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Abstract

The random variables examined are independent and identically distributed expo-

nentials. The mean of these random variables can change from sample to sample. Within

each sample we observe the ratio of various order statistics. Then we establish strong

laws for these ratios. The most important statistic is the ratio of the two smallest order

statistics within each sample. The distribution of this statistic is very interesting. It has

infinite mean, but barely, which produces a very unusual strong law.

1. Introduction

This paper establishes unusual strong laws for resampling from exponen-

tial distributions. The underlying distribution is f(x) = (1/λ)e−x/λI(x ≥ 0),

where λ > 0. However, the parameter λ can change from sample to sample.

For example, we can sample lifetimes of a machine and we can change the

equipment on a daily basis. Our sample size is {mn,mn ≥ 2}. Next we order

the data and then obtain the ratios of those order statistics.

Let Xni be exponential random variables with mean λn, where i =

1, . . . ,mn and n = 1, 2, 3, . . . Our order statistics are Xn(1) ≤ Xn(2) ≤ · · · ≤

Xn(mn). The final random variable is, the ratio

Rnij =
Xn(j)

Xn(i)
1 ≤ i < j ≤ mn.
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102 ANDRÉ ADLER [March

There are several interesting results here. First of all, the parameter can

change as previously noted. Secondly, the interesting case is i = 1. As for j,

the most telling situation is j = 2, but that’s not as important as i = 1. The

emphasis will be placed on the statistic Rn12, which is a nice measurement

of the reliability of our system.

Thirdly, the sample size isn’t that important either. In Theorem 2.1, we

fix the sample size within each row while obtaining a strong law for Rn12.

In that theorem we do see the parameter mn = m. However, in Theorem

2.2, we see that by letting mn go to infinity in ANY fashion, the sample size

disappeared from the final result.

The most important statistic is Rn12. It measures the stability of our

equipment and it shows whether or not our system is stable. Exponential

random variables measure the lifetimes of equipment. The first order statistic

is the measure of the failure of the first piece of our equipment. Comparing

the smallest order statistic to the others tell us how stable our system is.

Another truly fascinating result is that the distribution of Rn13 isn’t much

different than Rn12. However, Rn23 is a totally different animal. It turns

out that E(Rn1j) = ∞ for all j ≥ 2 and all of these densities, their means

are barely infinite, see Klass and Teicher [3]. That is why it suffices to just

observe Rn12. Meanwhile E(Rn23) < ∞, which doesn’t tell us much about

our system. Moreover, the densities of Rn1j permit unusual strong laws, see

Adler [1], for all j ≥ 2.

We need to mention that the constant C, used in the proofs, denotes

a generic real number that is not necessarily the same in each appearance.

It is used as an upper bound in order to establish the convergence of our

various series.

2. Comparing our Two Smallest Order Statistics

For Theorems 2.1 and 2.2 we need the density of Rn12. We start with

i.i.d. exponential random variables Xni, with mean λn, where i = 1, . . . ,mn.

Next, we order them within each row. Thus Xn(1) ≤ Xn(2) ≤ · · · ≤ Xn(mn).

So, the joint density of Xn(1) and Xn(2) is

f(x1, x2) =
mn(mn − 1)

λ2
n

e−x1/λne−x2/λn
(

e−x2/λn
)mn−2

I(0 < x1 < x2)
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which reduces to

f(x1, x2) =
mn(mn − 1)

λ2
n

e−[x1+(mn−1)x2]/λnI(0 < x1 < x2).

Next, we transform to the variables w = x1 and r = x2/x1. The Jaco-

bian is w and the joint density of w and r is

f(w, r) =
mn(mn − 1)

λ2
n

we−w[1+r(mn−1)]/λnI(w > 0, r > 1).

Using the gamma function we obtain

f(r) =
mn(mn − 1)

λ2
n

∫

∞

0
we−w[1+r(mn−1)]/λndw

=

(

mn(mn − 1)

λ2
n

)(

λn

1 + r(mn − 1)

)2

=
mn(mn − 1)

[1 + r(mn − 1)]2
.

Again, note that this density is free from our parameter λn. The first theorem

examines strong laws for fixed samples sizes.

Theorem 2.1. Let Xn(1) and Xn(2) be the first two order statistics from an

exponential distribution with parameter λn and fixed sample size m. Then

for all α > −2

lim
N→∞

∑N
n=1

(lgn)αXn(2)

nXn(1)

(lgN)α+2
=

m

(m− 1)(α+ 2)
almost surely.

Proof. This is an Exact Strong Law. Our random variable Rn12 has the

following density

f(r) =
m(m− 1)

[1 + r(m− 1)]2
.

Thus

xP{Rn12 > x} = x

∫

∞

x

m(m− 1)dr

[1 + r(m− 1)]2
=

mx

1 + x(m− 1)
→

m

m− 1
.

Using Example 2 from Adler [1], the conclusion is immediate. ���
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The next case doesn’t immediately follow from Adler [1], but it does

have the same properties. The tail distribution is regularly varying, so there

is a strong law. To be precise, there is always an Exact Strong Law when-

ever P{Rn12 > x} is regularly varying with exponent -1. But the slight

complication is due to the sample size.

Theorem 2.2. Let Xn(1) and Xn(2) be the first two order statistics from

an exponential distribution with parameter λn. For any mn → ∞ and all

α > −2

lim
N→∞

∑N
n=1

(lgn)αXn(2)

nXn(1)

(lgN)α+2
=

1

α+ 2
almost surely.

Proof. Let an = (lg n)α/n, bn = (lg n)α+2 and cn = bn/an = n(lg n)2.

Setting Rn12 = Xn(2)/Xn(1), we see that it has the density

f(r) =
mn(mn − 1)

[1 + r(mn − 1)]2
.

We use the partition

1

bN

N
∑

n=1

anRn12

=
1

bN

N
∑

n=1

an
[

Rn12I(1 ≤ Rn12 ≤ cn)−ERn12I(1 ≤ Rn12 ≤ cn)
]

+
1

bN

N
∑

n=1

anRn12I(Rn12 > cn) +
1

bN

N
∑

n=1

anERn12I(1 ≤ Rn12 ≤ cn).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem, see page 113 of Chow and Teicher [2], and Kro-

necker’s lemma since

∞
∑

n=1

1

c2n
ER2

n12I(1 ≤ Rn12 ≤ cn)

=

∞
∑

n=1

mn(mn − 1)

c2n

∫ cn

1

r2dr

[1 + r(mn − 1)]2
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=
∞
∑

n=1

mn(mn − 1)

c2n

∫ 1+cn(mn−1)

mn

(

u− 1

mn − 1

)2(

1

u2

)(

du

mn − 1

)

=
∞
∑

n=1

mn

c2n(mn − 1)2

∫ 1+cn(mn−1)

mn

(

u− 1

u

)2

du

≤

∞
∑

n=1

mn

c2n(mn − 1)2

∫ 1+cn(mn−1)

mn

du

=
∞
∑

n=1

mn

c2n(mn − 1)2

(

1 + cn(mn − 1)−mn

)

≤ C

∞
∑

n=1

mn

c2n(mn − 1)2
(

cnmn

)

≤ C

∞
∑

n=1

1

cn
= C

∞
∑

n=1

1

n(lg n)2
< ∞.

The second term in our partition vanishes, with probability one, by the

Borel-Cantelli lemma, since

∞
∑

n=1

P{Rn12 > cn} =

∞
∑

n=1

∫

∞

cn

mn(mn − 1)dr

[1 + r(mn − 1)]2

=
∞
∑

n=1

mn

1 + cn(mn − 1)
≤ C

∞
∑

n=1

1

cn
< ∞.

As for the third term

ERn12I(1 ≤ Rn12 ≤ cn) =

∫ cn

1

mn(mn − 1)rdr

[1 + r(mn − 1)]2

=
mn

mn − 1

∫ 1+cn(mn−1)

mn

(

u− 1

u2

)

du

=
mn

mn − 1

[

lg(1 + cn(mn − 1))− lgmn +
1

1 + cn(mn − 1)
−

1

mn

]

=
mn

mn − 1

[

lg

(

1 + cn(mn − 1)

mn

)

+o(1)

]

∼ lg(cn) ∼ lg n.

Thus

1

bN

N
∑

n=1

anERn12I(1 ≤ Rn12 ≤ cn) ∼

∑N
n=1

(lgn)α+1

n

(lgN)α+2
→

1

α+ 2
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which complete the proof. ���

The most important statistic is Rn12 and we will see that Xn(j)/Xn(1)

are quite similar for j = 3, 4, . . . ,m. While on the other hand, the statistics

where we do not divide by our first order statistic loses it value. Comparing

the lifetimes of ensuing equipment to the first failure tells us how stable our

system is. With that in mind we next show that dividing by Xn(2), these

ratios lose their uniqueness.

3. Finite Expectations

Theorem 3.1. E

(

Xn(3)

Xn(2)

)

= 1 + m(m−1)
m−2 lg

(

m
m−1

)

for any m ≥ 3.

Proof. The joint density of the second and third order statistics from an

i.i.d. sample of m exponentials with parameter λ is

f(x2, x3) =
m!

(m− 3)!λ2
e−x2/λe−x3(m−2)/λ

(

1− e−x2/λ
)

I(0 < x2 < x3).

As before, we transform to the variables w = x2 and r = x3/x2. The

Jacobian is w and the joint density of w and r is

f(w, r) =
m!

(m− 3)!λ2
we−w[1+r(m−2)]/λ

(

1− e−w/λ
)

I(w > 0, r > 1).

Thus the density of Rn23 is

f(r) =
m!

(m− 3)!λ2

[

∫

∞

0
we−w[1+r(m−2)]/λdw −

∫

∞

0
we−w[2+r(m−2)]/λdw

]

.

Using the gamma function twice, this reduces to

m!

(m− 3)!λ2

[

(

λ

1 + r(m− 2)

)2

−

(

λ

2 + r(m− 2)

)2
]

=
m!

(m− 3)!

[

(

1

1 + r(m− 2)

)2

−

(

1

2 + r(m− 2)

)2
]

.
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Hence

E

(

Xn(3)

Xn(2)

)

=
m!

(m− 3)!

∫

∞

1

[

r

[1 + r(m− 2)]2
−

r

[2 + r(m− 2)]2

]

dr

=
m(m− 1)

(m− 2)

∫

∞

m−1
(u− 1)

[

1

u2
−

1

(u+ 1)2

]

du

=
m(m− 1)

(m− 2)

∫

∞

m−1

(2u2 − u− 1)du

u2(u+ 1)2

=
m(m− 1)

(m− 2)

∫

∞

m−1

[

1

u
−

1

u2
−

1

u+ 1
+

2

(u+ 1)2

]

du

=
m(m− 1)

(m− 2)

[

lg

(

m

m− 1

)

−
1

m− 1
+

2

m

]

= 1 +
m(m− 1)

m− 2
lg

(

m

m− 1

)

which is finite. ���

As we just saw, the most telling statistic is Rn12. But any of the order

statistics divided by the smallest one will work. And all of these distributions

have infinite expectations, but barely, i.e., xP{X > x} is slowly varying.

Hence there will always be an Exact Strong Law. We conclude with a strong

law for Rn1j for j = 2, 3, . . . ,m, where in this case m is fixed. Theorem 4.1

is a natural generalization of Theorem 2.1.

4. The General Infinite Case

Theorem 4.1. Let Xn(1) and Xn(j) be the first and jth order statistics from

an exponential distribution with parameter λn and fixed sample size m. Then

for all α > −2

lim
N→∞

∑N
n=1

(lgn)αXn(j)

nXn(1)

(lgN)α+2

=
m!

(j − 2)!(m − j)!(α + 2)

j−2
∑

i=0

(

j−2
i

)

(−1)j−2−i

(m− i− 1)2
almost surely.

Proof. Let an = (lg n)α/n, bn = (lg n)α+2 and cn = bn/an = n(lg n)2. First

we must obtain the density of Xn(j)/Xn(1). We start with the joint density
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of Xn(1) and Xn(j)

f(x1, xj) =
m!

(j − 2)!(m − j)!λ2
n

e−x1/λne−xj(m−j+1)/λn

[

e−x1/λn−e−xj/λn

]j−2

.

Once again, let w = x1 and r = xj/x1. The Jacobian is w and the joint

density of w and r is

f(w, r) =
m!

(j − 2)!(m − j)!λ2
n

we−w/λne−rw(m−j+1)/λn

[

e−w/λn−e−rw/λn

]j−2

.

The density of Rn1j is

m!

(j − 2)!(m− j)!λ2
n

∫

∞

0
we−w[1+r(m−j+1)]/λn

[

e−w/λn − e−rw/λn

]j−2

dw

=
m!

(j − 2)!(m− j)!λ2
n

∫

∞

0
we−w[1+r(m−j+1)]/λn

×

j−2
∑

i=0

(

j − 2

i

)

e−wi/λn

(

−e−rw/λn

)j−2−i
dw

=
m!

(j − 2)!(m− j)!λ2
n

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i

∫

∞

0
we−w[(i+1)+r(m−i−1)]/λndw

=
m!

(j − 2)!(m− j)!λ2
n

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i

[

λn

[(i+ 1) + r(m− i− 1)]

]2

=
m!

(j − 2)!(m− j)!

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i 1

[(i+ 1) + r(m− i− 1)]2
.

Using the typical partition

1

bN

N
∑

n=1

anRn1j =
1

bN

N
∑

n=1

an
[

Rn1jI(1≤Rn1j≤cn)−ERn1jI(1≤Rn1j≤cn)
]

+
1

bN

N
∑

n=1

anRn1jI(Rn1j > cn)

+
1

bN

N
∑

n=1

anERn1jI(1 ≤ Rn1j ≤ cn).
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The first term vanished because

∞
∑

n=1

1

c2n
ER2

n1jI(1 ≤ Rn1j ≤ cn)

=

∞
∑

n=1

m!

c2n(j − 2)!(m − j)!

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i

∫ cn

1

r2dr

[(i + 1) + r(m− i− 1)]2

≤ C

∞
∑

n=1

1

c2n

j−2
∑

i=0

∫ cn

1

r2dr

[(i+ 1) + r(m− i− 1)]2

≤ C

∞
∑

n=1

1

c2n

j−2
∑

i=0

∫ cn

1
dr ≤ C

∞
∑

n=1

1

cn
= C

∞
∑

n=1

1

n(lg n)2
< ∞.

As for the second term

∞
∑

n=1

P{Rn1j > cn}

=

∞
∑

n=1

m!

(j − 2)!(m − j)!

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i

∫

∞

cn

dr

[(i+1)+r(m−i−1)]2

≤ C
∞
∑

n=1

j−2
∑

i=0

∫

∞

cn

dr

[(i+ 1) + r(m− i− 1)]2

≤ C
∞
∑

n=1

∫

∞

cn

dr

r2
≤ C

∞
∑

n=1

1

cn
< ∞.

In order to compute the almost sure limit we need

ERn1jI(1 ≤ Rn1j ≤ cn)

=
m!

(j − 2)!(m − j)!

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i

∫ cn

1

rdr

[(i + 1) + r(m− i− 1)]2

=
m!

(j − 2)!(m − j)!

j−2
∑

i=0

(

j − 2

i

)

(−1)j−2−i 1

(m− i− 1)2

×

∫ (i+1)+cn(m−i−1)

m

[

1

w
−

i+ 1

w2

]

dw.

This last integral is asymptotically equivalent to lg n since

∫ (i+1)+cn(m−i−1)

m

[

1

w
−

i+ 1

w2

]

dw
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= lg[(i+1)+cn(m−i−1)]−lgm+(i+1)

[

1

(i+1)+cn(m−i−1)
−

1

m

]

∼ lg[(i+ 1) + cn(m− i− 1)] ∼ lg[cn(m− i− 1)] ∼ lg[cn]

= lg[n(lg n)2] ∼ lg n.

Putting this all together we have

1

bN

N
∑

n=1

anERn1jI(1 ≤ Rn1j ≤ cn)

∼

m!
(j−2)!(m−j)!

∑j−2
i=0

(j−2
i )(−1)j−2−i

(m−i−1)2
∑N

n=1
(lgn)α+1

n

(lgN)α+2

→
m!

(j − 2)!(m − j)!(α + 2)

j−2
∑

i=0

(j−2
i

)

(−1)j−2−i

(m− i− 1)2

which complete this proof. ���

Remarks: When we let j = 2 in Theorem 4.1, we obtain the same result as

Theorem 2.1. Even though Theorem 2.1 does follow from Theorem 4.1, it

is a nice example of an Exact Strong Law and its proof is immediate based

on past results. The emphasis here should be placed on Xn(2)/Xn(1). In

measuring the reliability of our system we should compare the lifetimes of

those quickest to fail. Also, it is important to note that Rn1j has infinite

expectation for all j ≥ 2, regardless of the sample size and their densities

are such that we can obtain these unusual strong laws. And moreover, all

of these results are free of the parameter, λn. This allows us to change

the equipment from sample to sample as long as the underlying distribution

remains an exponential.
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