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Abstract

We study the occupation times left by random walk on (Z/NZ)2 at times either

proportional to N2 logN or much larger than N2 logN , and relate these random fields to

the Gaussian free field pinned at the origin. Our results answer a question raised in [18]

and mirror limit statements in [18] for the occupation times of large rods of size N in Z
3

by random interlacements at a level uN such that uNN3 is either proportional to N2 logN

or much larger than N2 logN .

0. Introduction

In this article, we consider simple random walk with unit jump rate,

and uniformly distributed starting point, on a large two-dimensional discrete

torus TN = (Z/NZ)2. We study the random field of occupation times left by

the walk close to the origin, when the walk runs for times either proportional

to N2 logN , or much larger than N2 logN . We relate this random field, in

the large N limit, to the two-dimensional Gaussian free field pinned at the

origin, by looking at scaled differences of occupation times. The results

we prove answer positively a question raised in [18]: the limit theorems we

derive in the present work mirror the statements obtained in [18] concerning

occupation times of long rods of size N in Z
3 by random interlacements

at a level uN such that uNN
3 is either proportional to N2 logN , or much
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larger than N2 logN . They signal the presence of a link between random

interlacements and random walk on a large two-dimensional torus.

We now discuss the problem treated in this work in more detail, but we

refer to Section 1 for the precise set-up. We consider Xt, t ≥ 0, the canonical

continuous time simple random walk on TN , with jump rate equal to 1, and

uniform starting distribution. We write P for its canonical law and Px for

the canonical law, of the walk starting at x ∈ TN . The field of occupation

times of the walk is defined as:

Lx
t =

∫ t

0
1{Xs = x} ds, for x ∈ TN , t ≥ 0 . (0.1)

We tacitly view Lx
t as a periodic function of x, and still write Ly

t when

y ∈ Z
2, in place of Lx

t with x the canonical projection of y on TN . We are

interested in two types of time scales when N goes to infinity:

i) tN = αN2 logN, with α > 0,

ii) t′N = αN N
2 logN, with lim

N
αN = ∞.

(0.2)

The choice (0.2) i) corresponds to a non-vanishing limit e−απ
2 of the probabil-

ity that the occupation time at a given point of TN , say the origin, vanishes,

see Remark 3.1. On the other hand, the choice (0.2) ii) corresponds to a

vanishing limit for this probability. We refer to the time scale (0.2) i) as the

Poissonian regime, and to (0.2) ii) as the ergodic regime.

The limit theorems we derive bring into play the two-dimensional Gaus-

sian free field pinned at the origin, that is, the centered Gaussian field

(ψx)x∈Z2 with covariance a(x) + a(x′) − a(x′ − x), for x, x′ ∈ Z
2, with a(·)

the potential kernel of the two-dimensional simple random walk, see (1.7),

(1.36), and an independent random variable R having the law BES0(
√
α, 1π )

of a zero-dimensional Bessel process at time 1
π starting in

√
α at time 0, see

(1.37). Our main results are the following. In the Poissonian regime (0.2) i),

we show in Theorems 3.1 and 3.7 that under P , when N tends to infinity,

( Lx
tN

logN

)
x∈Z2

converges in distribution to the flat field with value R2,

(0.3)
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and

(Lx
tN

− L0
tN√

2 logN

)
x∈Z2

converges in distribution to the random field (Rψx)x∈Z2 .

(0.4)

In the (simpler) case of the ergodic regime (0.2) ii), we instead show in

Theorems 4.1 and 4.2 that when N goes to infinity,

( Lx
t′N

t′NN
−2

)
x∈Z2

converges in distribution to the flat field with value 1,

(0.5)

and that

(Lx
t′N

− L0
t′N√

2t′NN
−2

)
x∈Z2

converges in distribution to (ψx)x∈Z2 . (0.6)

The above results provide a positive answer to the question raised in Remark

4.10 of [18] concerning the pertinence of the limit theorems derived in that

article for the occupation times of long rods in Z
3 by random interlacements,

to reflect an analogous behavior of the occupation times of simple random

walk on TN at time scales such as in (0.2). We refer to Remarks 3.2 1) and

4.1 for more on this topic.

Let us say a few words concerning proofs. An important role is played

by the successive returns to 0 and departures from the box with side-length
N
2 centered at the origin, for the walk on TN . Our main results (0.3) - (0.6)

can be recast in terms of limit statements for suitable additive functionals of

the walk, which are well approximated by discrete sums collecting the con-

tributions of the additive functionals along the above mentioned excursions,

cf. Proposition 2.1. The analysis of these discrete sums is more involved in

the Poissonian regime (0.2) i) than in the simpler ergodic regime (0.2) ii). In

the case of (0.4) the heart of the matter appears in Theorem 3.2, which de-

rives the joint limit law of the duration of an excursion and the contribution

of the additive functional during the excursion. Interestingly, the proof of

Theorem 3.2 contains some ingredients, see in particular Lemma 3.1, which,

although simpler, are quite reminiscent of what was done in Theorem 4.1

of [18] for occupation times of random interlacements. We refer to Remark

3.2 2) for potential alternative routes to the result described here, either by
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means of random interlacements, or generalized Ray-Knight theorems, see

chapter 8 of [13].

Let us now describe how this article is organized.

In Section 1 we introduce additional notation and collect several re-

sults concerning the random walk on TN and the above mentioned system

of excursions, cf. Lemmas 1.2 and 1.3. We also recall some facts about

discrete potential theory, the Gaussian free field pinned at the origin, and

zero-dimensional Bessel processes.

Section 2 contains some preparation. It introduces the various additive

functionals entering the proof of (0.3) - (0.6), and relates them to discrete

sums collecting their contributions along excursions, cf. Proposition 2.1.

In Section 3 we study the Poissonian regime and derive (0.4), (0.3) in

Theorems 3.1 and 3.3. Most of the work goes into the proof of Theorem 3.2,

where the limit joint law of the duration of an excursion and the contribution

of the relevant additive functional is analyzed. In Remark 3.2 we explain how

these results compare with Theorem 4.2 in [18], in the case of occupation

times of long rods by random interlacements in Z
3.

The last Section 4 is devoted to the simpler ergodic regime. We prove

(0.6) and (0.5) in Theorems 4.1 and 4.2. The comparison with the results

obtained in Theorem 4.9 of [18] in the case of occupation times of long rods

by random interlacements in Z
3 is discussed in Remark 4.1.

Finally let us state our convention concerning constants. We denote by

c, c′, c̃, c positive constants with value changing from place to place. Num-

bered constants refer to the value corresponding to their first appearance in

the text. In Section 1 constants are numerical, but from Section 2 onward

they depend on Λ in (2.1) and V in (2.3).

1. Set-up and Some Useful Facts

In this section we introduce additional notation. We recall various facts

concerning simple random walk on TN , discrete potential theory, the two-

dimensional Gaussian free field pinned at the origin, and zero-dimensional

Bessel processes. We introduce in (1.12) the system of excursions of the walk
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on TN , which plays an important role throughout the article, and derive some

of its properties in Lemmas 1.2 and 1.3.

We denote by N = {0, 1, . . . } the set of natural numbers. When u is a

non-negative real number, we let [u] stand for the integer part of u. Given a

finite set A, we write |A| for its cardinality. We denote by pN (·) the canonical
map from Z

2 onto TN . We write | · | for the Euclidean norm on R
2, and d(·, ·)

for the distance on TN or Z2 induced by the sup-norm |·|∞. For A,A′ subsets

of TN or Z2, we write d(A,A′) = inf{d(x, x′); x ∈ A, x′ ∈ A′} for the mutual

distance between A and A′. When A = {x}, we write d(x,A′) for simplicity.

We denote by B(x, r) the closed ball with center x (in TN or Z2) and radius

r ≥ 0 in the d(·, ·)-distance. For U ⊆ Z
2, we write ∂U = {x ∈ Z

2\U ;

∃x′ ∈ U , |x− x′| = 1} for the boundary of U , ∂intU = {x ∈ U ; ∃x′ ∈ Z
2\U ,

|x−x′| = 1} for the interior boundary of U , and U = U ∪∂U for the closure

of U . When U ⊆ TN we define ∂U, ∂intU , and U in a similar manner.

The canonical space for the continuous time simple random walk on TN

consists of the set of right-continuous trajectories from R+ into TN with

finitely many jumps on any finite interval. It is endowed with the canonical

σ-algebra. We denote by Xt, t ≥ 0, the canonical process and by θt, t ≥ 0,

the canonical shift. Given U ⊆ TN , we write HU = inf{t ≥ 0;Xt ∈ U},
H̃U = inf{t > 0; for some s < t, Xs 6= X0, and Xt ∈ U}, and TU = inf{t ≥
0;Xt /∈ U}, for the entrance time of U , the hitting time of U , and the exit

time from U . When U = {x}, we write Hx or H̃x for simplicity.

We denote by Px the canonical law of the simple random walk on TN

with exponential holding times of parameter 1, starting from x ∈ TN , and

by Ex the corresponding expectation. When ρ is a measure on TN we denote

by Eρ the measure
∑

x∈TN
ρ(x)Px and by Eρ the corresponding expectation.

We write π for the uniform probability on TN , i.e.

π(x) = N−2, for x ∈ TN . (1.1)

It is a reversible measure for the walk on TN . When ρ = π, we simply write

P and E in place of Pπ and Eπ.

We consider the closed ball in the d(·, ·)-distance with radius N
4 and

center at the origin:

B = B
(
0,

N

4

)
⊆ TN . (1.2)
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The Green function of the walk on TN killed when exiting B is defined by

gB(x, y) = Ex

[ ∫ TB

0
1{Xs = y}ds

]
, for x, y ∈ TN . (1.3)

It is a symmetric function of its arguments x and y. When K ⊂ B, the

equilibrium measure of K relative to B is the measure eK,B concentrated on

∂intK defined by

eK,B(x) = Px[H̃K > TB ] 1K(x), for x ∈ TN . (1.4)

Its total mass capB(K) is the capacity of K relative to B. The measure eK,B

satisfies the identity:

Px[HK < TB ] =
∑

y∈TN

gB(x, y) eK,B(y), for x ∈ TN . (1.5)

It is also known that when K ′ ⊂ K, the measure eK ′,B is obtained from eK,B

via the sweeping identity:

eK ′,B(x) = PeK,B
[HK ′ < TB ,XHK′

= x], for x ∈ TN . (1.6)

Our main interest in this work lies in the large N asymptotics of various

quantities, and we will tacitly assume throughout thatN ≥ c so that B ⊆ TN

with its natural subgraph structure of TN can be identified with p−1
N (B) ∩

(−N
2 ,

N
2 )

2 endowed with its subgraph structure of Z2 (recall that pN stands

for the canonical map: Z2 → TN ). We can thus view B and B as subsets of

Z
2, and in particular represent the restriction of gB(·, ·) to B × B in terms

of the simple random walk on Z
2 killed when exiting B.

We then introduce the potential kernel of simple random walk in Z
2,

cf. (1.40), p. 37 of [10], or p. 121, 122, 148 of [15]:

a(y) = lim
n

n∑
j=0

PZ2

0 [Yj = 0]− PZ2

0 [Yj = y], for y ∈ Z
2, (1.7)

where Yj , j ≥ 0, stands for the canonical discrete time simple random walk

on Z
2, and PZ2

y for its canonical law starting from y ∈ Z
2.
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It is known that a(·) is a non-negative function on Z
2, vanishing at the

origin, which is symmetric and satisfies, cf. Proposition P2, p. 123 of [15]:

lim
y′→∞

a(y′ + y)− a(y′) = 0, for any y ∈ Z
2. (1.8)

In addition a(·) has the asymptotic behavior, cf. Theorem 1.62, p. 38 of [10]:

a(y) ∼ 2

π
log |y|, as y → ∞ . (1.9)

By Proposition 1.6.3, p. 39 of [10], and the above mentioned identification,

we can represent gB(·, ·) in terms of a(·), via the formula:

gB(x, x
′) = Ex[a(XTB

− x′)]− a(x− x′), for x, x′ ∈ B. (1.10)

In particular when y, y′ ∈ Z
2 are fixed, setting x, x′ to be their canonical

images on TN , whose distance to Bc is equivalent to N
4 as N → ∞, we find

by (1.8), (1.10) that:

lim
N
gB(x, x)− gB(x, x

′) = a(y − y′) . (1.11)

In addition by (1.9), (1.10), we also find that

gB(x, x
′) ∼ 2

π
logN, as N → ∞ . (1.12)

We now introduce the sequences Rk, k ≥ 1, and Dk, k ≥ 1, of successive

returns to 0 and departures from B of the walk on TN . The system of ex-

cursions induced by these sequences of stopping times will play an important

role throughout the sequel. We define

R1 = H0, D1 = TB ◦ θR1 +R1, and for k ≥ 1

Rk+1 = R1 ◦ θDk
+Dk, Dk+1 = D1 ◦ θDk

+Dk,
(1.13)

and we set R0 = 0 by convention, so that P -a.s.,

0 = R0 ≤ R1 < D1 < · · · < Rk < Dk+1 < . . . .
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It follows from the strong Markov property applied at times Rk, k ≥ 1, that

under P , R1, R2 −R1, . . . , Rk+1 −Rk, . . . are independent and the

Rk+1−Rk, k≥1, have same distribution as H0 ◦ θTB
+TB under P0.

(1.14)

We also introduce the notation

h = E[H0], h0 = E[R2 −R1]
(1.14)
= E0[H0 ◦ θTB

+ TB ] . (1.15)

The next lemma collects various known controls on the above random times,

and the large N behavior of h and h0.

Lemma 1.1.

h ∼ 2

π
N2 logN, as N → ∞. (1.16)

h0 ∼ 2

π
N2 logN, as N → ∞. (1.17)

sup
t≥0

|P [H0 > t]− e−t/h| ≤ c
N2

h
≤ c′

logN
. (1.18)

sup
x∈TN

Ex

[
exp

{
c

TB

N2

}]
≤ 2. (1.19)

sup
x∈TN

Ex

[
exp

{
c

H0

N2 logN

}]
≤ 2. (1.20)

Proof. Claim (1.16) comes from Proposition 8, p. 21 in chapter 13 of [2].

For (1.17), it follows from a reward renewal argument that

π(0) =
1

N2
=

1

h0
E0

[ ∫ H0◦θTB+TB

0
1{Xs = 0}ds

]
=

1

h0
gB(0, 0),

and hence that

h0 = N2gB(0, 0) . (1.21)

Claim (1.17) now follows by (1.12). Claim (1.18) follows from Theorem 1

of [1], see also Proposition 20, p. 28 in Chapter 3 of [2], and from p. 34 in

Chapter 5 of [2].

The exponential bound (1.19) is a consequence of Khasminskii’s lemma,

cf. [9] and also [5], p. 71, and of the estimate, see for instance Lemma 1.1 in
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[16]:

sup
x∈B

Ex[TB ] ≤ cN2 .

As for (1.20) it also follows from Khasminskii’s lemma and the estimate, see

Proposition 10.13, p. 133 of [11],

Ex[Hx′ ] ≤ cN2 log(d(x, x′) + 1) ≤ cN2 logN, for x, x′ ∈ TN . (1.22)

This completes the proof of Lemma 1.1. ���

Given a sequence sN ≥ 0, we introduce the “number of returns up to

time sN”:

JN =
∑
k≥1

1{Rk ≤ sN}, (1.23)

so that P -a.s., RJN ≤ sN < RJN+1 (recall that R0 = 0, by convention). Our

main interest lies in the choice sN = tN or sN = t′N , in the notation of (0.2).

We then write:

KN =
∑
k≥1

1{Rk ≤ tN} and K ′
N =

∑
k≥1

1{Rk ≤ t′N} . (1.24)

The next lemma will be useful for both choices sN = tN or sN = t′N .

Lemma 1.2.

lim
N
P [JN ≥ 1, RJN ≤ sN < DJN ] = 0 . (1.25)

Proof. By reversibility we know that under P the right-continuous modifi-

cation of s ∈ [0, sN ] → XsN−s ∈ TN has same law as s ∈ [0, sN ] → Xs ∈ TN .

On the event {JN ≥ 1, RJN ≤ sN < DJN }, P -a.s. the right-continuous mod-

ification of (XsN−s)0≤s≤sN enters 0 prior to exiting B. Hence the probability

in (1.25) is smaller than:

P [H0 < TB ] ≤ P [H0 ≤ N2
√

logN ] + P [N2
√

logN < TB ] −→
N

0,

using (1.16), (1.18) for the first term and (1.19) for the second term. ���

The next lemma will come to use in Section 4 with the choice sN = t′N ,

cf. (4.7).
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Lemma 1.3. There exists a sequence δN ∈ (0, 1), with limN δN = 0, such

that

lim
N
P
[
(1− δN )

π

2
αN ≤ K ′

N ≤ (1 + δN )
π

2
αN

]
= 1,

(see (0.2) for the definition of αN ).
(1.26)

Proof. By (1.14), (1.15), we see that for k ≥ 1,

E[Rk] = h+ (k − 1)h0, (1.27)

varP (Rk) = varP (R1) + (k − 1) varP (R2 −R1)
(1.19),(1.20)

≤ k c (N2 logN)2,

(1.28)

where varP stands for the variance under P , and we used (1.14) and the

strong Markov at time TB under P0 to bound varp(R2−R1). By Chebyshev’s

inequality it follows that for any ε ∈ (0, 1), k ≥ 1, N ≥ c,

P [(1− ε)(h + (k − 1)h0) ≤ Rk ≤
(1 + ε)(h + (k − 1)h0)] ≥ 1− c

ε2
k(N2 logN)2

(h+ (k − 1)h0)2
≥ 1− c′

kε2
.

(1.29)

We then introduce (with the convention supφ = 0):

k′N = sup{k ≥ 1; h+ (k − 1)h0 ≤ t′N}, (1.30)

and see by (0.2) ii), (1.16), (1.17) that

k′N ∼ π

2
αN , as N → ∞. (1.31)

Therefore, when δ ∈ (0, 12 ), choosing ε ∈ (0, 1) so that (1− ε)(1 + δ) > 1, we

have:

P [K ′
N > (1 + δ)k′N ] ≤ P [R[(1+δ)k′N ]+1 ≤ h+ k′N h0]

(1.29)
≤

c

k′Nε2
+ P

[
(1− ε)(h + [(1 + δ)k′N ]h0) ≤ R[(1+δ)k′N ]+1 ≤ h+ k′N h0

]
−→
N

0,

(1.32)

since the probability in the last line vanishes for large N by our choice of ε.

Likewise when we instead choose ε ∈ (0, 1) so that (1 + ε)(1 − δ) < 1,
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we find that

P [K ′
N < (1− δ)k′N ] ≤ P [R[(1−δ)k′N ]+1 > h+ (k′N − 1)h0]

(1.29)
≤

c

k′Nε2
+P

[
h+(k′N−1)h0 < R[(1−δ)k′N ]+1 ≤ (1+ε)(h+[(1−δ)k′N ]h0)

]
−→
N

0,

(1.33)

since the probability in the last line vanishes for large N by our choice of ε.

Collecting (1.31) - (1.33), we see that

γN
def
= E

[∣∣∣ K ′

N
π
2
αN

− 1
∣∣∣ ∧ 1

]
−→
N

0, (1.34)

and hence by Chebyshev’s inequality for large N

P
[∣∣∣ K ′

N
π
2
αN

− 1
∣∣∣ > √

γN

]
≤ √

γN −→
N

0 . (1.35)

The claim (1.26) readily follows (choosing for instance δN =
√
γ
N

for large

N). ���

We now turn to the definition of the two-dimensional Gaussian free field

pinned at the origin. We introduce on some auxiliary space

ψy, y ∈ Z
2, a centered Gaussian field with covariance function

E[ψyψy′ ] = a(y) + a(y′)− a(y′ − y), for y, y′ ∈ Z
2.

(1.36)

We refer to Lemma 1.2 of [18], where the interpretation of this random field

as the limit of the field of increments at the origin of a Gaussian free field

with Dirichlet conditions outside [−N,N ]2, as N → ∞, or as the limit of the

same field with Dirichlet boundary condition outside [−N,N ]2, conditioned

to take the value 0 at the origin, with N → ∞, is provided. This last limit

result explains the terminology of Gaussian free field “pinned at the origin”

we use for the random field in (1.36).

As last topic of this section we briefly recall some facts concerning the

zero-dimensional Bessel process. We denote by BES0(a, τ) the law at time

τ ≥ 0 of a zero-dimensional Bessel process starting at a ≥ 0. If the random

variable R is BES0(a, τ)-distributed, the Laplace transform of R2 is given

by the formula, see [14], p. 411, or [8], p. 239:

E[e−λR2
] = exp

{
− a2λ

1 + 2τλ

}
, for λ ≥ 0 . (1.37)
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We denote by BESQ0(α2, τ) the law of R2, namely the distribution of a

zero-dimensional square Bessel process at time τ starting from a2 at time 0.

2. Further Preparation

In this section we introduce the additive functionals that will enter the

proof of the main claims (0.3) - (0.6) in the next two sections. We show in

Proposition 2.1 that these additive functionals can be replaced by discrete

sums collecting their respective contributions between successive times Rk,

with 1 ≤ k ≤ KN , in the case of (0.2) i) and 1 ≤ k ≤ K ′
N , in the case of (0.2)

ii). Throughout this section and the rest of the article constants depend on

the set Λ in (2.1) and the function V in (2.3).

We introduce

Λ a finite subset of Z2 containing 0 . (2.1)

From now on we assume N ≥ c (see the convention concerning constants

stated above (2.1)), so that (see (1.2) and below (1.6)):

Λ ⊆ B . (2.2)

We will also routinely view Λ as a subset of TN , keeping in mind the iden-

tification discussed below (1.6). We further consider a function

V : Z2 → R, supported in Λ, such that
∑
x∈Λ

V (x) = 0 . (2.3)

In the same fashion we will routinely view V as a function on TN , vanishing

on the complement of Λ in TN .

The next lemma collects controls, which we will repeatedly use in the

sequel.

Lemma 2.1.

sup
x∈Λ

Px[H0 > TB ] ≤ c

logN
. (2.4)

sup
x∈TN

Ex

[
exp

{
c

∫ H0

0
1{Xs ∈ Λ}ds

}]
≤ 2 . (2.5)
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capB(Λ) ∼ π

2 logN
, as N → ∞ . (2.6)

Proof. We begin with the proof of (2.4). It follows from the strong Markov

property applied at time H0 that for x ∈ TN ,

gB(x, 0) = Px[H0 < TB] gB(0, 0).

Using the symmetry of gB(·, ·) we find

Px[H0 > TB ] =
gB(0, 0)− gB(0, x)

gB(0, 0)

(1.11),(1.12)
≤ c

logN
, for x ∈ Λ, (2.7)

and (2.4) follows. We then turn to the proof of (2.5). Using Khasminskii’s

lemma once again, cf. [5], p. 71, it suffices to show that

sup
x∈TN

Ex

[ ∫ H0

0
1{Xs ∈ Λ}ds

]
≤ c , (2.8)

To this end we note that for x ∈ TN ,

Ex

[ ∫ H0

0
1{Xs ∈ Λ}ds

]
=

∑
y∈Λ

Px

[
Hy < H0,

∫ H0◦θHy+Hy

Hy

1{Xs = y)ds
]

=
∑

y∈Λ\{0}

Px[Hy < H0]

Py[H̃y > H0]

using the strong Markov property and the identity Ey[
∫ H0

0 1{Xs = y}ds] =
Py[H̃y > H0]

−1 for y 6= 0 in the last step. Now observe that Py[H̃y > H0] ≥ c,

for y ∈ Λ and (2.8) follows. This proves (2.5). Finally let us prove (2.6). By

(1.6) we find that

e{0},B(0) = PeΛ,B
[H0 < TB ]

(2.4)∼ capB(Λ) , as N → ∞.

On the other hand by (1.4) we have

e{0},B(0) = P0[H̃0 > TB ] =
1

gB(0, 0)

(1.12)∼ π

2 logN
, as N → ∞ .

The claim (2.6) follows and the proof of Lemma 2.1 is completed. ���
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We introduce the functions (supported in Λ)

VN =
1√

2 logN
V, ṼN =

1

logN
1{0}, (2.9)

and

V ′
N =

1√
αN

VN =
1√

2t′NN
−2

V, Ṽ ′
N =

1

αN
ṼN =

1

t′NN
−2

1{0} . (2.10)

The respective contributions of these additive functionals between the suc-

cessive times Rk, k ≥ 0, is described by the four sequences:

ξk =

∫ Rk+1

Rk

VN (Xs) ds, ξ̃k =

∫ Rk+1

Rk

ṼN (Xs) ds, k ≥ 0, (2.11)

and

ξ′k =

∫ Rk+1

Rk

V ′
N (Xs) ds =

1√
αn

ξk,

(2.12)

ξ̃′k =

∫ Rk+1

Rk

Ṽ ′
N (Xs) ds =

1

αN
ξ̃k, for k ≥ 0.

By definition of R1(= H0), see (1.13), and we have

ξ̃0 = 0 = ξ̃′0 . (2.13)

The application of the strong Markov property at the successive times Rk

yields the following strengthening of (1.14):

under P , (R1, ξ0), (R2 −R1, ξ1), . . . , (Rk+1 −Rk, ξk), . . . , are independent

and the (Rk+1 −Rk, ξk), k ≥ 1, are identically distributed.

(2.14)

In addition the same holds if one replaces ξk, k ≥ 0, with one of the other

sequences that appear in (2.11), (2.12).

We define the partial sums

Sk = ξ1 + · · · + ξk, for k ≥ 1,

= 0, for k = 0,
(2.15)
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and in a similar fashion S̃k, k ≥ 0, S′
k, k ≥ 0, and S̃′

k, k ≥ 0, respectively

replacing ξℓ, ℓ ≥ 0, by ξ̃ℓ, ℓ ≥ 0, ξ′ℓ, ℓ ≥ 0, and ξ̃′ℓ, ℓ ≥ 0, in (2.15).

The next proposition enables us in the next two sections to replace the

additive functionals based on the functions in (2.9), (2.10), with discrete

sums, see (2.15).

Proposition 2.1.

∫ tN

0
VN (Xs) ds− SKN

−→ 0, in P -probability, as N → ∞, and the

same holds true with ṼN and S̃k, k ≥ 0, in place of VN and Sk, k ≥ 0.
(2.16)

∫ t′N

0
V ′
N (Xs) ds− S′

K ′

N
−→ 0, in P -probability, as N → ∞, and the

same holds true with Ṽ ′
N and S̃′

k, k ≥ 0, in place of V ′
N and S̃′

k, k ≥ 0.

(2.17)

Proof. With the notation (1.23), and an arbitrary non-negative sequence

sN we have:

∫ sN

0
VN (Xs) ds = ξ0 + SJN −

∫ RJN+1

sN

VN (Xs) ds . (2.18)

By (2.5) of Lemma 2.1 we know that

|ξ0| ≤
c√

logN

∫ H0

0
1{Xs ∈ Λ} ds −→

N
0, in P -probability. (2.19)

Moreover we have:

E
[ ∣∣∣

∫ RJN+1

sN

VN (Xs) ds
∣∣∣ ∧ 1

∣∣∣
]

≤ E
[ ∫ R1

0
|VN (Xs)| ds

]
+ E

[
JN ≥ 1,

∣∣∣
∫ RJN+1

sN

VN (Xs) ds
∣∣∣ ∧ 1

]
.

By (2.5) the first term in the right-hand side tends to zero, and by Lemma

1.2 the last term is bounded up to a quantity tending to zero with N by

E
[
JN ≥ 1,DJN ≤ sN ,

∣∣∣
∫ RJN+1

sN

VN (Xs)ds
∣∣∣
]
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≤ E
[ ∫ H0◦θsN +sN

sN

|VN (Xs)| ds
]

≤ c√
logN

sup
x∈TN

Ex

[ ∫ H0

0
1{Xs ∈ Λ} ds

]
(2.5)−→
N

0 .

Coming back to (2.18) we have thus shown that

∫ sN

0
VN (Xs) ds − SJN → 0, in P -probability as N → ∞. (2.20)

A similar and even simpler argument shows that

∫ sN

0
ṼN (Xs) ds − S̃JN → 0, in P -probability as N → ∞. (2.21)

Choosing sN = tN yields (2.16). Choosing sN = t′N and respectively dividing

(2.20) and (2.21) by 1√
αN

and 1
αN

yields (2.17). This completes the proof of

Proposition 2.1. ���

3. The Poissonian Regime

In this section we investigate the field of occupation times left by the ran-

dom walk on TN at times proportional to N2 logN , close to the origin, as N

goes to infinity, and relate this asymptotic behavior to the two-dimensional

free field pinned at the origin. The main results are Theorems 3.1 and 3.3,

which respectively prove the claims (0.4) and (0.3) from the Introduction.

However most of the work goes into the proof of Theorem 3.2. Theorems

3.1 and 3.3 answer positively a question raised in Remark 4.10 1) of [18].

We explain in Remark 3.2 the link with the results obtained in [18] for the

occupation field of random interlacements in long rods of Z3 at a level uN

of order logN
N . We use the convention concerning constants stated at the

beginning of Section 2: constants implicitly depend on Λ and V in (2.1),

(2.3).

We recall the definition (0.2) i) of the time scale tN :

tN = αN2 logN, with α > 0 . (3.1)
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It will become clear, cf. Remark 3.1, that this time scale corresponds to a

Poissonian regime for the system of excursions of the walk described by the

stopping times in (1.13). We tacitly endow R
Z2

with the product topology,

and the convergence stated in Theorems 3.1 and 3.3 below, actually corre-

sponds to the convergence in distribution of all finite dimensional marginals

of the relevant random field towards the stated limit. In what follows we

routinely identify a random field on TN with a periodic random field on Z
2,

by means of composition with the canonical map pN : Z2 → TN .

Theorem 3.1. Under P , as N goes to infinity,

(
Ly
tN

− L0
tN√

2 logN

)
y∈Z2

converges in distribution to the random field (Rψy)y∈Z2 ,

(3.2)

where R and (ψy)y∈Z2 are independent, and

R is BES0
(√

α,
1

π

)
-distributed, (3.3)

(ψy)y∈Z2 is the centered Gaussian field introduced in (1.36). (3.4)

Theorem 3.1 will follow from Theorem 3.2 stated below. We first need

to introduce notation. For V as in (2.3) we define

E(V ) = − ∑
y,y′∈Z2

a(y′ − y)V (y)V (y′), (3.5)

and note that E(V ) can be expressed in term of (ψy)y∈Z2 via the identity:

E(V ) = E
[( ∑

y∈Z2

V (y)ψy

)2]
, (3.6)

(where we made use of the fact that
∑

y V (y) = 0). We consider on some

auxiliary space two variables τ, ζ such that

τ and ζ are independent, (3.7)

τ is exponentially distributed with parameter
(
π

2

)
(3.8)

(so that τ has expectation 2
π ),

ζ has bilateral exponential distribution with parameter
(

π

E(V )

)1/2
, (3.9)
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(i.e. when E(V ) > 0, ζ has the density ρ
2 e

−ρ|u| with respect to the Lebesgue

measure du on R, with ρ = ( π
E(V ))

1
2 , and when E(V ) = 0, we simply mean

that ζ = 0). We also recall the definitions (1.13) and (2.11). The main step

in proving Theorem 3.1 is the next

Theorem 3.2. Under P , as N goes to infinity,

(
R2 −R1

N2 logN
, ξ1

)
converges in law to (τ, ζ), (3.10)

R1

N2 logN
converges in law to τ . (3.11)

We first assume Theorem 3.2 and explain how Theorem 3.1 follows.

Proof of Theorem 3.1 (assuming Theorem 3.2). We first observe that

Theorem 3.1 follows once we show that in the notation of (2.9)

∫ tN

0
VN (Xs) ds converges in law to σJ , as N → ∞, (3.12)

where σk, k ≥ 0, are the partial sums of i.i.d. variables, ζℓ, ℓ ≥ 1, distributed

as ζ in (3.9) (i.e. σ0 = 0, σk = ζ1 + · · · + ζk, for k ≥ 1), and J is an

independent Poisson variable with parameter απ
2 . Indeed this implies that

for b ∈ R,

E[exp{ib σJ}] = exp
{
α

π

2
(E[eiζ ]− 1)

}
= exp

{
−α

2

E(V ) b2

1 + E(V )
π

b2

}

(1.37)
=

(3.6)
E
[
exp

{
ibR

∑
y∈Z2

V (y)ψy

}]
.

(3.13)

As a result (3.12) implies that for b ∈ R and V as in (2.3)

lim
N

E
[
exp

{
ib

∑
y∈Z2

V (y)
Ly
tN√

2 logN

}]
= E

[
exp

{
ib

∑
y∈Z2

V (y)Rψy

}]
, (3.14)

and Theorem 3.1 follows. We will now prove (3.12) (assuming Theorem 3.2).

We consider b ∈ R,K > 1, and define

AK,N = E
[
RK > tN , exp

{
ib

∫ tN

0
VN (Xs)ds

}]
. (3.15)
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It follows from (2.16) that

lim
N

AK,N − E[RK > tN , e
ibSKN ] = 0 . (3.16)

By definition of KN , see (1.24), we have

E[RK > tN , e
ib SKN ] =

∑
0≤k<K

E[Rk ≤ tN < Rk+1, e
ibSk ]. (3.17)

Combining (2.14) and Theorem 3.2, we see that for any k ≥ 1,

(
R1

N2 logN
, . . . ,

Rk+1

N2 logN
, ξ1, . . . , ξk

)
law−→
N

(T1, . . . , Tk+1, ζ1, . . . , ζk), (3.18)

where the ζi, i ≥ 1, are i.i.d., with same distribution as ζ in (3.9), and the

Ti, i ≥ 1, are independent from the ζi, i ≥ 1, and distributed as the successive

jumps of a Poisson point process of intensity π
2 on the positive half-line. It

nows follows by a routine continuity argument that for each k ≥ 1,

lim
N
E
[

Rk

N2 logN
≤ α <

Rk+1

N2 logN
, eibSk

]
= E[Tk ≤ α < Tk+1, e

ibσk ], (3.19)

and by (3.11) (recall that S0 = 0 and σ0 = 0) that:

lim
N
E
[

R0

N2 logN
> α, eibS0

]
= E[T1 > α, eibσ0 ] . (3.20)

Setting J =
∑

k≥1 1{Tk ≤ α}, we have thus shown that

lim
N
AK,N = E[TK > α, eibσJ ], (3.21)

where J is independent of the ζℓ, ℓ ≥ 1, and Poisson (απ
2 )-distributed. Hence

for K ≥ 1

lim sup
N

∣∣E
[
eib

∫ tN
0 VN (Xs)ds

]
− E[eibσJ ]

∣∣ ≤

lim sup
N

P [RK ≤ tN ] + P [TK ≤ α]
(3.18)
= 2P [TK ≤ α] → 0, as K → ∞.

(3.22)

The claim (3.12) follows and Theorem 3.1 is thus proved (once Theorem 3.2

is shown). ���
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Remark 3.1. By (3.19), (3.20), it follows that for any k ≥ 0,

lim
N
P [KN = k] = P [J = k],

and KN converges in law to a Poisson variable with parameter απ
2 , as N

goes to infinity. This explains why we refer to the time scale tN in (0.2) i)

as the Poissonian regime. ���

Proof. of Theorem 3.2. We first note that (3.11) is a straightforward

consequence of (1.16), (1.18). We then turn to the proof of (3.10). By (2.5)

and the strong Markov property at time D1, we see that

∫ R2

D1

VN (Xs)ds −→
N

0 in P -probability . (3.23)

Similarly by (1.19) and the strong Markov property at time R1, we see that

D1 − R1

N2 logN
−→
N

0 in P -probability. (3.24)

As a result of (3.23), (3.24), we see that (3.10) will follow once we show that

(
R2 −D1

N2 logN
,

∫ D1

R1

VN (Xs) ds
)

law−→ (τ, ζ), as N → ∞ . (3.25)

To prove (3.25) we will rely on the following two propositions:

Proposition 3.2.

lim
N

sup
x∈∂B

∣∣∣Px

[
H0

h
> t

]
− e−t

∣∣∣ = 0, for each t > 0 . (3.26)

Proposition 3.3.

∫ TB

0
VN (Xs) ds

law−→
N

ζ under P0 . (3.27)

We first explain how (3.25) follows once Propositions 3.2 and 3.3 are

proved. The application of the strong Markov property at time D1 and at
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time R1 then shows that for any t ≥ 0 and b ∈ R:

E
[
D2 −D1

h
> t, e

ib
∫D1
R1

VN (Xs)ds
]

= E0

[
eib

∫ TB
0 VN (Xs)dsPXTB

[
H0

h
> t

]]

−→
N

E[eibζ ] e−t.

By a tightness and uniqueness of limit points argument, the above conver-

gence implies that under P as N → ∞,

(
R2 −D1

h
,

∫ D1

R1

VN (Xs) ds
)

law−→
(
π

2
τ, ζ

)
.

By (1.16) we know that h ∼ 2
π N

2 logN and (3.25) straightforwardly follows.

There remains to prove Propositions 3.2 and 3.3.

Proof of Proposition 3.2. We pick t > 0 and introduce the shorthand

notation

T = N2
√

logN . (3.28)

We assume by (1.16) that N is large enough so that t > T
h . We then write

sup
x∈∂B

∣∣∣Px

[
H0

h
> t

]
− e−t

∣∣∣ ≤ a1 + a2 + a3 + a4, with

a1 = sup
x∈∂B

∣∣∣Px

[
H0

h
> t

]
− Px

[
H0 ◦ θT + T

h
> t

]∣∣∣,

a2 = sup
x∈∂B

∣∣∣Px

[
H0 ◦ θT + T

h
> t

]
− P

[
H0

h
> t− T

h

]∣∣∣

a3 =
∣∣∣P

[
H0

h
> t− T

h

]
− e(t−

T
h
)
∣∣∣,

a4 = |e−(t−T
h
) − e−t| .

(3.29)

We now bound ai, for i = 4, . . . , 1. By (1.16), (3.28) we see that

a4 ≤ eT/h − 1 −→
N

0 . (3.30)

By (1.18) we find that

a3 −→
N

0 . (3.31)
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Applying the Markov property at time T together with translation invariance

and denoting by pt(x, y) the transition density with respect to π of the walk

on TN , see (1.11), we find

a2≤
∑

y∈TN

|pT (0, y)−1|π(y)≤
( ∑

y∈TN

(pT (0, y)−1)2 π(y)
)1/2

=(p2T (0, 0)−1)1/2,

(3.32)

using reversibility and the Chapman-Kolmogorov equation in the last step.

From (27), p. 13 in Chapter 5 of [2], it follows that

p2T (0, 0) = N2P0[X2T = 0] =
∑

0≤k1,k2<N

e−T (1−cos(2π
k1
N

)+1−cos(2π
k2
N

)). (3.33)

Note that the terms ki and N − ki, for 0 < ki < N , i = 1, 2, give the same

contribution in the above sum. Hence we see that

p2T (0, 0) − 1 ≤ 2
∑

k1+k2>0

e−cT (
k21+k22
N2 )

(3.28)
≤ c e−c′

√
logN −→

N
0 . (3.34)

Coming back to (3.32) we have shown that

a2 −→
N

0 . (3.35)

Finally we consider a1 and note that H0 ≤ H0 ◦ θT + T . Hence we have

a1 = sup
x∈∂B

Px[H0 ◦ θT + T > th ≥ H0] ≤ sup
x∈∂B

Px[H0 ≤ T ] . (3.36)

We introduce the shorthand notation

ϕ(y) = Py[H0 ≤ T ], for y ∈ TN , (3.37)

and note that

∑
y∈TN

ϕ(y)π(y) = P [H0 ≤ T ]
(1.18)
≤ c

logN
+ 1− e−

T
h ≤ c′√

logN
.

If we now define

A = {y ∈ TN ; ϕ(y) ≤ (logN)−
1
4}, (3.38)
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it follows from Chebyshev’s inequality that

π(Ac) ≤ c′(logN)−
1
4 . (3.39)

Hence the proportion of sites in Ac inside any ball or radius N(logN)−
1
10 in

TN tends to 0 as N goes to infinity. By Lemma 1.12 of [3] it follows that

the probability that the walk starting from any point in TN meets A before

moving away at distance cN(logN)−
1
10 is uniformly bounded away from 0.

Using the strong Markov property we see that

sup
x∈∂B

Px[H0 < HA] −→
N

0 . (3.40)

Now for any x ∈ TN , we find by the strong Markov property at time HA

Px[H0 ≤ T ] ≤ Px[H0 < HA] + Px[HA ≤ H0 ≤ T ]

≤ Px[H0 < HA] + sup
y∈A

Py[H0 ≤ T ].

Coming back to (3.36) we have shown that

a1 ≤ sup
x∈∂B

Px[H0 < HA] + sup
y∈A

ϕ(y)
(3.38),(3.40)−→

N
0 . (3.41)

This completes the proof of (3.26). ���

Our next step is the

Proof of Proposition 3.3. It will be convenient to replace P0 by Pν in

(3.27), with

ν=
eΛ,B

capB(Λ)
, the normalized equilibrium measure of Λ relative to B. (3.42)

As we now explain, (3.27) follows once we show that

∫ TB

0
VN (Xs)ds

law−→
N

ζ, under Pν . (3.43)

Indeed for b ∈ R, by the strong Markov property at time H0, we have

Eν

[
eib

∫ TB
0 VN (Xs)ds

]
= Eν

[
H0 < TB , e

ib
∫H0
0 VN (Xs)ds

]
E0

[
eib

∫ TB
0 VN (Xs)ds

]

+Eν

[
TB < H0, e

ib
∫ TB
0 VN (Xs)ds

]
, (3.44)
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so that

∣∣Eν

[
eib

∫ TB
0 VN (Xs)ds

]
− E0

[
eib

∫ TB
0 VN (Xs)ds

]∣∣

≤ Eν

[
H0 < TB,

∣∣eib
∫H0
0 VN (Xs)ds − 1

∣∣]+ 2Pν [H0 > TB ]
(2.4),(2.5)−→

N
0, (3.45)

and the claim follows.

We thus turn to the proof of (3.43). Expanding the exponential function,

we find in a classical fashion, see for instance (2.6) of [18] that for |z| < cN ,

Eν

[
ez

∫ TB
0 VN (Xs)ds

]

=
∑
n≥0

zn Eν

[ ∫

0<s1<···<sn<TB

VN (Xs1) . . . VN (Xsn) ds1 . . . dsn

]

= 1 +
∑
n≥1

zn(ν, (GB VN )n 1), (3.46)

where GBf(x) =
∑

y∈TN
gB(x, y) f(y), for f function on TN , and x ∈ TN ,

and (f, g) stands for
∑

x∈TN
f(x) g(x). We know by (1.5) and (3.42) that

∑
y
ν(y) gB(y, ·) = capB(Λ)

−1 on Λ,

and since VN is supported in Λ, we find that

Eν

[
ez

∫ TB
0 VN (Xs)ds

]
=

∑
n≥0

aN (n) zn, for |z| ≤ cN , where (3.47)

aN (0) = 1, and aN (n) =
1

capB(Λ)
(VN , (GBV )n−11), for n ≥ 1 . (3.48)

Note that by our assumption (2.3) on V , we have

aN (1) = (V, 1) = 0 . (3.49)

The main step in proving (3.43) lies in the next lemma. Interestingly its

proof, although simpler, uses several ingredients of the proof of Theorem 4.1

of [18].
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Lemma 3.1. (N ≥ c)

|aN (n)| ≤ cn0 , for all n ≥ 1, (3.50)

for any k ≥ 0, lim
N

aN (2k + 1) = 0, (3.51)

for any k ≥ 1, lim
N

aN (2k) =
(

1

π
E(V )

)k
. (3.52)

We first explain how (3.43) and hence Proposition 3.3 follow from Lemma

3.1. By (3.47) the characteristic function of
∫ TB

0 VN (Xs) ds under Pν is ana-

lytic in the sense of Chapter 7 of [12]. By Theorem 7.11, p. 193 of [12], one

finds that (3.47) actually holds for all z ∈ C with c0|z| < 1. In particular

picking z = ± r with 0 < r < c−1
0 , we find that

sup
N≥c

Eν

[
cosh

(
r

∫ TB

0
VN (Xs) ds

)]
<∞ .

Hence the laws under Pν of
∫ TB

0 VN (Xs) ds are tight and the variables

exp{z
∫ TB

0 VN (Xs) ds}, with |Re z| ≤ r(< c−1
0 ) are uniformly integrable. If

the laws of the variables
∫ TB

0 VN (Xs) ds under Pν converge along some sub-

sequence Nk, it follows from Theorem 5.4, p. 32 in [4] that for |z| < c−1
0 ,

lim
k

Eν

[
ez

∫ TB
0 VNk

(Xs) ds
]

= lim
k

∑
n≥0

aNk
(n) zn

Lemma 3.1
=

(
1− E(V )

π
z2
)−1

. (3.53)

Thus the characteristic function of the limit law is analytic in the sense of

[12] and coincides in a neighborhood in C of the origin with the character-

istic function of ζ. So the limit law is the distribution of ζ, whence (3.43).

Proposition 3.3 now follows.

Proof of Lemma 3.1. As pointed out above, although simpler the argu-

ments are similar to the proof of Theorem 4.1 of [18]. We highlight the main

steps.

We first need some notation. We tacitly identify functions on Λ with

functions vanishing outside Λ. For such a function F : Λ → R, we write
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‖F‖∞ in place of supx∈Λ |F (x)|, as well as

〈F 〉 =
(

1

|Λ|
∑
x∈Λ

F (x)
)
1Λ, and [F ]0 = F (0) 1Λ , (3.54)

so that 〈F 〉 and [F ]0 are constant functions on Λ. For F as above we have:

‖GBF‖∞
(1.9),(1.10)

≤ c logN ‖F‖∞, (3.55)

as well as

‖GBF‖∞ ≤ c ‖F‖∞, when 〈F 〉 = 0, (3.56)

indeed
GBF (x) =

1

|Λ|
∑

y,y′∈Λ
GB(x, y) (F (y) − F (y′))

=
1

|Λ|
∑

y,y′∈Λ
(GB(x, y) −GB(x, y

′))F (y),

and the claim now follows by (1.11). Note that GBF is tacitly restricted to

Λ in (3.55), (3.56), but F is supported in Λ, and it is a simple fact (which

we will not need), that the bounds in (3.55), (3.56) extend to |GBF (x)| for
x outside Λ. In a similar fashion it follows by (1.11) that

‖GBF − [GBF ]0‖∞ ≤ c ‖F‖∞ . (3.57)

By symmetry of gB(·, ·) and (3.56) we also find that for F,H functions on

Λ:

‖〈F (GBH)〉‖∞ ≤ c ‖F‖∞ ‖H‖∞, if 〈F 〉 or 〈H〉 = 0. (3.58)

The estimates (3.55) - (3.58) correspond in the present context to Lemmas

3.1 and 3.2 of [18]. The next control shows that (GBVN )2 operates boundedly

on functions on Λ:

‖(GBVN )2‖L∞(Λ)→L∞(Λ) ≤ c1 . (3.59)
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To see this we decompose (GBVN )2F , for F : Λ → R in the following way:

(GBVN )2F = A1 +A2 +A3, where

A1 = GBVNGB(VNF − 〈VNF 〉)

A2 = GBVN [GB〈VNF 〉]0
A3 = GBVN (GB〈VNF 〉 − [GB〈VNF 〉]0),

(3.60)

and bound each term with the help of (3.55) - (3.57), as in Lemma 4.4 of

[18].

The next estimate shows that (GBVN )2 leaves the kernel of the map

F → 〈VNF 〉 almost invariant:

‖〈VN (GBVN )2 F 〉‖∞ ≤ c2‖〈VNF 〉‖∞ +
c3

(logN)3/2
‖F‖∞ . (3.61)

The proof is similar to Lemma 4.5 of [18]. One writes for F function on Λ:

〈VN (GBVN )2 F 〉 = 〈VNA1〉+ 〈VNA2〉+ 〈VNA3〉,

with A1, A2, A3 as in (3.60), and uses (3.58) and (3.55) - (3.57) to bound

the various terms. The term c2‖〈VNF 〉‖∞ in the right-hand side of (3.61)

actually stems from the bound on 〈VNA2〉.

Iterating (3.61), as in (4.34) of [18], one sees that for F : Λ → R and

k ≥ 1,

‖〈VN (GBVN )2kF 〉‖∞ ≤ ck2 ‖〈VNF 〉‖∞ +
ck

(logN)3/2
‖F‖∞ . (3.62)

From this we conclude that for all k ≥ 0,

|aN (2k + 1)| (3.48)
= capB(Λ)

−1 |(VN , (GBVN )2k 1)|

= |Λ| capB(Λ)−1‖〈VN (GBVN )2k 1〉‖∞
(2.6),(3.62)

≤ c logN
ck

(logN)3/2
−→
N

0,

(3.63)
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and (3.51) is proved. In addition for k ≥ 1, we see that:

|aN (2k)| = capB(Λ)
−1 |(VN , (GBVN )(GBVN )2(k−1) 1)|

symmetry
= capB(Λ)

−1|(GBVN , VN (GBVN )2(k−1) 1)|
(2.6)
≤ c logN ‖GBVN‖∞ ‖VN (GBVN )2(k−1) 1‖∞

(3.56),(3.59)
≤ c ck.

(3.64)

This bound combined with the last line of (3.63) finishes the proof of (3.50).

There remains to prove (3.52). We proceed by induction. We already know

that aN (0) = 1, and

aN (2) = capB(Λ)
−1 (VN , GBVN )

〈V 〉=0
=

capB(Λ)−1

2 logN

∑
x,y∈Λ

V (x)(gB(x, y)− gB(x, x))V (y)

(2.6),(1.11)−→
N

− 1

π

∑
x,y∈Λ

V (x) a(x− y)V (y)
(3.5)
=

1

π
E(V ).

(3.65)

Moreover using a telescoping sum, we can write for k ≥ 1,

‖(GBVN )2k 1Λ −
( 1

π
E(V )

)k
1Λ‖∞

≤
k−1∑
m=0

‖(GBVN )2(m+1)
( 1

π
E(V )

)k−(m+1)
1Λ−(GBVN )2m

( 1

π
E(V )

)k−m
1Λ‖∞

(3.59)
≤

k−1∑
m=0

( 1

π
E(V )

)k−(m+1)
cm1 ‖(GBVN )2 1Λ − 1

π
E(V ) 1Λ‖∞

≤ c̃ k ‖(GBVN )2 1Λ − 1

π
E(V ) 1Λ‖∞. (3.66)

Using once again the identity 〈V 〉 = 0, we see that for z ∈ Λ

GBVNGBVN (z) =
∑
x∈Λ

1

2 logN
gB(z, x)V (x)

∑
y∈Λ

(gB(x, y)− gB(x, x))V (y)

(1.11),(1.12)−→
N

− 1

π

∑
x,y
V (x) a(x − y)V (y) =

1

π
E(V ). (3.67)

Hence the last term of (3.66) tends to zero. We have thus shown that

‖(GBVN )2k1Λ −
( 1

π
E(V )

)k
1Λ‖∞ −→

N
0, for any k ≥ 1 . (3.68)
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We then write:

a(2(k + 1))=capB(Λ)
−1 (VN , GBVN (GBVN )2k 1)

symmetry
= capB(Λ)

−1(GBVN , VN (GBVN )2k 1)

=capB(Λ)
−1

(
GBVN , VN

{
(GBVN )2k 1Λ −

( 1

π
E(V )

)k
1Λ

})

+capB(Λ)
−1

( 1

π
E(V )

)k
(GBVN , VN ).

By (3.65) the last term converges to ( 1π E(V ))k+1, whereas the absolute value

of the previous term is smaller than

c logN ‖GBVN‖ ‖VN‖∞
∥∥∥(GBVN )2k 1Λ −

( 1

π
E(V )

)k
1Λ

∥∥∥
∞

(3.56),(3.68)−→
N

0 .

This shows that limN a(2(k+1)) = ( 1πE(V ))k+1, and completes the proof of

(3.52). We have thus proved Lemma 3.1. ���

This also completes the proof of Proposition 3.3. ���

As explained below (3.27), Propositions 3.2 and 3.3 yield (3.25) and we

have thus proved Theorem 3.2. ���

The last main result in this section is

Theorem 3.3. Under P , as N goes to infinity,

(
Ly
tN

logN

)
y∈Z2

converges in distribution to a flat random field

with constant value distributed as R2, with R as in (3.3).

(3.69)

Proof. We recall the notation ṼN from (2.9). By Theorem 3.1 we only need

to concentrate on the case y = 0 and show that with R as in (3.3), under P ,

∫ tN

0
ṼN (Xs) ds

law−→
N

R2. (3.70)

The same argument used to infer Theorem 3.1 from Theorem 3.2 now shows

that (3.70) will follow once we show that in the notation of (2.11)

(
R2 − R1

N2 logN
, ξ̃1

)
law−→
N

(τ, ζ̃), (3.71)
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where τ and ζ̃ are independent exponential variables with parameter π
2 . In

this last step we use the fact that when σ̃k, k ≥ 0, are the partial sums of

i.i.d. copies ζ̃ℓ, ℓ ≥ 1, of ζ̃, and J is an independent Poisson variable with

parameter απ
2 one has:

E[e−λσ̃J ] = exp
{
−α π

2
(1−E[e−λζ̃ ])

}
= exp

{
− αλ

1 + 2
π
λ

}
, for λ ≥ 0, (3.72)

so that σ̃J has same distribution as R2, see (1.37).

Now the same argument used in the proof of Theorem 3.2 shows that

(3.71) will follow once we show the corresponding statement to Proposition

3.3, namely
∫ TB

0
ṼN (Xs) ds

law−→
N

ζ̃ under P0 . (3.73)

Proceeding as in (3.46), (3.47), we see that

E0

[
ez

∫ TB
0 ṼN (Xs),ds

]
=

∑
n≥0

ãN (n) zn, for |z| ≤ c̃N , where (3.74)

ãN (0) = 1, and for n ≥ 1, (3.75)

ãN (n) = capB({0})−1(ṼN , (GB ṼN )n−1 1)

= gB(0, 0)
1

(logN)n
gB(0, 0)

n−1 (1.12)−→
N

(
2

π

)n
.

In particular we see that

0 ≤ ãN (n) ≤ cn, for n ≥ 0, (3.76)

ãN (n) −→
N

(
2

π

)n
, for n ≥ 0. (3.77)

The same argument used below the statement of Lemma 3.1 then shows that

when N goes to infinity,

∫ TB

0
ṼN (Xs) ds converges in law to a distribution with

characteristic function
(
1− i

2b

π

)−1
, b ∈ R .

(3.78)

This proves (3.73) and completes the proof of Theorem 3.3. ���
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Remark 3.2. (1) The results of this section answer positively a question

raised in Remark 4.10 1) of [18]. They are, as we now explain, consistent at a

heuristic level with the limit statements contained in Theorem 4.2 and 4.9 of

[18]. It was shown there that the occupation field Ly, y ∈ Z
2, of continuous

time random interlacements on Z
3 at level β logN

N , with β > 0, in long rods

Jy = {y} × {1, . . . , N} ⊆ Z
3, y ∈ Z

2, satisfy the limit theorems:

(
Ly −L0√
2 logN

)
y∈Z2

law−→
N

(R̂ ψ̂y)y∈Z2 , (3.79)

and

(
Ly

logN

)
y∈Z2

law−→
N

the flat field with constant value R̂2, (3.80)

where R̂ and (ψ̂y)y∈Z2 are independent with

R̂ BES0
(√
β,

3

2π

)
-distributed, (3.81)

(ψ̂y)y∈Z2 a centered Gaussian field with (3.82)

covariance E[ψ̂yψ̂y′ ] =
3

2
(a(y) + a(y′)− a(y′ − y)), for y, y′ ∈ Z

2 .

These results can be heuristically reconciled with Theorems 3.1 and 3.3 as

follows. Continuous time random interlacements on Z
3 at level uN = β logN

N

(which tends to zero), ought to describe the local picture left by a random

walk on (Z/NZ)3 with unit jump rate, uniform starting distribution, at time

uN N
3 = βN2 logN (see for instance [20], [19], which however contain results

pertaining to uN = const.). The (Z/NZ)2-projection of this walk behaves as

a walk on (Z/NZ)2 with jump rate 2
3 , uniform starting distribution, which

runs up to time βN2 logN (note however that the local trace left by this walk

close to the origin involves more than the local trace close to the origin of the

original walk on (Z/NZ)3). The occupation field on (Z/NZ)2 induced by this

projection is thus distributed as (32 L
y
tN
)y∈Z/NZ2 , with tN = 2

3 βN
2 logN

def
=

αN2 logN . By Theorem 3.1 and 3.3 we know that

(
3

2

Ly
tN

− L0
tN√

2 logN

)
y∈Z2

law−→
N

(√
3

2
R

√
3

2
ψy

)
y∈Z2

, and (3.83)

(
3

2

Ly
tN

logN

)
y∈Z2

−→ 3

2
R2, (3.84)
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with R and (ψy)y∈Z2 as in (3.3), (3.4). However
√

3
2 R is BES0(

√
3α
2 ,

3
2π )-

distributed, i.e. has the same distribution as R̂ in (3.81), and (
√

3
2 ψy)y∈Z2

has the same distribution as (ψ̂y)y∈Z2 . So we recover the limiting fields in

(3.79), (3.80). In other words the limit behavior of occupation times of

long rods in Z
3 by random interlacements at level uN = β logN

N recovers the

limit behavior of the occupation times close to the origin of the (Z/NZ)2-

projection of the walk on (Z/NZ)3, with uniform starting distribution, and

running up to time uNN
3 = βN2 logN . This signals the existence of a link

between random interlacements and the walk on a large two-dimensional

torus.

(2) It would be interesting to give a proof of Theorems 3.1 and 3.3 along

the lines of the above stated heuristics, bringing into play some transfer be-

tween continuous time random interlacements and random walk on (Z/NZ)3,

see also [19]. It would also be interesting to give a proof of Theorems 3.1

based on the generalized second Ray-Knight theorem, see [13], p. 372, which

relates the field of local times of walk on TN , at the first time the local time

at the origin goes beyond some given (deterministic) level, and the Gaus-

sian free field on TN with covariance the Green function on TN killed at the

origin. The Poissonian regime makes its application a bit impractical, and

perhaps Eisenbaum’s isomorphism theorem, see [13], p. 362, might be more

adapted. ���

4. The Ergodic Regime

In this section we analyze the asymptotic behavior of the field of oc-

cupation times of the walk on TN close to the origin at times much larger

than N2 logN as N goes to infinity. We relate the limiting behavior of this

occupation field to the Gaussian free field pinned at the origin, cf. (1.36).

The situation is simpler than in the Poissonian regime. The main statements

appear in Theorems 4.1 and 4.2. In Remark 4.1 we reconcile these theorems

with the results from [18] concerning the occupation times of large rods by

random interlacements in Z
3. We use throughout this section the convention
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on constants stated at the beginning of Section 2. We recall the notation t′N
from (0.2) ii)

t′N = αN N2 logN, where lim
N

αN = ∞ . (4.1)

Theorem 4.1. Under P , as N goes to infinity,

(Ly
t′
N

− L0
t′
N√

2t′NN−2

)
y∈Z2

converges in distribution to (ψy)y∈Z2

(see (1.36) for notation). (4.2)

This theorem will follow from the next proposition (see (2.11), (3.5) for

notation).

Proposition 4.1.

lim
N

E[ξ21 ] =
2

π
E(V ) . (4.3)

sup
N

E[ξ41 ] ≤ c . (4.4)

Proof of Theorem 4.1 (assuming Proposition 4.1). Claim (4.2) will follow

once we show that for V as in (2.3),

∫ t′N

0
V ′
N (Xs) ds

law−→
N

N(0, E(V )), (see (2.10) for notation). (4.5)

By (2.17) it suffices to show that

S′
K ′

N

law−→
N

N(0, E(V )). (4.6)

By (1.26) we know that

lim
N
P [m−

N ≤ K ′
N ≤ m+

N ] = 1, if m±
N =

[
(1± δN )

π

2
αN

]
. (4.7)

It follows from Kolmogorov’s inequality that for any ε > 0,

P
[

sup
m−

N≤k≤m+
N

|S′
k − S′

m−

N
| ≥ ε

]
≤ ε−2(m+

N −m−
N ) var(ξ′1)

(2.12)
≤ c ε−2(δNαN + 1)

var(ξ1)

αN

(4.3)−→
N

0 .
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Claim (4.2) will thus follow once we show that

S′
m−

N

law−→
N

N(0, E(V )) . (4.8)

To this end we introduce the characteristic function of ξ1 under P

ϕ(t) = E[eitξ1 ], t ∈ R . (4.9)

By a similar reward renewal argument as above (1.21) we have

E[ξ1]
(2.11)
=

∑
y∈TN

VN (y)E0

[ ∫ H0◦θTB+TB

0
1{Xs = y} ds

]

= h0
∑

y∈TN

VN (y)π(y)
(2.3)
= 0 . (4.10)

By (3.7) p. 86 of [7] and (4.10) we find that for u ∈ R,

∣∣∣ϕ(u)− 1 +
1

2
E[ξ21 ]u

2
∣∣∣ ≤ |u|3

6
E[|ξ1|3]

(4.4)
≤ c |u|3. (4.11)

As a result, we see that for t ∈ R, by (4.3), (4.11),

E[e
itS′

m−

N ] = ϕ
(

t
√
αN

)m−

N
=

(
1− E(V )

π

t2

αN
+O

(
|t|3

α
3/2
N

))m−

N (4.7)−→
N

e−
1
2
E(V )t2 .

(4.12)

This proves (4.8) and Theorem 4.1 follows. ���

Proof of Proposition 4.1. By (2.5) and the strong Markov property at

time TB ◦ θR1 +R1,

lim
N
E
[∣∣∣ξ1 −

∫ R1+TB◦θR1

R1

VN (Xs) ds
∣∣∣
4]

= 0 . (4.13)

We can thus replace ξ1 by
∫ TB

0 VN (Xs) ds and P by P0 when proving (4.3),

(4.4). Moreover observe that, see (3.42) for notation,

lim
N
Eν

[∣∣∣
∫ TB

0
VN (Xs)ds−1{H0<TB}

(∫ TB

0
VN (Xs)ds

)
◦ θH0

∣∣∣
4]

=0. (4.14)

Indeed the expression under absolute value equals
∫ H0∧TB

0 VN (Xs)ds, and
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we apply (2.5). Hence we find that for p = 2, 4

lim
N

∣∣∣Eν

[(∫ TB

0
VN (Xs)ds

)p] 1
p −Pν [H0<TB ]

1
pE0

[(∫ TB

0
VN (Xs)ds

)p] 1
p
∣∣∣=0.

(4.15)

By (2.4) we know that Pν [H0 < TB ] −→
N

1, and by (3.46), (3.47) that

Eν [(
∫ TB

0 VN (Xs)ds)
p] = p! aN (p). As a consequence of Lemma 3.1 we thus

find that for p = 2, 4

lim
N

E0

[( ∫ TB

0
VN (Xs) ds

)p]
= p!

(
E(V )

π

) p
2
. (4.16)

In particular this completes the proof of Proposition 4.1. ���

Our last result is

Theorem 4.2. Under P , as N goes to infinity,

( Ly
t′
N

t′NN−2

)
y∈Z2

converges in distribution to the flat random field with value 1.

(4.17)

Proof. By Theorem 4.1 we only need to consider the single location y = 0,

and prove that under P

∫ t′N

0
Ṽ ′
N (Xs) ds

law−→
N

1, (see (2.10) for notation). (4.18)

We cannot simply invoque the ergodic theorem to prove (4.19) since we have

to deal with a sequence of Markov chains on the various state spaces TN as

N varies. Instead we argue as follows. By Proposition 2.1 it suffices to show

that under P ,

S̃K ′

N

law−→
N

1 . (4.19)

By (4.7) and the fact that k ≥ 0 → Sk is non-decreasing, we only need to

show that

S̃′
m−

N

law−→
N

1, and S̃′
m+

N

law−→
N

1 . (4.20)
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By (2.12) and (1.3) we find that

E[ξ̃′1] =
gB(0, 0)

αN logN

(1.12)∼ 2

π
α−1
N , (4.21)

and by a similar calculation as in (3.46),

E[ξ̃′21 ] =
E0[(

∫ TB

0
1{Xs = 0}ds)2]

(αN logN)2
= 2

gB(0, 0)2

(αN logN)2

(1.12)
≤ c α−2

N . (4.22)

The variables ξ̃′k, k ≥ 1, are i.i.d. and we thus find that:

E
[(
S̃′
m+

N
− S̃′

m−

N

)2]
≤ c(m+

N −m−
N ) varP (ξ̃

′
1) + (m+

N −m−
N )2E[ξ̃′1]

2 −→
N

0,

(4.23)

using (4.7), (4.21), (4.22). In addition we see that

varp(S̃m−

N
) ≤ cm−

N α−2
N −→

N
0 . (4.24)

If we now observe that

E[S̃m−

N
] = m−

N E[ξ̃′1]
(4.7)∼
(4.21)

π

2
αN × 2

π
α−1
N = 1 . (4.25)

The claim (4.20) readily follows and this proves Theorem 4.2. ���

Remark 4.1. (1) The results of this section can also, at a heuristic level,

be reconciled with the limit statements of [18]. It was shown in Theorems

4.2 and 4.9 of [18] that the occupation field L′
y, y ∈ Z

2, of long rods Jy =

{y} × {1, . . . , N}, y ∈ Z
2, by continuous time random interlacements in Z

3

at level u′N = βN
logN
N , where limN β

′
N = ∞, satisfy the limit theorems:

( L′
y −L′

0√
2u′

NN

)
y∈Z2

law−→
N

(ψ̂y)y∈Z2 , (see (3.82) for notation), (4.26)

and

( L′
y

u′

NN

)
y∈Z2

law−→
N

the constant field with value 1. (4.27)

Once again the heuristic argument explained below (3.82) suggests that the

above results reflect the presence of similar limit theorems for the occupation
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time of a walk on TN with jump rate 2
3 , uniform starting distribution, and

running up to time u′NN
3 = βNN

2 logN , or equivalently for (32 L
y
t′N
)y∈TN

,

when t′N = 2
3 βNN

2 logN
def
= αNN

2 logN . But Theorems 4.1 and 4.3 indeed

show that

(
3

2

Ly
t′
N

− L0
t′
N√

2βN logN

)
y∈Z2

law−→
N

(√
3

2
ψy

)
y∈Z2

distribution
= (ψ̂y)y∈Z2 , (4.28)

and

(
3

2

Ly
t′
N

βN logN

)
law−→
N

the constant field with value 1. (4.29)

So indeed the heuristic guess based on the results on random interlacements

proven in [18] leads to the correct limit statement proven in this section.

(2) The above discussion and Remark 3.8 1) point out the existence of a link,

at least for the “local picture”, between random walk with jump rate 2
3 on

TN , and random interlacements on Z
3 via their presence in long rods Jy =

{y} × {1, . . . , N}, y ∈ Z
2, when N goes to infinity. It would be interesting

to explore whether this link extends to more global quantities. For instance

one knows from [6] that the cover time of TN by the above mentioned walk

has order 6
π N

2(logN)2. By analogy one can introduce the random level

UN , which is the smallest u ≥ 0 such that all Jy, y ∈ {1, . . . , N}2, meet Iu,

the random interlacement at level u, see [17]. How does UNN
3 compare to

6
π N

2(logN)2 ? ���
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