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Abstract

Let −iLT (essentially Lie derivative with respect to T , a smooth nowhere zero real

vector field) and P be commuting differential operators, respectively of orders 1 and m ≥

1, the latter formally normal, both acting on sections of a vector bundle over a closed

manifold. It is shown that if P + (−iLT )
m is elliptic then the restriction of −iLT to

D ⊂ kerP ⊂ L
2 (D is carefully specified) yields a selfadjoint operator −iLT |D : D ⊂

kerP → kerP with compact resolvent. It is also shown that, in the presence of an

additional hypothesis on microlocal hypoellipticity of P , −iLT |D is semi-bounded. These

results are applied to CR manifolds on which T acts as an infinitesimal CR transformation

which are then shown to yield versions of Kodaira’s vanishing theorem.

1. Introduction

The main results in this paper were motivated by an investigation into

properties of complex b-structures. The latter, introduced in [14], are com-

plex structures in the b-category (see Melrose [13]) on manifolds M with

boundary. Complex b-structures happen to determine a very rich structure

on the boundary of M bearing much similarity with the structure of a circle

bundle of a holomorphic line bundle over a complex manifold (the last sec-

tion here goes into this in much detail). While they are not CR structures,

they do contain families of these in the same way that a circle bundle of a

holomorphic line bundle admits a family of CR structures parametrized by
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Hermitian structures through the Hermitian holomorphic connection. Vari-

ous aspects of these structures on the boundary were investigated in depth

in a series of papers [15, 16, 17, 18] going further into properties motivated

by those of circle bundle. This paper represents another investigation along

those lines, this time in the form of theorems about vanishing of cohomology.

We will not discuss here complex b-structures, but refer the interested reader

to any of the papers already cited.

Throughout this paper, N will denote a C∞ compact manifold without

boundary, T a smooth nowhere vanishing real vector field, and E → N

a complex Hermitian vector bundle. Let LT be a first order differential

operator acting on sections of E related to T by the property

LT (fφ) = fLT φ+ Tf φ, f ∈ C∞(N ), φ ∈ C∞(N ;E), (1.1)

such that −iLT is symmetric (the L2 inner product is defined with the aid

of the Hermitian form of E and a T -invariant smooth positive density).

Suppose P is a differential operator that commutes with its formal adjoint

and with LT . We show in Section 2, see Theorem 2.1, that if P + (−iLT )
m

is elliptic, then −iLT , acting on a subspace D of the kernel of P in L2, is

selfadjoint with compact resolvent. The domain for −iLT that makes the

statement precise will be specified in (2.3).

While the operator −iLT

∣∣
D

acting on D is not, strictly speaking, a dif-

ferential (or pseudodifferential) operator any longer, it inherits many proper-

ties from these, enough that one can prove a rough estimate on the counting

function of its eigenvalues, see (3.1); this can be done without hypothesis

beyond those already stated in Theorem 2.1. However, assuming in addi-

tion positivity of A = P + (−iLT )
m one can give a specific upper bound

for the counting function using Weyl’s estimate for A; this is the content of

Theorem 3.2. The relevancy of this lies in its implication on the growth of

the dimension of the spaces of holomorphic sections of an ample line bundle

which we do not discuss here. These results, together with a rough outline

of the proof of Weyl’s estimate is presented at length in Section 3.

Semi-boundedness of −LT

∣∣
D

in the presence of hypoellipticity condi-

tions on P is discussed in Section 4. The ellipticity of P + (−iLT )
m implies

that the characteristic set Char(P ) of P lies in the complement of the set
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where the principal symbol, τττ (a scalar function), of −iT vanishes. Conse-

quently CharP is separated into two subsets Char±(P ), according to the sign

of τττ . Theorem 4.1 states that if, for instance, P is hypoelliptic on Char+(P )

then −iLT

∣∣
D
has only finitely many positive eigenvalues. This is the central

result concerning vanishing theorems.

The previous theorems are applied in Sections 5 and 6 to structures of

the kind arising on the boundary of a complex b-manifold. In this paper

we take the point of view that there is an initially given CR structure on

N which is invariant under the action of the one-parameter group of dif-

feomorphisms generated by T and construct the aforementioned additional

structure part of the way form this, enough that the analogy with line bun-

dles (discussed in Section 7) becomes clear. All CR structures in the class

are again T -invariant. The class is analogous to the class of Hermitian

holomorphic connections on a holomorphic line bundle parametrized by the

Hermitian metric. Section 5 ends with a restatement of Theorem 2.1, which

is now a decomposition theorem of the L2-CR cohomology according to the

eigenspaces of −iLT acting as Lie derivative on the spaces of harmonic CR

forms. Throughout Sections 5 and 6 we work under the assumption that

there is a T -invariant metric which then in particular gives T -invariant Her-

mitian structures on all CR structures of interest.

The theorem relating hypoellipticity and semi-finiteness of the spectrum

in Section 4 does not make any assumption about where the hypoellipticity

comes from. In Section 6 we use known theorems (see for instance Boutet

de Monvel [3] or Sjöstrand [22]) that establish microlocal hypoellipticity

in the presence of the hypothesis of non-degeneracy of the CR structure

to state a theorem concerning nature of the decomposition of the spaces

of harmonic CR forms as eigenspaces of −iLT . Incidentally, a complete

discussion of hypoellipticity of the Laplacian on CR forms can be found

in the appendix of [14] as part of a complete symbol calculus for a class

of pseudodifferential operator that contains these Laplacians when the CR

structure is non-degenerate.

We have included, as Section 7, a discussion of circle bundles of line

bundles that provides a translation of known points of view to that of the

present paper. This serves to give concrete examples to the theorems dis-

cussed here, in particular the relation between spectrum, eigenspaces, and

cohomology, see (7.9).
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This paper contains the results presented by the author in the Workshop

on Several Complex Variables and Complex Geometry held in the Academia

Sinica, Taipei from July 9 to July 13, 2012. The author thanks the organizers

for the opportunity to participate in the event.

2. Invariant Operators

We let at denote the one-parameter family of diffeomorphisms deter-

mined by T . Let E → N be a vector bundle with Hermitian metric h and

suppose that

LT : C∞(N ;E) → C∞(N ;E) (2.1)

is a differential operator such that

T h(φ,ψ) = h(LT φ,ψ) + h(φ,LT ψ) (2.2)

holds if φ, ψ ∈ C∞(N ;E). Such an operator must satisfy (1.1) for every

smooth f and section φ so it must be a first order differential operator. It can

be viewed as the operator ∇T for some Hermitian connection ∇. Indeed, if

∇′ is an arbitrary Hermitian connection on E and θ is a smooth real 1-form

such that 〈θ,T 〉 = 1, then

φ 7→ ∇φ = ∇′φ+ θ ⊗ LT φ− θ ⊗∇′
T φ

is a Hermitian connection with the required property. So LT gives rise to

a one-parameter group of isometries a∗t : E → E covering a−t : N → N

by way of parallel transport along the integral curves of T . Conversely,

the infinitesimal generator of such a group of isometries is an operator (2.1)

for which (2.2) holds. It follows immediately from (1.1) that σσ(−iLT ) =

σσ(−iT )I.

Let m be a smooth positive density on N and define the space L2(N ;E)

using the Hermitian metric of E and the density m; the inner product is thus

(φ,ψ) =

∫
h(φ,ψ) dm.

Let P ∈ Diffm(N ;E), m ≥ 1. By kerP we shall mean mean the kernel

of P in L2(N ;E); as a closed subspace of L2(N ;E), it is a Hilbert space on
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its own right. Define

D = {φ ∈ kerP : LT φ ∈ L2(N ;E)}. (2.3)

If P commutes with LT , then

−iLT

∣∣
D
: D ⊂ kerP → kerP (2.4)

is an unbounded closed operator.

Theorem 2.1. Suppose that P ∈ Diffm(N ;E) commutes with its formal

adjoint and with LT and that there is a (real) line Λ ⊂ C through the origin

such that

σσ(P ) + σσ(−iLT )
m − λI is invertible if λ ∈ Λ. (2.5)

Suppose further that the Hermitian metric of E and the density m are T -

invariant. Then the operator (2.4) is selfadjoint with compact resolvent, in

particular, Fredholm.

If P is symmetric then the principal symbol of P+(−iLT )
m is selfadjoint.

So (2.5) holds for any line Λ different from the real axis since in this case

the principal symbol of P + (−iLT )
m is selfadjoint.

Theorem 2.1 is a general version of Theorem 7.5 in [17]. The following

proof is adapted from that paper.

Proof. First we note that −iLT is symmetric on H1(N ;E), the L2-based

Sobolev space of order 1. Indeed, if φ, ψ ∈ C∞(N ;E), then (2.2) gives

∫
T h(φ,ψ)m = (LT φ,ψ) + (φ,LT ψ).

On the other hand, it follows from the T -invariance of m that if u is a smooth

function, then (T u)m = d(u iT m) where iT is interior multiplication. So the

integral on the left vanishes and we get that the formal adjoint of LT is

−LT . Using that C∞(N ;E) is dense in H1(N ;E) we get

(−iLT φ,ψ) = (φ,−iLT ψ), φ, ψ ∈ H1(N ;E).
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We now show that D ⊂ H1(N ;E). Since 0 ∈ Λ, (2.5) implies that

A = P + (−iLT )
m

is elliptic. Let Q be a parametrix for A, so that

QA = I −R

where R is a smoothing operator. If φ ∈ kerP , then

φ = Q(−iLT )
mφ+Rφ.

Suppose φ ∈ D . Since LT φ ∈ L2(N ;E) and S = Q(−iLT )
m−1 is a classical

pseudodifferential operator of order −1, SLT φ ∈ H1(N ;E), and since Rφ ∈

C∞(N ;E), φ ∈ H1(N ;E). Consequently (2.4) is a symmetric operator.

Let τττ = σσ(−iT ), so that σσ(−iLT ) = τττI as we already noted. If Λ

is the real axis, then setting λ = τττ(ν)m in (2.5) gives that σσ(P )(ν) itself

is invertible at any ν ∈ T ∗N\0, i.e., P is elliptic. Then kerP is finite-

dimensional and consists of smooth sections, so D = kerP , and −iLT is

selfadjoint. So assume that Λ is not the real axis.

As is well known (Seeley [21]), (2.5) implies that (A−λ) : Hm(N ;E) →

L2(N ;E) is invertible for each λ ∈ Λ with sufficiently large |λ|. For such λ,

the inverse, Qλ, is a pseudodifferential operator of order −m. It commutes

with LT and P since LT commutes with A. The formula

(
(−iLT )

m − λ
)
Qλ = I − PQλ,

valid on L2(N ;E), gives

(
(−iLT )

m − λ
)
Qλφ = φ if φ ∈ kerP, (2.6)

whereas the formula

Qλ

(
P + (−iLT )

m − λ
)
= I,

valid on H1(N ;E), gives

Qλ((−iLT )
m − λ)φ = φ if φ ∈ D . (2.7)
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Let

Sλ = Qλ

m−1∑

j=0

λm−j−1(−iLT )
j ,

a pseudodifferential operator of order −1, hence compact. Its restriction to

kerP has range in kerP (because P commutes with LT and Qλ), hence in

D . Let

Π : L2(N ;E) → L2(N ;E), ι : kerP → L2(N ;E)

be respectively, the orthogonal projection on kerP and the inclusion map.

Then Ŝλ = ΠSλι : kerP → kerP is compact. The formulas (2.6), (2.7) give

that Ŝλ is the inverse of

(−iLT − λ)
∣∣
D
: D ⊂ kerP → kerP

for each λ ∈ Λ with sufficiently large modulus.

We now show that D is dense in kerP . Let ψ ∈ kerP be orthogonal to

kerP . If φ ∈ kerP then Ŝλφ ∈ D , so 0 = (Ŝλφ,ψ) = (φ, Ŝ∗
λψ), and therefore

ψ ∈ ker Ŝ∗
λ. Since Sλ is continuous, Ŝ∗

λ = πSλι. Since P commutes with its

formal adjoint and with LT , so does A. This implies that Q∗
λ commutes with

A and LT , hence with P . Thus Q∗
λ maps kerP to itself, and so does S∗

λ.

Therefore Ŝλψ = 0 is equivalent to S∗
λψ = 0. Since (−iLT − λ)Sλψ = Q∗

λψ

and since Q∗
λ is injective, ψ = 0.

It follows that the operator (2.4) is densely defined, and since it is sym-

metric with resolvent set containing points in both components of C\R (that

is, its deficiency indices vanish), it is selfadjoint. Finally, since Ŝλ is compact,

(2.4) is Fredholm.

3. Weyl Estimates

Suppose that the conditions of Theorem 2.1 are satisfied, denote the

spectrum of the selfadjoint operator (2.4) by spec0(−iLT ). This is a discrete

subset of R without finite points of accumulation. The eigenspaces,

Eτ = {φ ∈ C∞(N ;E) : Pφ = 0, LT φ = iτφ},
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are finite-dimensional and consist of smooth sections of E because P +

(−iLT )
m is elliptic. We discuss here estimates for

N(τ) =
∑

τ0∈spec0(−iLT )
|τ0|<τ

dim Eτ ′

This is not quite the same as Weyl estimates for differential (or pseudodif-

ferential) operators because (2.4) is not quite a differential operator.

A rough estimate of the form

N(τ) ≤ Cτµ (3.1)

for some positive numbers C and µ can be obtained by the argument in the

proof in Gilkey [4, Lemma 1.6.3, part (c)] (the proof of Lesch [12, Proposition

1.4.7] is perhaps more explicit). The argument, which we shall omit while

referring the reader to the just mentioned works, requires pointwise estimate

of the elements of an orthonormal basis consisting of eigenvectors of (2.4)

along the lines of the following result:

Lemma 3.1. Let {φj}j∈J be an orthonormal basis of kerP consisting of

eigenvectors of −iLT , φj ∈ Eτj . Then there are positive constants C and µ

such that

|φj(p)|Ep ≤ C(1 + |τj |)
µ for all p ∈ N , j ∈ J. (3.2)

If ψ ∈ C∞(N ;E∗ ⊗ |
∧
|N ), then for each positive integer N there is CN

(depending on ψ) such that

|〈φj , ψ〉| ≤ CN (1 + |τj|)
−N for all j. (3.3)

The proof is a simple adaptation of that of [17, Lemma 7.9].

The virtue of (3.1) lies in that it makes no assumptions on P or m

other than the ones in Theorem 2.1. Taking advantage of the standard Weyl

estimate for positive elliptic operators the estimate can of course be made

more precise:

Theorem 3.2. In addition to the assumptions of Theorem 2.1, suppose

A = P + (−iLT )
m is positive. Then

N(τ) . wA|τ |
dimN as τ → ∞, (3.4)
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where wA is the coefficient in Weyl’s eigenvalue estimate for A.

In formula (3.4), . means modulo an error of order o(τdimN ), τ → ∞.

Weyl’s estimate for the counting function of the eigenvalues of A is

∑

λ′<λ

dimker(A− λ′I) ∼ wAλ
dimN/m as λ→ ∞.

If τ is an eigenvalue of (2.4), then τm is an eigenvalue of A and Eτ ⊂

ker(A− τmI). A simple argument now yields (3.4). It should be noted that

the hypothesis that A is positive implies m even and P non-negative.

Perhaps the simplest way to obtain wA is from the expansion at t = 0

of the trace of the heat kernel of A via the zeta function and the Wiener-

Ikehara Tauberian Theorem [25, Theorem XVII]. This is well known but we

will briefly review here the less technical aspects for the sake of completeness.

Let e−tA be the operator giving the solution of

∂u

∂t
+Au = 0, u

∣∣
t=0

= u0.

The operator e−tA is has smooth Schwartz kernel in t > 0 so it is trace class

for each positive t. If ψk is an orthonormal basis of L2(N ;E) consisting of

eigenvectors of A, Aψk = λk, then the solution operator is of course

∑

k

e−tλk(u0, ψk)ψk

and so

Tr e−tA =

∞∑

k=0

e−λkt.

The zeta function of A is

ζA(s) =
∞∑

k=0

λ−s
k , Re s≫ 0

which can also be written as

ζ(s) =
1

Γ(s)

∫ ∞

0
tsTr e−tA dt

t
. (3.5)
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On the other hand, by means of pseudodifferential techniques one obtains

Tr e−tA ∼
∞∑

k=0

akt
(k−dimN )/m as t→ 0+.

(see Grubb [6, Corollary 4.2.7]) where the ak are numbers. Using (3.5) gives,

with ω ∈ C∞
c (R), ω = 1 near 0, and the notation

rK+1(t) = Tr e−tA −
K∑

k=0

akt
(k−dimN )/m

gives

Γ(s)ζA(s) =

∫ ∞

0
ω(t)

K∑

k=0

akt
s+(k−dimN )/m dt

t

+

∫ ∞

0
tsω(t)rK+1(t)

dt

t
+

∫ ∞

0
(1− ω(t))tsTr e−tA dt

t
(3.6)

The first integral is equal to

K∑

k=0

akω̂(s+ (k − dimN )/m)

with

ω̂(s) =

∫ ∞

0
tsω(t)

dt

t
.

This is a meromorphic function on C with a simple pole only at 0 and residue

1 there. Indeed, using integration by parts one gets

ω̂(s) =
1

s

∫ ∞

0
tsω′(t) dt;

the function defined by the integral is an entire function of s with value 1 at

s = 0. The second integral one the right hand side of (3.6) is holomorphic

in Re s > (dimN − K − 1)/m, while the third is entire. So Γ(s)ζA(s) is

meromorphic in C with simple poles at the points (dimN−k)/m, k ∈ N0 and

residue ak there. One reads off from this the poles (all simple) and residues

of ζA (in particular points of −N0 are not poles). For Weyl’s asymptotic

formula, the presence of the pole at dimN/m with residue a0/Γ(dimN/m) is
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the only important information: By the Wiener-Ikehara Tauberian Theorem

cited above,

wA =
m

dimN
Ress=dimN/m(ζA(s)).

A by-product of the estimate (3.1) (whether the rough estimate or (3.4))

and the estimates (3.3) give:

Lemma 3.3. Let {φj}j∈J be an orthonormal basis of kerP consisting of

eigenvectors of −iLT . Then ψ ∈ kerP ∩ C∞(N ;E) if and only if (φ,ψj) is

rapidly decreasing in j:

for all N > 0 there is CN such that |(φ,ψj)| < CN (1 + j)−N for all j.

Further, if ψ is smooth, then the Fourier series

ψ =
∑

j∈J

(ψ, φj)φj

converges in C∞(N ;E).

This lemma holds because of the polynomial relation between the eigen-

values τ and the dimension of Eτ as τ → ∞.

4. Hypoellipticity and Spectrum

We continue to assume that the conditions of Theorem 2.1 are satisfied.

The ellipticity of P + (−iLT )
m implies that Char(P ) ⊂ {σσ(−iT ) 6= 0}.

Define

Char±(P ) = {ν ∈ Char(P ) : σσ(−iT )(ν) ≷ 0}.

Define also

spec±0 (−iLT ) = {τ ∈ spec0(−iLT ) : τ ≷ 0}.

Theorem 4.1. Suppose that the hypotheses of Theorem 2.1 are satisfied

and that P is microlocally hypoelliptic at Char+(P ). Then −iLT

∣∣
D

is semi-

bounded from above, that is, spec+0 (−iLT ) is finite.

Of course the analogous statement for Char−(P ) and semi-boundedness

from below of −iLT

∣∣
D

also holds.
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The proof requires some preparation. Let p : R × N → N and s :

R × N → R be the canonical projections, and let L∂s be the infinitesimal

generator of the group of translations of p∗E in the direction of the fibers of

p. Literally

p
∗E = {(s, p;ϕ) : ϕ ∈ Ep}

so the meaning of translation in direction of the fibers of p is clear. Any

differential operator P on C∞(N ;E) has a canonical lifting as a differential

operator P̃ on C∞(R×N ; p∗E), characterized by the properties

p
∗P = P̃p∗, L∂sP̃ = P̃L∂s , P̃ s = sP̃ ,

where s in the last condition means the operator of multiplication by the

real-valued function s. Define ãt : R×N → R×N by

ãt(s, p) = (s, at(p)).

This is the one-parameter group of diffeomorphisms whose infinitesimal gen-

erator is the canonical lifting, T̃ , of T .

Define ã∗t : p
∗E → p∗E by

ã
∗
t (s, p;ϕ) = (s, a−tp; a

∗
tϕ),

a one-parameter group of isomorphisms on p∗E covering ã−t. Define

A : C∞(N ;E) → C∞(R×N ; p∗E)

by

Aφ(s, p) = (s, p; a∗s (φ(as(p)))).

This map has an extension to a continuous map C−∞(N ;E) → C−∞(R ×

N ; p∗E). The formula

L∂sAφ = ALT φ, φ ∈ C−∞(N ;E)

holds since it holds for smooth φ. A direct computation also gives that

Aa
∗
tφ = ã

∗
tAφ, φ ∈ C−∞(N ;E),
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so ALT φ = LT̃ Aφ, which gives

(L∂s − LT̃ )Aφ = 0. (4.1)

Let S (R × N ; p∗E) be the space of Schwartz sections of p∗E, that is,

the subspace of C∞(R×N ; p∗E) whose elements satisfy

∀k, ℓ,m ∈ N0 ∀P ∈ Diff(N ;E)∃C such that ‖skLℓ
∂sP̃ φ‖L∞ ≤ C

where the norm is computed using the lifting of the Hermitian metric of

E. Let |
∧
|(R × N ) be the density bundle of R × N . Using |ds| ⊗ p∗m to

trivialize the density bundle of R×N , define S ′(R×N ; p∗E) as the dual of

S (R×N ; p∗E∗). As usual S (R×N ; p∗E) →֒ S ′(R×N ; p∗E) is continuous

with dense image.

If φ ∈ S (R ×N ;E) then

φ(s, p) = (s, p;φ0(s, p))

where s 7→ φ0(s, p) is a Schwartz function on R with values in Ep. Let φ̂ be

the section of p∗E given by

φ̂(τ, p) = (τ, p; φ̂0(τ, p)), φ̂0(τ, p) =

∫
e−iτsφ0(s, p)ds.

Then ψ 7→ ψ̂ is a continuous map S (R×N ;E) → S (R×N ;E) and

〈φ̂, ψ〉 = 〈φ, ψ̂〉, φ ∈ S (R×N ; p∗E), ψ ∈ S (R×N ; p∗E∗). (4.2)

If φ ∈ S ′(R × N ; p∗E), then φ̂ is defined as usual by the requirement that

(4.2) holds for all ψ ∈ S (R×N ; p∗E∗).

Lemma 4.2. Let U+ be the interior of the set of points p such that P is

microlocally hypoelliptic at ν for every ν ∈ Char+(P ) ∩ T ∗
pN . Then every

sequence of normalized eigenfunctions φℓ ∈ Eτℓ with τℓ → ∞ as ℓ → ∞

converges uniformly to zero on any compact subset of U+.

Proof of Theorem 4.1. Suppose that spec+0 (−iLT ) is an infinite set. Pick

a sequence {τℓ}
∞
ℓ=1 in spec+0 (−iLT ) with τℓ → ∞, and for each ℓ, an element

φℓ ∈ Eτℓ with ‖φℓ‖ = 1. The hypothesis in the theorem is that U+ = N .

Since N is compact, the lemma gives that φℓ → 0 uniformly on N , so
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‖φℓ‖ → 0, which contradicts ‖φℓ‖ = 1. Thus spec+0 (−iLT ) must be a finite

set. ���

Proof of Lemma 4.2. Let K ⊂ U+ be a compact set. We argue that every

subsequence of a sequence as in the lemma has a further subsequence that

converges uniformly to zero on K. To do this, it is enough to show that if

τℓ+1 ≥ 2τℓ and ‖φℓ‖ = 1, (4.3)

then φℓ → 0 uniformly on K, since any subsequence of the original sequence

has a subsequence satisfying this condition. The normalization condition in

(4.3) gives that the series

φ =
∞∑

ℓ=1

φℓ

converges as a distribution. Indeed, from (3.3) we get that
∑∞

ℓ=1〈φℓ, ψ〉

converges (absolutely) for each ψ ∈ C∞(N ;E∗ ⊗ |
∧
|N ).

The essence of the proof is as follows. As a distribution, φ satisfies

Pφ = 0, so WF(φ) ⊂ Char(P ). Since P + (−iLT )
m is elliptic, Char(P ) ∩

Char(−iLT ) = ∅. Therefore WF(φ) is disjoint form the conormal bundle

of any orbit Op0 of T , and consequently φ has a restriction to Op0 . Since

−iLT φℓ = τℓφℓ,

a
∗
tφ(at(p0)) = eiτℓtφℓ(p0).

By the continuity of the restriction map, the restriction of φ to Op0 is the

distribution

φp0(t) =
∞∑

ℓ=1

eiτℓtφℓ(p0)

on R. Since P is microlocally hypoelliptic on Char+(P ), WF(φp0) is con-

tained in σσ(−i∂t) < 0, so if χ ∈ C∞
c (R), then the Fourier transform of

χ(t)φp0(t),

f(τ, p0) =
∑

χ̂(τ − τℓ)φℓ(p0)

is rapidly decreasing in τ as τ → ∞. This can (and will) be used to prove that

φℓ(p0) → 0 as ℓ→ ∞. We will show that in fact φℓ tends to 0 uniformly in a

neighborhood of p0 in U+, so by compactness of K and since p0 is arbitrary

we will conclude that φℓ → 0 uniformly on K.
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Let P̃ and LT̃ be the operators on sections of p∗E canonically induced

by P and LT via p. Since P commutes with LT , P̃A = AP . This gives the

first equation in

P̃Aφ = 0, (L∂s − LT̃ )Aφ = 0,

since Pφ = 0. The second equation is the identity (4.1). These equations

and the fact that P is microlocally hypoelliptic in σσ(−iT ) > 0 imply

WF(Aφ) ⊂ Char(P̃ ) ∩ Char(L∂s − LT̃ ) ∩ {σσ(−iT ) < 0}. (4.4)

Let W be the set on the right, a closed set. The statement (4.4) is that

Aφ belongs to the subspace C−∞
W (R×N ; p∗E) of elements of C−∞(N ; p∗E)

whose wavefront set is contained in W . This subspace is a complete lo-

cally convex topological vector space, part of whose seminorms control the

absence of wavefront set outside W (rapid decay of the “Fourier trans-

form” of Aφ outside W ), see Hörmander [8]. Let ιp : p−1(p) → R × N

be the inclusion map. The proof that the restriction map ι∗p : C−∞
W (R ×

N ; p∗E) → C−∞
ι∗W (p−1(p); p∗E) is continuous involves estimating the semi-

norms of C−∞
ι∗W (p−1(p); p∗E) expressing rapid decay outside ι∗W by the anal-

ogous seminorms for C−∞
W (R ×N ; p∗E), see Hörmander, op. cit. These es-

timates are uniform in p for p in small sets and give that if χ ∈ C∞
c (R) then

with f̃ = (χAφ)̂ (χ thought of as a function of s),

for all p0 ∈ N there is a neighborhood U of p0 such that for all

M > 0 there is C > 0 such that ‖(χAφ)̂ (τ, p)‖ ≤ C(1 + τ)−M

for τ > 0 and p ∈ U .

(4.5)

Lemma (3.3) implies that the series defining φ converges as a distribution,

and A is continuous, so Aφ =
∑

ℓAφℓ. Each φℓ is smooth and a solu-

tion of −iLT φℓ = τℓφℓ, so Aφℓ is smooth, equal to the section (s, p) 7→

(s, p; eisτℓφℓ(p)). Thus (χAφ)̂ is the section (s, p) 7→ (s, p; f(τ, p)) of p∗E

with

f(τ, p) =
∑

χ̂(τ − τℓ)φℓ(p)

and we conclude that this function is indeed rapidly decreasing as τ → ∞

uniformly for p in a neighborhood U of p0.
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Suppose that
∫
χ(t)dt = 1, i.e., χ̂(0) = 1. Then, for each k ∈ N,

φk(p) = f(τk, p)−
∑

ℓ 6=k

χ̂(τk − τℓ)φℓ(p). (4.6)

The fact that f(τk, 0) tends to zero rapidly for p ∈ U as k → ∞ was es-

tablished above. Using (3.2) and that χ̂ is a rapidly decreasing function we

bound the series as

‖
∑

ℓ 6=k

χ̂(τk − τℓ)φℓ(p)‖ ≤ C
∑

ℓ 6=k

(1 + |τk − τℓ|)
−N (1 + τℓ)

µ

≤ C(1 + τk)
µ
∑

ℓ 6=k

(1 + |τk − τℓ|)
−N+µ

with arbitrary N . Using the integral test and the condition on the τℓ in (4.3)

one obtains the bound

∑

ℓ 6=k

(1 + |τk − τℓ|)
−N+µ ≤ C(τ−N+µ+1

k−1 + τ−N+µ+1
k ),

so the norm (as an element of Ep) of the series in (4.6) is rapidly decreasing,

uniformly for p ∈ U . Fix N > µ + 1. We conclude that if (4.5) holds in U

with with M = 1, then

‖φk(p)‖ ≤ C(1 + τk)
−1 for all p ∈ U.

The compactness of K gives that the same conclusion is valid for all p ∈ N

(with some other constant). This implies that the pointwise norm of the φk

tends to 0 uniformly on K as k → ∞. ���

5. CR Manifolds with R-action

Let N be a CR manifold, write K for its CR structure (as complex

tangent vectors of type (0, 1)), let H ⊂ TN be the subbundle whose com-

plexification is K⊕K and write J : H → H for the almost complex structure

of H.

Assume T (as usual, a nowhere vanishing real vector field) is such that

dat maps K to itself, that is, at acts by CR diffeomorphisms. Equivalently,
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[X ,T ] is a smooth vector field in K whenever X is. It follows that

V = K + spanCT (5.1)

is an involutive subbundle of CTN . Since V+V = CTN , a theorem of Niren-

berg in [20] extending the Newlander-Nirenberg Theorem, see [19], implies

that N is locally integrable, that is to say, locally embeddable or realizable.

(More general results of this nature were obtained by Baouendi-Rothschild

[1], Baouendi-Rothschild-Treves [2], and Jacobowitz [10].)

If θ is the 1-form that vanishes on K ⊕ K and satisfies 〈θ,T 〉 = 1, then

T is a Reeb vector field with respect to θ and the latter is, if K is non-

degenerate, a pseudohermitian structure on N , see Webster [24].

We assume in addition that there is a Riemannian metric g on N which

is T -invariant: LT g = 0. Then g(T ,T ) is constant on integral curves of T ,

so we may normalize g so as to also have that g(T ,T ) = 1. The restriction

of g to H is also dat-invariant. Redefine g so that H is orthogonal to T ,

finally, replace g on H by the metric

(u, v) 7→
1

2

(
g(u, v) + g(Ju, Jv)

)
, u, v ∈ TpN , p ∈ N

Since datJ = Jdat, the new metric is again T -invariant in addition to Her-

mitian. So it gives a T -invariant Hermitian metric on CTM making K, K

and spanCT orthogonal to each other. Conversely, a T -invariant Hermitian

metric on K can be used to construct a T -invariant Riemannian metric with

respect to which these subbundles are orthogonal to each other.

We regard V, defined in (5.1), as the primary object together with a

class βββ of sections of V to be defined momentarily. Because V is involutive,

there is a complex

· · · → C∞(N ;
∧q

V∗)
D
−→ C∞(N ;

∧q+1
V∗) → · · · , (5.2)

where D is defined using Cartan’s formula for the standard differential, see

Helgason [7]. Namely, if η ∈ C∞(N ;
∧q

V∗) and V0, . . . , Vq are smooth sec-

tions of V, then

(q + 1)Dη(V0, . . . , Vq) =
∑

j

(−1)jVjη(V0, . . . , V̂j , . . . , Vq)
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+
∑

j<k

(−1)j+kη([Vj , Vk], V1, . . . , V̂j , . . . , V̂k, . . . , Vq).

The complex (5.2) is elliptic because V + V = CTN see Treves [23]. For a

function f we have Df = ι∗df , where ι∗ : CT ∗N → V∗ is the dual of the

inclusion homomorphism ι : V → CTN .

The form β = −iθ
∣∣
V
is an element of C∞(N ;V

∗
) and

2Dβ(X ,Y) = −iX θ(Y) + iYθ(X) + iθ([X ,Y]) = 0,

2Dβ(X ,T ) = −iX θ(T ) + T θ(X) + iθ([X,T ]) = 0

if X , Y are sections of V, so Dβ = 0. We let

βββ = {β + Du : u ∈ C∞(N ,R), T u = 0}

Each element β′ ∈ βββ is D-closed and 〈β,T 〉 = −i, therefore

Kβ′ = ker β′

is again CR structure. Since LT β
′ = 0, these CR structures are all T -

invariant.

The meaning of V together with the class βββ is illustrated in Section 7,

see (7.5) and the end of that section. For an interpretation of the condition

Dβ = 0 in a familiar situation see Lemma 7.1.

Fix an element in βββ. In terms of basic properties there is no distinction

between any of the elements of βββ, so we continue to denote our choice by β,

and by K the CR structure it defines. The operators of the CR complex

· · · → C∞(N ;
∧q

K
∗
)

∂b−→ C∞(N ;
∧q+1

K
∗
) → · · · (5.3)

can be written in terms of those of the complex (5.2):

∂bφ = Dφ− iβ ∧ LT φ, φ ∈ C∞(N ;
∧q

K
∗
). (5.4)

Here LT means regular Lie derivative. The T invariance of β (hence of

K) also gives that ∂b commutes with LT . If h is a Hermitian metric on K

which is T -invariant and m a positive T -invariant density (for instance the
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Riemannian density), then also the formal adjoint, ∂
⋆
b , of ∂b, is T invariant

(since −iLT is symmetric), hence the Hodge Laplacians of the ∂b-complex,

�b,q = ∂b∂
⋆
b + ∂

⋆
b∂b

are also T -invariant.

We are now ready to apply the results of Section 2. Let

H
q

∂b
(N ) = ker�b,q = {φ ∈ L2(N ;

∧q
K

∗
) : �b,qφ = 0}

and let

Dq = {φ ∈ H
q

∂b

(N ) and LT φ ∈ H
q

∂b

(N )}.

The spaces H
q

∂b
(N ) may be infinite-dimensional. If φ ∈ H

q

∂b
(N ), the condi-

tion LT φ ∈ H
q

∂b

(N ) is equivalent to the condition

LT φ ∈ L2(N ;
∧q

K
∗
).

Since �b,q − L2
T is elliptic and symmetric, (2.5) is satisfied for any real line

Λ ⊂ C whose only real point is 0. Theorem 2.1 gives:

Theorem 5.1. Suppose that there a T -invariant Hermitian metric h on K,

let �b,q be the Laplacian of the complex (5.3) computed using the metric h

and a T -invariant density on N . Then

−iLT

∣∣
Dq

: Dq ⊂ H
q

∂b
(N ) → H

q

∂b
(N ) (5.5)

is a selfadjoint Fredholm operator with compact resolvent.

Definition 5.2. Let specq0(−iLT ) be the spectrum of the operator (5.5),

and let H
q

∂b,τ
(N ) be the eigenspace of −iLT in H

q

∂b
(N ) corresponding to

the eigenvalue τ .

6. Vanishing Theorems

We continue in this section with the notation and assumptions of the

previous section and give an application of Theorem 4.1 when the CR struc-

ture K is non-degenerate. Let CharK be the characteristic set of K and
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let

Char±K = {ν ∈ CharK : τττ(ν) ≷ 0}

where τττ = σσ(−iT ). Let θ be the real 1-form on N which vanishes on K

and satisfies 〈θ,T 〉 = 1; thus θ is smooth, spans CharK, and has values in

Char+(K). Recall that

Levi θ(v,w) = −idθ(v,w), v, w ∈ Kp, p ∈ N .

Suppose that Levi θ is non-degenerate, with k positive and n − k negative

eigenvalues. It is well known that then �b,q is microlocally hypoelliptic at

ν ∈ CharK for all q except if q = k and τττ(ν) < 0 or if q = n−k and τττ(ν) > 0,

see [3, 22], also the appendix of [14]. In the definition of the Levi form above

we switched to from K to K to adapt to the usual conventions.

Applying Theorem 4.1 we get:

Theorem 6.1. With the hypotheses of Theorem 5.1, suppose that Levi θ is

non-degenerate with k positive and n− k negative eigenvalues. Then

1. specq0(−iLT ) is finite if q 6= k, n− k;

2. speck0(−iLT ) contains only finitely many positive elements, and

3. specn−k
0 (−iLT ) contains only finitely many negative elements.

For the interpretation of this result in the light of Kodaira’s vanishing

theorem, see Section 7, in particular (7.9). Theorem 6.1 applied to the case

where N is the circle bundle of a Hermitian holomorphic line bundle E → B

over a compact manifold is a partial version of various theorems on vanishing

of the ∂-cohomology with coefficients in E, see for instance Kobayashi [11,

Chapter III, §3] for a listing of such theorems.

One can make a stronger statement when q = 0. The condition ζ ∈

H 0
∂b
(N ) just means that ∂bζ = 0. For such ζ, if −iT ζ = τζ, then ζ is

smooth and for each ℓ ∈ N, ζℓ ∈ H 0
∂b
(N ) satisfies −iT ζℓ = ℓτζℓ. So if for

instance spec00(−iLT )∩R+ is a finite set, then in fact spec00(−iLT ) contains

no positive elements. In particular, with the hypothesis of the theorem, if

k and n − k are different from 0, then spec00(−iLT ) = {0} rather than just

finite.
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7. Circle Bundles of Holomorphic Line Bundles

We will now discuss circle bundles of holomorphic line bundles in the

context of the preceding sections.

Let B be a manifold, let E → B be a complex line bundle and fix a

Hermitian metric on E. Let ρ : SE → B be the circle bundle. For m ∈ Z

define the tensor product bundles Em → B in the usual way, give each

of these line bundles the Hermitian metric induced by that of E and let

SEm → B be the circle bundle.

Define ℘m : SE → SEm for m 6= 0 as follows. Let p ∈ SE. If m > 0, let

℘m(p) = p⊗ · · · ⊗ p (m times). If m < 0, let p∗ ∈ SE∗ be the element dual

to p, and let ℘m(p) = p∗⊗· · ·⊗p∗ (|m| times). The map ℘m : SE → SEm is

an |m|-sheeted covering map with the property that ℘m(eitp) = eimt℘m(p).

Let x ∈ B. A point η ∈ Em
x is a linear function η : E−m

x → C which as

such gives the function fη = η ◦ ℘−m : SEx → C. The latter function has

the property that if p ∈ SEx, then fη(e
itp) = e−imtfη(p). Thus if T is the

infinitesimal generator of the action of S1 on SE, the function fη on SEx

satisfies the equation

T f + imf = 0. (7.1)

Conversely, if f : Ex → C solves this equation, then f is the pullback to

SEx by ℘−m of a unique function ηf : SE−m
x → C that satisfies ηf (e

itp′) =

eitηf (p
′), p′ ∈ SE−m

x , and that therefore extends as a linear map ηf : E−m
x →

C thus giving an element of Em
x . The correspondence f 7→ ηf is the inverse

of η 7→ fη ◦℘−m: the fiber Em
x is isomorphic, as a vector space, to the space

of solutions of (7.1) on SEx. The relation between sections of tensor powers

of a complex line bundle and eigenfunctions of −iT on its circle bundle,

whether holomorphic on one end and CR on the other, has been exploited

by other authors, for instance [26].

More generally, if x ∈ B and η ∈
∧q

xB⊗Em
x , then 〈℘−m(p), η〉 ∈ TxB for

each p ∈ SEx and ρ∗p〈℘−m(p), η〉 is an element of
∧q

pSE. There is a canonical

identification of ρ∗T ∗B and the kernel, H∗, of iT :
∧q
SE →

∧q−1
SE (interior

multiplication by T ), and the map

SEx ∋ p 7→ Fm(η)(p) = ρ∗p〈℘−m(p), η〉 ∈
∧q

pH
∗
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is a section φη of
∧q

H∗ along SEx. Since

Fm(η)(atp) = e−imtρ∗atp〈℘−m(p), η〉 = e−imt
a
∗
−tρ

∗
p〈℘−m(p), η〉

= e−imt
a
∗
−t(Fm(η)(p)), (7.2)

a∗t (Fm(η)(atp)) = e−imtFm(p), so φ = Fm(η) satisfies

LT φ+ imφ = 0. (7.3)

Conversely, for any section φ of
∧q

H∗ along SEx that satisfies (7.3) there is

η ∈
∧q

xB⊗Em
x such that φ = Fm(η). Applying this to sections of

∧q
B⊗Em

we get an injective map

Fm : C∞(B;
∧q

B ⊗ Em) → C∞(SE;
∧q

H∗) (7.4)

whose range is the subspace of C∞(SE;
∧q

H∗) whose elements satisfy (7.3)

globally. The casem = 0 is included in the above scheme by defining F0 = ρ∗.

We give E0 = B × C the canonical Hermitian structure.

Suppose that ∇ is a Hermitian connection on E. Thinking of SE as the

bundle of unit bases of E, the connection gives a horizontal bundle Hθ ⊂

TSE and a connection form θ; θ vanishes on Hθ, 〈θ,T 〉 = 1, and LT θ = 0.

Via the splitting TSE = Hθ ⊕ spanT , the dual of Hθ is identified with H∗,

and
∧q

H∗
θ is identified with the kernel

∧q
H∗ of iT :

∧q
SE →

∧q−1
SE.

Suppose now that B is a complex manifold and that π : E → B is a

Hermitian holomorphic line bundle. Let ∇ be the Hermitian holomorphic

connection, view N = SE, the circle bundle of E with respect to the metric

as the unit frame bundle, let θ be the connection form of ∇. Let ι : V →֒

CTN be the subbundle of CTN given by

V = {v ∈ CTN : π∗v ∈ T 0,1B} (7.5)

and let β = −iι∗θ. Denote the operators of the associated differential com-

plex by D, as usual. The kernel Kβ ⊂ V of β is T -invariant, equal to

V ∩ ker θ ⊂ CHθ; its fibers project isomorphically onto the fibers of T 0,1B.

The kernel, K
∗
, of iT in V∗ is canonically isomorphic to ρ∗

∧0,1
B and to the

dual of Kβ.

Lemma 7.1. The section β is D-closed.
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Proof. Suppose V andW are smooth T -invariant vector fields in Kβ. Then

2Dβ(V,W ) = V 〈β,W 〉 −W 〈β, V 〉 − 〈β, [V,W ]〉

= −iV 〈θ,W 〉+ iW 〈θ, V 〉+ i〈θ, [V,W ]〉 = −2idθ(V,W ) = −2ρ∗Ω(V,W )

where Ω is the curvature form of the connection. Since the latter is a holo-

morphic connection, its (0, 2) component vanishes. Thus, since at each point

V and W are liftings of elements of T 0,1B, ρ∗Ω(V,W ) = 0. Also

2Dβ(V,T ) = V 〈β,T 〉 − T 〈β, V 〉 − 〈β, [V,T ]〉 = 0.

Thus Dβ = 0. ���

Evidently, the map (7.4) restricts to an isomorphism from C∞(B;
∧0,q

B⊗

Em) onto

C∞
m (SE;

∧q
K

∗
) = {φ ∈ C∞(SE;

∧q
K

∗
) : LT φ+ imφ = 0}.

Lemma 7.2. The map Fm : C∞(B;
∧0,q

B ⊗ Em) → C∞
m (SE;

∧q
K

∗
) is an

isomorphism, and

D(im)Fm = Fm∂ (7.6)

where D(σ)φ = Dφ+ iσβ ∧ φ.

Proof. We prove (7.6). Let γ be a smooth local section of SE defined

near a point x0 ∈ B and let ω be the connection form with respect to γ

of the Hermitian holomorphic connection of E. Then γm = ℘m ◦ γ is a

section of SEm, and mω is the connection form with respect to γm of the

Hermitian holomorphic connection of Em. If η = φ⊗γm is a smooth section

of
∧0,q

B ⊗ Em near x0, then

∂η = (mω0,1 ∧ φ+ ∂φ)⊗ γm

where ω0,1 is the (0, 1) component of ω, and Fm(η)(γ(z)) = dρ∗γ(z)φ.

Let t be defined in an neighborhood of p0 = γ(x0) in SE so that t

vanishes on the image of γ and T t = 1. Then θ = dt− iρ∗ω and

β = −iDt− ρ∗ω0,1.
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Suppose that z1, . . . , zn are holomorphic coordinates for B on U . Their

pullback to ρ−1(U) will also be denoted z1, . . . , zn. Then (z1, . . . , zn, t) is a

hypoanalytic chart of V near p0 (see Treves [23]), and atγ(z) = eitγ(z) is the

point with coordinates (z, t). In these coordinates, if φ =
∑

I φIdz
I , then

ρ∗φ =
∑

I φIDz
I . Using (7.2) we have

Fm(η)(atγ(z)) = e−imt
∑

I

φIDz
I

so

DFm(η)(atγ(z)) = e−imt
(∑

I

DφI ∧ DzI − imDt ∧
∑

I

φIDz
I
)

= e−imt
(∑

I

DφI ∧ DzI +mρ∗ω0,1 ∧
∑

I

φIDz
I
)

+e−imt
(
−mρ∗ω0,1 ∧

∑

I

φIDz
I − imDt ∧

∑

I

φIDz
I
)

= e−imt
(
ρ∗(∂φ0 +mω0,1 ∧ η) +m(−iDt− ρ∗ω0,1) ∧ ρ∗η

)

= Fm(∂η)(atγ(z)) +mβ ∧ Fm(η)(atγ(z)).

Thus DFm(η)−mβ ∧ Fm(η) = Fm(∂η). ���

The vector bundle Kβ is a CR structure on SE. Using the identification

of K
∗
β and K

∗
indicated above, the ∂b-operators of this CR structure are

given by (5.4). Since LT ∂b = ∂bLT , there is a complex

· · · → C∞
m (SE;

∧q
K

∗
)

∂b−→ C∞
m (SE;

∧q+1
K

∗
) → · · · (7.7)

for each m ∈ Z.

Lemma 7.3. The maps Fm satisfy ∂bFm = Fm∂. Hence, the ∂ cohomology

groups of Em are isomorphic to the cohomology groups of the complex (7.7).

Indeed, suppose η ∈ C∞(B;
∧0,q

B ⊗ Em). Then (7.3) holds for φ =

Fm(η). With this we get

∂bFm(η) = DFm(η)− iβ ∧ LT Fm(η) = DFm(η)−mβ ∧ Fm(η) = Fm(∂η).

where the last equality is (7.6).

Fix a Hermitian metric g on
∧0,1

B and denote also by g the Rieman-

nian metric it induces on B as well as those induced on each of the ex-
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terior powers
∧0,q

B. Let m be the Riemannian density determined by g.

Let h be the Hermitian metric of E and hm the one induced on Em. So

hm(℘m(p), ℘m(p)) = h(p, p) = 1 if p ∈ SE. These metrics give Hermitian

metrics on the vector bundles
∧0,q

B ⊗ Em, which we again denote by h:

h(φ⊗ η, ψ ⊗ η) = g(φ,ψ) if h(η, η) = 1.

Let �(m) denote the Hodge Laplacians for the Dolbeault complex with co-

efficients in Em.

Using g and the pointwise isomorphisms ρ∗p :
∧0,1

ρ(p)B →
∧q

pK
∗
we get

Hermitian metrics on the vector bundles
∧q

K
∗
, to be denoted again by h.

Using this Hermitian metric and the density m0 = ρ∗m ⊗ θ on SE we then

get Kohn Laplacians �b for the ∂b complex on SE. It follows from the

definitions that

T h(φ,ψ) = h(LT φ,ψ) + h(φ,LT ψ),

if φ, ψ ∈ C∞(SE;
∧q

K
∗
). This gives that −iLT is formally selfadjoint,

∫

SE
h(−iLT φ,ψ)m0 =

∫

SE
h(φ,−iLT ψ)m0

and that the spaces C∞
m (SE;

∧q
K

∗
), m ∈ Z, are pairwise orthogonal. Also,

since LT commutes with ∂b, LT commutes with �b.

The formula

h((Fmφ)(p), (Fmψ)(p)) = h(φ(ρ(p)), ψ(ρ(p))) if φ, ψ ∈ C∞(B;
∧0,q

B⊗Em)

for any p ∈ SE gives

∫

SE
h(Fmφ, Fmψ)m0 = 2π

∫

B
h(φ,ψ)m if φ, ψ ∈ C∞(B;

∧0,q
B ⊗ Em).

Now, if φ ∈ C∞(B;
∧0,q

B ⊗ Em) and ψ ∈ C∞(B;
∧0,q+1

B ⊗ Em), then

(∂bFmφ, Fmψ) = (Fm(∂φ), Fmψ) = 2π(∂φ, ψ) = (Fmφ, Fm(∂
⋆
ψ))

and also (∂bFmφ, Fmψ) = (Fmφ, ∂
⋆
bFmψ), so ∂

⋆
bFm = Fm∂

⋆
.

Consequently �bFm = Fm�(m), and thus the kernel of �(m) in degree q

is mapped by Fm into the subspace Eq
m of the kernel of �b in degree q whose
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elements satisfy (7.3). Let ker�b be the kernel of �b in L
2. Let

D = {φ ∈ ker�b : LT φ ∈ L2}.

Theorem 2.1 gives here that

−iLT

∣∣
D
: D ⊂ ker�b → ker�b (7.8)

is a selfadjoint Fredholm operator with eigenspaces consisting of smooth

sections. In the situation at hand, the numbers τ for which

�bφ = 0, −iLT φ = τφ

has a nontrivial solution must be integers. This gives, for each q, an isomor-

phism between the eigenspace of (7.8) corresponding to the eigenvalue −m

and the kernel of �(m) on (0, q) forms.

Theorems on vanishing of cohomology in degree (0, q) for the

Dolbeault complex associated with Em are thus theorems on

absence of the point −m from the spectrum of the operator

(7.8) in degree q.

(7.9)

For example, if E is a positive line bundle, then by Kodaira’s Vanishing Theo-

rem, −m /∈ spec(−iLT ) for every q < n andm ≥ 1. Positivity (or ampleness)

of E means that for some Hermitian metric, SE is strictly pseudoconcave

(Grauert), which in turn implies microlocal hypoellipticity of �b on one

component or the other of its characteristic set, depending on the degree.

Theorem 4.1 gives a sufficient condition in terms of a hypoellipticity condi-

tion of �b in order for the spectrum of (7.8) to contain only finitely many

points in one of the components of R\0. The simplest sufficient condition

for hypoellipticity of �b is the nondegeneracy of the Levi form of the CR

structure K. In that case, Theorem 4.1 gives our Theorem 6.1.

We now discuss the class βββ. The forms β, β′ on the circle bundles

ρ : SE → B and ρ′ : S′E → B of E with respect to two Hermitian metrics

h and h′ are related as follows. Let u be the function B → R such that

h′ = e2uh. Let θ, θ′ be the connection forms of the respective Hermitian

holomorphic connections as forms on the respective circle bundles. Finally,
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let F : SE → S′E be the map

F (σ) = e−uσ.

Then

F ∗θ′ = θ − i(∂u− ∂u). (7.10)

The map F is not a CR map, but since ρ′ ◦ F = ρ, its differential maps the

structure bundle V of SE to the structure bundle V ′ of S′E, and (7.10) gives

F ∗β′ = β + Du. (7.11)

More explicitly, let σ be a holomorphic frame of E over some open set U ⊂ B.

Let σ0 = σ/|σ|. The pull-back of the connection form θ to U × S1 by the

diffeomorphism Φ = U × S1 → ρ−1(U) given by Φ(x, eit) = eitσ0(x) is

Φ∗θ = dt− i
∂|σ|2 − ∂|σ|2

2|σ|2

where |σ| =
√
h(σ, σ). Similarly, with the Hermitian holomorphic connection

determined by h′ and the analogously defined map Φ′ : U × S1 → ρ′−1(U)

we get

Φ′∗θ′ = dt− i
∂(e2u|σ|2)− ∂(e2u|σ|2)

2e2u|σ|2
= dt− i

(
∂|σ|2 − ∂|σ|2

2|σ|2
+ ∂u− ∂u

)
.

This proves (7.10) since Φ′ = F ◦ Φ, and restricting both sides of (7.10) to

V and multiplying by −i gives (7.11). Thus the class βββ includes the forms β

defined by any Hermitian metric on E.
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