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ANDRÉ ADLER

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois, 60616.

E-mail: adler@iit.edu

Abstract

This paper explores a Weighted Exact Weak Law, where the classical Weak Law fails

and the corresponding Strong Law also fails. This type of result comes from the Fair

Games problem and is associated with the St Petersburg Game.

1. Introduction

In this paper we observe the limiting behaviour of a weighted sum from

a sequence of independent random variables. The point here is that this is

the only way to obtain an Exact Law of Large Numbers for this particular

sequence of random variables. We want to establish a nonzero limit between

our partial sums and a sequence of constants. We can always divide by a

large enough sequence so that the ratio between our partial sums and the

norming sequence converges to zero, but that’s not fair. We want the ratio

to approach a nonzero constant since the sum of the random variables can

be considered winning from a gambling game and in order for both parties

to partake in this game the ratio should converge to one. That is why this

type of result also goes by the name of the ’Fair Games Problem’ see [5],

pages 248-253. The most famous of these is the St. Petersburg Game itself.

Furthermore the only Law of Large Numbers that we can establish is a

weighted Weak Law. Both the Classical Weak Law, (X1 + · · · +Xn)/n will

not converge to a constant, nor will the weighted Strong Law converge, even

though Xn

P
→0.
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In the Exact Strong Law setting we can find a Weighted Strong Law

and yet the Classical Strong Law fails. For example if Xn are i.i.d. with

common distribution xP{X > x} ∼ a(lg x)α, where α > −1, then the only

type of Strong Law that holds is

lim
N→∞

∑

N

n=1
(lg n)b−α−2

n
Xn

(lgN)b
=

a

(α+ 1)b
almost surely.

for any b > 0, see Example 2 from [2]. In this setting we can establish many

Weak Laws including the classical nonweighted Weak Law. Moreover, from

[1] we can find sequences {bN} such that

∑

N

n=1 n
αXn

bN

P
→ 1

for α > −1/2. This was later extended to α > −1, as one would expect.

However in the Exact Weak Law situation we are now forced to look at

independent but no longer identically distributed random variables. That

comes from [3], since if we were observing i.i.d. random variables then a

classical Weak Law implies a Weighted Strong Law. As in the Exact Strong

Law setting, these random variables have a similar structure. Just like the

St. Petersburg Game, these random variables barely do not have a finite

first moment. Similarly, the weights are of the type an = L(n)/n where

L(x) is a slowly varying function.

The random variables I will explore are such that P{Xn ≤ x} = 1− 1
x+n

where x > 0. Thus P{Xn = 0} = 1 − 1
n
and fXn

(x) = (x + n)−2I(x > 0).

In terms of notation we will let lg x = log (max{e, x}) and lg2 x = lg(lg x).

Also note that the constant C will be used as a generic bound that is not

necessarily the same in each appearance.

2. The Weak Law

It’s not hard to show that Xn

P
→ 0 and yet (X1 + · · ·+Xn)/n does not

converge to zero in probability. Thus we must explore weighted partial sums

in order to establish a law of large numbers. But once again we need to be

exact in our weights.
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Theorem 1. If P{Xn ≤ x} = 1− 1
x+n

where x > 0, then

∑

N

n=1
1
n
Xn

lgN lg2N
P
→1.

Proof. We will establish all three parts of the Degenerate Convergence

Criterion, see [4], page 356. Let an = 1/n and bN = lgN lg2 N .

Since EX2
nI(Xn ≤ c) =

∫

c

0
x2dx

(x+n)2
< c, we have

b−2
N

N
∑

n=1

a2nEX2
nI(anXn ≤ bN ) ≤ Cb−2

N

N
∑

n=1

a2nbN/an

= Cb−1
N

N
∑

n=1

an

=
C
∑

N

n=1
1
n

lgN lg2N

≤
C

lg2 N
→ 0.

Next, we have for all ǫ > 0

N
∑

n=1

P{anXn > ǫbN} =

N
∑

n=1

[

1− FXn
(ǫbN/an)

]

=
N
∑

n=1

[

1
ǫbN

an
+ n

]

=

N
∑

n=1

[

1

ǫn lgN lg2 N + n

]

=
1

ǫ lgN lg2N + 1

N
∑

n=1

1

n

≤
C lgN

ǫ lgN lg2N + 1
→ 0.

Finally, we investigate the truncated mean. We have

EXnI(Xn ≤ c) =

∫

c

0

xdx

(x+ n)2
= lg

(

c+ n

n

)

+
n

c+ n
− 1.
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Thus

EXnI(Xn ≤ bN/an) = lg

(

n lgN lg2 N + n

n

)

+
n

n lgN lg2 N + n
− 1

= lg
(

lgN lg2 N + 1
)

+
1

lgN lg2 N + 1
− 1

∼ lg2 N.

whence

b−1
N

N
∑

n=1

anEXnI(anXn ≤ bN ) ∼
1

lgN lg2N

N
∑

n=1

lg2 N

n

=
1

lgN

N
∑

n=1

1

n
→ 1

completing this proof. ���

3. Almost sure Results

The Weak Law established in the last section cannot be extended to a

Strong Law.

Theorem 2. If P{Xn ≤ x} = 1− 1
x+n

where x > 0, then

lim inf
N→∞

∑

N

n=1
1
n
Xn

lgN lg2 N
≤ 1 almost surely.

and

lim sup
N→∞

∑

N

n=1
1
n
Xn

lgN lg2 N
= ∞ almost surely.

Proof. As in the last proof, let an = 1/n and bN = lgN lg2N . The lower

limit is a direct result of Theorem 1. As for the upper limit, let M > 0, then

∞
∑

n=1

P{anXn/bn > M} =

∞
∑

n=1

P{Xn > Mbn/an}

=
∞
∑

n=1

[

1− FXn
(Mbn/an)

]

=

∞
∑

n=1

1

Mn lg n lg2 n+ n
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> C

∞
∑

n=1

1

n lgn lg2 n
= ∞.

Thus

lim sup
n→∞

anXn

bn
= ∞ almost surely

hence

lim sup
N→∞

∑

N

n=1 anXn

bN
≥ lim sup

N→∞

aNXN

bN
= ∞ almost surely

which completes the proof. ���

4. Discussion

The distribution used here is a continuous version of the Zipf-Mandelbrot

law also known as the Pareto-Zipf law. It’s sometimes referred to as the

the Yule-Simon distribution. Zipf law states “that the frequency of use

of the nth-most-frequently-used word in any natural language is inversely

proportional to n.” This has been show to apply to music as well as literature.

Mandelbrot extended this to include an extra term, n, as in this paper.

These types of distributions that don’t have a finite mean are sometimes

reserved for such phenomenon as solar flares and wars, see [7]. But the type

of distribution examined in this paper is mainly used in linguistics and in

ecological field studies. Besides being used to model the ranking of words in

various languages it has also been used to establish the number of species

according to their abundance, see [6].

The next step is to establish a limiting result for a more general dis-

tribution. Instead of observing P{Xn > x} = 1/(x + n) we can consider a

sequence of independent random variables where

P{Xn ≤ x} = 1−
1

x+ cn

for a general sequence {cn, n ≥ 1}. But the problem is that the results

here are so delicate that we really need to have a specific structure on our

sequence {cn, n ≥ 1} in order to obtain an Exact Weak Law. The harmonic
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sequence does play a pivotal role in this type of limit theorem, you can see

it in the sequence of coefficients in our Weak Law where we have no choice

but to set an = 1/n.
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