
✐

“BN09N36” — 2014/8/29 — 15:09 — page 431 — #1
✐

✐

✐

✐

✐

Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 9 (2014), No. 3, pp. 431-450

CONNECTING ORBITS FOR SUBHARMONIC SOLUTIONS

IN TIME REVERSIBLE HAMILTONIAN SYSTEMS

CHAO-NIEN CHEN1,a AND SHYUH-YAUR TZENG2,b

1Department of Mathematics, National Changhua University of Education, Changhua, TAIWAN, ROC.

aE-mail: macnchen@cc.ncue.edu.tw

2Department of Mathematics, National Changhua University of Education, Changhua, TAIWAN, ROC.

bE-mail: sytzeng@cc.ncue.edu.tw

Abstract

This note deals with subharmonic solutions of time reversible Hamiltonian systems.

Based on variational approach, a large number of subharmonic solutions can be found out

by using penalization arguments. As a further consequence, there exist connecting orbits

joining with pairs of subharmonic solutions which have different primitive periods.

1. Introduction

The equation

q̈ + sin q = 0 (1.1)

describes the motion of an unforced pendulum in ideal situation. If the

pendulum is forced via a support which is moving vertically, then the motion

is governed by

q̈ + (1 + Ḧ(t)) sin q = 0, (1.2)

where H(t) is the vertical displacement of the support at time t.
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With (1.2) as a model equation, we investigate the subharmonic solu-

tions and their connecting orbits for the second order periodic Hamiltonian

system

q̈ − V ′(t, q) = 0, (1.3)

where q : R → R
n, V ∈ C2(R× R

n,R) and V ′(t, y) = DyV (t, y). For n > 1,

(1.3) can be viewed as a simple model for the n-pendulum problem with

appropriate forcing.

The potential function V is assumed to satisfy the following conditions:

(V1) There is a set Ke ⊂ R
n such that if η ∈ Ke then V (t, η) = inf

y∈Rn
V (t, y) =

V0 for all t ∈ R.

(V2) There are positive numbers µ1, µ2 and ρ0 such that if |y − η| ≤ ρ0 for

some η ∈ Ke then µ2|y − η|2 ≥ V (t, y) − V0 ≥ µ1|y − η|2 for all t ∈ R.

Moreover, if ηi, ηj ∈ Ke and i 6= j, then |ηi − ηj | > 8ρ0.

(V3) There is a µ0 > 0 such that if V (t, y) ≤ V0 + µ0 for some t ∈ R then

|y − η| ≤ ρ0 for some η ∈ Ke.

(V4) V is T -periodic in t.

(V5) V (t, y) = V (−t, y) for all t ∈ R, y ∈ R
n.

(V6) V is Ti-periodic in yi, 1 ≤ i ≤ n, or Ke contains at least two elements.

In particular (1.3) is a time reversible Hamiltonian system if (V5) is satisfied.

By (V1), Ke contains a set of equilibria of (1.3). Phase plane analysis

shows that (1.1) has a heteroclinic orbit joining the adjacent minima of the

potential. Equation (1.1) also possesses a large number of non-constant

periodic solutions. However, there is no connecting orbits for such periodic

solutions.

In [39], Strobel used variational methods to study the connecting orbits

of (1.3). He showed that, for any ηi ∈ Ke, there is a heteroclinic orbit q of

(1.3) which satisfies

q(t) → η1 as t→ −∞
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and

q(t) → Ke\{η1} as t→ ∞.

Such a solution is referred to as a basic heteroclinic orbit. Moreover for any

pair of ηi, ηj ∈ Ke, they can be joined by a chain of basic heteroclinics. If

additional nondegeneracy conditions are satisfied, Strobel showed that there

exist infinitely many multibump heteroclinic orbits originating at ηi and

terminating at ηj.

To study the existence of non-constant periodic solutions of (1.3), we

may assume V0 = 0, since the potential V is only determined up to an

additive constant. Let E′ = W 1,2
loc (R,R

n). For m ∈ N, set Em = {z ∈

E′|z(t+mT ) = z(t)} and

Îm(z) =

∫ mT

0
L(z)dt, (1.4)

where L(q) =
1

2
|q̇|2 + V (t, q), the Lagrangian associated with (1.3). It is

known that a critical point of Îm is a periodic solution of (1.3). A periodic

solution with minimal (i.e., primitive) period mT , m > 1, is called a sub-

harmonic solution. Clearly Ke consists of all the global minimizers of Îm.

For m = 1, it has been shown [11] that there exist non-constant periodic

solutions of (1.3). Our aim is to extend this idea to study subharmonic

solutions. A simple example is V (t, y) = Fε(t)W (y), where F is a positive

non-constant periodic function and Fε(t) = F (εt) with 0 < ε << 1 so that

Fε(t) oscillates slowly between a maximum and a minimum.

Consider adding a penalty function ψm to Îm; that is, set

Im(z) = Îm(z) +

∫ mT

0
ψm(t, z(t))dt (1.5)

for z ∈ Em. If ψm is suitably chosen, a global minimizer of Im actually

coincides with a local minimizer of Îm. Moreover by means of adding differ-

ent constraints through minimization yields a large number of subharmonic

solutions.

Theorem 1. Suppose that V (t, y) = Fε(t)W (y) and F is a positive non-

constant periodic function. If ε is sufficiently small then (1.3) possesses

infinitely many subharmonic solutions.
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The existence of connecting orbits of Hamiltonian systems has been

extensively investigated [2, 9, 10, 13, 14, 15, 17, 23, 24, 28, 29, 31, 34, 35,

36, 37, 38, 39]. Rabinowitz [34] considered a class of periodic Hamiltonian

systems, where a family K of T−periodic solutions were obtained as the

global minimizers of Î1. He showed that, if K consists of isolated points,

then for any periodic solution p ∈ K, there is a heteroclinic orbit connecting

p to an element of K\{p}. For a time reversible periodically forced pendulum

equation, Calanchi and Serra [12] studied the heteroclinic orbit connecting

two consecutive periodic solutions at minimal energy level. Under a gap

condition between such two periodic solutions, they showed that there exists

a two-bump homoclinic solution.

Let Km = {p ∈ Em|Im(p) = infz∈Em Im(z)}. The next theorem gives

a heteroclinic orbit joining with two periodic solutions which have different

primitive periods. For simplicity in statement, we deal with the same hy-

potheses as in Theorem 1. More general situation will be treated in Theorem

3.

Theorem 2. If Km and Kj consist of isolated points, then there is a solution

q of (1.3) which satisfies

q(t) → p1(t) uniformly as t→ ∞ (1.6)

and

q(t) → p2(t) uniformly as t→ −∞ (1.7)

for some p1 ∈ Km and p2 ∈ Kj.

Let us remark that, for n = 1, Theorem 2 still hods even if Km and Kj

are not isolated sets. In fact all the periodic solutions belonging to Km live

in a region where the penalization vanishes.

There are considerable works [5, 7, 8, 14, 15, 16, 18, 23, 24, 29, 37, 39]

devoted to the investigation of multibump solutions of differential equa-

tions. Roughly speaking, a multibump solution consists of a number of

one bump solutions nicely concatenated. The argument that Strobel used

to prove multibump solutions is in the spirit of delicate variational deforma-

tion methods developed by Séré [37] and the others (see e.g. [14, 36]). A

key requirement for the construction of multibump solutions is that the one

bump solutions satisfy certain nondegeneracy conditions. This hypothesis
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plays the role in variational settings of the classical transversality conditions

used in the study of analogous questions for dynamical systems. Namely the

standard condition there is that the stable and unstable manifolds through

an equilibrium point for the Poincaré map associated with a dynamical sys-

tem intersect transversally at a homoclinic point. For a given potential V ,

it is no easy matter to verify if such a nondegeneracy condition or the classi-

cal transversality hypothesis holds. With the aid of penalization method, we

obtain multibump connecting orbits joining with two subharmonic solutions.

The study of chaoticity of dynamical systems goes back to Poincaré. A

classical result of Smale and Birkhoff gives a precise description of the chaotic

behavior of dynamics generated by a map having a transversal homoclinic

point to a hyperbolic equilibrium (see e.g. [20]). A tool to apply the Smale-

Birkhoff theory to continuous flows generated by differential equations is

Melnikov method [30]. Recent advance in calculus of variations provides

another way to detect chaotic dynamics of Hamiltonian systems [8, 14, 15,

23, 24, 37, 38, 39]. For the slowly perturbed pendulum equation, if we

identify η = (2n + 1)π, n ∈ Z, as one point, then a result corresponding

to Theorem 1.3 of [5] is that there exists a trajectory q(t) homoclinic to

η, and “near” the bumps of q(t) there exists a periodic solution. Here a

generalized version for the chaotic behavior of dynamics is that the basic

role played by a equilibrium point can be further extended to that of a

periodic or subharmonic solution. By taking a suitable penalty function, we

find a subharmonic solution p whose trajectory can be close to each one of pi
for a certain amount of time. Furthermore, for a given pi, the time at which

the trajectory of p is close to pi can be larger than any prescribed number.

As been known that the restriction of a Poincaré map to a compact invariant

set is semiconjugate to the Bernoulli shift with two symbols, which results

in positivity of the topological entropy [25].

In addition to Theorem 1, a number of results for the subharmonic so-

lutions are given in Section 2-3. Section 4 aims at the connecting orbits for

subharmonic solutions. As the ides of penalization method has been illus-

trated in [11], we only sketch the proofs to demonstrate further applications.
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2. Subharmonic Solutions

In this section, we study the existence of subharmonic solutions of (1.3).

For η1, η2 ∈ Ke and j1 < j2, let

Ê(j1, j2) = {z ∈W 1,2([j1, j2],R
n)|z(j1) = η1 and z(j2) = η2}

and

α̂(j1, j2) = inf
z∈Ê(j1,j2)

I(z),

where

I(z) =

∫ j2

j1

L(z)dt.

A cross from one equilibrium to another will be called a transition layer. The

periodic solutions obtained here possess at least two transition layers between

two equilibria. A minimizer of I would prefer to have its transition layers

stay where cost relatively less. To seek the locations where the transition

layers prefer to stay, the quantity α̂(j1, j2) will be used to measure the cost

of a layer. Set θ(ρ) = min(µ1ρ
2, µ0) and

Λ = sup{‖V ′(t, y)‖+ 1/2|t ∈ R and y ∈
⋃

η∈Ke

Bρ0(η)}.

Assume that the minimal period of V in t is T . Theorem 1 is a consequence

of the following result.

Theorem 3. Assume that (V1)-(V6) are satisfied. Suppose that there are

k0 < k1 < k2 < 0 such that k1 + T = −k0,

α̂(k1, k2) < min(α̂(k0, k1), α̂(k2,−k2)) (2.1)

and

min(−2k2, k1 − k0) > 6ρ0 + 2(2α̂(k1, k2) + ρ0
√

2θ(ρ0))/θ(r), (2.2)

where

r = min

(

1,
ρ0
2
, 4

√

ρ20
8µ2

,
ρ0
√

2θ(ρ0)

2Λ
,
θ̄

4Λ

)

(2.3)
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and θ̄ = min(α̂(k0, k1) − α̂(k1, k2), α̂(k2,−k2) − α̂(k1, k2)). Then, for each

m ∈ N, (1.3) possesses a periodic solution with minimal period mT .

Remark 1. Note that α̂ has a monotonicity property depending on the

choice of the boundary points j1 and j2. For instance, α̂(j1, j2) < α̂(j3, j2)

if j1 < j3.

We start with two preliminary lemmas.

Lemma 1. Suppose z(t) =
t− t1
t2 − t1

z(t2) +
t2 − t

t2 − t1
z(t1) for t ∈ (t1, t2). If

z(t1) ∈ Ke and |z(t2)− z(t1)| = t2 − t1 ≤ ρ0, then

∫ t2

t1

L(z)dt ≤ Λ|z(t2)− z(t1)|. (2.4)

Proof. It immediately follows from the mean value theorem.

Lemma 2. Let ηi ∈ Ke and Â = {z ∈ E′|z(t1), z(t2) ∈ ∂Br(ηi)}. If q ∈ Â

and
∫ t2
t1

L(q)dt = min
z∈Â

∫ t2
t1

L(z)dt, then q(t) ∈ B2ρ0(ηi) for all t ∈ [t1, t2].

The above lemma is a property for the flow near an equilibrium η ∈ Ke.

Its proof can be found in [10]. We refer to [7, 5, 14, 15, 16, 18, 23, 24] for

some analogous results which have been used to study multibump solutions

of various equations.

Proof of Theorem 3. Without loss of generality, we may assume η1 =

0. To seek a non-constant periodic solution of (1.3), we use penalization

method. Let k3 = −k2, k4 = −k1,

t̂3 = k3 − 3ρ0 −
(

α̂(k1, k2) + ρ0
√

2θ(ρ0)
)

/θ(r),

t̂4 = k4 + 3ρ0 +
(

α̂(k1, k2) + ρ0
√

2θ(ρ0)
)

/θ(r),

t̂1 = −t̂4, t̂2 = −t̂3,

t̂j+4ℓ = t̂j + ℓT,

t∗ = min(t̂3 − t̂2, t̂1 − t̂0), ρ̄ = 5ρ0/2

and

M1 = θ(r) + 2α̂(k1, k2)/t
∗.
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For each m ∈ N, a penalty function ψm will be constructed as follows. Let

ψm ∈ C∞(R × R
n,R) such that 0 ≤ ψm ≤ M1, ψm(t, y) = ψm(−t, y),

ψm(t+mT, y) = ψm(t, y) and

ψm(t, y)=



































0 if t ∈ [t̂1 + ρ0, t̂2 − ρ0] ∪ [t̂3 + ρ0, t̂4 − ρ0]

∪[t̂5 + ρ0, t̂0 +mT − ρ0]

M1 if y 6∈ B3ρ0(η2) and t ∈ [t̂2, t̂3]

0 if y ∈ Bρ̄(η2) and t ∈ (t̂2 − ρ0, t̂3 + ρ0)

M1 if y 6∈ B3ρ0(η1) and t ∈ [t̂0, t̂1] ∪ [t̂4, t̂5],

0 if y ∈ Bρ̄(η1) and t ∈ (t̂0 − ρ0, t̂1 + ρ0) ∪ (t̂4 − ρ0, t̂5 + ρ0)

where [s, t] = φ if s > t. Set

Im(z) =

∫ mT

0
[L(z) + ψm(t, z)]dt

and

αm = inf
z∈Em

Im(z).

Then αm < 2α̂(k1, k2) and there is a pm ∈ Em such that Im(pm) = αm. It

is easy to see from the construction of ψm that αm > 0. Hence pm 6∈ Ke.

To prove that pm is a solution of (1.3), we are going to show that the

global minimizers of Im live in a region where the penalization vanishes.

Observe that

there exist a t1 ∈ (t̂0, t̂1) and a t2 ∈ (t̂2, t̂3) such that pm(t1) ∈ Br(η1)

and pm(t2) ∈ Br(η2);

for otherwise, we would have Im(pm) > αm. Let

τ3 = τ3(pm) = inf{t|t ∈ (t1, t2] and pm(t) ∈ Br(η2)}, (2.5)

τ2 = τ2(pm) = sup{t|t ∈ [t1, τ3) and pm(t) ∈ Br(η1)}, (2.6)

τ4 = τ4(pm) = sup{t|t ∈ [t2, t1 + T ) and pm(t) ∈ Br(η2)} (2.7)

and

τ5 = τ5(pm) = inf{t|t ∈ (τ4, t1 + T ] and pm(t) ∈ Br(η1)}. (2.8)

By utilizing the penalty function ψm, a comparison argument used in [10]
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shows that

τ2 > t̂1 + 2ρ0, τ3 < t̂2 − 2ρ0, τ4 > t̂3 + 2ρ0 and τ5 < t̂4 − 2ρ0. (2.9)

Invoking Lemma 2 yields

pm(t) ∈ B2ρ0(η2) if t ∈ [τ3, τ4] (2.10)

and

pm(t) ∈ B2ρ0(η1) if t ∈ [τ5, τ2 +mT ]. (2.11)

It is clear from (2.9)-(2.11) that the minimal period of pm is mT . The proof

is complete. ���

Theorem 3 can be extended to the case where (V5) is not assumed. Nev-

ertheless, as to be seen in the following proposition, the additional hypothe-

sis (V5) ensures that the periodic solutions obtained in Theorem 3 are local

minimizers among a larger family of functions than the periodic ones. Let

E′
m =W 1,2([0,mT ],Rn) and recall that Em = {z ∈ E′|z(t+mT ) = z(t)}.

Proposition 1. Assume that the hypotheses of Theorem 3 are satisfied.

Then

inf
z∈E′

m

Im(z) = αm (2.12)

and pm(t) = pm(−t) if Im(pm) = αm.

We refer to [11] for a proof in the case m = 1. The proof of m > 1 is

similar.

With modification on penalty functions, we establish the following mul-

tiplicity result for the subharmonic solutions of (1.3).

Theorem 4. If the hypothesis of Theorem 3 is satisfied, (1.3) possesses

2m− 1 periodic solutions with minimal period mT .

Proof. Let i, ℓ ∈ Z, m ∈ N and t̂i be the same as in the proof of Theorem

3. For m > 1 and 0 ≤ ℓ ≤ 2m − 2, let ψ̂m,ℓ ∈ C∞(R × R
n,R) be such that
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0 ≤ ψ̂m,ℓ ≤M1, ψ̂m,ℓ(t+mT, y) = ψ̂m,ℓ(t, y) and

ψ̂m,ℓ(t, y) =



































M1 if y 6∈ B3ρ0(η1) and t ∈ [t̂0, t̂1] ∪ [t̂2ℓ+4, t̂2ℓ+5]

M1 if y 6∈ B3ρ0(η2) and t ∈
⋃

i∈Fℓ
[t̂2i, t̂2i+1]

0 if t ∈ (t̂2i−1 + ρ0, t̂2i − ρ0)

0 if y ∈ Bρ̄(η1) and t ∈ [t̂0 − ρ0, t̂1 + ρ0]

∪[t̂2ℓ+4 − ρ0, t̂2ℓ+5 + ρ0]

0 if y ∈ Bρ̄(η2) and t ∈
⋃

i∈Fℓ
[t̂2i − ρ0, t̂2i+1 + ρ0],

(2.13)

where Fℓ = {i ∈ N|i ≤ 2m and i 6= ℓ + 2}. Adding a penalty function ψ̂m,ℓ

to Îm, we may proceed as Theorem 3 to get a periodic solution p̂m,ℓ of (1.3).

By the construction of ψ̂m,ℓ, the minimal period of p̂m,ℓ is mT . Moreover,

if ℓ 6= i and ℓ, i ∈ {0, 1, 2, · · · , 2m − 2} then there is no j ∈ Z such that

p̂m,ℓ(t) = p̂m,i(t+ jT ). This completes the proof.

Remark 2. Following the terminology used in [15], p̂m,ℓ is called a two-

bump periodic solution, because roughly speaking it consists of two basic

heteroclinics nicely concatenated.

3. Constrained Minimization

It has been shown that, for each m ∈ N, there are at least m − 1 sub-

harmonic solutions of (1.3) with minimal period mT . Each of such solutions

consists of two transitions in minimal period. We next consider the subhar-

monic solutions which consist of more than two transitions in minimal period.

Let Pm = {p|p is a periodic solution of (1.3) with minimal period mT}. For

1 ≤ i ≤ m, let ei ∈ {0, 1}. An element p of Pm is of type (e1, e2, · · · , em) if p

has a transition on [(i− 1)T, iT ) when ei = 1 and no transition when ei = 0.

In addition to penalization, an elementary constrained minimization will be

employed to obtain the following result.

Theorem 5. Assume that (V1)−(V5) are satisfied. Let k1 = −2T − k0 and

k2 = k0 + T . Suppose k0 < −T ,

α̂(k1, k2) < α̂(k0, k1) (3.1)

and

k1 − k0 > 6ρ0 + 2(2α̂(k1, k2) + ρ0
√

2θ(ρ0))/θ(r), (3.2)

where
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r = min

(

1,
ρ0
2
,

4

√

ρ20
8µ2

,
ρ0
√

2θ(ρ0)

2Λ
,
α̂(k0, k1)− α̂(k1, k2)

4Λ

)

. (3.3)

For m ≥ 5, (1.3) possesses a subharmonic solution of type (e1, e2, · · · , em)

with ei = 1 if i = 1, 2, 3,m and ei = 0 if 4 ≤ i ≤ m− 1.

Proof of Theorem 5. With the same t̂i and ψ̂m,0 as in (2.13), we consider

m ≥ 5 and let ψ∗
m ∈ C∞(R × R

n,R) be such that 0 ≤ ψ∗
m ≤ M1, ψ

∗
m(t +

mT, y) = ψ∗
m(t, y) and

ψ∗
m(t, y) =











ψ̂m,0(t, y) if t ∈ [t̂0 − ρ0, t̂1 + 2T + ρ0]

ψ̂m,0(t− 2T, y) if t ∈ [t̂1 + 2T + ρ0, t̂1 + 4T + ρ0]

0 if t ∈ (t̂1 + 4T + ρ0, t̂0 +mT − ρ0).

Set

Jm(z, s, t) =

∫ t

s

[L(z) + ψ∗
m(t, z)]dt.

Let si = t̂i+(−1)i+12ρ0, E
∗
m = {z ∈ Em|Jm(z, s2i, s2i+1) < 2ρ0

√

2θ(ρ0), i ∈

Z} and

α∗
m = inf

z∈E∗

m

Jm(z, 0,mT ).

Then there is a p∗m ∈ E∗
m such that Jm(p∗m, 0,mT ) = α∗

m. Furthermore, the

construction of ψ∗
m induces that α∗

m > 0 and thus p∗m 6∈ Ke.

Next we are going to show that p∗m lives in a region where the penaliza-

tion vanishes. Note that

there is a t1 ∈ (t̂0, t̂1) such that p∗m(t1) ∈ Br(η1);

for otherwise,

Jm(p∗m, s0, s1) > Jm(pm, t̂0, t̂1) ≥ θ(r)(2ρ0
√

2θ(ρ0)/θ(r)) = 2ρ0
√

2θ(ρ0).

Likewise, there is a t2 ∈ (t̂2, t̂3) such that p∗m(t2) ∈ Br(η2). Let τi = τi(p
∗
m),

2 ≤ i ≤ 5, be defined as (2.5)-(2.8). As in Theorem 3, (2.9) must hold. This

indicates that p∗m possesses two transition layers in (−T, T ). Owing to the
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construction of ψ∗
m, the same lines of reasoning shows that p∗m possesses two

transitions in (T, 3T ).

Next, we show that Jm(z, s2i, s2i+1) < 2ρ0
√

2θ(ρ0) for all i ∈ Z. We

only carry out the proof of

Jm(p∗m, s2, s3) < 2ρ0
√

2θ(ρ0);

the others are the same. In view of (3.3), it suffices to prove

Jm(p∗m, τ3, τ4) < 2Λr. (3.4)

Let

Z3(t) =











τ3+r−t
r

p∗m(τ3) +
t−τ3
r
η2 if t ∈ [τ3, τ3 + r]

η2 if t ∈ (τ3 + r, τ4 − r)
t−τ4+r

r
p∗m(τ4) +

τ4−t
r
η2 if t ∈ [τ4 − r, τ4].

Invoking Lemma 1 gives

Jm(Z3, τ3, τ4) ≤ 2Λr. (3.5)

Set A2 = {z ∈ W 1,2([τ3, τ4],R
n)|z(τ3) = p∗m(τ3) and z(τ4) = p∗m(τ4)}. Since

Z3 ∈ A2, (3.4) easily follows from (3.5) and the fact that

Jm(p∗m, τ3, τ4) = inf
z∈A2

Jm(z, τ3, τ4).

With the aid of Lemma 2, we now conclude that p∗m lives in a region

where the penalization is vanished. Thus p∗m is a periodic solution of (1.3).

The locations of the transitions in p∗m indicate that the minimal period of

p∗m is mT .

Remark 3.

(a) Shifting the time of the solution by one period, we get a solution of type

(e1, e2, · · · , em) with ei = 1 if 1 ≤ i ≤ 4 and ei = 0 if 5 ≤ i ≤ m.

(b) Using different penalty functions, we obtain subharmonic solutions of

type (e1, e2, · · · , em) with a given combination of ei ∈ {0, 1}, 1 ≤ i ≤ m.
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4. Connecting Orbits

With a large number of subharmonic solutions of (1.3), we next inves-

tigate the connecting orbits joining with a pair of periodic solutions. For

z ∈ E′
m there is a constant c = c(m) such that

‖z‖L∞ ≤
c

2
‖z‖. (4.1)

Let Bρ(z) denote an open ball centered at z with radius ρ and Bρ(Ω) =

∪z∈ΩBρ(z).

Proposition 2. There is a positive function dm which satisfies limρ→0+ dm(ρ)

= 0, and

Im(z) ≥ Im(pm) + dm(ρ) (4.2)

if pm ∈ Km and z ∈ E′
m\Bρ(Km). Suppose Km consists of isolated points,

then there are only a finite number of elements in Km.

We refer to [34] for a proof of Proposition 2. A modification here is to

add penalization in the proof.

To formulate a variational framework for the connecting orbits of (1.3),

we take p1 ∈ Km, p2 ∈ Kj and set

Γ(p2, p1) = {z ∈ E′|z(t) → p1(t) uniformly as t→ ∞

and z(t) → p2(t) uniformly as t→ −∞}. (4.3)

Consider a penalty function as follows. Let ρ̄, t̂0, t̂1,M1 and ψm be defined

as in the proof of Theorem 3. For fixed N ∈ N, let Ψ ∈ C∞(R × R
n,R) be

such that 0 ≤ Ψ ≤M1 and

Ψ(t, y) =



















ψj(t+NT, y) if t ∈ (−∞, t̂0 −NT − ρ0]

M1 if y 6∈ B3ρ0(η1) and t ∈ (t̂1 −NT, t̂0)

0 if y ∈ Bρ̄(η1) and t ∈ (t̂1 −NT, t̂0)

ψm(t, y) if t ∈ [t̂0 − ρ0,∞).
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Set A = {(t, y)|Ψ(t, y) = 0}. As in the proof of Theorem 5, si = t̂i +

(−1)i+12ρ0. Let E = {z ∈ E′|J (z, s2i, s2i+1) < 2ρ0
√

2θ(ρ0), i ∈ Z}, where

J (z, s, ŝ) =

∫ ŝ

s

L(z)dt.

For z ∈ E′, define G(z) = {(t, z(t))|t ∈ R} and

a−ℓ(z) =

∫ −(ℓ−1)jT−NT

−ℓjT−NT

[L(z) + Ψ(t, z)− L(p2)]dt,

aℓ(z) =

∫ ℓmT

(ℓ−1)mT

[L(z) + Ψ(t, z)− L(p1)]dt

for ℓ ∈ N, and

a0(z) =

∫ 0

−NT

[L(z) + Ψ(t, z)]dt.

It is clear that aℓ(z) ≥ 0 for all ℓ. Set

J(z) =

∞
∑

ℓ=−∞

aℓ(z) (4.4)

and

β(p2, p1) = inf
z∈Γ(p2,p1)

J(z). (4.5)

It will be seen that if p1 and p2 are isolated points of Km and Kj respectively,

and β(p2, p1) = infp∈Km,p′∈Kj
β(p′, p), then there is a connecting orbit joining

p2 and p1.

For z ∈ E′, let σℓ(z) denote the restriction of z on [ℓmT, (ℓ + 1)mT ].

The next lemma will be used to prove Theorem 2. Its proof can be found in

[11].

Lemma 3. Given γ > 0 and ℓ̄ > ℓ, there exist positive numbers ρ̂ and

C = C(γ, ℓ̄− ℓ) such that, for any p, p′ ∈ Km and z ∈ E′, if ‖p − p′‖ ≥ γ,

‖σℓ(z − p′)‖L∞ < ρ̂ (4.6)

and

‖σℓ̄(z − p)‖L∞ < ρ̂, (4.7)
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then

∫ (ℓ̄+1)mT

ℓmT

(L(z) + ψm(t, z)− L(p))dt ≥ C. (4.8)

Moreover, C is independent of the length of ℓ̄− ℓ, if Km consists of isolated

points.

Proof of Theorem 2. By Proposition 2 there are p1 ∈ Km and p2 ∈ Kj

such that

β(p2, p1) = inf
p∈Km,p′∈Kj

β(p′, p). (4.9)

Let {zk} ⊂ Γ(p2, p1) be a minimizing sequence for J . Along a subsequence,

zk → q weakly in E′ and strongly in L∞
loc(R,R

n). It follows that

J(q) ≤ β(p2, p1). (4.10)

Arguing like Theorem 3 yields G(q) ⊂ Å. Thus q is a solution of (1.3).

Next, we prove (1.6). By (4.10) and Proposition 2, for any ρ > 0, there

is an ℓ̂ = ℓ̂(ρ) such that if ℓ ≥ ℓ̂ then

σℓ(q) ∈ Bρ(p̄) for some p̄ ∈ Km.

Furthermore, there is a p ∈ Km such that sup{ℓ|σℓ(q) ∈ Bρ(p)} = ∞. Sup-

pose (1.6) is false, then for any ρ > 0, there is an ℓ ∈ N such that

σℓ(q) ∈ Bρ(p).

If k is large enough then

J(zk) < β(p2, p1) + ρ

and

‖σℓ(zk − p)‖L∞ < ρ.

Moreover, ‖σℓ̄(zk − p1)‖L∞ < ρ if ℓ̄ is sufficiently large. Define a continuous
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function vk by

vk(t) =











zk(t) if t ∈ (−∞, (ℓ+ 1)mT − ρ]

p(t) if t ∈ [(ℓ+ 1)mT,∞)

a linear function if t ∈ ((ℓ+ 1)mT − ρ, (ℓ+ 1)mT ).

A straightforward calculation yields

∫ (ℓ̄+1)mT

(ℓ+1)mT−ρ

(L(vk) + Ψ(t, vk)− L(p1))dt ≤ bρ,

where b is a constant independent of k and ρ. This together with Lemma 3

gives
∫ (ℓ̄+1)mT

ℓmT

(L(zk) + Ψ(t, zk)− L(p1))dt ≥ C.

Consequently

J(vk) ≤ J(zk)− C + bρ < β(p2, p1) + ρ− C + bρ < β(p2, p1),

if we pick ρ < min(ρ̂, C/(b+ 1)). Then

β(p2, p) < β(p2, p1),

which is contrary to (4.10). Thus (1.6) holds, so does (1.7), following the

same argument.

Remark 4.

(a) If n = 1, Theorem 2 still holds without assuming that Km and Kj consist

of isolated points. This follows from an argument used in the proof of

Poincaré-Bendixson Theorem.

(b) If p2 = p1 this solution is a homoclinic orbit.

(c) Taking different N actually yields infinitely many connecting orbits of

(1.3).

(d) Choosing a suitable penalty function leads to the existence of a con-

necting orbit joining a periodic solution of type (e1, e2, · · · , em) with an

equilibrium or a periodic solution of type (e1, e2, · · · , ej).
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The penalization method can also be empolyed to study multibump

connecting orbits for periodic solutions of (1.3). Let Ψ̂ ∈ C∞(R×R
n,R) be

such that 0 ≤ Ψ̂ ≤M1 and

Ψ̂(t, y) =

{

Ψ(t, y) if t ∈ (−∞, t̂0 −NT − ρ0] ∪ [t̂0 − ρ0,∞)

ψi(t+NT, y) if t ∈ (t̂0 −NT − ρ0, t̂0 − ρ0),

where N = ki and k, i are positive integers. For p1 ∈ Km, p2 ∈ Kj , p3 ∈ Ki

and z ∈ E′, define

â−ℓ(z) =

∫ −(ℓ−1)jT−NT

−ℓjT−NT

[L(z) + Ψ̂(t, z)− L(p2)]dt,

âℓ(z) =

∫ ℓmT

(ℓ−1)mT

[L(z) + Ψ̂(t, z)− L(p1)]dt

for ℓ ∈ N, and

â0(z) =

∫ 0

−NT

[L(z) + Ψ̂(t, z) − L(p3)]dt.

Set

Ĵ(z) =

∞
∑

ℓ=−∞

âℓ(z)

and

β̂(p2, p1) = inf
z∈Γ(p2,p1)

Ĵ(z).

Theorem 6. Assume that the hypothesis of Theorem 3 is satisfied. Suppose

that Km,Kj and Ki consist of isolated points. If β̂(p2, p1) = infp∈Km,p′∈Kj

β̂(p′, p), then there is a solution q of (1.3) which satisfies (1.6) and (1.7).

Moreover, for any sufficiently small positive number ρ̂, if N is chosen large

enough, then there exist N1, N2 ∈ (−N, 0) and a p̂ ∈ Ki such that

τℓ(q) ∈ Bρ̂(p̂)

for some ℓ ∈ [N1, N2], where τℓ(q) denotes the restriction of q on [ℓiT, (ℓ +

1)iT ].

The proof follows from the same lines of reasoning based on adding

penalty function.



✐

“BN09N36” — 2014/8/29 — 15:09 — page 448 — #18
✐

✐

✐

✐

✐

448 CHAO-NIEN CHEN AND SHYUH-YAUR TZENG [September

Acknowledgments

The authors are grateful to a referee who brought an interesting article

to their attention and made valuable comments.

References

1. V. S. Afraimovich, A. V. Babin and S. N. Chow, Spatial chaotic structure of attractors
of reaction-diffusion systems, Trans. Amer. Math. Soc., 348 (1996), 5031-5063.

2. A. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a
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13. V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in
Hamiltonian systems, Math. Ann., 288 (1990), 133-160.

14. V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian
systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727.

15. V. Coti Zelati and P. H. Rabinowitz, Multibump periodic solutions of a family of
Hamiltonian systems, Topol. Methods Nonlinear Anal., 4 (1994), 31-57.



✐

“BN09N36” — 2014/8/29 — 15:09 — page 449 — #19
✐

✐

✐

✐

✐

2014] CONNECTING ORBITS FOR SUBHARMONIC SOLUTIONS 449

16. V. Coti Zelati and P. H. Rabinowitz, Heteroclinic solutions between stationary points
at different energy levels, Topol. Methods Nonlinear Anal., 17 (2001), no. 1, 1-21.

17. R. L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations,
21 (1976), 431-438.

18. M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equa-
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