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Abstract

In this paper we consider the following higher order or fractional order Hardy-Sobolev

type equation

(−∆)
α
2 u(x) =

up(x)

|y|t
, x = (y, z) ∈ (Rk\{0}) ×R

n−k
, (1)

where 0 < α < n, 0 < t < min{α, k}, and 1 < p ≤ τ := n+α−2t
n−α

.

In the case when α is an even number, we first prove that the positive solutions of

(1) are super poly-harmonic, i.e.

(−∆)iu > 0, i = 1, . . . ,
α

2
− 1. (2)

Then, based on (2), we establish the equivalence between PDE (1) and the integral

equation

u(x) =

∫
Rn

G(x, ξ)
up(ξ)

|η|t
dξ,

where G(x, ξ) =
cn,α

|x−ξ|n−α is the Green’s function of (−∆)
α
2 in Rn.

By the method of moving planes in integral forms, in the critical case, we prove that

each nonnegative solution u(y, z) of (1) is radially symmetric and monotone decreasing in

y about the origin in Rk and in z about some point z0 in Rn−k. In the subcritical case,

we obtain the nonexistence of positive solutions for (1).
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1. Introduction

Let n ≥ 3, 1 ≤ k < n, and Rn = Rk × Rn−k. Write x = (y, z) ∈

Rk ×Rn−k. We study the following higher order or fractional order Hardy-

Sobolev type equation

(−∆)
α
2 u(x) =

up(x)

|y|t
, x ∈ (Rk\{0}) ×Rn−k, (3)

where 0 < α < n, 0 < t < min{α, k}, and 1 < p ≤ τ := n+α−2t
n−α

.

For even values of α, we assume u ∈ Cα(Rn) and satisfies (3) in the

distribution sense
∫

Rn

(−∆)α/2u(x)ψ(x)dx =

∫

Rn

|y|−tup(x)ψ(x)dx, ∀ψ ∈ C∞
0 (Rn).

For other real values of α, we assume

u ∈ D
α
2
,2(Rn) = {u |

∫

Rn

|ξ|α|û(ξ)|2dξ <∞}

and satisfies
∫

Rn

(−∆)
α
4 u(−∆)

α
4 φdx =

∫

Rn

|y|−tup(x)φ(x)dx, ∀φ ∈ D
α
2
,2(Rn). (4)

Here,
∫

Rn

(−∆)
α
4 u(−∆)

α
4 φdx

is defined by the Fourier transform

∫

Rn

|ξ|αû(ξ)φ̂(ξ)dξ,

where û and φ̂ are the Fourier transform of u and φ respectively.

Equations (3) is closely related to the study of the sharp constants of

the Hardy-Sobolev inequality and the Caffarelli-Kohn-Nirenberg inequality

(cf. [5, 33, 38] and the references therein). The quantitative and qualitative

properties of solutions for these types of equations are also interesting in

critical point theory and nonlinear elliptic equations (cf. [1, 2, 37]).
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In particular, when α = 2, (3) is the Euler-Langrange equation corre-

sponding to the well-known Hardy-Sobolev-Maz’ya inequality (cf. [9, 36]),

which has been extensively studied by many authors (cf. [1, 10, 24, 35, 38]

and the references therein).

In this special case, equation (3) becomes

−∆u(x) =
up(x)

|y|t
, x ∈ (Rk\{0}) ×Rn−k. (5)

This equation has been systematically studied in [7] by Cao and Li. For

the critical exponent p = n+2−2t
n−2 , and in the special case when t = 1, they

first established radial symmetry of the positive solutions in y and z respec-

tively, and then they classified all the positive solutions. In addition, they

conjectured that the similar results should hold for any 0 < t < min{2, k}.

For the subcritical exponent 1 < p < n+2−2t
n−2 , Cao and Li proved the

nonexistence of positive solutions.

In this paper, by using an entirely different approach–the method of

moving planes in integral forms, we generalize Cao and Li’s results from

α = 2 to any real value α between 0 and n and for any 0 < t < min{α, k}.

In order to apply the method in integral forms, we first establish the

equivalence between PDE (3) and the integral equation

u(x) =

∫

Rn

G(x, ξ)
up(ξ)

|η|t
dξ (6)

where ξ = (η, ζ), and G(x, ξ) =
cn,α

|x−ξ|n−α is the Green’s function of (−∆)
α
2

in Rn.

Theorem 1.1. Let α be any even number between 0 and n. If u is a classical

positive solution of (3), then u satisfies integral equation (6). If u ∈ Cα(Rn)

is a solution of (6), then u satisfies (3).

Theorem 1.2. Let α be any real number between 0 and n. If u ∈ D
α
2
,2(Rn)

is a solution of (3), then u satisfies integral equation (6), and vice versa.

The proof of Theorem 1.1 is based on the following super poly-harmonic

property of solutions.
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Theorem 1.3. If u is a positive solution of (3), then

(−∆)iu(x) > 0, i = 1, . . . ,m− 1, x ∈ Rn, (7)

where m = α
2 .

Due to the equivalence between (3) and (6), in order to derive the prop-

erties of solutions of (3), we only need to deal with integral equation (6).

By the method of moving planes in integral forms [16], we prove

Theorem 1.4. (i) For 0 < α < n, p = τ , 0 < t < min{α
2 (1 + k

n
), k},

let |y|−tuτ−1(x) ∈ L
n
α

loc(R
k × Rn−k). Assume that u ∈ Lq

loc(R
n) for some

q > n
n−α

. Then each positive solution u(y, z) of (6) is radially symmetric

and monotone decreasing in y about the origin in Rk and in z about some

point z0 in Rn−k; that is, u = u(|y|, |z − z0|).

(ii) For 1 < α < n, 1 < p < τ , let |y|−tup−1(x) ∈ L
n
α

loc(R
k ×Rn−k). Assume

that u ∈ Lq
loc(R

n) for some q > n
n−α

. If u is a nonnegative solution of (6),

then u ≡ 0.

Combining Theorem 1.4 with Theorem 1.1, we conclude, for each even

number α between 0 and n,

Corollary 1.1. (i) For 0 < α < n, p = τ , 0 < t < min{α
2 (1 +

k
n
), k}, then

each positive solution u of (3) is radially symmetric and monotone decreasing

in y about the origin in Rk and in z about some point z0 in Rn−k.

(ii) For 1 < α < n, 1 < p < τ , if u is a nonnegative solution of (3), then

u ≡ 0.

Theorem 1.4 and Theorem 1.2 yield, for each real number α between 0

and n,

Corollary 1.2. (i) For 0 < α < n, p = τ , 0 < t < min{α
2 (1 +

k
n
), k}, then

each positive solution u of (3) is radially symmetric and monotone decreasing

in y about the origin in Rk and in z about some point z0 in Rn−k.

(ii) For 1 < α < n, 1 < p < τ , if u is a nonnegative solution of (3), then

u ≡ 0.
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To apply the method of moving planes in integral forms, one usually

needs to assume some global integrability on the solution u. Here by properly

using Kelvin transforms, we only need to assume that u is locally integrable.

In the special case k = n, when p = τ , Lu and Zhu [33] proved that

every positive solution of (6) is radially symmetric and strictly decreasing

about the origin; when 0 < p ≤ n−t
n−α

, Lei [30] obtained the nonexistence of

positive solutions for (3). For more related results, please see [3, 4, 6, 11, 8,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 34, 27, 28, 29, 31, 39, 12]

and the references therein.

The paper is organized as follows. In section 2, we obtain the super poly-

harmonic properties of the positive solutions of partial differential equation

by the method of re-centers, and thus prove Theorem 1.3. In section 3, we

show the equivalence between the partial differential equation and the inte-

gral equation, and thus prove Theorems 1.1 and 1.2. In the last section, when

the exponent is critical, by moving planes in Rk and in Rn−k separately, we

conclude that each nonnegative solution of the integral equation is radially

symmetric and monotone decreasing in y about the origin in Rk and in z

about some point z0 in R
n−k. When the exponent is subcritical, we move the

planes in the whole Rn to derive that each nonnegative solution is radially

symmetric and decreasing about any given point x0 = (0, z0) ∈ Rk ×Rn−k.

Hence we conclude that the solution depends only on |y|. By exploring a

Pohozaev identity in integral forms, we derive u ≡ 0, and therefore prove

Theorem 1.4.

2. The proof of Theorem 1.3

In this section, we establish super-poly harmonic properties of positive

solutions for PDE (3). In the following, C, c, and c0 denote positive constants

whose values may vary from line to line.

Let

ui(x) = (−∆)iu(x), i = 1, . . . ,m− 1, x ∈ Rn.

Part I. We first show that

um−1(x) > 0, x ∈ Rn. (8)
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Suppose in the contrary, then there are two possible cases.

Case i) There exists x1 ∈ Rn, such that

um−1(x
1) < 0. (9)

Case ii) um−1(x) ≥ 0, ∀ x ∈ Rn, and there is a point x̃ ∈ Rn, such that

um−1(x̃) = 0.

In this case, x̃ is a local minimum of um−1, and we must have −∆um−1(x̃) ≤

0. This contradicts with

−∆um−1 =
up(x)

|y|t
> 0, x ∈ (Rk\{0}) ×Rn−k.

Therefore we only need to deal with Case i).

Step 1. In this step, we will show that m must be even. If not, we assume

that m is odd. Let

ū(r) =
1

|∂Br(x1)|

∫

∂Br(x1)
u(x)dσ (10)

be the spherical average of u. Then by the well-known property that

∆u = ∆u,

we have






















−∆um−1 =
up(x)
|y|t ,

−∆um−2 = um−1,

· · ·

−∆u = u1.

(11)

From the first equation in (11), by Jensen’s inequality, we have

−∆um−1 =
1

|∂Br(x1)|

∫

∂Br(x1)

up(x)

|y|t
dσ

≥ (r + |x1|)−t 1

|∂Br(x1)|

∫

∂Br(x1)
up(x)dσ
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≥ (r + |x1|)−t

(

1

|∂Br(x1)|

∫

∂Br(x1)
u(x)dσ

)p

= (r + |x1|)−tūp(x) > 0, for any r > 0. (12)

Then integrating both sides from 0 to r yields

u′m−1(r) < 0, and um−1(r) < um−1(0) = um−1(x
1) := −c0 < 0, r > 0.

(13)

By the second equation in (11), we deduce

−
1

rn−1

(

rn−1u′m−2

)′
= um−1(r) < −c0, ∀r > 0.

That is

(

rn−1u′m−2

)′
> rn−1c0, ∀r > 0.

Integrating yields

u′m−2(r) >
c0
n
r, and um−2(r) ≥ um−2(0) +

c0
2n
r2, ∀r > 0. (14)

Hence, ∃ r1 > 0 such that

ūm−2(r1) > 0.

Making average at a new center x2 with |x1 − x2| = r1, i.e,

¯̄u(r) =
1

|∂Br(x2)|

∫

∂Br(x2)
ū(x)dσ,

we have

¯̄um−2(0) = ūm−2(x
2) > 0. (15)

Then by (12), (¯̄u, ¯̄u1, . . . , ¯̄um−1) satisfies



















−∆um−1 ≥ (|x− x1|+ |x1|)−tūp(x),

−∆um−2 = um−1,

· · ·

−∆u = u1.

(16)
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By (16) and Jensen’s inequality, we obtain

−∆um−1(r) ≥ (r + |x2 − x1|+ |x1|)−t ¯̄up(x) > 0, for any r ≥ 0.

By the same arguments as in deriving (14), we conclude

um−2(r) ≥ um−2(0) +
c0
2n
r2, ∀r ≥ 0. (17)

By (13), (15), and (17), we have

um−1(r) < 0, um−2(r) > 0, for any r ≥ 0.

Continuing this way, after m− 1 steps of re-centers (denotes the results by

ũ), we conclude, for any r ≥ 0,

−∆ũm−1(r) ≥ (r+ |xm−1 −xm−2|+ · · ·+ |x2 −x1|+ |x1|)−tũp(r) > 0, (18)

and

(−1)iũm−i(r) > 0, i = 1, . . . ,m− 1, for any r ≥ 0. (19)

Since m is odd, (19) implies

ũ2(r) < 0, for any r ≥ 0.

And then we derive

ũ′1(r) > 0 and ũ1(r) ≥ ũ1(0) := c > 0, for any r ≥ 0.

From the last equation in (16), we deduce

ũ(r) ≤ ũ(0) −
c

2n
r2

→ −∞, as r → ∞

which contradicts with the positiveness of u. Hence m must be even.

Step 2. Let

uλ(x) = λ
2m−t
p−1 u(λx)

be the rescaling of u. It still satisfies equation (3) for any λ > 0. By (19),
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we derive

ũ(r) ≥ ũ(0) > 0, for any r ≥ 0.

Then we choose a sufficiently large λ such that for any a0 > 0,

ũ(r) ≥ a0 ≥ a0r
σ0 , ∀ r ∈ [0, 1], (20)

where σ0 > 1 and σ0p ≥ 2m+ n. By (18) and (20), we have

−∆ũm−1(r) ≥ (r + |xm−1 − xm−2|+ · · ·+ |x2 − x1|+ |x1|)−tũp(x)

≥ (1 + |xm−1 − xm−2|+ · · ·+ |x2 − x1|+ |x1|)−tap0r
pσ0

:= c0a
p
0r

pσ0 , 0 < c0 < 1.

It follows that

ũm−1(r) ≤ ũm−1(0)−
c0a

p
0r

σ0p+2

(σ0p+ n)(σ0p+ 2)
.

Since m is even, by (19), we obtain

ũm−1(r) ≤ −
c0a

p
0r

σ0p+2

(σ0p+ n)(σ0p+ 2)
≤ −

c0a
p
0r

σ0p+2

(2σ0p)2
, ∀ r ∈ [0, 1]. (21)

Similar to (21), by the second equation in (16), (19), and (21) , we deduce

ũm−2(r) ≥
c0a

p
0r

σ0p+4

(2σ0p)4
, ∀ r ∈ [0, 1]. (22)

Continuing this way, we derive

ũ(r) ≥
c0a

p
0r

σ0p+2m

(2σ0p)2m
≥
c0a

p
0r

2σ0p

(2σ0p)2m
, ∀ r ∈ [0, 1].

Set

σ1 = 2σ0p, σk = 2σk−1p, k = 2, . . . ,

a1 =
c0a

p
0

(2σ0p)2m
, ak =

c0a
p
k−1

(2σk−1p)2m
, k = 2, . . . .
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Repeating the above arguments, by induction, one can prove

ũ(r) ≥ akr
σk , ∀ r ∈ [0, 1]. (23)

Through elementary calculations, we have

ak =
c
pk−1
p−1

0 ap
k

0

(2p)2m(k+(k−1)p+(k−2)p2+···+pk−1)σ
2m(pk−1)

p−1

0

≥
c
pk−1
p−1

0 ap
k

0

(2p)
2m pk+1−p

(p−1)2 σ
2m(pk−1)

p−1

0

≥ c
−1
p−1

0





c
1

p−1

0 a0

(2p)
2mp

(p−1)2 σ
2m
p−1

0





pk

, k = 1, . . . .

We take

a0 = 2c
− 1

p−1

0 (2p)
2mp

(p−1)2 σ
2m
p−1

0 .

Then by (23), we deduce

ũ(1) ≥ 2p
k

→ ∞, as k → ∞.

This is impossible. Hence (8) must hold.

Part II. Now we show that all other uk(x), k = 1, . . . ,m− 2, x ∈ Rn, must

be positive. On the contrary, suppose for some i, 2 ≤ i ≤ m− 1, ∃ x0 ∈ Rn,

such that

um−1(x) > 0, um−2(x) > 0, · · · , um−i+1(x) > 0, x ∈ Rn, (24)

um−i(x
0) < 0. (25)

Repeating the similar arguments as in Step 1 of Part I, after a few steps

of re-centers, the signs of ũm−j(r), j = i, . . . ,m− 1, are alternating, and by

the positiveness of u, we must have

ũ1(r) < 0, for any r ≥ 0.

Therefore,

ũ(r) ≥ ũ(0) := c>0, for any r≥0.
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By (18), we obtain

−∆ũm−1(r)≥(1+|xm−1−xm−2|+· · ·+|x2−x1|+|x1|)−tũp(r)≥c0c
p := C>0.

Integrating both sides from 0 to r yields

ũm−1(r) ≤ ũm−1(0)−
Cr2

2n
→ −∞, as r → ∞.

This contradicts with (8), and therefore (7) must be true. This completes

the proof of Theorem 1.3.

3. Equivalence between PDE and IE

3.1. The proof of Theorem 1.1

In this subsection, we consider the positive classical solution u of higher

order equation

(−∆)mu(x) =
up(x)

|y|t
, x = (y, z) ∈ (Rk\{0}) ×Rn−k, (26)

where m is a positive integer and 2m < n.

We show that u is also a solution of the integral equation, and vice versa.

Let δ(x − ξ) be the Dirac Delta function. For fixed x = (y, z) ∈ Rk ×

Rn−k, Gr(x, ξ) is the Green’s function:

{

(−∆)mGr(x, ξ) = δ(x− ξ), in Br(x),

Gr(x, ξ) = ∆Gr(x, ξ) = · · · = ∆m−1Gr(x, ξ) = 0, on ∂Br(x).
(27)

By the Maximum principle, one can easily verify that the outward normal

derivative

∂

∂νξ
[(−∆)iGr(x, ξ)] ≤ 0, i = 0, . . . ,m− 1, on ∂Br(x). (28)

Multiply both sides of (26) by Gr(x, ξ) and integrate on Br(x). After inte-

grating by parts, and due to Theorem 1.3 and (28), we arrive at

∫

Br(x)
Gr(x, ξ)

up(ξ)

|η|t
dξ
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= u(x) +
m−1
∑

i=0

∫

∂Br(x)
[(−∆)iu]

∂

∂νξ
[(−∆)m−1−iGr(x, ξ)]dσ (29)

≤ u(x). (30)

Solving equations (27) directly and letting r → ∞, we have

Gr(x, ξ) →
C

|x− ξ|n−2m
, (31)

(−∆)iGr(x, ξ) →
C

|x− ξ|n+2i−2m
, i = 1, . . . ,m− 1, (32)

and

|
∂

∂νξ
[(−∆)m−1−iGr(x, ξ)]| ≤

C

|x− ξ|n−2i−1
, i = 0, . . . ,m− 1. (33)

It follows from (30) that

∫

Rn

1

|x− ξ|n−2m

up(ξ)

|η|t
dξ <∞. (34)

By (34), there exists rk → ∞, such that

0 <
1

rn−2m−1
k (|x|+ rk)t

∫

∂Brk
(x)
up(ξ)dσ ≤

1

rn−2m−1
k

∫

∂Brk
(x)

up(ξ)

|η|t
dσ → 0.

We further deduce that

1

rn+t−2m−1
k

∫

∂Brk
(x)
up(ξ)dσ → 0, as rk → ∞.

Then by Jensen’s inequality, we have

1

r
n−1− 2m−t

p

k

∫

∂Brk
(x)
u(ξ)dσ → 0, as rk → ∞. (35)

Since t < 2m, it is easy to see

1

rn−1
k

∫

∂Brk
(x)
u(ξ)dσ → 0, as rk → ∞. (36)

Set

(−∆)iu = ui, i = 1, . . . ,m− 1, (37)

(−∆)iGr(x, ξ) = Gi(x, ξ), i = 1, . . . ,m− 1.
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Multiply both sides of (37) by Gm−i(x, ξ) and integrate on Br(x). After

integrating by parts, by Theorem 1.3 and (28) again, we deduce

∫

Br(x)
ui(ξ)Gm−i(x, ξ)dξ

= u(x) +

i−1
∑

j=0

∫

∂Br(x)
[(−∆)ju]

∂

∂νξ
[(−∆)m−1−jGr(x, ξ)]dσ

≤ u(x), i = 1, . . . ,m− 1. (38)

(32) and (38) imply

∫

Rn

ui(ξ)

|x− ξ|n−2i
dξ <∞, i = 1, . . . ,m− 1.

Then there exists rk → ∞, such that

1

rn−2i−1
k

∫

∂Brk
(x)
ui(ξ)dσ → 0, i = 1, . . . ,m− 1. (39)

From equation (29), by (33), (34), (36), and (39), letting rk → ∞, we arrive

at

u(x) = C

∫

Rn

1

|x− ξ|n−2m

up(ξ)

|η|t
dξ. (40)

Now assume that u ∈ C2m(Rn) is a solution of integral equation (6),

then

(−∆)mu(x) =

∫

Rn

(−∆)mG(x, ξ))
up(ξ)

|η|t
dξ

=

∫

Rn

δ(x− ξ)
up(ξ)

|η|t
dξ =

up(x)

|y|t
.

This completes the proof of Theorem 1.1.

3.2. The proof of Theorem 1.2

In this subsection, we consider fractional order PDE (3) and and show

that its weak solutions satisfy IE (6); and vice versa.

Set f(x, u) = up(x)
|y|t , x = (y, z) ∈ Rk ×Rn−k.
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(i) We first assume u ∈ D
α
2
,2(Rn) is a solution of (3). Then we have

∫

Rn

|ξ|αû(ξ)ϕ̂(ξ)dξ =

∫

Rn

f(x, u(x))ϕ(x)dx, ∀ ϕ ∈ D
α
2
,2(Rn). (41)

For any ψ ∈ C∞
0 (Rn), let

ϕ(x) =

∫

Rn

C

|x− ξ|n−α
ψ(ξ)dξ.

Choose an appropriate constant C such that (−∆)
α
2 ϕ = ψ. Consequently,

ϕ ∈ Dα,2(Rn) ⊂ D
α
2
,2(Rn) and ϕ̂(ξ) =

1

|ξ|α
̂ψ(ξ).

Combining this with (41), we deduce

∫

Rn

û(ξ) ̂ψ(ξ)dξ =

∫

Rn

(

f ∗
C

|x|n−α

)

ψ(x)dx, ∀ ψ ∈ C∞
0 (Rn).

Then

∫

Rn

u(x)ψ(x)dx =

∫

Rn

(

f ∗
C

|x|n−α

)

ψ(x)dx, ∀ ψ ∈ C∞
0 (Rn).

Therefore, we obtain

u(x)=f(x, u) ∗
C

|x|n−α
=

∫

Rn

C

|x−ξ|n−α
f(ξ, u(ξ))dξ=

∫

Rn

C

|x−ξ|n−α

uτ (ξ)

|η|t
dξ.

(ii) If u is a soution of (6), differentiating under the integral sign, one

can show that u satisfies (3). This completes the proof of Theorem 1.2.

4. The proof of Theorem 1.4

4.1. The critical exponent p = τ

Because there is no global integrability assumptions on the solution u,

one is not able to carry on the method of moving planes directly on u. To

circumvent this difficulty, we resort to Kelvin type transforms. Let

v(x) =
1

|x|n−α
u(

x

|x|2
) (42)
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be the Kelvin transform of u. If u(x) is a solution of

u(x) =

∫

Rn

G(x, ξ)
uτ (ξ)

|η|t
dξ, (43)

then v is also a solution of (43). Since |y|−tuτ−1(x) ∈ L
n
α

loc(R
k ×Rn−k), it is

easy to see that v has no singularity at infinity; i.e, for any domain Ω that

is a positive distance away from the origin

∫

Ω

(

vτ−1(ξ)

|η|t

)

n
α

dξ <∞. (44)

We divide the proof into two parts. In Part I, we show that each positive

solution u of (43) is radially symmetric about the origin in Rk. In Part II,

we prove that u is radially symmetric about some point z0 in Rn−k. Then

we derive the monotonicity of u with respect to y and z.

4.1.1. Part I: Move the Plane in Rk

Let λ be a real number and let the moving plane be

Tλ = {x = (y, z) ∈ Rk ×Rn−k | y1 = λ}.

We denote

Σλ = {x ∈ Rk ×RN−k | y1 < λ}.

Let

xλ = (yλ, z) = (2λ− y1, . . . , yk, z)

be the reflection of the point x = (y1, . . . , yk, z) about the plane Tλ, and

vλ(x) := v(xλ) and wλ(x) := vλ(x)− v(x).

For any x, ξ ∈ Σλ, x 6= ξ, it is easy to check

G(x, ξ) = G(xλ, ξλ) > G(x, ξλ) = G(xλ, ξ). (45)

The following lemma is the key ingredient in integral estimates.
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Lemma 4.1. For any x ∈ Σλ, it holds

v(x)− vλ(x) =

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ.

Proof. Since

v(x) =

∫

Σλ

G(x, ξ)
vτ (ξ)

|η|t
dξ +

∫

Σλ

G(x, ξλ)
vτλ(ξ)

|ηλ|t
dξ,

v(xλ) =

∫

Σλ

G(xλ, ξ)
vτ (ξ)

|η|t
dξ +

∫

Σλ

G(xλ, ξλ)
vτλ(ξ)

|ηλ|t
dξ,

by (45), we have

v(x)− v(xλ) =

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
] vτ (ξ)

|η|t
dξ

+

∫

Σλ

[

G(x, ξλ)−G(xλ, ξλ)
] vτλ(ξ)

|ηλ|t
dξ

=

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ.

We also need the following inequality.

Lemma 4.2 ([12]). (An Equivalent Form of the Hardy-Littlewood-Sobolev

Inequality) Let g ∈ L
np

n+αp (Rn) for n
n−α

< p <∞. Define

Tg(x) =

∫

Rn

1

|x− y|n−α
g(y)dy.

Then

‖Tg‖Lp ≤ C(n, p, α)‖g‖
L

np
n+αp

. (46)

In Part I, the proof of Theorem 1.4 (i) consists of two steps. In the first

step, we will show that for sufficiently negative value of λ,

wλ(x) ≥ 0, ∀ x ∈ Σλ\{0
λ}. (47)

In the second step, we will move the plane Tλ = {x = (y, z) ∈ Rk ×

RN−k | y1 = λ} along the positive direction of y1-axis as long as inequality
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(47) holds up to the limiting position, and show that v is symmetric about

the limiting plane.

Step 1. Start Moving the Plane from near y1 = −∞.

Define

Σ−
λ = {x ∈ Σλ\{0

λ} | wλ(x) < 0}.

where 0λ is the reflection of 0 about the plane Tλ. We show that for λ

sufficiently negative, Σ−
λ must be measure zero, and thus (47) holds. In fact,

for any x ∈ Σ−
λ , by the Mean Value Theorem and Lemma 4.1, we obtain

0 < v(x) − vλ(x)

=

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ

=

∫

Σ−

λ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ

+

∫

Σλ\Σ
−

λ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ

≤

∫

Σ−

λ

[

G(x, ξ) −G(xλ, ξ)
]

[

vτ (ξ)

|η|t
−
vτλ(ξ)

|ηλ|t

]

dξ

≤

∫

Σ−

λ

G(x, ξ)
1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ

= τ

∫

Σ−

λ

G(x, ξ)
1

|η|t
ψτ−1
λ (ξ)[v(ξ) − vλ(ξ)]dξ

≤ τ

∫

Σ−

λ

G(x, ξ)
1

|η|t
vτ−1(ξ)[v(ξ) − vλ(ξ)]dξ, (48)

where ψλ(ξ) is valued between v(ξ) and vλ(ξ), and

0 ≤ vλ(ξ) ≤ ψλ(ξ) ≤ v(ξ), ξ ∈ Σ−
λ .

We apply Hardy-Littlewood-Sobolev inequality (46) and Hölder inequality

to (48) to obtain, for any q > n
n−α

,

‖wλ‖Lq(Σ−

λ
) ≤ C‖|η|−tvτ−1wλ‖

L
nq

n+αq (Σ−

λ )

≤ C‖|η|−tvτ−1‖
L

n
α (Σ−

λ
)
‖wλ‖Lq(Σ−

λ
). (49)
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By (44), we can choose N sufficiently large, such that λ ≤ −N , we have

C‖|η|−tvτ−1‖
L

n
α (Σ−

λ )
≤

1

2
.

Now inequality (49) implies

‖wλ‖Lq(Σ−

λ ) = 0,

and therefore Σ−
λ must be measure zero.

Step 2. Move the Plane to the Origin to Derive Symmetry.

Inequality (47) provides a starting point to move the plane

Tλ = {x = (y, z) ∈ Rk ×RN−k| y1 = λ}.

Now we start from the neighborhood of y1 = −∞ and move the plane to the

right as long as (47) holds. We show that by moving this way, the plane will

not stop before hitting the origin in Rk.

Define

λ0 = sup{λ ≤ 0 | wρ(x) ≥ 0, ρ ≤ λ, ∀ x ∈ Σρ\{0
λ}}.

Now, we prove

λ0 = 0. (50)

First, we show that v(x) is symmetric about the plane Tλ0 , i.e.

wλ0 ≡ 0, a.e. ∀ x ∈ Σλ0\{0
λ}. (51)

Suppose in the contrary, then we have wλ0 ≥ 0, but wλ0 6≡ 0 a.e. on

Σλ0\{0
λ}. We will show that the plane can be moved further. More precisely,

there exists an ǫ > 0 such that for all λ in [λ0, λ0 + ǫ)

wλ(x) a.e on Σλ\{0
λ}.

In fact, by inequality (49), we have

‖wλ‖Lq(Σ−

λ
) ≤ C‖|η|−tvτ−1‖

L
n
α (Σ−

λ
)
‖wλ‖Lq(Σ−

λ
). (52)
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Again by (44), we choose ǫ sufficiently small so that for all λ in [λ0, λ0 + ǫ),

C‖|η|−tvτ−1‖
L

n
α (Σ−

λ )
≤

1

2
. (53)

We postpone the proof of (53) for a moment. Now by (52) and (53), we have

‖wλ‖Lq(Σ−

λ
) = 0, and therefore Σ−

λ must be measure zero. Hence, for these

values of λ > λ0, we have

wλ(x) ≥ 0, a.e. ∀ x ∈ Σλ\{0
λ}.

This contradicts with the definition of λ0. Therefore (51) must hold.

Next, we show that (50) is true. Otherwise, if the plane stops at y1 =

λ0 < 0, then

vλ0(x) = v(x), ∀ x ∈ Σλ0\{0
λ}.

By Lemma 4.1, we have, for any x ∈ Σλ0 , |η
λ0 | < |η|,

0 = v(x)− vλ0(x) =

∫

Σλ0

[

G(x, ξ) −G(xλ0 , ξ)
]

[

vτ (ξ)

|η|t
−
vτλ0

(ξ)

|ηλ0 |t

]

dξ > 0.

This is obviously a contradiction. Therefore λ0 must be zero, and hence

w0(x) ≥ 0, a.e. ∀ x ∈ Σ0.

If we move the plane from the positive infinity to the left and carry on

the same procedure as done above in Steps 1 and 2, we can also prove that

w0(x) ≤ 0, a.e. ∀ x ∈ Σ0.

This implies that v(x) is symmetric about the plane T0.

Since the direction of y1 in Rk can be chosen arbitrarily, we deduce that

v(x) must be radially symmetric in y ∈ Rk about y = 0 and decreasing

about the origin in Rk. By expression (42), we conclude that u(x) must be

radially symmetric in y ∈ Rk about y = 0.

Now what left is to derive inequality (53). For any small η > 0, we can

choose R sufficiently large so that

‖|η|−tvτ−1‖
L

n
α (Rn\{0}\BR(0))

< η. (54)
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We fix this R and then show that the measure of Σ−
λ ∩BR(0) is sufficiently

small for λ close to λ0. By Lemma 4.1, it is easy to see

wλ0(x) > 0 (55)

in the interior of Σλ0\{0
λ}.

For any γ > 0, let

Eγ = {x ∈ (Σλ0\{0
λ}) ∩BR(0)| wλ0(x) > γ}

and

Fγ =
(

(Σλ0\{0
λ}) ∩BR(0)

)

\Eγ .

It is obviously

lim
γ→0

µ(Fγ) = 0.

For λ > λ0, let

Dλ =
(

(Σλ\{0
λ})\Σλ0

)

∩BR(0).

Then it is easy to see that

(Σ−
λ ∩BR(0)) ⊂ (Σ−

λ ∩ Eγ) ∪ Fγ ∪Dλ. (56)

Apparently, the measure of Dλ is small for λ close to λ0. We show that the

measure of Σ−
λ ∩ Eγ can also be sufficiently small as λ close to λ0. In fact,

for any x ∈ Σ−
λ ∩ Eγ , we have

wλ(x) = vλ(x)− v(x) = vλ(x)− vλ0(x) + vλ0(x)− v(x) < 0.

Hence

vλ0(x)− vλ(x) > wλ0(x) > γ.

It follows that

(Σ−
λ ∩ Eγ) ⊂ Gγ ≡ {x ∈ BR(0)| vλ0(x)− vλ(x) > γ}. (57)

By the well-known Chebyshev inequality, we have

µ(Gγ) ≤
1

γp+1

∫

Gγ

|vλ0(x)− vλ(x)|
p+1dx
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≤
1

γp+1

∫

BR(0)
|vλ0(x)− vλ(x)|

p+1dx.

For each fixed γ, as λ close to λ0, the right hand side of the above inequality

can be made as small as we wish. Therefore by (56) and (57), the measure

of Σ−
λ ∩BR(0) can also be made sufficiently small. Combining this with (54),

we obtain (53).

4.1.2. Part II: Move the Plane in Rn−k

For each real number λ, let the moving plane be

T̂λ = {x = (y, z) ∈ Rk ×Rn−k | z1 = λ}.

We denote

Σ̂λ = {x = (y, z1, . . . , zn−k) ∈ Rk ×RN−k | z1 < λ}.

Let

xλ = (y, zλ) = (y, 2λ − z1, . . . , zn−k)

be the reflection of the point x = (y, z1, . . . , zn−k) about the plane T̂λ.

For any x, ξ ∈ Σ̂λ, x 6= ξ, it is easy to see

G(x, ξ) = G(xλ, ξλ) > G(x, ξλ) = G(xλ, ξ), (58)

and then

v(x)− vλ(x) =

∫

Σ̂λ

[

G(x, ξ)−G(xλ, ξ)
] 1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ.

The proof is similar to that in Part I.

Step 1. Define

Σ̂−
λ = {x ∈ Σ̂λ\{0

λ} | wλ(x) < 0},

where 0λ is the reflection of 0 about the plane T̂λ. We show that for λ

sufficiently negative, Σ−
λ must be measure zero. We only need to check, for

x ∈ Σ̂−
λ , we have

0 < v(x) − vλ(x)

=

∫

Σ̂λ

[

G(x, ξ) −G(xλ, ξ)
] 1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ
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=

∫

Σ̂−

λ

[

G(x, ξ) −G(xλ, ξ)
] 1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ

+

∫

Σ̂λ\Σ̂
−

λ

[

G(x, ξ) −G(xλ, ξ)
] 1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ

≤

∫

Σ̂−

λ

[

G(x, ξ) −G(xλ, ξ)
] 1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ

≤

∫

Σ̂−

λ

G(x, ξ)
1

|η|t
[vτ (ξ)− vτλ(ξ)] dξ

= τ

∫

Σ̂−

λ

G(x, ξ)
1

|η|t
ψτ−1
λ (ξ)[v(ξ) − vλ(ξ)]dξ

≤ τ

∫

Σ̂−

λ

G(x, ξ)
1

|η|t
uτ−1(ξ)[v(ξ) − vλ(ξ)]dξ. (59)

The rest is similar to Step 1. in Part I.

Step 2. Define

λ0 = sup{λ ≤ 0 | wρ(x) ≥ 0, ρ ≤ λ, ∀x ∈ Σ̂ρ\{0
λ}}.

Through a similar argument as in Step 2. in Part I, we can show that

v(x) is symmetric about the plane T̂λ0 , i.e.

wλ0 ≡ 0, a.e. ∀x ∈ Σ̂λ0\{0
λ}.

If the plane stops at z1 = λ0 < 0, then v(x) must be symmetric and

monotone about the plane z1 = λ0. This implies that v(x) has no singularity

at the origin in Rn−k. Then we have

u(x) = O(
1

|x|n−α
).

Combining this with 0 < t < min{α
2 (1+

k
n
), k} and |y|−tuτ−1(x) ∈ L

n
α

loc(R
k×

Rn−k), we derive
∫

Rn

(

uτ−1(ξ)

|η|t

)

n
α

dξ <∞.

In this case, we can carry on the moving of planes on u(x) directly to obtain

the radial symmetry and monotonicity of u in z about some point z0 ∈ Rn−k.
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Otherwise, we can move the plane all the way to z1 = 0. Since the

direction of z1 can be chosen arbitrary in Rn−k, we deduce that v(x) must

be radially symmetric in z ∈ Rn−k about z = 0 and decreasing about the

origin in Rn−k. Similar to the case when p = τ , one can deduce that u(x)

must be radially symmetric in z ∈ Rn−k about z = 0.

Now we prove the monotonicity of u. Without loss of generality, we may

assume

u(x) = u(|y|, |z|) := u(r, s) = u(re1, se2),

where e1 and e2 are unit vectors in Rk and Rn−k respectively.

Since

∫

Rn

up(ξ)η · e1

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2 |η|t
dξ

=

∫

Rn−k

∫

Rk

up(|η|, |ς|)η · e1

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2 |η|t
dηdς

=

∫

Rn−k

∫ ∞

0

∫

∂Bτ (0)

up(|η|, |ς|)η · e1

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2 |η|t
dσηdτdς

=

∫

Rn−k

∫ ∞

0

up(τ, |ς|)

τ t

∫

∂Bτ (0)

η · e1

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2

dσηdτdς

= 0,

we calculate

∂

∂r
u(re1, se2) =

∂

∂r

∫

Rn

up(ξ)

[(re1 − η)2 + (se2 − ς)2]
n−α
2 |η|t

dξ

= (α− n)

∫

Rn

up(ξ)(re1 − η) · e1

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2 |η|t
dξ

= (α− n)r

∫

Rn

up(ξ)

[(re1 − η)2 + (se2 − ς)2]
n−α+2

2 |η|t
dξ

< 0, for any r > 0. (60)

Similarly, we have

∂

∂s
u(re1, se2) < 0, for any s > 0.

This completes the proof of Theorem 1.4 (i).
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4.2. The Subcritical Case n
n−α

< p < τ

For any given x0 = (0, z0) = (0, . . . , 0,
︸ ︷︷ ︸

k

z01 , . . . , z
0
n−k

︸ ︷︷ ︸

n−k

) ∈ Rk ×Rn−k, let

v(x) =
1

|x− x0|n−α
u(

x− x0

|x− x0|2
+ x0) (61)

be the Kelvin transform of u centered at x0. We calculate

v(x) =
1

|x− x0|n−α
u(

x− x0

|x− x0|2
+ x0)

=
1

|x− x0|n−α

∫

Rn

G(
x− x0

|x− x0|2
+ x0, ξ)

up(ξ)

|η|t
dξ

=
1

|x− x0|n−α

∫

Rn

G( x−x0

|x−x0|2
+ x0, ξ̃−x0

|ξ̃−x0|2
+ x0)up( ξ̃−x0

|ξ̃−x0|2
+ x0)

| η̃

|ξ̃−x0|2
|t|ξ̃ − x0|2n

dξ̃

=

∫

Rn

G( x−x0

|x−x0|2
+ x0, ξ̃−x0

|ξ̃−x0|2
+ x0)

|x− x0|n−α|ξ̃ − x0|n−α|η̃|t





u( ξ̃−x0

|ξ̃−x0|2
+ x0)

|ξ̃ − x0|n−α





p

1

|ξ̃ − x0|β
dξ̃

=

∫

Rn

G(x, ξ)
1

|η|t
vp(ξ)

|ξ − x0|β
dξ (62)

where 1 < p ≤ τ , and β = (n− α)(τ − p) > 0.

We apply the method of moving planes on v(x). Since |y|tup−1 ∈

L
n
α

loc(R
n), for any domain Ω that is a positive distance away from x0, we

have
∫

Ω
[

vp−1(ξ)

|η|t|ξ − x0|β
]
n
αdξ <∞. (63)

Since

v(x) =

∫

Σλ

G(x, ξ)
1

|η|t
vp(ξ)

|ξ − x0|β
dξ +

∫

Σλ

G(x, ξλ)
1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β
dy,

v(xλ) =

∫

Σλ

G(xλ, ξ)
1

|η|t
vp(ξ)

|ξ − x0|β
dξ +

∫

Σλ

G(xλ, ξλ)
1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β
dy,

we have

v(x)− vλ(x)
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=

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
] 1

|η|t
vp(ξ)

|ξ − x0|β
dξ

+

∫

Σλ

[

G(x, ξλ)−G(xλ, ξλ)
] 1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β
dξ

=

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
]

[

1

|η|t
vp(ξ)

|ξ − x0|β
−

1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β

]

dξ. (64)

We now outline the ideas of the proof of Theorem 1.4 (ii). First, by

the method of moving plane in integral forms, we prove that v(x) must be

radially symmetric and decreasing about x0. Take any line passing through

x0, and call it x1 axis. We move the plane

Tλ = {x | x1 = λ}

along the direction of x1 axis. The proof consists of two steps. In Step 1,

we show that for any sufficiently negative λ,

v(x) ≤ v(xλ), in Σλ\{(x
0)λ}, (65)

where Σλ = {x ∈ Rn | x1 < λ}, and (x0)λ is the reflection of x0 about the

plane Tλ.

In Step 2, we move the plane Tλ along the x1 direction continuously

from near negative infinity to the right as long as (65) holds. We show that

the plane can be moved all the way up to the point x0.

Since the direction of x1 can be chosen arbitrarily, we deduce that v(x)

is radially symmetric and decreasing about x0, hence u(x) is also radially

symmetric about x0. Since x0 = (0, z0) ∈ Rk × Rn−k is any given point,

we further derive that u(x) = u(y, z) is independent of z. We analyze the

integral itself to obtain Pohozaev identity. Then we deduce that u ≡ 0 in

the case of subcritical exponent.

Step 1. Define

Σ−
λ = {x ∈ Σλ\{(x

0)λ} | wλ(x) < 0}.

We show that for λ sufficiently negative, Σ−
λ must be measure zero.
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By the Mean Value Theorem, we have, for sufficiently negative values

of λ, and for x ∈ Σ−
λ ,

0 < v(x)− vλ(x)

=

∫

Σλ

[

G(x, ξ) −G(xλ, ξ)
]

[

1

|η|t
vp(ξ)

|ξ − x0|β
−

1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β

]

dξ

=

∫

Σ−

λ

[

G(x, ξ)−G(xλ, ξ)
]

[

1

|η|t
vp(ξ)

|ξ − x0|β
−

1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β

]

dξ

+

∫

Σλ\Σ
−

λ

[

G(x, ξ)−G(xλ, ξ)
]

[

1

|η|t
vp(ξ)

|ξ − x0|β
−

1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β

]

dξ

≤

∫

Σ−

λ

[

G(x, ξ)−G(xλ, ξ)
]

[

1

|η|t
vp(ξ)

|ξ − x0|β
−

1

|ηλ|t
vpλ(ξ)

|ξλ − x0|β

]

dξ

≤

∫

Σ−

λ

[

G(x, ξ)−G(xλ, ξ)
]

[

vp(ξ)− vpλ(ξ)

|η|t|ξ − x0|β

]

dξ

≤ p

∫

Σ−

λ

G(x, ξ)
vp−1(ξ)

|η|t|ξ − x0|β
[v(ξ)− vλ(ξ)]dξ

≤

∫

Σ−

λ

C

|x− ξ|n−α
|

vp−1(ξ)

|η|t|ξ − x0|β
||v(ξ) − vλ(ξ)|dξ. (66)

Here we have used the fact that |ηλ| < |η| and |ξλ − x0| < |ξ − x0|.

We apply Hardy-Littlewood-Sobolev inequality (46) and Hölder inequal-

ity to (66) to obtain, for any q > n
n−α

,

‖wλ‖Lq(Σ−

λ
) ≤ C‖

vp−1

|η|t|ξ − x0|β
wλ‖

L
nq

n+αq (Σ−

λ )

≤ C‖
vp−1

|η|t|ξ − x0|β
‖
L

n
α (Σ−

λ
)
‖wλ‖Lq(Σ−

λ
). (67)

By (63), we can choose N sufficiently large, such that for λ ≤ −N ,

C‖
vp−1

|η|t|ξ − x0|β
‖
L

n
α (Σ−

λ
)
≤

1

2
.

Now inequality (67) implies

‖wλ‖Lq(Σ−

λ
) = 0,
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and therefore Σ−
λ must be measure zero. Then we get

wλ(x) ≥ 0, a.e. x ∈ Σλ. (68)

Step 2. (Move the plane to the limiting position to derive symmetry.)

Inequality (68) provides a starting point to move the plane Tλ. Now we

start from the neighborhood of x1 = −∞ and move the plane to the right

as long as (68) holds to the limiting position. Define

λ0 = sup{λ ≤ 0 | wρ(x) ≥ 0, ρ ≤ λ, ∀x ∈ Σρ\{(x
0)λ}}.

The rest is similar to the case when p = τ . We only need to use
∫

[ vp−1(y)
|η|t|ξ−x0|β

]
n
αdξ

instead of
∫

[v
τ−1(y)
|η|t ]

n
αdξ. We also conclude

wλ0(x) ≡ 0, a.e. ∀ x ∈ Σλ0\{(x
0)λ}.

Now, we show that the plane can not stop before hitting the point x0. If

not, by symmetry, since v is singular at x0, v must also be singular at (x0)λ.

This is impossible.

Since the direction of x1 can be chosen arbitrary in Rn, we deduce that

v(x) must be radially symmetric and decreasing about the point x0 in Rn.

For any x1, x2 ∈ Rn, choose x0 as the mid point such that |x1 − x0| =

|x2 − x0|. Set

X1 =
x1 − x0

|x1 − x0|2
+ x0, X2 =

x2 − x0

|x2 − x0|2
+ x0.

Then

|X1 − x0| = |X2 − x0|.

Therefore,

v(X1) = v(X2).

By the relation between v(x) and u(x), we have

u(x1) = u(x2)
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which implies that u(x) is radially symmetric about the point x0 in Rn.

For any x1 ∈ (y, z1), x2 ∈ (y, z2) ∈ Rk × Rn−k, set z0 = z1+z2

2 . Let

x0 = (0, z0) be the projection of x̄ = (y, z0). Repeat the above arguments,

we conclude that u(x) is radially symmetric about the point x0 in Rn. Due

to |x1 − x0| = |x2 − x0|, we have u(x1) = u(x2). Since x1 ∈ (y, z1), x2 ∈

(y, z2) ∈ Rk ×Rn−k are arbitrary, u is independent of z variables, i.e,

u(x) = u(y, z) = u(y).

We calculate

u(y, z) =

∫

Rn

up(ξ)

|x− ξ|n−α|η|t
dξ

=

∫

Rk

up(η)

|η|t
dη

∫

Rn−k

dζ

(|y − η|2 + |z − ζ|2)
n−α
2

= cn

∫

Rk

up(η)

|η|t
dη

∫ ∞

0

∫

∂Br(z)

rn−k−1dσdr

(|y − η|2 + r2)
n−α
2

= cn

∫

Rk

up(η)

|η|t|y − η|k−α
dη

∫ ∞

0

∫

∂B|y−η|τ (z)

τn−k−1dσdτ

(1 + τ2)
n−α
2

= cn

∫

Rk

up(η)

|η|t|y − η|k−α
dη.

Now, we consider

u(x) =

∫

Rk

up(y)

|x− y|k−α|y|t
dy, x ∈ Rk. (69)

By (69), we have

u(µx) =

∫

Rk

up(y)

|µx− y|k−α|y|t
dy. (70)

Since

d

dµ
(|µx− y|α−k)

=
d

dµ
(|µx− y|2)

α−k
2

=
α− k

2
· (|µx− y|2)

α−k
2

−1 d

dµ

[

(µx1 − y1)
2 + · · · + (µxk − yk)

2
]

=
α− k

2
· (|µx− y|2)

α−k
2

−1 (2(µx1 − y1)x1 + · · ·+ 2(µxk − yk)xk)
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= (α−k)|µx−y|α−k−2
k
∑

i=1

(µxi−yi)xi = (α−k)|µx−y|α−k−2x · (µx−y),

we differentiate (70) with respect to µ:

x · ∇u(µx) = (α− k)

∫

Rk

x · (µx− y)up(y)

|µx− y|k−α+2|y|t
dy, x 6= 0.

Letting µ = 1 yields

x · ∇u(x) = (α− k)

∫

Rk

x · (x− y)up(y)

|x− y|k−α+2|y|t
dy, x 6= 0. (71)

Multiplying both sides of (71) by up(x)
|x|t and integrating on Br\Bǫ := Br(0)\

Bǫ(0), we integrate by parts to obtain

Left =

∫

Br\Bǫ

up(x)

|x|t
(x · ∇u(x))dx

=
1

p+ 1

∫

∂Br

up+1(x)

|x|t
(x ·

x

|x|
)dσ +

1

p+ 1

∫

∂Bǫ

up+1(x)

|x|t
(x ·

x

|x|
)dσ

−
k − t

p+ 1

∫

Br\Bǫ

up+1(x)

|x|t
dx.

=
1

p+ 1

∫

∂Br

r1−tup+1(x)dσ +
1

p+ 1

∫

∂Bǫ

ǫ1−tup+1(x)dσ

−
k − t

p+ 1

∫

Br\Bǫ

up+1(x)

|x|t
dx, (72)

Right = (α− k)

∫

Br\Bǫ

∫

Rk

x · (x− y)up(y)up(x)

|x− y|k−α+2|y|t|x|t
dydx. (73)

Similar to (60), we derive

d

dr
u(r) < 0, for any r > 0.

Then we have

u(r) = u(re) =

∫

Rk

up(y)

|re− y|k−α|y|t
dy

≥

∫ r

0

∫

∂Bs

up(y)

|re− y|k−α|y|t
dσds
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≥ c

∫ r

0

∫

∂B1

up(r)

|re− sω|k−α
sk−1−tdωds

= c
up(r)

rk−α

∫ r

0

∫

∂B1

sk−1−t

|e− s
r
ω|k−α

dωds

=: c
up(r)

rk−α

∫ r

0
sk−1−tf(s)ds. (74)

Obviously, for each fixed 0 ≤ s ≤ r, f(s) > 0, set t = s
r
, then 0 ≤ t ≤ 1,

g(t) := f(s). Since [0, 1] is a compact set, g(t) is continuous in t, we must

have g(t) ≥ c0 > 0. Then by (74), we deduce

u(r) ≥ cup(r)rα−t.

This implies

u(r) ≤
c

r
α−t
p−1

as r → ∞. (75)

Since p < τ , by (75), we deduce

∫

Rk

up+1(y)

|y|t
dy <∞. (76)

Then there exists a sequence rj → ∞ as j → ∞ such that

r1−t
j

∫

∂Brj

up+1(x)dσ → 0. (77)

Since x · (x− y) + y · (y − x) = |x− y|2, by symmetry, we have

α− k

2

∫

Rk

up+1(x)

|x|t
dx

=
α− k

2

∫

Rk

∫

Rk

up(y)up(x)

|x− y|k−α|y|t|x|t
dxdy

=
α− k

2

∫

Rk

∫

Rk

x · (x− y)up(y)up(x)

|x− y|k−α+2|y|t|x|t
dydx

+
α− k

2

∫

Rk

∫

Rk

y · (y − x)up(y)up(x)

|x− y|k−α+2|y|t|x|t
dxdy

= (α− k)

∫

Rk

∫

Rk

x · (x− y)up(y)up(x)

|x− y|k−α+2|y|t|x|t
dydx. (78)
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By (76) and (78), let ǫ → 0 in (72) and (73), we derive

1

p+ 1

∫

∂Br

r1−tup+1(x)dσ −
k − t

p+ 1

∫

Br

up+1(x)

|x|t
dx

= (α− k)

∫

Br

∫

Rk

x · (x− y)up(y)up(x)

|x− y|k−α+2|y|t|x|t
dydx.

Combining this with (77) and (78), we arrive at

−
k − t

p+ 1

∫

Br

up+1(x)

|x|t
dx =

α− k

2

∫

Rk

up+1(x)

|x|t
dx. (79)

If α ≥ k, (79) yields

u ≡ 0 in Rn.

If α < k, since

p+ 1 <
2(n − t)

n− α
= 2 +

2(α− t)

n− α
< 2 +

2(α− t)

k − α
=

2(k − t)

k − α
,

(79) implies

u ≡ 0 in Rn.

This completes the proof of Theorem 1.4 (ii).
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