this map is the identity. (It is enough to show that â′wS

generates the H-module M̂ after extending scalars to Q(v). Using 7.2 it is

enough to show that b′1 generates the H-module M⋄ after extending scalars

to Q(v). This is known from 2.11.) We see that f = B(f) for all f ∈ M̂ .

Applying ¯to both sides (an involution of M̂) we deduce that f̄ = B(f) for

all f ∈ M̂ . The lemma is proved.

7.4. Recall that a′w =
∑

y∈I∗;y≤w ry,wa
′
y for w ∈ I∗. The analogous equality

in M⋄ is

(a) b′z =
∑

x∈I⋄;x≤z

r⋄x,zb
′
x for x ∈ I⋄.

Here r⋄x,z ∈ A. We have the following result.

Proposition 7.5. Let y,w ∈ I∗ be such that y ≤ w. We have

ry,w = κ(y)κ(w)r⋄wwS ,ywS
.

We show that for any y ∈ I∗ we have

(a) â′y =
∑

w∈I∗;y≤w

ry,wâ
′
w.

Indeed for any x ∈ I∗ we have

â′y(a
′
x) = â′y(a

′
x) = â′y(

∑

x′∈I∗;x′≤x

r̄x′,xa
′
x′) = δy≤xr̄y,x = δy≤xry,x

=
∑

w∈I∗;y≤w

ry,wâ
′
w(a

′
x).
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Using (a) and 7.3 we see that for any y ∈ I∗ we have

Φ−1(Φ(â′y)) =
∑

w∈I∗;y≤w

ry,wâ
′
w.

It follows that Φ(â′y) =
∑

w∈I∗;y≤w ry,wΦ(â
′
w) that is,

κ(y)b′ywS
=

∑

w∈I∗;y≤w

ry,wκ(w)b
′
wwS

.

Using 7.4(a) to compute the left hand side we obtain

κ(y)
∑

w∈I∗;wwS≤ywS

r⋄wwS ,ywS
b′wwS

=
∑

w∈I∗;y≤w

ry,wκ(w)b
′
wwS

.

Hence for any w ∈ I∗ such that y ≤ w we have ry,wκ(w) = κ(y)r⋄wwS ,ywS
.

The proposition follows.

7.6. Recall that for y,w ∈ I∗, y ≤ w we have P σ
y,w = vl(w)−l(y)πy,w where

πy,w ∈ A satisfies πw,w = 1, πy,w ∈ A<0 if y < w and

(a) πy,w =
∑

t∈I∗;y≤t≤w

ry,tπt,w.

Replacing ∗ by ⋄ in the definition of P σ
y,w we obtain polynomials P σ,⋄

x,z ∈ Z[u]

(x, z ∈ I⋄, x ≤ z) such that P σ,⋄
x,z = vl(z)−l(x)π⋄x,z where π⋄x,z ∈ A satisfies

π⋄z,z = 1, π⋄x,z ∈ A<0 if x < z and

(b) π⋄x,z =
∑

t′∈I⋄;x≤t′≤z

r⋄x,t′π
⋄
t′,z.

The following inversion formula (and its proof) is in the same spirit as [2,

3.1] (see also [7]).

Theorem 7.7. For any y,w ∈ I∗ such that y ≤ w we have

∑

t∈I∗;y≤t≤w

κ(y)κ(t)P σ
y,tP

σ,⋄
wwS,twS

= δy,w.
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The last equality is equivalent to

(a)
∑

t∈I∗;y≤t≤w

κ(y)κ(t)πy,tπ
⋄
wwS ,twS

= δy,w.

LetMy,w be the left hand side of (a). When y = w we have My,w = 1. Thus,

we may assume that y < w and that My′,w′ = 0 for all y′, w′ ∈ I∗ such that

y′ < w′, l(w′)− l(y′) < l(w)− l(y). Using 7.6(a),(b) we have

My,w =
∑

t∈I∗;y≤t≤w

κ(y)κ(t)
∑

x,x′∈I∗;y≤x≤t≤x′≤w

ry,xpx,tr⋄wwS,x′wS
p⋄x′wS ,twS

=
∑

x,x′∈I∗;y≤x≤x′≤w

κ(y)κ(x)ry,xr
⋄
wwS ,x′wS

Mx,x′.

The only x, x′ which can contribute to the last sum satisfy x = x′ or x =

y, x′ = w. Thus

My,w =
∑

x∈I∗;y≤x≤w

κ(y)κ(x)ry,xr⋄wwS,xwS
+My,w.

(We have used 4.8(a).) Using 7.5 we see that the last sum over x is equal to

κ(y)κ(w)
∑

x∈I∗ ;y≤x≤w

ry,xrx,w = 0,

see 4.6(a). Thus we have My,w = My,w. Since My,w ∈ A<0, this forces

My,w = 0. The theorem is proved.

8. A (−u) Analogue of Weight Multiplicities?

8.1. In this section we assume that W is an irreducible affine Weyl group.

An element x ∈ W is said to be a translation if its W -conjugacy class is

finite. The set of translations is a normal subgroup T of W of finite index.

We fix an element s0 ∈ S such that, setting K = S − {s0}, the obvious

map WK → W/T is an isomorphism. (Such an s0 exists.) We assume that

∗ is the automorphism of W such that x 7→ wKxwK for all x ∈ WK and

y 7→ wKy
−1wK for any y ∈ T (this automorphism maps s0 to s0 hence it

maps S onto itself). We have K∗ = K.
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Proposition 8.2. If x is an element of W which has maximal length in its

(WK ,WK) double coset Ω then x∗ = x−1.

Note that TΩ := Ω ∩ T is a single W -conjugacy class. If y ∈ TΩ then

y∗−1 = wKywK ∈ TΩ. Thus w 7→ w∗−1 maps some element of Ω to an

element of Ω. Hence it maps Ω onto itself. Since it is length preserving it

maps x to itself.

8.3. Let Ω,Ω′ be two (WK ,WK)-double cosets in W such that Ω′ ≤ Ω.

As in 5.1, let dΩ (resp. dΩ′) be the longest element in Ω (resp. Ω′). Let

PdΩ′ ,dΩ ∈ Z[u] be the polynomial attached in [2] to the elements dΩ′ , dΩ of

the Coxeter group W . Let G be a simple adjoint group over C for which W

is the associated affine Weyl group so that T is the lattice of weights of a

maximal torus of G. Let VΩ be the (finite dimensional) irreducible rational

representation of G whose extremal weights form the set TΩ. Let NΩ′,Ω be

the multiplicity of a weight in TΩ′ in the representation VΩ. Now PdΩ′ ,dΩ

is the u-analogue (in the sense of [4]) of the weight multiplicity NΩ′,Ω; in

particular, according to [4], we have

NΩ′,Ω = PdΩ′ ,dΩ |u=1.

We have the following

Conjecture 8.4. P σ
dΩ′ ,dΩ

(u) = PdΩ′ ,dΩ(−u).

8.5. Now assume that Ω (resp. Ω′) is the (WK ,WK)-double coset that

contains s0 (resp. the unit element). Let e1 ≤ e2 ≤ · · · ≤ en be the

exponents of WK (recall that e1 = 1). The following result supports the

conjecture in 8.4.

Proposition 8.6. In the setup of 8.5, assume that WK is simply laced. We

have:

(a) AdΩ = v−l(dΩ)aΩ + (−1)en
∑

j∈[1,n](−u)
−ejv−l(dΩ′ )aΩ′ ;

(b) PdΩ′ ,dΩ(u) =
∑

j∈[1,n] u
ej−1;

(c) P σ
dΩ′ ,dΩ

(u) =
∑

j∈[1,n](−u)
ej−1.
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We prove (a). It is enough to show that

v−l(dΩ)aΩ + (−1)en
∑

j∈[1,n]

(−u)−ejv−l(dΩ′ )aΩ′

is fixed by .̄ Let H = K ∩ s0Ks0. We have H = H∗ and WH is contained in

the centralizer of s0. Let τ : WH →WH be the automorphism y 7→ s0y
∗s0 =

y∗. We have dΩ′ = wK , dΩ = wKwHs0wK , l(dΩ) = 2l(wK)− l(wH) + 1 and

we must show that

(d) v−2l(wK)+l(wH )−1aΩ + (−1)en
∑

j∈[1,n]

(−u)−ejv−l(wK)aΩ′ is fixed by ¯.

Let S =
∑

x∈WK
Tx ∈ H. Using 5.10(a) we see that

S(as0 + a1) = PH,∗aΩ +PK,∗aΩ′ .

Hence

v−2l(wK)S(v−1(as0 + a∅))

= v−l(wH )PH,∗v
−2l(wK)+l(wH )−1aΩ + v−l(wK)−1PK,∗v

−l(wK)aΩ′ .

Since v−2l(wK )S and v−1(as0 + a1) are fixed by ,̄ we see that that the left

hand side of the last equality is fixed by ,̄ hence

v−l(wH )PH,∗v
−2l(wK)+l(wH )−1aΩ + v−l(wK)−1PK,∗v

−l(wK)aΩ′

is fixed by .̄ Since v−l(wH )PH,∗ is fixed by ¯and divides PK,∗, we see that

v−2l(wK)+l(wH )−1aΩ + v−l(wK)+l(wH )−1PK,∗P
−1
H,∗v

−l(wK)aΩ′

is fixed by .̄ Hence to prove (d) it is enough to show that

v−l(wK)+l(wH )−1PK,∗P
−1
H,∗v

−l(wK)aΩ′ − (−1)en
∑

j∈[1,n]

(−u)−ejv−l(wK)aΩ′

is fixed by .̄ Now v−l(wK)aΩ′ is fixed by ,̄ see 5.11(a). Hence it is enough to

show that

v−l(wK)+l(wH)−1PK,∗P
−1
H,∗ − (−1)en

∑

j∈[1,n]

(−u)−ej is fixed by .̄
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This is verified by direct computation in each case. This completes the proof

of (a). Now (c) follows from (a) using the equality l(wKwHs0wK)− l(wK) =

2en and the known symmetry property of exponents; (b) follows from [4].

8.7. In this subsection we assume that WK is of type A2 with K = {s1, s2}.

Note that s∗1 = s2, s
∗
2 = s1. We write i1i2 · · · instead of si1si2 · · · (the

indices are in {0, 1, 2}). Let Ω1,Ω2,Ω3,Ω4,Ω5 be the (WK ,WK) double

coset of 01210, 0120, 0210, 0 and unit element respectively. We have dΩ1
=

1210120121, dΩ2
= 121012012, dΩ3

= 121021021, dΩ4
= 1210121, dΩ5

= 121.

A direct computation shows that

AdΩ1
= v−11(aΩ1

+ aΩ2
+ aΩ3

+ (1− u)aΩ4
+ (1− u+ u2)aΩ5

).

This provides further evidence for the conjecture in 8.4.

8.8. In this subsection we assume that K = {s1, s2} with s1s2 of order 4

and with s0s2 = s2s0, s0s1 of order 4. Note that x∗ = x for all x ∈ W .

Let Ω1,Ω2,Ω3 be the (WK ,WK) double coset of s0s1s0, s0 and unit element

respectively. We have dΩ1
= 1212010212, dΩ2

= 12120121, dΩ3
= 1212

(notation as in 8.7). A direct computation shows that

AdΩ1
= v−10(aΩ1

+ aΩ2
+ (1 + u2)aΩ3

).

This provides further evidence for the conjecture in 8.4.

9. Reduction Modulo 2

9.1. Let A2 = A/2A = (Z/2)[u, u−1], A2 = A/2A = (Z/2)[v, v−1]. We

regard A2 as a subring of A2 by setting u = v2. Let H2 = H/2H; this is

naturally an A2-algebra with A2-basis (Tx)x∈W inherited from H and with

a bar operator ¯ : H2 → H2 inherited from that H. Let M2 = A2 ⊗A M =

M/2M . This has a H2-module structure and a bar operator ¯ : M2 → M2

inherited from M . It has an A2-basis (aw)w∈I∗ inherited from M . In this

section we give an alternative construction of the H2-module structure on

M2 and its bar operator.

Let H be the free A-module with basis (tw)w∈W with the unique A-

algebra structure with unit t1 such that

twtw′ = tww′ if l(ww′) = l(w) + l(w′) and
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(ts + 1)(ts − v2) = 0 for all s ∈ S.

Let ¯ : H → H be the unique ring involution such that vntx = v−nt−1
x−1

for any x ∈ W,n ∈ Z (see [2]). Let H2 = H/2H; this is naturally an A2-

algebra with A2-basis (tx)x∈W inherited from H and with a bar operator

¯ : H2 → H2 inherited from that of H. Let h 7→ h♠ be the unique algebra

antiautomorphism of H such that tw 7→ tw∗−1. (It is an involution.)

We have H2 = H′
2⊕H′′

2 where H′
2 (resp. H′′

2) is the A-submodule of H2

spanned by {tw;w ∈ I∗} (resp. {tw;w ∈ W − I∗}). Let π : H2 → H′
2 be the

projection on the first summand. Note that for ξ′ ∈ H2 we have

(a) ξ′♠ = ξ′ if and only if ξ′ = ξ′1 + ξ′2 + ξ′2
♠ where ξ′1 ∈ H′

2, ξ
′
2 ∈ H2.

(b) π(ξ′♠) = π(ξ′).

Lemma 9.2. The map H2×H′
2 → H′

2, (h, ξ) 7→ h ◦ ξ = π(hξh♠) defines an

H2-module structure on the abelian group H′
2.

Let h, h′ ∈ H2, ξ ∈ H′
2. We first show that (h+ h′) ◦ ξ = h ◦ ξ + h′ ◦ ξ or

that π((h+h′)ξ(h+h′)♠) = π(hξh♠)+π(h′ξh′♠). It is enough to show that

π(hξh′♠) = π(h′ξh♠). This follows from 9.1(b) since (h′ξh♠)♠ = hξ♠h′♠ =

hξh′♠.

We next show that (hh′) ◦ ξ = h ◦ (h′ ◦ ξ) or that π(hh′ξh′♠h♠) =

π(hπ(h′ξh′♠)h♠). Setting ξ′ = h′ξh′♠ we see that we must show that

π(hξ′h♠) = π(hπ(ξ′)h♠). Setting η = ξ′ − π(ξ′) we are reduced to show-

ing that π(hηh♠) = 0. Since ξ ∈ H′
2 we have ξ♠ = ξ. Hence ξ′♠ =

(h′♠)♠ξ♠h′♠ = h′ξh′♠ so that ξ′♠ = ξ′. We write ξ′ = ξ′1 + ξ′2 + ξ′2
♠

as in 9.1(a). Then π(ξ′) = ξ′1 and η = ξ′2 + ξ′2
♠. We have hηh♠ =

hξ′2h
♠+hξ′2

♠h♠ = ζ+ ζ♠ where ζ = hξ′2h
♠. Thus π(hηh♠) = π(ζ+ ζ♠) = 0

(see 9.1(b)). Clearly we have 1 ◦ ξ = ξ. The lemma is proved.

9.3. Consider the group isomorphism ψ : H2
∼
→H2 such that vntw 7→ unTw

for any n ∈ Z, w ∈W . This is a ring isomorphism satisfying ψ(fh) = f2ψ(h)

for all f ∈ A2, h ∈ H2 (we have f2 ∈ A2). Using now 9.2 we see that:

(a) The map H2×H′
2 → H′

2, (h, ξ) 7→ h⊙ ξ := π(ψ−1(h)ξ(ψ−1(h))♠) defines

an H2-module structure on the abelian group H′
2.

Note that the H2-module structure on H′
2 given in (a) is compatible with the

A-module structure onH′
2. Indeed if f ∈ A2 and f

′ ∈ A2 is such that f ′2 = f

then f acts in the H2-module structure in (a) by ξ 7→ f ′ξf ′ = f ′2ξ = fξ.
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9.4. Let s ∈ S,w ∈ I∗. The equations in this subsection take place in H2.

If sw = ws∗ > w we have

Ts ⊙ tw = π(tstwts∗) = π(tswts∗) = π((u− 1)tsw + utw) = utw + (u+ 1)tsw.

If sw = ws∗ < w we have

Ts ⊙ tw = π(tstwts∗) = π(((u− 1)tw + utsw)ts∗)

= π((u− 1)2tw + (u− 1)utws∗ + utw)

= (u2 − u− 1)tw + (u2 − u)tsw.

If sw 6= ws∗ > w we have

Ts ⊙ tw = π(tstwts∗) = π(tsws∗) = tsws∗.

If sw 6= ws∗ < w we have

Ts ⊙ tw = π(tstwts∗) = π(((u− 1)tw + utsw)ts∗)

= π((u− 1)2tw + (u− 1)utws∗ + u(u− 1)tsw + u2tsws∗)

= (u2 − 1)tw + u2tsws∗.

(We have used that π(tws∗) = π(tsw) which follows from 9.1(b).) From these

formulas we see that

(a) the isomorphism of A2-modules H′
2
∼
→M2 given by tw 7→ aw (w ∈ I∗) is

compatible with the H2-module structures.

9.5. For w ∈ W we set tw =
∑

y∈W ;y≤w ρy,wv
−l(w)−l(y)ty where ρy,w ∈ A

satisfies ρw,w = 1. For y ∈W,y 6≤ w we set ρy,w = 0.

For x, y ∈W, s ∈ S such that sy > y we have

(i) ρx,sy = ρsx,y if sx < x,

(ii) ρx,sy = ρsx,y + (v − v−1)ρx,y if sx > x.

For x, y ∈W, s ∈ S such that ys > y we have

(iii) ρx,ys = ρxs,y if xs < x,

(iv) ρx,ys = ρxs,y + (v − v−1)ρx,y if xs > x.

Note that (iii),(iv) follow from (i),(ii) using

(v) ρz,w = ρz∗−1,w∗−1 for any z, w ∈W .
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9.6. If f, f ′ ∈ A we write f ≡ f ′ if f, f ′ have the same image under the

obvious ring homomorphism A → A2. We have the following result.

Proposition 9.7. For any y,w ∈ I∗ we have ry,w ≡ ρy,w.

Since the formulas 4.2(a), (b) together with rx,1 = δx,1 define uniquely

rx,y for any x, y ∈ I∗ and since ρx,1 = δx,1 for any x, it is enough to show

that the equations 4.2(a),(b) remain valid if each r is replaced by ρ and each

= is replaced by ≡.

Assume first that sy = ys∗ > y and x ∈ I∗.

If sx = xs∗ > x we have

(v + v−1)ρx,sy − (ρsx,y(v
−1 − v)− (u− u−1)ρx,y)

≡ (v + v−1)(ρx,sy − ρsx,y − (v − v−1)ρx,y) = 0.

(The = follows from 9.5(ii).)

If sx = xs∗ < x we have

(v + v−1)ρx,sy − (−2ρx,y + ρsx,y(v + v−1)) ≡ (v + v−1)(ρx,sy − ρsx,y) = 0.

(The = follows from 9.5(i).)

If sx 6= xs∗ > x we have

(v + v−1)ρx,sy − (ρsxs∗,y + (u− 1− u−1)ρx,y)

= (v + v−1)ρsx,y + (u− u−1)ρx,y − ρsxs∗,y − (u− 1− u−1)ρx,y

≡ (v − v−1)ρsx,y − ρx,y + ρsxs∗,y = ρsx,ys∗ − ρx,y = 0.

(The first, second and third = follow from 9.5(ii),(iv),(iii).)

If sx 6= xs∗ < x we have

(v + v−1)ρx,sy − (−ρx,y + ρsxs∗,y) = (v + v−1)ρsx,y − (−ρx,y + ρsxs∗,y)

≡ (v − v−1)ρsx,y + ρx,y − ρsxs∗,y

= ρsx,sy − ρsxs∗,y = ρsx,sy − ρsx,ys∗ = 0.

(The first, second and third = follow from 9.5(i),(ii),(iii).)

Next we assume that sy 6= ys∗ > y and x ∈ I∗.
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If sx = xs∗ > x we have

ρx,sys∗ − (ρsx,y(v
−1 − v) + (u+ 1− u−1)ρx,y)

= ρsx,ys∗ + (v − v−1)ρx,ys∗ − ρsx,y(v
−1 − v)− (u+ 1− u−1)ρx,y

= ρx,y + (v − v−1)ρx,ys∗ − ρxs∗,y(v
−1 − v)− (u+ 1− u−1)ρx,y

= ρx,y + (v − v−1)ρxs∗,y + (v − v−1)2ρx,y − ρxs∗,y(v
−1 − v)

−(u+ 1− u−1)ρx,y ≡ 0.

(The first, second and third = follow from 9.5(ii),(iv),(iv).)

If sx = xs∗ < x we have

ρx,sys∗ − (ρsx,y(v + v−1)− ρx,y) = ρsx,sy − (ρsx,y(v + v−1)− ρx,y)

≡ ρsx,sy − (ρsx,y(v − v−1) + ρx,y) = 0,

(The first and second = follow from 9.5(i),(ii.)

If sx 6= xs∗ > x we have

ρx,sys∗ − (ρsxs∗,y + (u− u−1)ρx,y)

= ρxs∗,sy + (v − v−1)ρx,sy − ρsxs∗,y − (u− u−1)ρx,y

= ρsxs∗,y + (v − v−1)ρxs∗,y + (v − v−1)ρsx,y + (v − v−1)2ρx,y

−ρsxs∗,y − (u− u−1)ρx,y ≡ (v − v−1)(ρxs∗,y − ρsx,y)

= (v − v−1)(ρ(xs∗)∗−1,y∗−1 − ρsx,y) = (v − v−1)(ρsx,y − ρsx,y) = 0.

(The first, second, and third = follow from 9.5(iv),(ii),(v).)

If sx 6= xs∗ < x we have

ρx,sys∗ − ρsxs∗,y = ρxs∗,ys∗ − ρsxs∗,y = 0.

(The first and second = follow from 9.5(iii),(i).)

Thus the equations 4.2(a),(b) with each r replaced by ρ and each =

replaced by ≡ are verified. The proposition is proved.

9.8. We define a group homomorphism B : H′
2 → H′

2 by ξ 7→ π(ξ). From

9.7 we see that
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(a) under the isomorphism 9.4(a) the map B : H′
2 → H′

2 corresponds to the

map ¯:M2 →M2.

We now give an alternative proof of (a). Using 0.2(b) and 9.4(a) we see that

it is enough to show that for any w ∈ I∗ we have π(t−1
w−1) = T−1

w−1 ⊙ tw−1 in

H′
2. Since ψ in 9.3 is a ring isomorphism, we have ψ(t−1

w−1) = T−1
w−1 hence

T−1
w−1 ⊙ tw−1 = π(ψ−1(T−1

w−1)tw−1(ψ−1(T−1
w−1))

♠)

= π(t−1
w−1tw−1(t−1

w−1)
♠) = π(t−1

w−1tw−1t−1
w∗)

= π(t−1
w−1tw−1t−1

w−1) = π(tw−1),

as required.

9.9. For y,w ∈ W let Py,w ∈ Z[u] be the polynomials defined in [2, 1.1].

(When y 6≤ w we set Py,w = 0.) We set py,w = v−l(w)+l(y)Py,w ∈ A. Note

that pw,w = 1 and py,w = 0 if y 6≤ w. We have py,w ∈ A<0 if y < w and

(i) px,w =
∑

y∈W ;x≤y≤w rx,ypy,w if x ≤ w,

(ii) px∗−1,w∗−1 = px,w, if x ≤ w.

We have the following result which, in the special case where W is a Weyl

group or an affine Weyl group, can be deduced from the last sentence in the

first paragraph of [6].

Theorem 9.10. For any x,w ∈ I∗ such that x ≤ w we have P σ
x,w ≡ Px,w

(with ≡ as in 9.6).

It is enough to show that πx,w ≡ px,w. We can assume that x < w and

that the result is known when x is replaced by x′ ∈ I∗ with x < x′ ≤ w.

Using 9.9(i) and the definition of πx,w we have

px,w − πx,w =
∑

y∈W ;x≤y≤w

rx,ypy,w −
∑

y∈I∗;x≤y≤w

ρx,yπy,w.

Using 9.7 and the induction hypothesis we see that the last sum is ≡ to

px,w − πx,w +
∑

y∈W ;x<y≤w

rx,ypy,w −
∑

y∈I∗;x<y≤w

rx,ypy,w

= px,w − πx,w +
∑

y∈W ;y 6=y∗−1,x<y≤w

rx,ypy,w.
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In the last sum the terms corresponding to y and y∗−1 cancel out (after

reduction mod2) since

rx,y∗−1py∗−1,w = rx∗−1,ypy,w∗−1 = rx,ypy,w.

(We use 9.5(v), 9.9(ii).) We see that

px,w − πx,w ≡ px,w − πx,w.

After reduction mod 2 the right hand side is in v−1(Z/2)[v−1] and the left

hand side is in v(Z/2)[v]; hence both sides are zero in (Z/2)[v, v−1]. This

completes the proof. ���

9.11. For x,w ∈ I∗ such that x ≤ w we set P+
x,w = (1/2)(Px,w + P σ

x,w),

P−
x,w = (1/2)(Px,w − P σ

x,w). From 9.10 we see that P+
x,w ∈ Z[u], P−

x,w ∈ Z[u].

Conjecture 9.12. We have P+
x,w ∈ N[u], P−

x,w ∈ N[u].

This is a refinement of the conjecture in [2] that Px,w ∈ N[u] for any

x ≤ w in W . In the case where W is a Weyl group or an affine Weyl group,

the (refined) conjecture holds by results of [6].

Note added July 25, 2012. Conjecture 8.4 is now proved, see G.Lusztig

and Z.Yun, A (−q)-analogue of weight multiplicities, arxiv:1203.0521.
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