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Abstract

We construct some radially symmetric solutions of the constant σk-equation on R
n \

R
p, which blow up exactly at the submanifold R

p ⊂ R
n. These are the basic models to the

problem of finding complete metrics of constant σk–curvature on a general subdomain of

the sphere Sn\Λp that blow up exactly at the singular set Λp and that are conformal to the

canonical metric. More precisely, we look at the case k = 2 and 0 < p < p2 := n−
√

n−2

2
.

The main result is the understanding of the precise asymptotics of our solutions near

the singularity and their decay away from the singularity. The first aspect will insure

the completeness of the metric about the singular locus, whereas the second aspect will

guarantee that the model solutions can be locally transplanted to the original metric on

S
n, and hence they can be used to deal with the general problem on S

n\Λp.

1. Introduction

Let (M,g) be a smooth n–dimensional Riemannian manifold. Denote

by Riem, Ric, R, the Riemannian curvature tensor, the Ricci tensor and the
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scalar curvature, respectively. Construct the Schouten tensor as

Ag =
1

n− 2

(

Ricg −
1

2(n − 1)
Rg g

)

.

From the point of view of conformal geometry, we are interested in the

study of the Schouten tensor because it contains all the information about

the conformal deformations of a given metric. This can be seen from the

decomposition

Riem = W +A©∧ g,

where ©∧ is the Kulkarni-Nomizu product, and W the Weyl tensor, which is

a conformal invariant.

Let λ1, . . . , λn be the eigenvalues of the symmetric endomorphism of

TM given by g−1Ag. The main object of study of the present paper will be

its k-th elementary symmetric function:

σk(g
−1Ag) :=

∑

i1<···<ik

λi1 · · ·λik .

These σk–curvatures, introduced in [37], have received a lot of attention. For

instance, σ1(g
−1Ag) is given by

σ1(g
−1Ag) = λ1 + · · · + λn =

1

2(n− 1)
R,

and thus it is a multiple of the scalar curvature. So the study of the σk–

curvatures gives a natural generalization of the Yamabe problem and scalar

curvature related questions. Moreover, the sign of the σk’s has a strong

control on the geometry of the manifold. In particular, locally conformally

flat metrics with σ1(g
−1Ag), . . . , σk(g

−1Ag) ≥ 0 for some k > 1 have (see

[19])

Ricg ≥ (2k − n)(n− 1)

(k − 1)

(

n

k

)−1/k
(

σk(g
−1Ag)

)1/k
g (1.1)

and thus Ricg > 0 when n < 2k. Throughout the paper we will assume

2 ≤ 2k < n. Taking advantage of this fact, we introduce the following

formalism for the conformal change

gu := u
4k

n−2k g,
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where the conformal factor u > 0 is a positive smooth function. Then the

constant σk–equation for the conformal factor u can be formulated as

σk
(

g−1
u Agu

)

= 2−k

(

n

k

)

. (1.2)

We recall that the Schouten tensor of gu is related to the one of Ag by the

conformal transformation law

Agu = Ag −
2k

n− 2k
u−1∇2u+

2kn

(n− 2k)2
u−2du⊗ du− 2k2

(n− 2k)2
u−2|du|2g,

where ∇2 and | · | are computed with respect to the background metric g.

Given a background metric g, we will consider metrics gu defined as above

with the positive smooth conformal factor in the positive cone

Γ+
k (g) =

{

u ∈ C∞(M) : u > 0 and σ1(g
−1
u Agu), . . . , σk(g

−1
u Agu) > 0

}

.

For a given matrix A, we define the k-th Newton tensor of the matrix A as

Tk(A) = σk(a)I − σk−1(A)A+ . . . + (−1)kAk. (1.3)

Note that if A is such that σ1(A), . . . , σk(A) > 0, then Tk−1 is positive

definite.

From the PDE point of view, (1.2) is a fully non-linear elliptic equation

of Hessian type, which becomes elliptic (but not necessarily uniformly) in

the positive cone. In the case k = 1 the complete picture is understood.

Indeed, if the background metric g is such that Rg = 0, then the constant

scalar curvature (or constant σ1) equation (1.2) for gu reduces to

−∆gu =
n(n− 2)

4
u

n+2

n−2 . (1.4)

With a slightly different formalism for the conformal change, if we set gv =

v−2|dx|2, where |dx|2 represents the Euclidean metric, we can write down

the explicit expression for the σ2-operator

2σ2(v) =
[

(∆v)2 − |D2v|2
]

v2 − (n− 1)∆v|∇v|2v + n(n−1)

4
|∇v|4,
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Keeping the same notation for the conformal change, we observe that these

type of non-linear equations have an underlying divergence structure, namely

mσm(v) = v∂j

(

viT
m−1
ij

)

− nTm−1
ij vivj+

n−m+ 1

2
σm−1(v) |∇v|2 , (1.5)

where Tm−1 = Tm−1(g
−1
v Agv) is the (m−1)-th Newton transform of g−1

v Agv .

The non-divergence terms are of lower order and indeed, they can be dealt

through an inductive process.

The Yamabe problem for the σk–curvature equation has been considered

in [36, 11]. On R
n, a global positive solution of the constant σk–curvature

equation (1.2) must be of the form ([4, 5, 6, 26])

u(x) = c(n, k)

(

a

1 + a2|x− x̄|2
)

n−2k
2k

,

for some real number a > 0 and some point x̄ ∈ R
n, and hence it comes from

the standard metric on S
n (or its image under a conformal diffeomorphism).

We concentrate now on singular solutions of equation (1.2). In Section 2

we give a small survey on removability/non-removability of such singularities.

Then we look at the same problem on S
n\Λ, where Λ is a smooth submanifold

of Sn of dimension p ≥ 0. This is so called the singular k-Yamabe problem.

A necessary condition on the dimension of Λ for solvability is shown in [14]

and is reviewed in Section 3.

In the case where the singular set Λ reduces to a finite number of points

(p = 0), solutions to equation (1.2) have been constructed in [29] and [30].

Here, we deal with the case p > 0. The strategy of this proof is to first

find an approximate solution that can be perturbed in order to produce a

suitable solution. This is the content of the forthcoming paper [18]. The

main step in the construction of the approximate solution is to construct

a model solution in R
n\Rp, singular along R

p, and that has a very precise

decay far from the singularity. This decay allows to transplant it to the

original Sn\Λ.

The main result in this note is to find radially symmetric solutions of

the constant σk-equation that blow up exactly at Rp ⊂ R
n with this precise

asymptotic behavior, for k = 2 and 0 < p < p2 := n−√
n−2
2 (the reason of
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this dimension restriction will be explained there). This is the content of

Section 4.

2. Local Behavior Near Singularities

First look at an isolated singularity for the constant σk–curvature equa-

tion:
{

σk(u) = 1 in B1\{0},
u ∈ Γ+

k , u > 0, n > 2k.
(2.1)

In the semilinear case k = 1, Caffarelli-Gidas-Spruck [2] have given a com-

plete local characterization of isolated singularities. Basically, if u is a posi-

tive solution in B\{0}, then either the singularity is removable or the func-

tion has a determined asymptotic behavior

C1

|x|n−2

2

≤ u(x) ≤ C2

|x|n−2

2

when |x| → 0 . (2.2)

In the fully non-linear case (k > 1), the same classification for solutions

of problem (2.1) holds similarities (see [20, 21]), and indeed singular solutions

must have a specific asymptotic behavior near the origin. Note that (2.1) is

a critical problem. In the subcritical case this classification result is much

easier to prove and is shown in [15].

The problem of classification of radial solutions of σk(u) = 1 in an an-

nulus is solved by [8], which gave a precise limiting behavior for the solution

near the singularity (completeness vs. incompleteness, for instance). Here

(2.1) reduces to an ordinary differential equation whose phase portrait may

be reasonably well understood (see Proposition 4.1 in Section 4.1 for the

explicit calculations).

Now we consider the problem of understanding the local behavior of

non-isolated singularities of the constant σk-curvature equation, under some

capacity conditions on the singular set Λ:

{

σk(u) = 1 on B1\Λ,
u > 0, u ∈ Γ+

k , n > 2k,
(2.3)
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where Λ ⊂ B1 is a compact subset of the unit ball in R
n.

The classical notion of capacity [1] was introduced to treat singularities

of linear and quasilinear PDE. If Λ is a compact subset of Rn, one defines

for k ∈ N and q ≥ 1,

ck,q(Λ) := inf
{

‖η‖q
W k,q : η ∈ C∞

0 , η ≥ 1 on Λ
}

. (2.4)

In particular, for the Laplacian problem (1.4) the Newtonian capacity c1,2 is

the suitable one (c.f. [9]).

For fully non-linear Hessian equations of the type σk(D
2u), [24] has

considered a related notion of capacity in terms of potential theory, that

is adapted to the new equation. On the other hand, [16] introduce a new

concept of capacity that is adapted to the problem (2.3) with it is additional

structure, and in the spirit of the classical notion (2.4). Since this definition

is given inductively and it is complicated to write it in general, we just give

the σ2 case.

Definition 2.1. Let Λ be a compact subset of Rn. For q ≥ 2k, define

c̃2,q(Λ) = inf

{

‖η‖qLq+

∫

|∇η|qdx+
∫

∣

∣∇|∇η|2
∣

∣

q/3
dx : η ∈ C∞

0 , η≥1 on Λ

}

.

In the case that Λ ⊂ R
n, one may take only test functions satisfying supp

η ⊂ BR and in this case we write c̃(Λ, R).

Of course, for k = 1 all the three definitions agree. However, it is not

clear what the relation between the different capacities is, and this is a very

interesting problem. In any case, we have:

Lemma 2.2. For general k:

1. If ck,p/k(Λ) = ck−1,p/(k−1)(Λ) = · · · = c1,p(Λ) = 0, then c̃k,p(Λ) = 0.

2. If dimH(Λ) < n− p for n > p > 2k, then c̃k,p(Λ) = 0.

Now we are able to show a removability of singularities result:

Theorem 2.1 ([16]). Let Λ ⊂ BR ⊂ R
n be a compact set, R < 1, with

capacity

c̃k,q(Λ, BR) = 0
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for a given 2k < q ≤ n. Let u ∈ Lr(B1) for some

r ≥ 2kn

n− 2k
and r >

2k2

k + 1

(

q

q − 2k

)

be a solution of (2.3) with

‖u‖
L

2kn
n−2k (B1)

< ε

for some ε > 0 small enough. Then u belongs to Lr̃ for some r̃ > 2kn
n−2k in a

smaller ball. Also,

‖u‖L∞(Bρ) ≤
C

Rn/q
‖u‖Lq(B2ρ)

for all q > 2k2

k+1 .

3. Complete Metrics on S
n

We are interested now in studying singular sets of complete metrics on

S
n with positive σk–curvature, and the topological information they may

contain. More precisely, let g be a complete metric on a domain Ω ⊂ Sn,

conformal to the standard metric on the sphere gc. In [34] (see also chap-

ter VI in [35] for a more detailed discussion), Schoen-Yau prove that if g

has positive scalar curvature, then the singular set must be of Hausdorff

dimension

dimH(∂Ω) <
n− 2

2
.

If one has some additional information on the positivity of σk for k > 1, then

this dimension estimate may be improved, obtaining the following theorem.

Theorem 3.1 ([14]). Let g be a complete metric on a domain Ω ⊂ Sn,

conformal to gc, satisfying

σ1(g
−1Ag) ≥ C0 > 0 and σ2(g

−1Ag), . . . , σk(g
−1Ag) ≥ 0

for some integer 1 ≤ k < n/2. Then

dimH(∂Ω) ≤
n− 2k

2
.
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If, in addition, for k > 1 we have |R|+ |∇gR| ≤ c0, then

dimH(∂Ω) <
n− 2k

2
. (3.1)

In the same paper [34] Schoen and Yau show that any complete lo-

cally conformally flat manifold of positive scalar curvature is conformally

equivalent to a subdomain Ω of the sphere. Now, the dimension estimate of

Theorem 3.1 will give restrictions on the homotopy and cohomology groups

of the original manifold, as stated in [14].

The case k = 2 is addressed by Chang-Hang-Yang in [7]. In the general

case, the proof of the theorem above requires a deep understanding of the

‘almost divergence’ structure (1.5).

We are left to study the case 3 ≤ n ≤ 2k. But, looking at the estimate

(1.1) an easy argument gives that a singular set for g cannot exist.

The natural question now is to find if (3.1) is sharp. In the scalar

curvature case, k = 1, [27] constructs a complete metric on S
n\Λ, conformal

to the standard one gc, with constant scalar curvature when Λ is a smooth

submanifold of dimension 0 < p < n−2
2 . See also [10] when Λ is a smooth

submanifold with boundary of the same dimension. In the general 2 < k <

n/2 case, estimate (3.1) does not seem to be optimal. Indeed, in the following

we have the explicit calculations for the canonical example S
n \ Sp with the

metric constructed as follows.

By stereographic projection, it is equivalent to work with R
n \ Rp, en-

dowed with coordinates Rt × SN−1
θ ×R

p
z, where N = n− p. In these coordi-

nates the Euclidean metric is written in the following way

|dx|2 = e−2t
(

dt2 + gSN−1

)

+ δαβ dz
α ⊗ dzβ , (3.2)

where α, β = 1, . . . , p. We set now

gu = u
4k

n−2k |dx|2, for u(t) = 4k
n−2ke

n−2k
2k

tv∞, (3.3)

for some constant v∞ > 0. This metric is conformal to the product Sn−p−1×
H

p+1 with its standard metric. The Schouten tensor is diagonal and, modulo
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a multiplicative constant, it reduces to

Jn,p := − dt⊗ ∂

∂t
+ δji dθ

i ⊗ ∂

∂θi
− δβα dzα ⊗ ∂

∂zβ
,

In particular, we may compute

σk(Jn,p) =

k
∑

i=0

(

n− p− 1

i

)(

p+ 1

k − i

)

(−1)k−i =: cn,p,k. (3.4)

If we choose v∞ to be the only positive solution to

cn,p,k(v∞)2k =

(

n

k

)

(v∞)
2kn
n−2k , (3.5)

then the metric (3.3) satisfies the constant σk-curvature equation (1.2).

We now set

pk := sup {p ≥ 0 : σ1(Jn,p), . . . , σk(Jn,p) > 0} , (3.6)

so that this u belongs to the positive cone if and only if p < pk. We unfor-

tunately do not have an explicit formula for pk, except for k = 1, 2, 3:

p1 :=
n− 2

2
, p2 =

n−√
n− 2

2
, p3 =

n− 2−
√
3n− 2

2
.

However, it is shown in [14] that, fixed k > 1,

n

2
− C1(k)

√
n ≤ pk <

n

2
− 2 +

√
n

2
,

for some constant C1(k), n ≫ 1.

4. Construction of Singular Metrics: An ODE Approach

We claim that if Λ is a subset of Sn which is a closed submanifold of

dimension p satisfying 0 < p < p2, then there exists a complete metric

g, conformal to gc, with positive constant σ2 curvature, which is singular

exactly along Λ. This is the content of the forthcoming paper [18]. We will

concentrate in the σ2 case, but our difficulties for general k > 2 are just

computational and we conjecture that the results are true in general.
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A fundamental step in this kind of constructions consists in finding good

model solutions which can then be used to build an accurate approximate

solution. The more this ansatz will be accurate, the more the following

perturbation process will have chances to be successful. Since, up to a blow

up, the singular locus will appear as a R
n \ Rp, we are going to investigate

the existence of symmetric singular solutions supported on R
n \ R

p via an

ODE analysis.

Let us introduce first some notations. We write R
n\Rp as the product

Rt×SN−1
θ ×R

p
z, where N = n−p, and write the Euclidean metric g in these

coordinates as (3.2). In particular, we have that Ag = 0 and the formula for

the Schouten tensor reduces to

Agu = − 2k

n− 2k
u−1∇2u+

2kn

(n− 2k)2
u−2du⊗ du− 2k2

(n− 2k)2
u−2|du|2g .

(As anticipated, we will specialize this formula to the case k = 2 in the

following). For technical reasons, it is convenient to set

Bgu := n−2k
2k u

2n
n−2k g−1

u Agu . (4.1)

The rotational symmetry of the solutions will be obtained by imposing u =

u(t) in the above formula. A straightforward computation gives that the

modified tensor (4.1) can be simply written with respect to the background

metric (3.2) as

(

Bgu

)β

α
=

(

− k

n− 2k
u̇2

)

e2t δβα,

(

Bgu

)t

t
=

(

n− k

n− 2k
u̇2 − üu− u̇u

)

e2t,

(

Bgu

)j

i
=

(

u̇u− k

n− 2k
u̇2

)

e2t δij ,

the other components of Bgu being zero. In particular one can see that if the

blow up rate is of the type u(t) ∼ e
n−2k
2k

t, as t → +∞, then the corresponding

solution on R
n \Rp is complete about the singular locus. Thus, it is natural

to set

v(t) :=
n− 2k

4k
e−

n−2k
2k

tu(t)
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and to look for bounded solutions of the equation

M(v) := σk (Cv)−
(

n

k

)

v
2kn
n−2k = 0 , (4.2)

where, after some simplification,

Cv := λdt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ ν δβα dzα ⊗ ∂

∂zβ
, (4.3)

with

λ = −
(

v2 + 2av̈v − n− k

k
a2v̇2

)

,

µ = (v2 − a2v̇2), (4.4)

ν = −(v + av̇)2,

for

a =
2k

n− 2k
. (4.5)

In other words, Cv has eigenvalues λ, µ and ν with multiplicities 1, N − 1

and p, respectively.

The case of radial solutions with an isolated singularity at the origin

(p = 0) is completely described in [7] (see also [29] for a summary of the

relevant results). In this case, (4.2) is an integrable ODE and there exists a

Hamiltonian function. Although the proof is well known, we repeat it here

because it will be useful for the general case p > 0.

Proposition 4.1. Fix p = 0. The trajectories of the ODE (4.2) are precisely

the level sets of the following Hamiltonian:

H(v, v̇) :=

(

n

k

)

n− 2k

2kn

[

(v2 − a2v̇2)k − v
2kn
n−2k

]

= cst . (4.6)

Proof. Let

Dv := λdt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ µ δβα dzα ⊗ ∂

∂zβ
,

for λ and µ as given in (4.4) (note that p = 0 here). We can easily calculate

σk(Dv) =

(

n

k

)

n− 2k

2kn
(v2 − a2v̇2)k−1

[

v2 − a2vv̇
]

.
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In this case, equation (4.2) is a completely integrable ODE. Indeed, multiply

the equation

σk(Dv)−
(

n

k

)

v
2kn
n−2k = 0

by v̇/v and integrate. The result follows immediately. ���

Now we go to the general case p > 0, and we construct solutions to the

ODE (4.2) with the right behavior at t → +∞ and t → −∞. On one hand,

the corresponding metric should be complete about the singular locus, say

R
p, and non complete far away from the singular locus, which allows this

solution to be transplanted into any other manifold. Precisely, this particular

solution is the basic building block that is required to construct a complete

singular metric on S
n \ Sp or, more generally, Sn\Λp, thus a solution to the

σk-Yamabe problem.

As we have seen in the previous section, the first solution one finds of the

ODE (4.2) is the constant one v∞ found in (3.5) but this is not the one we

are seeking for since it does not have the right asymptotics when t → −∞.

The main result of the present note is contained in the following theorem.

Theorem 4.1. For each 0 < p < p2 and n > 4, there exists a solution u1

for equation (1.2) of the form

u1(t) =
8

n− 4
e

n−4

4
t v1(t) ,

where v1 satisfies

• v1 > 0, if t ∈ (0,∞).

• When t → +∞,

v1(t) → v∞ > 0 .

• When t → −∞,

v1(t)e
−α0t → cst ,

for some α0 ∈ (0, (n − 4)/4).

• v1 is uniformly bounded for all t ∈ (0,∞).
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We conclude the first part of this section with a formula that can be used

to compute the σk curvature in the symmetric situation described above.

The proof is very simple and left to the reader.

Lemma 4.2. Setting Dv := λdt⊗ ∂
∂t + µ δji dθ

i ⊗ ∂
∂θi

, one has that

σk (Cv) =

q
∑

r=0

(

p

r

)

νr σk−r

(

Dv

)

,

where q = min{k, p}.

4.1. ODE analysis

In the following, we present the proof of Theorem 4.1. We fix p >

0. The restriction p < pk appears precisely in the next basic lemma, at

the calculation of the equilibrium points. Outside this range, we loose all

information about the ODE.

Lemma 4.3. The ODE (4.2) has two equilibria in the halfplane {v ≥ 0} of

the phase space with coordinates v and v̇ given by

(0, 0) and (v∞, 0)

if and only if the relation between p and n and k is such that p < pk.

Moreover, the equilibrium (v∞, 0) is stable for trajectories that stay in the

positive cone. More precisely, the linearization at this equilibrium has, either

two negative real eigenvalues, or two complex conjugate eigenvalues with

negative real part.

Proof. The first assertion of the lemma is straightforward, since the equilib-

ria are precisely the non-negative constant solutions of the equation M(v) =

0, this is, v0 = 0 and v0 = v∞.

For the second assertion, compute the linearization at the point (v∞, 0).

Then

L(w) := d

dǫ

∣

∣

∣

∣

ǫ=0

M(v∞ + ǫw)=
d

dǫ

∣

∣

∣

∣

ǫ=0

σk(Cv∞+ǫw)−
(

n

k

)

2kn

n−2k
v

2kn
n−2k

−1
∞ w. (4.7)
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On the other hand, it is well known that

d

dǫ

∣

∣

∣

∣

ǫ=0

σk(Cv∞+ǫw) = trace

(

Tk−1(Cv∞)
d

dǫ

∣

∣

∣

∣

ǫ=0

Cv∞+ǫw

)

, (4.8)

where Tk(C) is the k-th Newton tensor of the matrix C, defined in (1.3).

Note that if C belongs to the positive k-cone, then Tk−1 is positive definite.

Next, we explicitly compute

d

dǫ

∣

∣

∣

∣

ǫ=0

λ(v∞ + ǫw) = −2v∞w − 2av∞ẅ,

d

dǫ

∣

∣

∣

∣

ǫ=0

µ(v∞ + ǫw) = 2v∞w,

d

dǫ

∣

∣

∣

∣

ǫ=0

ν(v∞ + ǫw) = −2w∞ − 2av∞ẇ,

so from (4.8) we obtain

d

dǫ

∣

∣

∣

∣

ǫ=0

σk(Cv∞+ǫw)

= 2v∞wtrace (Tk−1(Cv∞)Jn,p)− 2av∞trace
(

Tk−1(Cv∞)J̄(w)
)

, (4.9)

where we have defined

J̄(w) := ẅ dt⊗ ∂

∂t
+ 0 δji dθ

i ⊗ ∂

∂θi
+ ẇ δβα dzα ⊗ ∂

∂zβ
.

Next, if we substitute

σk(Cv∞) =
1

k
trace (Tk−1(Cv∞)Cv∞) =

1

k
(v∞)2trace (Tk−1(Cv∞)Jn,p)

into the first term in the right hand side of (4.9) and set

Tk−1(Cv∞) =: T
(1)
k−1 dt⊗

∂

∂t
+ T

(2)
k−1 δ

j
i dθ

i ⊗ ∂

∂θi
T
(3)
k−1 δ

β
α dzα ⊗ ∂

∂zβ
(4.10)

into the last term of (4.9), we obtain

d

dǫ

∣

∣

∣

∣

ǫ=0

σk(Cv∞+ǫw) = 2kv−1
∞ wσk(Cv∞)− 2av∞

(

T
(1)
k−1ẅ + pT

(3)
k−1ẇ

)

,
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Using that v∞ is a solution we arrive at

d

dǫ

∣

∣

∣

∣

ǫ=0

σk(Cv∞+ǫw) = 2k

(

n

k

)

v
2kn
n−2k

−1
∞ w − 2av∞

(

T
(1)
k−1ẅ + pT

(3)
k−1ẇ

)

.

Finally, we can give an explicit expression for the linearization (4.7):

L(w) = −2av∞T
(1)
k−1ẅ − 2av∞pT

(3)
k−1ẇ − (2k)2

n− 2k

(

n

k

)

v
2kn
n−2k

−1
∞ w. (4.11)

Now, since we know that the metric given by v∞ belongs to the positive

cone, the coefficients T (1), T (3) as defined in (4.10) are strictly positive.

This implies that the coefficients accompanying w, ẇ, ẅ in (4.11) are strictly

negative, which completes the linear study at the equilibrium (v∞, 0). ���

In the following, we try to understand the asymptotic behavior at the

equilibrium (0, 0). We seek solutions for (4.2) that behave like vα(t) = eαt

when t → −∞, for some α > 0. First write out the eigenvalues of the matrix

Cvα as written in (4.3):

λ(vα) =
(

−1 + a2α2
)

e2αt,

µ(vα) = (1− a2α2)e2αt,

ν(vα) = −(1 + aα)2e2αt.

We set β := aα > 0 above,

λβ := −1 + β2,

µβ := (1− β2),

νβ := −(1 + β)2,

(4.12)

and

Eβ := λβ dt⊗
∂

∂t
+ µβ δ

j
i dθ

i ⊗ ∂

∂θi
+ νβ δ

β
α dzα ⊗ ∂

∂zβ
.

Then, when t → −∞, equation (4.2) is equivalent to

F (β) := σk(Eβ) = 0. (4.13)

But F (β) is a polynomial of degree 2k in the variable β that could be ‘ex-

plicitly’ computed. Indeed, taking out a factor β+1 from the eigenvalues in
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(4.12), and expanding on the νβ part as explained in Lemma 4.2:

F (β) = (β + 1)kσk

(

(β − 1)dt⊗ ∂

∂t
− (β − 1)δji dθ

i ⊗ ∂

∂θi

−(1 + β)δβα dzα ⊗ ∂

∂zβ

)

= (β + 1)k
min{p,k}

∑

l=0

(

p

l

)

(β + 1)l(−1)lσk−l

(

(β − 1)dt⊗ ∂

∂t

−(β − 1)δji dθ
i ⊗ ∂

∂θi

)

= (β + 1)k
min{p,k}

∑

l=0

(β + 1)l(β − 1)k−l(−1)k
(

p

l

)

N − 2k + 2l

N

(

N

k − l

)

,

where, for the last equality, we have used that

σk−l

(

dt⊗ ∂

∂t
− δji dθ

i ⊗ ∂

∂θi

)

= (−1)k−l

(

N

k − l

)

N − 2k + 2l

N
.

It is not straightforward to find the roots of the polynomial F (β), that

is one of our computational difficulties in order to handle this ODE. We

can explicitly compute F (0) = cn,p,k > 0 for the constant defined in (3.4)

because it corresponds to the model example, while F (1) ≥ 0. We would

need to check that there exists at least one root in the interval (0, 1]. Note

that this is immediately true when p < k because F (1) = 0. However, in

the general case this is complicated. Due to this and other computational

difficulties, we particularize to the case k = 2.

4.2. A closer look at σ2

First we remark that, by a straightforward calculation,

σ2(Cv) ≤ cn[σ1(Cv)]
2.

Then if σ2 stays strictly positive along a trajectory, then σ1 cannot vanish.

As a consequence, we must have that either σ1 > 0 or σ1 < 0 everywhere

along that trajectory. Consequently, trajectories that end at the equilibrium

point (v∞, 0) must lie in the positive cone Γ+
2 everywhere.
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Next, we try to precisely understand the asymptotic behavior of the

solution, when it tends to the equilibrium (0, 0), for t → −∞.

Lemma 4.4. We let k = 2 and 0 < p < p2 = n−√
n−2
2 . Then, there exists

a trajectory tending to (0, 0), as t → −∞ with the following asymptotic

behavior

v(t) ∼ eα0t, t → −∞,

for some 0 < α0 <
n−4
4 .

Proof. We try to find the roots of the polynomial F (β) that is defined in

(4.13). But after some long computation,

F (β) = (β+1)2
[(

p

2

)

(β + 1)2 + p(N − 2)(β − 1)(β + 1) +
N − 4

2
(β − 1)2

]

,

that has roots at

β = −1, β = 1 + 2
−np+ 3p±

√

4p+ 5p2 − 5pn+ pn2 − p2n

(n− 4)(n − 1)
.

In the range 0 < p < p2 = n−√
n−2
2 that we are looking at, there exists (at

least) one real root β0 ∈ (0, 1). Choosing α0 := β0/a, where a was defined

in (4.5), completes the proof of the lemma. ���

Finally, equation (4.2) is not completely integrable. However, we are

able to relate to the Hamiltonian quantity introduced in (4.6) for the case

p = 0. As a consequence:

Lemma 4.5. The trajectories emanating from (0, 0) found in the previous

lemma must tend to the equilibrium point (v∞, 0) when t → +∞, and are

uniformly bounded.

Proof. We go back to the ODE (4.2) and try to find a suitable Hamiltonian

quantity. We remind the reader that the matrix Cv from formula (4.3) is

written as

Cv := λdt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ ν δβα dzα ⊗ ∂

∂zβ
,
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and the eigenvalues λ, µ, ν, with multiplicities 1, N − 1, p respectively, are

given by (4.4). Our aim is to relate σ2(Cv) to σ2(Dv) for the matrix

Dv := λdt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ µ δβα dzα ⊗ ∂

∂zβ
,

that corresponds to the case p = 0 understood in Proposition 4.1. First we

split along the third coordinate and replace ν by µ:

σ2(Cv) = σ2

(

λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi
+ 0δβαdz

α ⊗ ∂

∂zβ

)

+ pνσ1

(

λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi

)

+

(

p

2

)

ν2

= σ2

(

λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi
+ µδβαdz

α ⊗ ∂

∂zβ

)

+ p(ν − µ)σ1

(

λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi

)

+

(

p

2

)

(ν2 − µ2).

Summarizing,

σ2(Cv) = σ2(Dv) + pF (v),

where we have defined

F (v) := (ν − µ)

[

σ1

(

λdt⊗ ∂

∂t
+ µδji dz

i ⊗ ∂

∂θi

)

+
p− 1

2
(ν + µ)

]

.

Substitute this expression into equation (4.2)

0 = σ2(Cv)−
(

n

2

)

v
4n
n−4 = σ2(Dv) + (ν − µ)pF (v)−

(

n

2

)

v
4n
n−4 .

As in the proof of Proposition 4.1, we multiply the previous equation by v̇/v

and integrate by parts. The first part has an exact Hamiltonian H. We look

for trajectories that tend to (0, 0) in the phase space, when t → −∞ (in this

case, H(v(t), v̇(t)) = limt→−∞H(v(t), v̇(t)) = H(0, 0) = 0). Then we obtain

0 = H(v(t), v̇(t)) + p

∫ t

−∞
(ν − µ)F (v)v̇/v dt

= H(v(t), v̇(t))− 2pF1(t)− 2p

∫ t

−∞
F2(t) dt , (4.14)

for
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F1(t) =
n− p− 2

4
v4 − av2v̇2 − 2

3
a2vv̇3 ,

and

F2(t) = −pa2vv̇3 + (n− 2p− 1)av2v̇2 − n− 1

3
a3v̇4 .

Denote, for simplicity, x = v, y = v̇, z = av̇. Then we can consider the new

Hamiltonian quantity:

H̃(x, z) := H − 2pF1 = (n− 4)
[

bx4 − (n− 2p − 2)

4
x2z2 +

p

3
xz3

+
(n− 1)

8
z4 − n− 1

8
x

4n
n−4

]

,

for

b = 1
n−4

[

(n− 1)(n − 4)

8
− p(n− p− 2)

2

]

=
cn,p,2

4(n− 4)
.

Note that b > 0 exactly when p < p2. The level sets of H̃ are closed bounded

curves. The maximum is reached precisely at the point (v∞, 0). On the other

hand, there is a branch of the set H̃ = 0 which stays in the region z > 0

tends the origin and it always stays inside the region {x ≥ |z|}.

Figure 1: Case n = 200, p = 2, v∞ = 0.4723 · · · .

From (4.14) we can extract some conclusions. We have seen in Lemma

4.4 that there is a trajectory emanating from (0, 0) that stays inside {x >

0, 0 < z < x} for a while. We can also check that F2(t) ≥ 0 as long as

the trajectory stays in the region {x ≥ |z|}. Then (4.14) immediately shows
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that the energy along that trajectory is strictly increasing and must never

touch the set {H̃ = 0}. ���
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