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Abstract

Following J. Leray and J. L. Lions ([12]), we can say that this paper presents some

results by N. Trudinger, concerning linear degenerate elliptic problems, revisited by the

methods of [4], [5] (without the use of the weighted Sobolev spaces). Moreover, we study

some cases completely new.

1. Introduction

In this paper we are interested in the study of the following boundary

value problem
{

−div(a(x)Du) = f(x) in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded open subset of RN , N > 2, a(x) ia a non negative

measurable function such that

a ∈ Lr(Ω), r > 1, (2)
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1

a
∈ Ls(Ω), s ≥ 1 (3)

and the datum f belongs to some Lebesgue spaces, that is

f ∈ Lm(Ω), m ≥ 1. (4)

Degenerate problems of this type have been considered by M. K. V.

Murthy and G. Stampacchia [13] in the framework of suitable weighted

Sobolev spaces W 1,p
0 (a,Ω). We recall that, given p ≥ 1 + 1

s
, W 1,p(a,Ω)

denotes the weighted Sobolev space obtained by completing C∞(Ω) with

respect to the norm

‖v‖W 1,p(a,Ω) =

[
∫

Ω
(|v(x)|p + a(x)|Dv(x)|p)

]
1
p

,

while W 1,p
0 (a,Ω) denotes the closure of C∞

0 (Ω) in W 1,p(a,Ω).

A more general version of problem (1) has been studied by Neil Trudinger

during the seventies in the papers [15], [16]. The results he has obtained

concern with existence, uniqueness, local and global regularity of solution

in weighted Sobolev spaces and under various hypotheses on the datum f .

Moreover, the methods introduced have enabled the hypotheses employed in

[13] to be considerable relaxed. Concerning the nonlinear case, some exis-

tence and regularity results in weighted Sobolev spaces can be found in [8],

[9] and [10].

The aim of this paper is twofold.

• We revisit some of these results by choosing as functional setting the

usual Sobolev spaces (Theorems 2.1, 2.7). To do this we will approximate

problem (1) with some non-degenerate Dirichlet’s problems and we will

prove some a priori estimate on the solutions of this problems depending

on the summability of f . Once this has been accomplished, the linearity

of the operator and the summability assumptions on the weight will

allow to pass to the limit, thus finding a distributional solution of our

problem. We notice that, the solution obtained in [15] by means of

weighted Sobolev spaces satisfies our results and, conversely, our solution

has the same properties of that obtained in [15].
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• Moreover, if f ∈ L1(Ω) we study the existence of solutions of (1) satis-

fying an entropy condition (see inequality (16) below), without the use

of the duality method (Theorem 2.10). Furthermore, if f log(1 + |f |)

belongs to L1(Ω) we prove the existence of a distributional solution u of

(1) in the borderline case W
1, sN

s(N−1)+N

0 (Ω) (Theorem 2.12).

We point out that some of the existence results concern solutions be-

longing to the nonreflexive space W 1,1
0 (Ω).

2. Statement of the Results

The first result concerns the existence of solutions when the datum f

has a “good” summability.

Theorem 2.1. Let hypotheses (2), (3), (4) be satisfied and

1

s
+

2

r
≤ 1, (5)

1

m
+

1

2s
≤

1

2
+

1

N
. (6)

Then, there exists a distributional solution u ∈ W
1, 2s

s+1

0 (Ω) of the problem

(1) such that
∫

Ω
a(x)|Du|2 ≤

∫

Ω
fu . (7)

Moreover, u ∈ L∞(Ω) if

1

m
+

1

s
<

2

N
, (8)

while u ∈ L
sm∗∗

s+m∗∗ (Ω) if

2

N
<

1

m
+

1

s
. (9)

Remark 2.2. Note that the inequality (8) can be written in the form 1
m

+
1
2s <

1
2m + 1

N
, which implies (6).

Remark 2.3. We note that the right-hand side of inequality (7) is finite

thanks to the assumption (6) and that (7) means that u belongs to the

weighted-Sobolev space W 1,2
0 (a,Ω).
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In the framework of weighted Sobolev spaces inequality (6) implies f ∈

(W 1,2
0 (a,Ω))′ and, under this assumption, the existence of a weak solution of

problem (1) in the space W 1,2
0 (a,Ω) has been studied in [15], Theorem 3.2;

moreover, it is easy to prove that this solution belongs to W
1, 2s

s+1

0 (Ω).

If we assume neither (8) nor (9), previous Theorem and Sobolev im-

mersion imply only u ∈ L( 2s
s+1

)∗(Ω). Note that, as a consequence of The-

orem 3.2 of [15] and weighted-Sobolev immersion, u ∈ L
2sN

s(N−2)+N (Ω) and

( 2s
s+1)

∗ = 2sN
s(N−2)+N

.

The assumption (6) implies m ≥ 2N/(N + 2) and then f ∈ H−1(Ω);

nevertheless u /∈ H1
0 (Ω).

Remark 2.4. Note that if s → ∞, then 2s
s+1 → 2; while, in the case s = 1,

previous theorem gives the existence of solutions in the nonreflexive space

W 1,1
0 (Ω).

Remark 2.5. We point out that, under the hypothesis (8), Theorem 4.1, I

of [15] states that problem (1) has a weak solution u ∈W 1,2
0 (a,Ω) ∩L∞(Ω).

Remark 2.6. Let 1
m

+ 1
s
> 2

N
.

In this case, the same regularity result stated in Theorem 2.1 has been

obtained in Theorem 4.1, of [15], where it is also proved that, if 1
m
+ 1

s
= 2

N
,

the solution of problem (1) belongs to the Orlicz space Lφ(Ω), with φ(t) =

e|t|− 1 (see also Remark 3.3 below). Moreover, we point out that sm∗∗

s+m∗∗ ≥ 1

iff 1
m

+ 1
s
≤ 1 + 2

N
and the last inequality follows by (6).

In the following, given k > 0, we set, for every s ∈ R

Tk(s) = max(−k, min(s, k)).

Next results concern with the case in which inequality (6) does’t hold.

Theorem 2.7. Let hypotheses (2), (3), (4) be satisfied, m > 1 and

1

m
+

1

s
+

1

r
≤ 1 +

1

N
, (10)

1

m
+

1

2s
>

1

2
+

1

N
. (11)
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Then, there exists a distributional solution u ∈W
1, sm∗

s+m∗

0 (Ω) of (1) such

that, for every k > 0

Tk(u) ∈ W
1, 2s

s+1

0 (Ω)

and
∫

Ω
a(x)|DTk(u)|

2 ≤

∫

Ω
f Tk(u) . (12)

Remark 2.8. Note that sm∗

s+m∗ ≥ 1 if

1

m
+

1

s
≤ 1 +

1

N
. (13)

and we achieve the existence of a distributional solution in W 1,1
0 (Ω) in the

particular case
1

m
+

1

s
= 1 +

1

N
and r = ∞. Furthemore, by virtue of (11)

sm∗

s+m∗ <
2s
s+1 .

At least, we point out that here, as in Theorem 2.1, the exponent 2s
s+1

plays the role of exponent 2 of the non degenerate case.

Remark 2.9. Let the assumptions of Theorem 2.7 be satisfied. Then, in

Theorem 4.3 of [15], by a duality method, it is proved that there exists a

unique solution u of problem (1) such that

∫

Ω
a(x)

q
T
2 |Du|qT < +∞ , q

T
=

2sm∗

2s +m∗
. (14)

Note that such solution has the regularity stated by Theorem 2.7, and that

it belongs to W
1, sm∗

s+m∗

0 (Ω).

Conversely, we can prove that the solution u given by Theorem 2.7

satisfies condition (14) (see Remark 3.7 below).

Now, we point out that in the previous theorems we cannot take m = 1.

In order to handle this last case we recall the following functional setting.

Given σ > 0 the Marcinkiewicz space Mσ(Ω) is the space of measurable

functions v on Ω such that

∃ C ≥ 0 : |{x ∈ Ω : |v(x)| ≥ t}| ≤
C

tσ
, ∀t > 0. (15)
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We recall that the following inclusions hold, if 1 ≤ p < σ <∞,

Lσ(Ω) ⊂Mσ(Ω) ⊂ Lp(Ω).

Theorem 2.10. Let hypotheses (2), (3) and (5) be satisfied. If f ∈ L1(Ω),

there exists a solution u of problem (1) such that

u ∈M
sN

s(N−2)+N (Ω), Du ∈ (M
sN

s(N−1)+N (Ω))N ,

log(1 + |u|) ∈ W
1, 2s

s+1

0 (Ω),

Tk(u) ∈ W
1, 2s

s+1

0 (Ω)

and (12) holds. Moreover u is a solution of the elliptic problem (1) in the

following sense

∫

Ω
a(x)DϕDTk[u− ϕ] ≤

∫

Ω
f(x)Tk[u− ϕ], (16)

∀ k > 0, ∀ϕ ∈ W
1,( 2s

s+1
)′

0 (Ω) ∩ L∞(Ω).

Remark 2.11. The definition (16) was introduced in [1].

If s > N , then sN
s(N−1)+N

> 1 and assuming only f ∈ L1(Ω) the previous

theorem gives the existence of distributional solutions belonging to W 1,q
0 (Ω)

for every 1 ≤ q < sN
s(N−1)+N

. Note that sN
s(N−1)+N

= s1∗

s+1∗ .

Theorem 2.12. Let the hypotheses (2), (3) be satisfied, s ≥ N , r = ∞ and

f log(1 + |f |) ∈ L1(Ω). (17)

Then, there exists u ∈W
1, sN

s(N−1)+N

0 (Ω), distributional solution of (1).

Remark 2.13. Note that if s = N and, in addition, (17) holds, then we

obtain solution in the space W 1,1
0 (Ω).

Remark 2.14. Let the assumptions of Theorem 2.10 be satisfied. Then in

Theorem 4.3 of [15] the author proved, by duality, that there exists a unique

solution u of problem (1) such that

∫

Ω
a(x)

β
2 |Du|β < +∞ ∀β < q

T
, (18)
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where

q
T
=

2s1∗

2s+ 1∗
.

Note that such solution has the regularity stated by Theorem 2.10, that is,

its gradient belongs to M
sN

s(N−1)+N (Ω).

Conversely, we can prove that the solution u given by Theorem 2.10

satisfies condition (18) (see Remark 3.9 below).

Remark 2.15. In the paper [7], dedicated to Neil Trudinger on the occasion

of his 65th birthday, local versus global properties of solutions u of uniformly

elliptic problems with non regular data are studied. Namely, if the right hand

side f belongs to L1(Ω) and ψ is a positive function belonging to W 1,∞(Ω),

even if u only belongs toW 1,q
0 (Ω), q < N

N−1 , then the function uψη, for some

η > 1, is more regular.

In the same spirit of this result, it is interesting to study the same

property for the solutions u found in the present paper.

3. Approximate Problems and a Priori Bounds

We define

an(x) =



















1

n
if a(x) < 1

n

a(x) if 1
n
≤ a(x) ≤ n

n if n < a(x),

fn(x) =
f(x)

1 + 1
n
|f(x)|

and we consider the Dirichlet problems

un ∈W 1,2
0 (Ω) : −div(an(x)Dun) = fn(x). (19)

The existence of the solution un ∈ W 1,2
0 (Ω) ia a consequence of Lax-

Milgram lemma; moreover, for every n ∈ N, the function un is bounded (see

[14], [15]).
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Remark 3.1. Note that {an(x)} converges to a(x) a. e. x ∈ Ω and an(x) ≤

a(x) + 1 for every n ∈ N, so that {an(x)} converges to a(x) in Lr(Ω); in a

similar way
{

1
an(x)

}

converges to 1
a(x) in Ls(Ω). Moreover, for every n ∈ N

∥

∥

∥
1/an

∥

∥

∥

s

Ls
≤

∥

∥

∥
1/a

∥

∥

∥

s

Ls
+ |Ω|. (20)

In the following, given k > 0, let Tk(s) the truncation operator already

defined in the previous section and set, for every s ∈ R

Gk(s) = s− Tk(s).

3.1. Boundedness of the sequence {un} in Lebegue’s spaces

Let us define

q =
2s

s+ 1
(21)

and note that q < 2 and q = 1 iff s = 1.

Lemma 3.2. Assume that (2), (3), (4) and

1

m
+

1

s
<

2

N
(22)

hold. Then there exists M > 0 such that

‖un‖
L∞(Ω)

≤M, ∀ n ∈ N. (23)

Proof. We choose Gk(un) as test function in (19)

∫

Ω
an(x)|DGk(un)|

2 ≤

∫

Ω
|f(x)||Gk(un)|

and using the Sobolev and Hölder’s inequalities (with exponents 2/q and

2/(2 − q)) we obtain

Sq

[
∫

Ω
|Gk(un)|

q∗

]
q
q∗

≤

∫

Ω
|DGk(un)|

q =

∫

Ak
n

(an)
q
2 |DGk(un)|

q

(an)
q
2

≤

[
∫

Ω
an(x)|DGk(un)|

2

]
q
2
[
∫

Ak
n

1

(an)
q

2−q

]1− q
2
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≤

[
∫

Ω
|f ||Gk(un)|

]
q
2
[
∫

Ω

1

(an)s

]1− q
2

≤ Ca

(

‖f‖
Lm(Ω)

‖Gk(un)‖
Lq∗ (Ω)

∣

∣

∣
Ak

n

∣

∣

∣

1− 1
q
+ 1

N
− 1

m
)

q
2
,

where

Ak
n = {x ∈ Ω : k ≤ |un(x)|} , |Ak

n| = meas(Ak
n).

Thus we proved that

‖Gk(un)‖
Lq∗ (Ω)

≤ C̃a,f |A
k
n|

1− 1
q∗

− 1
m ,

which implies
∫

Ω
|Gk(un)| ≤ Ca,f |A

k
n|

2− 2
q∗

− 1
m .

By standard arguments, last inequality implies

|Ah
n| ≤

C1

h− k
|Ak

n|
2− 2

q∗
− 1

m , (24)

for every h > k > 0. Note that the assumption (22) gives 2 − 2
q∗

− 1
m
> 1;

then, thanks to the Stampacchia’s method (see [14], [11]), we conclude that

there exists M > 0, independent of n, such that ‖un‖
L∞(Ω)

≤ M , for n ∈ N.

���

Remark 3.3. If we assume

1

m
+

1

s
=

2

N

instead of (22), the inequality (24) becomes

|Ah
n| ≤

C1

h− k
|Ak

n|,

which implies (see [14]) that the sequence {eρ|un|} is bounded in L1(Ω), for

some ρ > 0, according to the results by M.K.V. Murty and G. Stamapacchia

and by N . Trudinger.

Now we assume that the datum f is less regular and we study the

boundedness of the sequence {un} in some Lebesgue space.
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Lemma 3.4. We assume

2

N
<

1

s
+

1

m
≤ 1 +

2

N
, m > 1. (25)

Then there exists C > 0 such that

‖un‖
L

sm∗∗

s+m∗∗ (Ω)
≤ C , ∀ n ∈ N. (26)

Proof. Define

γ =
m′

2m′ − q∗
(27)

and note that γ > 1
2 and q∗γ = (2γ − 1)m′.

Given ǫ > 0 we use [(ǫ + |un|)
2γ−1 − ǫ2γ−1]sign(un) as test function in (19)

and we get

(2γ − 1)

∫

Ω
an(x)|Dun|

2(ǫ+ |un|)
2γ−2 ≤

∫

Ω
|f(x)|(ǫ+ |un|)

2γ−1 (28)

which implies

Cγ

∫

Ω
an(x)|D[(ǫ+ |un|)

γ − ǫγ ]|2 ≤ ‖f‖
Lm(Ω)

[
∫

Ω
[(ǫ+ |un|)

γ ]
(2γ−1)m′

γ

]
1
m′

.

Recall that s = q
2−q

. Then

Sq

[
∫

Ω
[(ǫ+ |un|)

γ − ǫγ ]q∗
]

q
q∗

≤

∫

Ω
|D|un|

γ |q =

∫

Ω

(an)
q
2 |D|un|

γ |q

(an)
q
2

≤

[
∫

Ω
an(x)|D[(ǫ+ |un|)

γ − ǫγ ]|2
]

q
2
[
∫

Ω

1

(an)s

]1− q
2

≤ Ca‖f‖
q
2

Lm(Ω)

[
∫

Ω
[(ǫ+ |un|)

γ ]
(2γ−1)m′

γ

]
q

2m′

.

The limit as ǫ→ 0 implies

Sq

[
∫

Ω
[|un|

γ ]q∗
]

q
q∗

≤ Ca,f

[
∫

Ω
[|un|

γ ]
(2γ−1)m′

γ

]
q

2m′

.



✐

“BN09N31” — 2014/8/29 — 15:07 — page 305 — #11
✐

✐

✐

✐

✐

2014] SOME RESULTS BY NEIL TRUDINGER REVISITED 305

Now the assumption 1
s
+ 1

m
> 2

N
gets q

q∗
> q

2m′ (recall that q∗γ = (2γ−1)m′ =
sm∗∗

s+m∗∗ ) and then the estimate (26) follows. ���

3.2. Boundedness of the sequence {un} in Sobolev’s spaces

Lemma 3.5. Assume that (2), (3), (4) and (6) hold. Then, up to subse-

quences, the sequence {un} weakly converges in W
1, 2s

s+1

0 (Ω).

Proof. First of all, we note that the assumption 1
m

+ 1
2s ≤ 1

2 + 1
N

implies

that m ≥ 2N
N+2 .

Choosing un as test function in (19) we obtain

∫

Ω
an(x)|Dun|

2 ≤

∫

Ω
|f(x)||un(x)| . (29)

Using Sobolev and Hölder’s inequalities (with exponents 2/q and 2/(2− q))

and working as in the proof of Lemma 3.2, we give

Sq‖un‖
q

Lq∗
≤

∫

Ω
|Dun|

q =

∫

Ω

(an)
q
2 |Dun|

q

(an)
q
2

≤

[
∫

Ω
an(x)|Dun|

2

]
q
2
[
∫

Ω

1

(an)
q

2−q

]1− q
2

≤

[
∫

Ω
|f ||un|

]
q
2
[
∫

Ω

1

(an)s

]1− q
2

≤ Ca‖f‖
q
2

L(q∗)′ (Ω)
‖un‖

q
2

Lq∗ (Ω)
.

Now we note that (q∗)′ ≤ m since (6) holds and by previous inequality it

follows that the sequence {un} is bounded in W
1, 2s

s+1

0 (Ω).

If s > 1 then 2s
s+1 > 1 and, up to a subsequence still denoted by {un},

{un} converges to some function u weakly in W
1, 2s

s+1

0 (Ω), strongly in L1(Ω)

and almost everywhere in Ω.

In the case s = 1 (which implies q = 1), since the a priori estimate is

not enough to pass to the limit, we need something more in order to prove

the weak compactness of the sequence {un} in W 1,1
0 (Ω) and we follow some

techniques already used in [2], [3], [6].

Note that (6) with s = 1 gives m ≥ N . Let E be a measurable subset

of Ω, and let i be in {1, . . . , N}. Then we adapt the above inequalities and
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we have

∫

E

|∂iun| ≤

∫

E

|Dun| =

∫

E

(an)
1
2 |Dun|

(an)
1
2

≤

[
∫

Ω
an(x)|Dun|

2

]
1
2
[
∫

E

1

an

]
1
2

≤
(

‖f‖
LN (Ω)

‖un‖
L1∗ (Ω)

)
1
2

[
∫

E

1

an

]
1
2

≤ C1

[
∫

E

1

an

]
1
2

.

Since the sequence { 1
an

} is compact in L1(Ω), we can use the Vitali theorem

on the last term; thus, we can say that the first term {∂iun} is equiintegrable.

By Dunford-Pettis theorem, and up to subsequences, there exists Yi in L
1(Ω)

such that {∂iun} weakly converges to Yi in L
1(Ω). Since ∂iun is the distri-

butional derivative of un, we have, for every n in N,

∫

Ω
∂iun ϕ = −

∫

Ω
un ∂iϕ , ∀ϕ ∈ C∞

c (Ω) .

We now pass to the limit in the above identities, using that {∂iun} weakly

converges to Yi in L
1(Ω), and that {un} strongly converges to u in Lµ(Ω),

1 < µ < N
N−1 ; we obtain

∫

Ω
Yi ϕ = −

∫

Ω
u∂iϕ , ∀ϕ ∈ C∞

c (Ω) ,

which implies that Yi = ∂iu, and this result is true for every i. Since Yi
belongs to L1(Ω) for every i, u belongs to W 1,1

0 (Ω). ���

The next results concern with the case in which m doesn’t satisfy in-

equality (6)

Lemma 3.6. Let hypotheses (2), (3), (4) be satisfied and (11) and (13)

hold. Then, up to subsequences, the sequence {un} weakly converges in

W
1, sm∗

s+m∗

0 (Ω).

Proof. In the first part of the proof we assume s > 1. First of all, we note

that assumption (11) implies 1
s
+ 1

m
> 2

N
; thus the sequence {un} is bounded

in L
sm∗∗

s+m∗∗ (Ω), by virtue of Lemma 3.4. Moreover, if γ > 1
2 is the number

defined in the proof of Lemma 3.4, the inequality (28) can be rewritten as

follows, with ǫ = 1,

(2γ − 1)

∫

Ω

an(x)|Dun|
2

(1 + |un|) 2(1−γ)
≤

∫

Ω
|f(x)|(1 + |un|)

2γ−1.
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We point out that here the assumption (11) implies γ < 1 and that the

right hand side of the above inequality is bounded (with respect to n), since

(2γ − 1)m
′

= sm∗∗

s+m∗∗ . Then

∫

Ω

an(x)|Dun|
2

(1 + |un|) 2(1−γ)
≤ C0, ∀ n ∈ N. (30)

Let us define

q =
sm∗

s+m∗
(31)

and p such that

p q (1− γ) =
sm∗∗

s+m∗∗
. (32)

Note that q > 1, since 1
s
+ 1

m
< 1+ 1

N
, q < 2 and easy calculations show that

q

2
+

1

p
+

q

2s
= 1.

Then in the equality

∫

Ω
|Dun|

q =

∫

Ω

an(x)
q
2 |Dun|

q

(1 + |un|)q(1−γ)
(1 + |un|)

q(1−γ) 1

an(x)
q
2

(33)

we can use Hölder’s inequality with exponents 2
q
, p and 2s

q
. At least, thanks

to the choice of p and using the inequalities (30) and (20) we prove that the

sequence {un} is bounded in W 1,q
0 (Ω).

If 1
m
+ 1

s
< 1+ 1

N
(which implies q > 1), up to a subsequence still denoted

by {un}, {un} converges to some function u weakly in W 1,q
0 (Ω), strongly in

L1(Ω) and almost everywhere in Ω.

If 1
m

+ 1
s
= 1 + 1

N
(which implies q = 1), we work as in the proof of

previous lemma. Let E be a measurable subset of Ω and i ∈ {1, . . . , N};

by adapting (33) and using Hölder’s inequality with exponents 2, p and 2s,

we obtain

∫

E

|∂iun| ≤

∫

E

|Dun| =

∫

E

an(x)
1
2 |Dun|

(1 + |un|)(1−γ)
(ǫ+ |un|)

(1−γ) 1

an(x)
1
2
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≤ C1

[
∫

E

1

an(x)s

]
1
2s

.

Then we prove that the sequence {un} converges weakly in W 1,1
0 (Ω), up to

subsequences, to some function u. As a matter of fact, we can repeat the

last part of the proof of Lemma 3.5, since in the framework of this case the

choice s = 1 implies m = N .

Remark 3.7. Let q
T
= 2sm∗

2s+m∗ , γ and q as in the previous lemma. Then,

there exists a constant c > 0, independent on n such that

∫

Ω
an(x)

q
T
2 |Dun|

q
T ≤ c ∀n ∈ N. (34)

As a matter of fact, by Holder’s inequality we have

∫

Ω
an(x)

q
T
2 |Dun|

q
T ≤

[
∫

Ω
an(x)

|Dun|
2

(1+|un|)2(1−γ)

]

q
T
2

[

∫

Ω
(1+|un|)

q
T

(1−γ)

2−q
T

]1−
q
T
2

.

Since

q
T
(1− γ)

2− q
T

= q∗

using the estimate (30) we conclude that the right hand side of previous

inequality is bounded.

We note that estimate (34) says that {un} is bounded in the weighted

Sobolev space W
1,q

T
0 (Ω), where q

T
is the summability exponent obtained by

N. Trudinger in Theorem 4.3 of [15].

3.3. The case m = 1

Here we study the case f ∈ L1(Ω), since, if m = 1, in the previous

inequalities it is not possible to use m′.

Lemma 3.8. Let the hypotheses (2), (3), (4) be satisfied and m = 1. Then

{Tk(un)} is bounded in W
1, 2s

s+1

0 (Ω), ∀k > 0, (35)

{log(1 + |un|)} is bounded in W
1, 2s

s+1

0 (Ω), (36)

{un} is bounded in M
sN

s(N−2)+N (Ω), (37)
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the sequence {Dun} is bounded in
(

M
sN

s(N−1)+N (Ω)
)N

. (38)

Proof. Let k > 0; if we choose Tk(un) as test function in (19), we obtain

∫

Ω
an(x)|DTk(un)|

2 =

∫

Ω
fn(x)Tk(un) ≤ k‖f‖L1(Ω), ∀ n ∈ N. (39)

Let q = 2s
s+1 (recall that q = 1 if s = 1). Working as in the proof of Lemma

3.5 and using the previous inequality we get

∫

Ω
|DTk(un)|

q ≤ C0 k
q
2 . (40)

Now we follow the proof of Lemma 4.1 in [1]. Indeed (40) and the Sobolev

inequality give

kq
∗

meas{k < |un|} =

∫

k<|un|
|Tk(un)|

q∗ ≤ C1 k
q∗

2 ,

which implies that

meas{k < |un|} ≤
C1

k
q∗

2

,

that is the estimate stated in (37).

Moreover (40) also implies that

λq meas{|un| ≤ k, λ ≤ |Dun|} ≤

∫

|un|≤k, λ≤|Dun|
|Dun|

q ≤ C0 k
q
2 .

Then

meas{λ ≤ |Dun|} = meas{|un| ≤ k, λ ≤ |Dun|}+meas{k < |un|}

≤ C0
k

q
2

λq
+

C1

k
q∗

2

.

The choice k = λ
2(N−q)
2N−q gives the estimate stated in (38).
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In order to prove (36), we use in (19) as test function un

1+|un|
and we have

∫

Ω

|Dun|
2

(1 + |un|)2
≤

∫

Ω
|f |,

which implies (once more we use the Hölder inequality)

∫

Ω

|Dun|
2s
s+1

(1 + |un|)
2s
s+1

=

∫

Ω
an(x)

s
s+1

|Dun|
2s
s+1

(1 + |un|)
2s
s+1

1

an(x)
s

s+1

≤

[
∫

Ω
|f |

]
s

s+1
[
∫

Ω

1

an(x)s

]
1

s+1

. ���

Remark 3.9. Let the assumptions of previous lemma be satisfied. Then,

there exists a positive constant c, independent of n, such that, for every

n ∈ N the following estimate holds

∫

Ω
an(x)

β
2 |Dun|

β < c, ∀β < q
T
, (41)

where q
T
= 2s1∗

2s+1∗ is the number introduced in Remark 2.14.

As a matter of fact, let us take as test function in (19) the function
1− (1 + |Gk(un)|)

1−2δ

2δ − 1
sign(un) where δ >

1
2 will be choosen later on and we

obtain
∫

Ω
an(x)

|DGk(un)|
2

(1 + |Gk(un)|)2δ
≤ ‖f‖L1(Ω). (42)

Let us fix β < q
T
. We have

∫

Ω
an(x)

β
2 |Dun|

β =

∫

Ω
an(x)

β
2 |DTk(un)|

β +

∫

Ω
an(x)

β
2 |DGk(un)|

β.

The first integral in the right hand side of above equality is bounded by

virtue of (39), while the second one can be treated as follows

∫

Ω
an(x)

β
2 |DGk(un)|

β

=

∫

Ω
an(x)

β
2

|DGk(un)|
β

(1 + |Gk(un)|)δβ
(1 + |Gk(un)|)

δβ
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≤

[
∫

Ω
an(x)

β
2

|DGk(un)|
2

(1 + |Gk(un)|)2δ

]
β
2
[
∫

Ω

(

1 + |Gk(un)|

)
2δβ
2−β

]1−β
2

.

Using the estimate (42) and the boundedness of {un} (and consequently of

{Gk(un)}) in the spaceM
sN

s(N−2)+N (Ω), we conclude that the second member

of previous inequality is bounded if we can take δ > 1
2 such that

2δβ

2− β
<

sN

s(N − 1) +N

and this choice is possible, since β < q
T
.

Lemma 3.10. Let s ≥ N and f log(1+|f |) be a function belonging to L1(Ω).

Then

{un} is bounded in L
sN

s(N−2)+N (Ω), (43)

{Dun} is bounded in L
sN

s(N−1)+N (Ω). (44)

Moreover if s = N then

{Dun} is weakly compact in (L1(Ω))N . (45)

Proof. We use log(1 + |un|)sign(un) as test function in (19) and we get

∫

Ω
an(x)

|Dun|
2

1 + |un|
≤

∫

Ω
|f | log(1 + |un|).

We recall now the following inequality (for positive real numbers z, t )

z t ≤ z log(1 + z) + et − 1 ,

so that we have

∫

Ω
an(x)

|Dun|
2

1 + |un|
≤

∫

Ω
|f | log(1 + |f |) +

∫

Ω
|un|.

Let q̃ = sN
s(N−1)+N

; from

∫

Ω
|Dun|

q̃ =

∫

Ω
an(x)

q̃
2

[

|Dun|
√

1 + |un|

]q̃[

1 + |un|

]
q̃
2 1

an(x)
q̃
2
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we deduce, thanks to the Hölder inequality with exponents 2
q̃
, 2q̃∗

q̃
and 2s

q̃

∫

Ω
|Dun|

q̃≤

[
∫

Ω
|f | log(1+|f |)+

∫

Ω
|un|

]
q̃
2
[
∫

Ω
(1+ |un|)

q̃∗
]

q̃
2q̃∗

[
∫

Ω

1

an(x)s

]
q̃
2s

.

Here we can use (37), with s ≥ N , since now sN
s(N−2)+N

is strictly grater than

1. Thus we have
∫

Ω
|un| ≤ C1

and

S‖un‖
q̃

Lq̃∗ (Ω)
≤

∫

Ω
|Dun|

q̃ ≤ C2

[
∫

Ω
|f | log(1 + |f |) + C1

]
q̃
2

‖1 + |un|‖
q̃
2

Lq̃∗ (Ω)
,

which implies (43) (note that q̃∗ = sN
s(N−2)+N

) and then (44).

If s = N , then (44) says that {Dun} is bounded in L1(Ω) and we need

something more in order to prove (45). Let E be a measurable subset of Ω;

since
∫

E

|Dun| =

∫

E

an(x)
1
2

|Dun|
√

1 + |un|

√

1 + |un|
1

an(x)
1
2

due to the Hölder inequality with exponents 2, 2N
N−1 and 2N , we deduce

∫

E

|Dun|≤

[
∫

Ω
|f | log(1+|f |)+

∫

Ω
|un|

]
1
2
[
∫

Ω
(1+|un|)

N
N−1

]
N−1
2N

[
∫

E

1

an(x)N

]
1

2N

.

Here we can use (43), thus we have

∫

E

|Dun| ≤ C3

[
∫

E

1

an(x)N

]
1

2N

.

Since the sequence { 1
an

} is compact in L1(Ω), the sequence {∂iun} is equi-

integrable. Thus, by Dunford-Pettis theorem, as in the proof of Lemma 3.5,

we prove (45).
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4. Proof of Existence Theorems

4.1. Proof of Theorem 2.1

Lemma 3.5 says that, up to subsequences, the sequence {un} weakly

converges to a function u in W
1, 2s

s+1

0 (Ω). Then, thanks to (5), it is easy to

pass to the limit in the weak formulation of (19)

∫

Ω
an(x)DunDv =

∫

Ω
fn(x)v, ∀ v ∈ W

1,( 2s
s+1

)′

0 (Ω).

Moreover, the summability (boundedness) of u is a consequence of the

boundedness of the sequence {un} in Lebegue’s spaces proved in Sub-

section 3.1. ���

4.2. Proof of Theorem 2.7

Here we use Lemma 3.6 instead of Lemma 3.5.

4.3. Proof of Theorem 2.12

Here we use Lemma 3.10 instead of Lemma 3.5.

4.4. Proof of Theorem 2.10

As a consequence of (36), there exists a subsequence (not relabelled)

such that

{log(1 + |un|)sign(un)} converges weakly in W
1, 2s

s+1

0 (Ω) and a. e. in Ω

(46)

Then, {un(x)} converges a. e. in Ω to a measurable function u(x) such that

log(1 + |u|) ∈ W
1, 2s

s+1

0 (Ω). Moreover, as a consequence of (35), for every

k > 0, the sequence {Tk(un)} converges weakly in W
1, 2s

s+1

0 (Ω) to Tk(u).

Thus, if we take Tk[un − ϕ] as test function in the weak formulation of

problem (19) , we have, ∀ k > 0 and ∀ϕ ∈ W
1,( 2s

s+1
)′

0 (Ω) ∩ L∞(Ω),

∫

Ω
an(x)DunDTk[un − ϕ] =

∫

Ω
f(x)Tk[un − ϕ],
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which implies

∫

Ω
an(x)DϕD Tk[un − ϕ] ≤

∫

Ω
f(x)Tk[un − ϕ].

Here it is easy to pass to the limit, due to (5) and the weak convergence in

W
1, 2s

s+1

0 (Ω) of {Tk(un)} to Tk(u), and we obtain (16). ���
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