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Abstract

The well-known Fujita analysis for the blow-up and decay of a semilinear heat equa-

tion ut − ∆u = u
p is studied here for the half-space problem with Robin boundary con-

dition. Our analysis makes use of the explicit construction of Green’s functions for the

initial-boundary value problem. Our analysis in deriving the adequate expression of the

Green’s function have provided further development in the explicit construction of the

Green’s function for a class of partial differential equations.

1. Introduction

The classical Fujita equation, a semilinear heat equation

ut −∆u = up, u = u(x, t) ≥ 0,

was proposed to study the blow up and decay of the solutions as a conse-

quence of the combined effect of diffusion and nonlinearity. Fujita analysis

makes essential use of the explicit expression of the heat kernel, [7]. The

Received July 16, 2013 and in revised form April 9,2014.

AMS Subject Classification: Primary 35K20; Secondary: 35B44, 35A08.

Key words and phrases: Initial-boundary value problem, Fujita equation, Green’s function, blow
up.

The research of Tai-Ping Liu is supported in part by Investigator Award of Academia Sinica,
the National NSC Grant 96-2628-M- 001-011 and NSF Grant DMS-0709248. The research of
Shih-Hsien Yu is supported in part by the National University of Singapore, MOE TIER 2 grant
R-146-000-125-112.

267

mailto:liu@math.stanford.edu
mailto:matysh@nus.edu.sg


✐

“BN09N26” — 2014/5/20 — 10:44 — page 268 — #2
✐

✐

✐

✐

✐

268 TAI-PING LIU AND SHIH-HSIEN YU [June

main purpose of the present study is to consider also the effect of the bound-

ary. For this, we also require the explicit expression of the Green’s function

for exact computations. For definiteness, we will consider the 3-D case,

x = (x1, x2, x3) = (x, y, z), the half-sapce domain (x, y, z) ∈ R+ × R × R,

and the plane boundary x = 0. The boundary condition is the homogeneous

Robin condition:














ut −∆u = up,

(ux + αu)|x=0 = 0,

u(x, y, z, 0) = εu0(x, y, z).

(1.1)

Let k(x, y, z) = k3(x) = k3(x1, x2, x3) be the 3-D heat kernel

k(x, y, z) =
e−

x2+y2+z2

4t

(4πt)3/2
.

As in [7], in order to study the combined effect of the diffusion and the non-

linearity, we consider the initial value to be small, i.e. ε small, nonnegative

and localized, i.e. dominated by the heat kernel:

0 ≤ u0(x, y, z) ≤ k(x, y, z, 1) =
e−(x2+y2+z2)/4

(4π)3/2
. (1.2)

Fujita considers the problem in the whole space:

{

vt −∆v = vp,

v(x, y, z, 0) = εu0(x, y, z) ≥ 0.
(1.3)

He shows that for p > 5/3 global solution exists, and for 1 < p < 5/3, any

non-trivial solution blows up. As our purpose is to study the effect of the

boundary, we will assume throughout the present study that

p >
5

3
. (1.4)

We state the Fujita theorem and gives a short proof to illustrate the necessity

of using the heat kernel for the pointwise estimate of the solutions, as in the

original analysis of Fujita.

Theorem 1.1 (Fujita). Suppose that p > 5/3 and (1.2) holds. Then for

sufficiently small ε, the solution v(x, y, z, t) of (1.3) exists globally in time
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and satisfies

|v(x, y, z, t)| ≤ 2εk(x, t + 1) = 2ε
e
−x2+y2+z2

4(t+1)

(4π(t+ 1))3/2
. (1.5)

Proof. By Duhamel’s principle,

v(x, t) = ε

∫

R3

k(x−x∗, t)u0(x∗)dx∗+

∫ t

0

∫

R3

k(x−x∗, t−σ)|v(x∗, σ)|pdx∗dσ.

(1.6)

By (1.2), one has that

∣

∣

∣

∣

ε

∫

R3

k(x− x∗, t)u0(x∗)dx∗

∣

∣

∣

∣

≤ ε

∫

R3

k(x− x∗, t)k(x∗, 1)dx∗ = εk(x, t+ 1),

(1.7)

where the last equality follows from the semigroup property of the heat

kernel. Thus we make the ansatz assumption for the solution v(x, t):

|v(x, t)| ≤ 4εk(x, t + 1). (1.8)

Substituting the ansatz (1.8) into (1.6) and keeping in mind that p > 5/3,

we obtain through direct calculations that

|v(x, t)| ≤ εk(x, t+ 1)|+ 4pεp
∫ t

0

∫

R3

k(x− x∗, t− σ)k(x∗, σ + 1)pdx∗dσ

≤ εk(x, t+ 1)|+ 4pεpk(x, t+ 1)

∫ t

0

1

(4πσ)3(p−1)/2
dσ

= ε

(

1 +
2 4pεp−1

(3p− 5)(4π)3(p−1)/2

)

k(x, t+ 1)

< 2εk(x, t+ 1) when ε ≪ 1.

Thus, the ansatz (1.8) holds when ε ≪ 1 and (1.5) is proved. ���

Our main theorem is that, under the stability hypothesis (1.4) for the

whole space, the boundary condition can make a non-trivial solution to blow

up in finite time.

Theorem 1.2. Suppose that α > 0 and that the initial value u(x, y, z, 0)

is nonzero. Then there is a solution u(x, y, z, t) of (1.1) blows up in finite

time.
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Remark 1.1. In the unstable case α > 0, the linear heat equation is not well-

posed and does not satisfy the Maximum Principle. In the above theorem,

we consider the solution constructed through the fundamental solution. We

study the blow-up of only such a solution. The authors would like to thank

the referee for pointing this out to us.

Theorem 1.3. For α < 0 and ε ≪ 1, the solution of the problem (1.1)

exists globally in time and satisfies

|u(x, y, z, t)| ≤ O(1)ε
e
−x

2+y
2+z

2

4(t+1)

(4π(t+ 1))3/2
. (1.9)

Remark 1.2. When α = 0 the solution u(x, y, z, t) of (1.1) is time-

asymptotically stable. This follows immediately from Theorem 1.1 by mak-

ing an even extension of the solution u(x, y, z, t) to the whole space domain,

v(x, y, z, t) ≡ u(|x|, y, z, t).

Remark 1.3. The pointwise analysis for the proof of Theorem 1.2 turns

out to be quite different from that for Theorem 1.3. Exact expression of the

Green’s function for the initial-boundary value problem is needed for the

analysis in both cases.

There have been extensive studies on the formation of singularities for

the Fujita equation with boundary. Energy methods and maximum princi-

ples are the commonly used methods. We list here some survey articles and

recent papers on the related subject, [1, 6, 8, 2, 14, 10, 4, 5]. The present

study uses the explicit expression of the Green’s function, (2.18), constructed

in the next section. In this, we are following the original approach of Fujita,

[7]; though there are some subtleties in our process of deriving adequate

expressions of the Green’s function.

2. Green’s Function

Consider the the linearized version of (1.1):















(∂t −∆)U(x, y, z, t) = 0, x, t > 0, y, z ∈ R,

(Ux + αU)|x=0 = 0,

U |t=0 = U0.

(2.1)
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Let G(x, y, z, t;x∗) be the Green’s function:















(∂t −∆x)G = 0, x, t > 0, y, z ∈ R,

(Gx + αG)|x=0 = 0,

G|t=0 = δ(x− x∗)δ(y)δ(z).

(2.2)

From this we can easily construct the Green’s function G(x, x∗, t−σ), x =

(x, y, z), x∗ = (x∗, y∗, z∗), for the initial-boundary value problem (2.1) with

more general initial value

G = G(x, y, z, t, x∗, y∗z∗) ≡ G(x, y − y∗, z − z∗, t, x∗),

(∂t −∆x)G = 0, x, t > 0, y, z ∈ R,

(Gx + αG)|x=0 = 0,

G|t=0 = δ(x− x∗)δ(y − y∗)δ(z − z∗).

Let kn(x1, . . . , xn, t) be the n-dimensional heat kernel:

kn(x1, . . . , xn, t) =
e−

x
2
1+x

2
2+···+x

2
n

4t

(4πt)n/2
.

One has

kn(x1, . . . , xn, t) =

n
∏

j=1

k1(xj , t), (2.3)

the semigroup property

k1(x, t) =

∫

R

k1(x− x∗, t− σ)k1(x∗, σ)dx∗ for σ ∈ (0, t), (2.4)

and, for 0 < σ < τ,

k1(x, σ) <

√
τ√
σ
k1(x, τ). (2.5)

The main goal of the present article is to demonstrate the importance

of the explicit construction of the Green’s function, even for study of the

nonlinear problems. Although for the heat and wave equations, the Green’s

function for a class of the initial-boundary value problem, such as that given

in (2.18), have been found, for instance, by the image method, [9], we con-

struct the Green’s function by the systematic LY algorithm. It uses the
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Fourier-Laplace transforms:



























v(x,η, t) = F [u](x,η, t) ≡
∫

R2 u(x, y, z, t)e
−i(y,z)·ηdydz,

(Fourier transform in (y, z),

V (x,η, s) = L[v](x,η, s) ≡
∫∞
0 e−stv(x,η, t)dt,

(Laplace transformation in t).

(2.6)

The LY algorithm assume that the fundamental solution, here the heat kernel

k(x, y, z, t) = k3(x, y, z, t), is known. We start with the transforms of the

heat kernel































h(x,η, t)=h(x, η1, η2, t)=Fy[k](x,η, t)=
∫

R2
e−

x
2+y

2+z
2

4t

4πt .e−i(y,z)·ηdydz,

(Fourier transform in (y, z),

H(x,η, s)=Lt[h](x,η, s) ≡
∫∞
0 e−sth(x,η, t)dt,

(Laplace transformation in t).

(2.7)

The defining equations for heat kernel are

{

(∂t −∆x)k = 0, (x, y, z) ∈ R
3, t > 0,

k|t=0 = δ(x) = δ(x)δ(y)δ(z).
(2.8)

Take first the Fourier transform in (y, z) to obtain

(∂t + |η|2 − ∂2
x)h = 0.

Then take the Laplace transform in t and use the initial value to yield

(s+ |η|2 − ∂2
x)H = δ(x).

This is viewed as an ordinary differential equation in x and has general

continuous solutions

H(x,η, s) = Ae−λ|x|,

where

λ = λ(η, s) =
√

s+ |η|2. (2.9)
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The constant A is determined to be A = 1/(2λ) so as to yield the the δ(x)

from ∂2
xH and so

H(x,η, s) =
1

2λ
e−λ|x|.

From this the Fourier-Laplace transform of the differentials of the heat kernel

is

Fy[Lt[∂
m
x k]](x,η, s) = ∂m

x H(x,η, s) =
(−1)m

2
λm−1e−λx, (2.10)

x > 0, m = 0, 1, 2, . . . . (2.11)

We now construct the Green’s function. The first step is to make the initial

value zero by considering the function G− k:



























(∂t −∆x)u = 0, x, t > 0, y, z ∈ R,

u|t=0 = 0,

(ux + αu)|x=0 = [−kx − αk](x− x∗, y, z, t)|x=0 = [kx − αk](x∗, y, z, t),

u(x, y, z, t) ≡ G(x, y, z, t, x∗)− k(x− x∗, y, z, t).

(2.12)

Here we have noticed that k is even in x and kx is odd in x.

Remark 2.4. This first step of making the initial value zero is crucial, as

the homogeneous initial value yields a simple expression for the Laplace

transform of the solution in the time variable t. The boundary condition for

the new function u is now non-homogeneous.

From (2.12) the transformed variable V , (2.6), satisfies















(s + |η|2)V − Vxx = 0,

V 0
x + αV 0 = [Hx − αH](x∗, y, z, t) = (−1

2 − α
2λ)e

−λx∗ ,

V 0 ≡ V |x=0, V 0
x ≡ Vx|x=0,

(2.13)

where we have used the expression (2.11) for the transformed heat kernel.

The first equation in (2.13) has general solutions

V (x,η, s) = Ae−λx +Beλx, λ =
√

s+ |η|2,
A+B = V 0, −λA+ λB = V 0

x .
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The stability criterion demands that the solution does not contain the ex-

ponentially growing term eλx, or B=0 and so

{

V (x,η, s) = V 0e−λx,

−λV 0 = V 0
x , Master relationship.

(2.14)

From the Master relationship and the boundary condition in (2.13), we have

V 0 =
1

α− λ
(−1

2
− α

2λ
)e−λx∗ ,

and so the first equation in (2.13) yields the solution in the transformed

variable

V = − 1

2λ

α+ λ

α− λ
e−λ(x+x∗) = − 1

2λ

(α+ λ)2

α2 − λ2
e−λ(x+x∗)

=
1

s+ |η|2 − α2
(α+ λ)2

e−λ(x+x∗)

2λ
. (2.15)

The first factor can be inverted easily first in the Laplace and then the

Fourier transform:

F
−1

L
−1[

1

s+ |η|2 − α2
] = F−1[eα

2t−|η|2t] = eα
2t 1

4πt
e−

y
2+z

2

4t .

The second factor has the following inverse transform by (2.11):

F
−1

L
−1[(α+ λ)2e−λ(x+x∗)] = (α− ∂x)

2k(x+ x∗, y, z, t).

From these we conclude from above and (2.15) that u is the convolution in

(y, t):

u = F
−1

L
−1[V ] = (α− ∂x)

2[eα
2t 1

4πt
e−

y
2+z

2

4t ⋆yt k(x+ x∗, y, z, t)],

or

u = (α− ∂x)
2

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

[

eα
2(t−σ) 1

4π(t− σ)
e
−

(y−ȳ)2+(z−z̄)2

4(t−σ)

×k(x+ x∗, y − ȳ, z − z̄, σ)
]

dȳdz̄dσ.

The integration in (ȳ, z̄) is straightforward and follows directly from the
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semi-group property of the heat kernel:

u = k1(y, t)k1(z, t)(α − ∂x)
2

∫ t

0
eα

2(t−σ)k1(x+ x∗, σ)]dσ. (2.16)

By ∂2
xk1(x+ x∗, σ) = ∂σk1(x+ x∗, σ), this can be rewritten as

u = k1(y, t)k1(z, t)[(α
2 − 2α∂x)

∫ t

0
eα

2(t−σ)k1(x+ x∗, σ)]dσ

+

∫ t

0
eα

2(t−σ)∂σk1(x+ x∗, σ)]dσ].

By integration by parts and noticing that the three heat kernels k1(y, t),

k1(z, t) and k1(x+ x∗, t) have disjoint support at t = 0, we obtain

u = k1(y, t)k1(z, t)[k1(x+ x∗, t) + 2α(α − ∂x)

∫ t

0
eα

2(t−σ)k1(x+ x∗, σ)]dσ].

(2.17)

Finally, from the definition of the function u in the last identity of (2.12),

we have the explicit expression of the Green’s function:

G(x,x∗, t) = k1(y − y∗, t)k1(z − z∗, t)
(

k1(x− x∗, t) + k1(x+ x∗, t)

+2α(α− ∂x)

∫ t

0
eα

2(t−σ)k1(x+ x∗, σ)dσ
)

. (2.18)

We have thus follow the LY algorithm, [15, 16], to obtain the Green’s

function through a systematic approach. The approach requires that there is

an explicit construction of the fundamental solutions for the corresponding

initial value problems. The explicit construction of the fundamental solu-

tions of the heat equation and the wave equation are classical; they are the

heat kernel and the Kirchhoff-Hadamard formulas. For these equations, the

image method, [9], applies for the construction of the Green’s function for

certain class of the initial-boundary value problem. The LY algorithm would

apply to a general class of initial-boundary value problems for heat and wave

equations. For a class of hyperbolic-parabolic partial differential equations

in the continuum physics, such as the compressible Navier-Stokes equations,

the explicit construction of the fundamental solution for the whole space

has been studied, [19, 18, 11, 12, 13]. For such a system, the fundamental

solution contains variable scalings, no simple image method is available and
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the LY algorithm can be applied for the explicit construction of the Green’s

functions for the corresponding initial-boundary value problem, c.f. [17].

In the following two sections we will carry out our analysis through exact

computations using the explicit expression of the Green’s function (2.18).

3. Proof of Theorem 1.2

We consider nonzero, nonnegative initial value. It is clear from the

local theory that, for such a fixed initial value, the solution at any positive,

small time, is bounded below by a multiple of the heat kernel. For the case

of α > 0 considered here, it is easy to see by direct computation that the

Green’s function (2.18) is positive. As a consequence, there is a monotonicity

property of the solution operator for

ut −∆u = S, (ux + αu)|x=0 = 0

in that the solution increases as the source S or the initial value u(x, 0)

increases. Moreover, the source up, u ≥ 0, in (1.1) is a monotone function

of the solution u. Thus, for the blow up property we intend to verify, it is

sufficient to consider

u0(x, y, z) = H3(x, y, z, 1). (3.1)

From the formula (2.18) with the property α > 0 and x, x∗ > 0, by (2.5) one

has the estimate on the Green’s function G(x,x∗, t):

G(x,x∗, t) ≥ H1(y − y∗, t)H1(z − z∗, t)
(

H1(x− x∗, t) +H1(x+ x∗, t)

+2α2

∫ t

0
eα

2(t−σ)H1(x+ x∗, σ)dσ
)

≥ 2α2H1(y − y∗, t)H1(z − z∗, t)H1(x+ x∗, 1)e
α2tK(t), (3.2)

K(t) ≡











0 for t < 1,
∫ t

1

e−α2σ

√
σ

dσ for t > 1.
(3.3)

By the Duhamel’s principle, the initial data (3.1), and the estimate of

the Green’s function (3.2), one has the following estimate of the solution
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u(x, y, z, t) of (1.1):

u(x, y, z, t) ≥ 2εα2H1(y, t+ 1)H1(z, t+ 1)eα
2tK(t)

√
2H1(x, 1)

+

∫ t

0

∫

R
3
+

2α2eα
2(t−σ)K(t− σ)H1(x+ x∗, 1)H1(y − y∗, t− σ)

H1(z − z∗, t− σ)|u(x∗, y∗, z∗, σ)|pdx∗dy∗dz∗dσ. (3.4)

We now show that there is T0(ε, α) > 0 such that, for t > T0(ε, ǫ),

u(0, 0, 0, t) ≥ ∞.

This is done by iterations. Define

u1(x, y, z, t) ≡ 2εα2H1(y, t+ 1)H1(z, t+ 1)eα
2tK(t)

√
2H1(x, 1)>0,

and for n ≥ 2,

un(x, y, z, t) ≡
∫ t

0

∫

R3
+

2α2eα
2(t−σ)K(t− σ)H1(x+ x∗, 1)H1(y − y∗, t− σ)

·H1(z − z∗, t− σ)|un−1(x∗, y∗, z∗, σ)|pdx∗dy∗dz∗dσ > 0. (3.5)

From (3.4) we have

u(x, y, z, t) ≥ u1(x, y, z, t) +
N
∑

n=2

un(x, y, z, t) for any N ≥ 2, (3.6)

and from (2.4) and (2.5)

u2(x, y, z, t) ≥ εH1(y, t+ 1)H1(z, t+ 1)H1(x, 1)

×
∫ t

0

2p+1εp−1α2+2p(t+ 1)epα
2σk(σ)p

(t− σ + p(σ + 1))(σ + 1)p−1
eα

2(t−σ)K(t− σ)dσ

≥ εpαp+22p+1eα
2tH1(y, t+ 1)H1(z, t+ 1)H1(x, 1)

×
∫ t

0

k(σ)pK(t− σ)

(t− σ + p(σ + 1))(σ + 1)p−1
e(p−1)α2σdσ. (3.7)

By direct computations we can show that there exists C0 > 0 such that, for
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p > 1

∫ t

0

k(σ)pK(t− σ)

2(t− σ + p(σ + 1))(σ + 1)p−1
e(p−1)α2σdσ > C0e

(p−1)α2t/2 for t ≥ 4,

(3.8)

and so

u2(x, y, z, t) ≥ eα
2tk1(y, t+ 1)k1(z, t+ 1)k1(x, 1)

for t > T0 ≡ 4

(

1 +

∣

∣

∣

∣

∣

log
(

εpαp+22p+1/C0

)

(p− 1)α2

∣

∣

∣

∣

∣

)

.

In general we have, for all n ≥ 1,

un(x, y, z, t) ≥ eα
2tk1(y, t+ 1)k1(z, t)k1(x, 1) ≥ 1 for t > T0.

This and (3.6) show that for t > T0

u(x, y, z, t) = ∞.

This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

The boundary condition in this case is stable, as easily seen from the en-

ergy estimate. We are considering the Fujita stable case of p > 5
3 , (1.4), and

so the stability result in Theorem 1.3 is expected. As in the original Fujita

analysis, the energy method alone is not sufficient for the stability analysis,

and the explicit expression of the Green’s function is needed. However, in

the formula (2.18), the Green’s function G(x,x∗, t) contains the exponen-

tially growing factor eα
2(t−σ). Thus to use the Green’s function, there is a

need to see some cancellation so as to eliminate this growing factor in order

to assert the strong pointwise stability (1.9). We start with the identity

∫ ∞

0
k1(x, σ)e

−α2σdσ =
e−|αx|

2|α| (4.1)

to assert that for k < 0 and x > 0

(α− ∂x)

∫ ∞

0
k1(x, σ)e

−α2σdσ = 0. (4.2)
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It follows from (4.2) that

∣

∣

∣

∣

(α− ∂x)

∫ t

0
k1(x+ x∗, σ)e

α2(t−σ)dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

(α − ∂x)

(
∫ ∞

0
−
∫ ∞

t

)

k1(x+ x∗, σ)e
α2(t−σ)dσ

∣

∣

∣

∣

=
∣

∣

∣

(

eα
2t(α− ∂x)

∫ ∞

0
k1(x+ x∗, σ)e

−α2σdσ

−(α− ∂x)

∫ ∞

t
k1(x+ x∗, σ)e

α2(t−σ)dσ
)
∣

∣

∣

=

∣

∣

∣

∣

(α − ∂x)

∫ ∞

t
k1(x+ x∗, σ)e

α2(t−σ)dσ

∣

∣

∣

∣

≤ 1

α2
(|α|k1(x+ x∗, t) + |∂xk1(x+ x∗, t)|) . (4.3)

This and (2.18) give the estimate fo the Green’s function without the expo-

nentially growing factor eα
2(t−σ):

|G(x,x∗, t)| ≤ k1(y − y∗, t)k1(z − z∗, t)
(

k1(x− x∗, t) + 6k1(x+ x∗, t)

+
6

α
|∂xk1(x+ x∗, t)|

)

. (4.4)

With the estimate (4.4) of the Green’s function, one can apply similar argu-

ments as in the proof of Theorem 1.1 to establish Theorem 1.3. Details are

omitted.

The algebraic manipulations (4.1) and (4.2) to achieve the cancellation

(4.3), (4.4) do not seem to be obvious. In fact, the present study have

provided impetus for further development of the LY approach. In [3] the

cancellation is seen as a natural consequence of the algebraic manipulations

in Fourier-Laplace variables. We now adopt the procedure in [3] for the heat

equation by starting from the equation (2.15):

V =
1

s+ |η|2 − α2
(α + λ)2

e−λ(x+x∗)

2λ
= (∂x − α)2[

1

s+ |η|2 − α2

e−λ(x+x∗)

2λ
]

= (∂x − α)2[
1

s+ |η|2 − α2
F [L[k]](x + x∗,η, s)],

where we have used (2.11) in the last step. It follows that the inverse trans-
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form is of the form

{

u = [Fy]
−1[Lt]

−1V = (∂x − α)2w, F [L[w] = W,

(s+ |η|2 − α2)W = F [L[k]].
(4.5)

The second identity above can easily be inverted to yield

(∂t −∆y,z − α2)w = k(x+ x∗, y, z, t).

Because of the presence of the heat kernel k(x+ x∗, y, z, t), we also have

(∂t −∆x,y,z)w = 0.

The last two identities yield ODE

(∂2
x − α2)w = k(x+ x∗, y, z, t). (4.6)

We thus rewrite (4.5) as

u = (∂x − α)h, (∂x + α)h = k(x+ x∗, y, z, t). (4.7)

Note that in the ODE (4.6) the sign of α does not matter, while the refor-

mulation (4.7) makes use of (4.5) and the sign of α becomes important for

the function h. In order to yield solution vanishing at x = ∞ we now have

two cases. For the unstable case α > 0 we solve the ODE (4.7) from x = 0:

h(x, y, z, t) = e−αxh(0, y, z, t) +

∫ x

0
e−α(x−x̄)k(x̄+ x∗, y, z, t)dx̄. (4.8)

For the stable case α < 0 we solve the ODE (4.7) from x = ∞:

h(x, y, z, t) = −
∫ ∞

x
e−α(x−x̄)k(x̄+ x∗, y, z, t)dx̄. (4.9)

For the stable case, we have from (4.7) and (4.9) the solution representation

with no growing mode

u(x, y, z, t) = k(x+ x∗, y, z, t) + 2α

∫ ∞

x
e−α(x−x̄)k(x̄+ x∗, y, z, t)dx̄. (4.10)

When comparing this with (2.17), it is to equate two expressions, the first

with growing mode eα
2(t−σ) = eα

2|t−σ| and the second with non-growing
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mode e−α(x−x̄) = e−|α(x−x̄)|:

l=m, l≡(α−∂x)

∫ t

0
eα

2(t−σ)k1(x+x∗, σ)]dσ, m≡
∫ ∞

x
e−α(x−x̄)k1(x̄+x∗, t)dx̄.

This follows directly from the observation that both n = l,m have zero initial

value for x, x∗ > 0 and satisfy the same equation

nt = −kx + αk + α2n.

Note in the above algebraic manipulations that the bi-directional operator

∂2
x − α2 in (4.6) is strategically separated in (4.7) so that the flow of infor-

mation from the boundary for the unstable case, (4.8), and from the interior

for the stable case, (4.9), can be effectively registered. By adopting the ap-

proach of [3] we obtain the alternate expression of the Green’s function from

(4.10):

G(x,x∗, t) = k1(y − y∗, t)k1(z − z∗, t)
(

k1(x− x∗, t) + k1(x+ x∗, t)

+2α

∫ ∞

x
e−α(x−x̄)k1(x̄+ x∗, t)dx̄

)

, α < 0. (4.11)

We can also use this expression of the Green’s function for the proof of

Theorem 1.3.
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