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Abstract

For the nonlinear wave equation utt − c(u)
(

c(u)ux

)

x
= 0, it is well known that

solutions can develop singularities in finite time. For an open dense set of initial data, the

present paper provides a detailed asymptotic description of the solution in a neighborhood

of each singular point, where |ux| → ∞. The different structure of conservative and

dissipative solutions is analyzed.

1. Introduction

The nonlinear wave equation

utt − c(u)
(
c(u)ux

)
x
= 0 , (1.1)

provides a mathematical model for the behavior of nematic liquid crystals.

Solutions have been studied by several authors [1, 2, 3, 4, 7, 10, 12, 13]. We

recall that, even for smooth initial data

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , (1.2)
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regularity can be lost in finite time. More precisely, the H1 norm of the

solution u(·, t) remains bounded, hence u is always Hölder continuous, but

the norm of the gradient ‖ux(·, t)‖L∞ can blow up in finite time.

The paper [4] introduced a nonlinear transformation of variables that

reduces (1.1) to a semilinear system. In essence, it was shown that the

quantities

w
.
= 2arctan

(
ut + c(u)ux

)
, z

.
= 2arctan

(
ut − c(u)ux

)
,

satisfy a first order semilinear system of equations, w.r.t. new independent

variables X, Y constant along characteristics. Going back to the original

variables x, t, u, one obtains a global solution of the wave equation (1.1).

Based on this representation and using ideas from [5, 6, 8, 9], in [1] it

was recently proved that, for generic initial data, the conservative solution

is smooth outside a finite number of points and curves in the t-x plane.

Moreover, conditions were identified which guarantee the structural stabil-

ity of the set of singularities. Namely, when these generic conditions hold,

the topological structure of the singular set is not affected by a small C3

perturbation of the initial data.

Aim of the present paper is to derive a detailed asymptotic description of

these structurally stable solutions, in a neighborhood of each singular point.

This is achieved both for conservative and for dissipative solutions of (1.1).

We recall that conservative solutions satisfy an additional conservation law

for the energy, so that the total energy

E(t) =
1

2

∫
[u2t + c2(u)u2x] dx

coincides with a constant for a.e. time t. On the other hand, for dissipative

solutions the total energy is a monotone decreasing function of time. A rep-

resentation of dissipative solutions in terms of a suitable semilinear system

in characteristic coordinates can be found in [3].

The remainder of this paper is organized as follows. In Section 2 we

review the variable transformations introduced in [4] and the conditions for

structural stability derived in [1]. Section 3 is concerned with conservative



2015] STRUCTURALLY STABLE SINGULARITIES 451

solutions. In this case, for smooth initial data the map

(X,Y ) 7→ (x, t, u, w, z)(X,Y ) (1.3)

remains globally smooth, on the entire X-Y plane. To recover the singu-

larities of the solution u(x, t) of (1.1), it suffices to study the Taylor ap-

proximation of (1.3) at points where w = π or z = π. In Section 4 we

perform a similar analysis in the case of dissipative solutions. This case is

technically more difficult, because the corresponding semilinear system has

discontinuous source terms.

We remark that, for conservative solutions, a general uniqueness theo-

rem has been recently established in [2]. On the other hand, for dissipative

solutions no general result on uniqueness or continuous dependence is yet

known. Whether structurally stable dissipative solutions are generic, aris-

ing from an open dense set of C3 initial data, is also an open problem.

2. Review of the Equations

Throughout the following, on the wave speed c we assume

(A) The map c : R 7→ R+ is smooth and uniformly positive. The quo-

tient c′(u)/c(u) is uniformly bounded. Moreover, the following generic

condition is satisfied:

c′(u) = 0 =⇒ c′′(u) 6= 0. (2.1)

Because of (2.1), the derivative c′(u) can vanish only at isolated points.

In (1.2) we consider initial data (u0, u1) in the product space H1(R) ×

L2(R). It is convenient to introduce the variables

{
R

.
= ut + c(u)ux ,

S
.
= ut − c(u)ux .

(2.2)

In a smooth solution, R2 and S2 satisfy the balance laws





(R2)t − (cR2)x = c′

2c(R
2S −RS2) ,

(S2)t + (cS2)x = c′

2c(S
2R− SR2) .

(2.3)
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As a consequence, the energy is conserved:

E
.
=

1

2

(
u2t + c2u2x

)
=

R2 + S2

4
. (2.4)

One can think of R2 and S2 as the energy of backward and forward moving

waves, respectively. Notice that these are not separately conserved. Indeed,

by (2.3) energy can be exchanged between forward and backward waves.

A major difficulty in the analysis of (1.1) is the possible breakdown of

regularity of solutions. Indeed, even for smooth initial data, the quantities

ux, ut can blow up in finite time. To deal with possibly unbounded values of

R,S, following [4] we introduce a new set of dependent variables:

w
.
= 2arctanR , z

.
= 2arctan S . (2.5)

Figure 1: The backward and forward characteristic through the point (x, t).

To reduce the equation (1.1) to a semilinear one, it is convenient to

perform a further change of independent variables (Figure 1). Consider the

equations for the forward and backward characteristics:

ẋ+ = c(u) , ẋ− = −c(u) . (2.6)

The characteristics passing through the point (x, t) will be denoted by

s 7→ x+(s, x, t) , s 7→ x−(s, x, t) ,
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respectively. As coordinates (X,Y ) of a point (x, t) we shall use the quanti-

ties

X
.
= x−(0, x, t) , Y

.
= − x+(0, x, t) . (2.7)

For future use, we now introduce the further variables

p
.
=

1 +R2

Xx
, q

.
=

1 + S2

−Yx
. (2.8)

Starting with the nonlinear equation (1.1), using X,Y as independent vari-

ables one obtains a semilinear hyperbolic system with smooth coefficients

for the variables u,w, z, p, q, x, t, namely





uX = sinw
4c p ,

uY = sin z
4c q ,

(2.9)





wY = c′

8c2
(cos z − cosw) q ,

zX = c′

8c2
(cosw − cos z) p ,

(2.10)





pY = c′

8c2 (sin z − sinw) pq ,

qX = c′

8c2 (sinw − sin z) pq ,
(2.11)





xX = (1+cosw) p
4 ,

xY = − (1+cos z) q
4 ,

(2.12)





tX = (1+cosw) p
4c ,

tY = (1+cos z) q
4c .

(2.13)

See [4] for detailed computations. Boundary data can be assigned on the

line γ0 = {(X,Y ) ; X + Y = 0}, by setting





u(s, −s) = u(s) ,

x(s, −s) = x(s) ,

t(s, −s) = t(s) ,

{
w(s, −s) = w(s) ,

z(s, −s) = z(s) ,

{
p(s, −s) = p(s) ,

q(s, −s) = q(s) ,

(2.14)
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for suitable smooth functions u, x, t, w, z, p, q.

Remark 1. The above system is clearly invariant w.r.t. the addition of

an integer multiple of 2π to the variables w, z. Taking advantage of this

property, in the following we shall regard w, z as points in the quotient

manifold T
.
= R/2πZ. As a consequence, we have the implications

w 6= π =⇒ cosw > −1 ,

z 6= π =⇒ cos z > −1 .
(2.15)

Remark 2. The system (2.9)−(2.13) is overdetermined. Indeed, the func-

tions u, x, t can be computed by using either one of the equations in (2.9),

(2.13), (2.12), respectively. As shown in [1], in order that all the above equa-

tions be simultaneously satisfied along the line γ0 one needs the additional

compatibility conditions

d

ds
u(s) =

sinw(s)

4c(u(s))
p(s)−

sin z(s)

4c(u(s))
q(s) , (2.16)

d

ds
x(s) =

(1 + cos q(s))p(s) + (1 + cos z(s))q(s)

4
, (2.17)

d

ds
t(s) =

(1 + cosw(s))p(s)− (1 + cos z(s))q(s)

4c(u(s))
. (2.18)

In turn, if (2.16)−(2.18) hold along γ0, then a unique solution to the system

(2.9)−(2.13) can be constructed, on the entire X-Y plane.

Given initial data (u0, u1) in (1.2), we assign boundary data (2.14) on

the line γ0, by setting





u(x) = u0(x),

t(x) = 0,

x(x) = x,

{
w(x) = 2 arctanR(x, 0),

z(x) = 2 arctanS(x, 0),

{
p(x) ≡ 1 +R2(x, 0),

q(x) ≡ 1 + S2(x, 0).

(2.19)

We recall that, at time t = 0, by (1.2) one has

R(x, 0) = (ut + c(u)ux)(x, 0) = u1(x) + c(u0(x))u0,x(x),

S(x, 0) = (ut − c(u)ux)(x, 0) = u1(x)− c(u0(x))u0,x(x).
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As proved in [1], for any choice of u0, u1 in (2.19) the compatibility conditions

(2.16)−(2.18) are automatically satisfied.

The following theorems summarize the main results on conservative so-

lutions, proved in [4, 1, 2]. As before, U denotes the product space in (2.21).

Theorem 1. Let the wave speed c(·) satisfy the assumptions (A).

Given initial data (u0, u1) ∈ H1(R)× L2(R), there exists a unique solution

(X,Y ) 7→ (u,w, z, p, q, x, t)(X,Y ) to the system (2.9)−(2.13) with boundary

data (2.14), (2.19) assigned along the line γ0. Moreover, the set

Graph(u)
.
=
{(

x(X,Y ), t(X,Y ), u(X,Y )
)
; (X,Y ) ∈ R

2
}

(2.20)

is the graph of the unique conservative solution u = u(x, t) of the Cauchy

problem (1.1)−(1.2).

Theorem 2. Let the assumptions (A) be satisfied and let T > 0 be given.

Then there exists an open dense set

D ⊂ U
.
=
(
C3(R) ∩H1(R)

)
×
(
C2(R) ∩ L2(R)

)
(2.21)

such that the following holds.

For every initial data (u0, u1) ∈ D, the corresponding solution (u,w, z, p, q, z,

t) of (2.9)−(2.13) with boundary data (2.14), (2.19) has level sets {w = π}

and {z = π} in generic position. More precisely, none of the values

{
(w,wX , wXX) = (π, 0, 0),

(z, zY , zY Y ) = (π, 0, 0),
(2.22)

{
(w, z,wX ) = (π, π, 0),

(w, z, zY ) = (π, π, 0),
(2.23)

{
(w,wX , c′(u)) = (π, 0, 0),

(z, zY , c
′(u)) = (π, 0, 0),

(2.24)

is ever attained, at any point (X,Y ) for which

(
x(X,Y ), t(X,Y )

)
∈ R× [0, T ] . (2.25)
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The singularities of the solution u in the x-t plane correspond to the

image of the level sets {w = π} and {z = π} w.r.t. the map

Λ : (X,Y ) 7→
(
x(X,Y ), t(X,Y )

)
. (2.26)

If none of the values in (2.22)−(2.24) is ever attained, by the implicit function

theorem the above level sets are the union of a locally finite family of C2

curves in the X-Y plane. In turn, restricted to the domain R × [0, T ], the

singularities of u are located along finitely many C2 curves in the x-t plane.

Figure 2: Two level sets {w = π} and {z = π}, in a generic conservative solution
of (2.9)−(2.11). Here P is a singular point of Type 1, while P1, P2, P3 are points
of Type 2, and Q1, Q2 are points of Type 3. Notice that at P1, structural stability
requires that the function Y (X) implicitly defined by w(X,Y (X)) = π has strictly
positive second derivative. At the points Q1, Q2, by (2.10) one has wY = zX = 0.
Hence the two curves {w = π} and {z = π} have a perpendicular intersection.

Figure 3: The images of the level sets {w = π} and {z = π} in Figure 2, under the
map Λ : (X,Y ) 7→ (x(X,Y ), t(X,Y )). In the x-t plane, these represents the curves
where u = u(x, t) is not differentiable. A generic solution of (1.1) with smooth
initial data remains smooth outside finitely many singular points and finitely many
singular curves, where ux → ±∞. Here p1, p2, p3 are singular points where two
new singular curves originate, or two singular curves merge and disappear. At the
points q1, q2 a forward and a backward singular curve cross each other.
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3. Singularities of Conservative Solutions

For smooth data u0, u1∈C∞(R), the solution (X,Y ) 7→ (x, t, u, w, z, p, q)

(X,Y ) of the semilinear system (2.9)−(2.13), with initial data as in (2.14),

(2.19), remains smooth on the entireX-Y plane. Yet, the solution u = u(x, t)

of (1.1) can have singularities because the coordinate change Λ : (X,Y ) 7→

(x, t) is not smoothly invertible. By (2.13)-(2.12), its Jacobian matrix is

computed by

DΛ =

(
xX xY
tX tY

)
=

(
(1+cosw)p

4 − (1+cos z) q
4

(1+cosw)p
4c(u)

(1+cos z) q
4c(u)

)
. (3.1)

We recall that p, q remain uniformly positive and uniformly bounded on

compact subsets of the X-Y plane. By Remark 1, at a point (X0, Y0) where

w 6= π and z 6= π, this matrix is invertible, having a strictly positive deter-

minant. The function u = u(x, t) considered at (2.20) is thus smooth on a

neighborhood of the point

(x0, t0) =
(
x(X0, Y0) , t(X0, Y0)

)
.

To study the set of points x-t plane where u is singular, we thus need to look

at points where either w = π or z = π.

If the generic conditions (2.22)−(2.24) are satisfied, then we have the

implications





w = π and wX = 0 =⇒ wY =
c′(u)

8c2(u)
(cos z + 1)q 6= 0 ,

z = π and zY = 0 =⇒ zX =
c′(u)

8c2(u)
(cosw + 1)p 6= 0 .

Therefore, by the implicit function theorem, the level sets

Sw .
= {(X,Y ) ; w(X,Y ) = π} , Sz .

= {(X,Y ) ; z(X,Y ) = π} , (3.2)

are the union of a locally finite family of smooth curves. The singularities of

u in the x-t plane are contained in the images of Sw and Sz under the map

(2.26). Relying on Theorem 2, we shall distinguish three types of singular

points P = (X0, Y0).
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(1) Points where w = π but wX 6= 0 and z 6= π (or else, where z = π but

zY 6= 0 and w 6= π).

(2) Points where w = π and wX = 0, but wXX 6= 0 (or else: z = π and

zY = 0, but zY Y 6= 0).

(3) Points where w = π and z = π.

Points of Type 1 form a locally finite family of C2 curves in theX-Y plane

(Figure 2). Their images Λ(P ) yield a family of characteristic curves in the

x-t plane where the solution u = u(x, t) is singular (i.e., not differentiable).

Points of Type 2 are isolated. Their images in the x-t plane are points

where two singular curves initiate or terminate (Figure 3).

Points of Type 3 are those where two curves {w = π} and {z = π}

intersect. Their image in the x-t plane are points where two singular curves

cross, with speeds ±c(u).

Our main result provides a detailed description of the solution u =

u(x, t) in a neighborhood of each one of these singular points. For simplicity,

we shall assume that the initial data (u0, u1) in (1.2) are smooth, so we shall

not need to count how many derivatives are actually used to derive the

Taylor approximations.

Theorem 3. Let the assumptions (A) hold, and consider generic initial

data (u0, u1) ∈ D as in (2.21), with u0, u1 ∈ C∞(R). Call (u,w, z, p, q, x, t)

the corresponding solution of the semilinear system (2.9)−(2.13) and let u =

u(x, t) be the solution to the original equation (1.1). Consider a singular

point P = (X0, Y0) where w = π, and set (x0, t0)
.
= (x(X0, Y0), t(X0, Y0)).

(i) If P is a point of Type 1, along a curve where w = π, then there exist

constants a 6= 0 and b1, b2 such that

u(x, t) = u(x0, t0)− a ·
[
c(u0)(t− t0) + (x− x0)

]2/3

+b1 · (x− x0) + b2 · (t− t0)

+O(1) ·
(
|t− t0|+ |x− x0|

)4/3
. (3.3)
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(ii) If P is a point of Type 2, where w = π, wX = 0, and wXX > 0, then in

the x-t plane this corresponds to a point (x0, t0) where two new singular

curves γ−, γ+ originate. In this case, there exists a constant a 6= 0 such

that

u(x, t) = u(x0, t0) + a ·
[
c(u0)(t− t0) + (x− x0)

]3/5

+O(1) ·
(
|t− t0|+ |x− x0|

)4/5
. (3.4)

(iii) If P is a point of Type 3, where w = z = π, then in the x-t plane this

corresponds to a point (x0, t0) where two singular curves γ, γ̃ cross each

other. In this case, there exist constants a1 6= 0 and a2 6= 0 such that

u(x, t) = u(x0, t0) + a1 ·
[
c(u0)(t− t0) + (x− x0)

]2/3

+a2 ·
[
c(u0)(t− t0)− (x− x0)

]2/3

+O(1) ·
(
|t− t0|+ |x− x0|

)
. (3.5)

Throughout the following, given a point P = (X0, Y0) in the X-Y

plane where w = π, we denote by (u0, w0, z0, p0, q0, x0, t0) the values of

(u,w, z, p, q, x, t) at (X0, Y0). The three parts of Theorem 3 will be proved

separately.

3.1. Singular curves

Let P = (X0, Y0) be a point of Type 1, where

w0 = π, z0 6= π, wX(X0, Y0) 6= 0. (3.6)

By the implicit function theorem, the level set where w = π is locally the

graph of a smooth function X = Φ(Y ), with Φ(Y0) = X0. We claim that,

in a neighborhood of the point (x0, t0) = Λ(X0, Y0), the image Λ(Sw) is a

smooth curve in the x-t plane, say

γ =
{
(x, t) ; x = φ(t)

}
. (3.7)

Indeed, the curve γ is the image of the smooth curve {X = Φ(Y )} under the
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smooth, one-to-one map

Y 7→
(
x(Φ(Y ), Y ) , t(Φ(Y ), Y )

)
.

For future record, we compute the first two derivatives of φ at t = t0. Dif-

ferentiating the identity w(Φ(Y ), Y ) = π one obtains

wXΦ′ + wY = 0 ,

wXX · (Φ′)2 + 2wXY Φ
′ + wY Y + wXΦ′′ = 0 .

By (2.12)−(2.13), at the point (X0, Y0) we have

d

dY

(
x(Φ(Y ), Y ), t(Φ(Y ), Y )

)
=

(
−
(1+cos z0)q0

4
,
(1 + cos z0)q0

4c(u0)

)
6= (0, 0).

Observing that

φ′(t(Φ(Y ), Y )) =
xX(Φ(Y ), Y ) · Φ′(Y ) + xY (Φ(Y ), Y )

tX(Φ(Y ), Y ) · Φ′(Y ) + tY (Φ(Y ), Y )
,

at t = t0 we have

φ′(t0) = −c(u0) .

In a similar way we find

φ′′(t0) =
xY Y (X0, Y0)tY (X0, Y0)− tY Y (X0, Y0)xY (X0, Y0)

t3Y (X0, Y0)
= −

c′(u0) sin z0
1 + cos z0

.

Next, by (2.9) one has

uX(X0, Y0) = 0 , uY (X0, Y0) =
sin z0
4c(u0)

q0
.
= α1 . (3.8)

Differentiating the first equation in (2.9) w.r.t. X and using (2.10)-(2.11) we

obtain

uXX =
cosw

4c(u)
wXp−

sinw

4c2(u)
c′(u) ·

sinw

4c(u)
p2 +

sinw

4c(u)
pX ,

uXX(X0, Y0) =
wX(X0, Y0)

4c(u0)
p0

.
= α2 6= 0 , (3.9)
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uXXX(X0, Y0) = −
1

4c(u0)

(
wXX(X0, Y0)p0+2wX(X0, Y0)pX(X0, Y0)

)

.
= α3 , (3.10)

uXY (X0, Y0) = −
p0

4c(u0)
·
c′(u0)

8c2(u0)
(cos z0 + 1)q0

.
= α4 . (3.11)

This yields the local Taylor approximation

u(X,Y ) = u0 + α1 (Y − Y0) +
α2

2
(X −X0)

2

+
α3

6
(X −X0)

3 + α4 (X −X0)(Y − Y0)

+O(1) ·
(
|X −X0|

4 + |Y − Y0|
2 + |X −X0|

2 |Y − Y0|
)
. (3.12)

Using (2.13), we perform an entirely similar computation for the function t

in a neighborhood of (X0, Y0).

tX(X0, Y0) = 0, tY (X0, Y0) =
1 + cos z0
4c(u0)

q0
.
= β1 > 0 , (3.13)

tXX = −
sinw

4c(u)
wXp−

1 + cosw

4c2(u)
c′(u)uXp+

1 + cosw

4c(u)
pX ,

tXX(X0, Y0) = tXY (X0, Y0) = 0 , (3.14)

tXXX(X0, Y0) =
w2
X(X0, Y0)

4c(u0)
p0

.
= β3 6= 0 . (3.15)

This yields the Taylor approximation

t(X,Y ) = t0 + β1 (Y − Y0) +
β3
6

(X −X0)
3

+O(1) ·
(
|X −X0|

4 + |Y − Y0|
2 + |X −X0|

2 |Y − Y0|
)
. (3.16)

Finally, for the function x, using (2.12) we find

xX(X0, Y0) = 0 , xY (X0, Y0) = −
1 + cos z0

4
q0

.
= − γ1 < 0 , (3.17)

xXX = −
sinw · wX

4
p+

1 + cosw

4
pX ,

xXX(X0, Y0) = 0, xXY (X0, Y0) = 0, (3.18)

xXXX(X0, Y0) =
w2
X(X0, Y0)

4
p0

.
= γ3 > 0. (3.19)
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This yields the Taylor approximation

x(X,Y ) = x0 − γ1 (Y − Y0) + γ3 (X −X0)
3

+O(1) ·
(
|X −X0|

4 + |Y − Y0|
2 + |X −X0|

2 |Y − Y0|
)
. (3.20)

Observing that the above Taylor coefficients satisfy

γ1 = c(u0)β1 , γ3 = c(u0)β3 , (3.21)

from (3.16) and (3.20) we deduce

(x− x0)− c(u0)(t− t0)

= −2γ1 (Y − Y0) +O(1) ·
(
|X −X0|

4 + |Y − Y0|
2 + |X −X0|

2 |Y − Y0|
)
,

(x− x0) + c(u0)(t− t0) (3.22)

= 2γ3 (X −X0)
3 +O(1) ·

(
|X −X0|

4 + |Y − Y0|
2 + |X −X0|

2 |Y − Y0|
)
.

Next, using (3.16) and (3.20) we obtain an approximation for X,Y in

terms of x, t, namely

1+cos z0
2

q0(Y −Y0)

= c(u0)(t−t0)−(x−x0)+O(1)·
(
|X−X0|

4+|Y −Y0|
2+|X−X0|

2 |Y −Y0|
)
.

w2
X(X0, Y0)

12
p0(X−X0)

3

= c(u0)(t−t0)+(x−x0)+O(1)·
(
|X−X0|

4+|Y −Y0|
2+|X−X0|

2 |Y −Y0|
)
.

Inserting the two above expressions into (3.12), we finally obtain

u(t, x) = u(t0, x0)−

(
9p0

32wX(X0, Y0)

)1/3 [
c(u0)(t− t0) + (x− x0)

]2/3

+
sin z0

2c(u0)(1 + cos z0)

[
c(u0)(t− t0)− (x− x0)

]

−
wXX(X0, Y0)

2c(u0)w2
X(X0, Y0)

[
c(u0)(t− t0) + (x− x0)

]

+O(1) ·
(
|t− t0|+ |x− x0|

)4/3
. (3.23)
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This proves (3.3), with

a =

(
9p0

32wX (X0, Y0)

)1/3

6= 0 . (3.24)

The coefficients b1, b2 can also be easily computed from (3.23).

Figure 4: Left: a singular curve where w = π, in the X-Y plane. Vertical lines
where X = constant correspond to characteristic curves of the wave equation (1.1),
where ẋ = −c(u). Right: the images of these curves in the x-t plane, under the
map Λ at (2.26). The singular curve γ is an envelope of characteristic curves, which
cross it tangentially.

Remark 3. By (3.3), the solution u is only Hölder continuous of exponent

2/3 near the singular curve γ in (3.7). In particular, the Cauchy problem

ẋ(t) = −c
(
u(t, x(t))

)
, x(t0) = φ(t0) ,

has a solution t 7→ x(t) which crosses γ at the point (x0, t0). Calling δ(t)
.
=

x(t)− φ(t), to leading order one has

δ̇ = c′(u0) · a δ
2/3 .

Hence, for t ≈ t0 we have

δ(t) ≈

(
c′(u0) a

3

)3

(t− t0)
3. (3.25)

The singular curve γ is thus an envelope of characteristic curves, which cross

it tangentially (see Figure 4).
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3.2. Points where two singular curves originate or terminate

Let P = (X0, Y0) be a point of Type 2, where

w0 = π, z0 6= π, wX(X0, Y0) = 0, wXX(X0, Y0) 6= 0 . (3.26)

Recalling (2.15), by (3.26) we have

wY (X0, Y0) =
c′(u0)

8c2(u0)
(1 + cos z0)q0 6= 0.

By (2.9), at the point (X0, Y0) we have

uX = uXX = 0 , uY =
sin z0
4c(u0)

q0 ,

uXY = −
c′(u0)

32c3(u0)
(1 + cos z0)p0q0 , uXXX = −

wXX(X0, Y0)

4c(u0)
p0 .

In this case, the Taylor approximation for u near the point (X0, Y0) takes

the form

u(X,Y ) = u0 +
sin z0
4c(u0)

q0 (Y − Y0)−
wXX(X0, Y0)

24c(u0)
p0 (X −X0)

3

+O(1) ·
(
|X −X0|

4 + |Y − Y0|
2 + |X −X0| |Y − Y0|

)
. (3.27)

Computing the partial derivatives of x(X,Y ) and t(X,Y ) at the point

(X0, Y0), by (2.10) and (3.26) we find

xX = xXX = xXXX = xXXXX = xXY = xXXY = 0, (3.28)

xXXXXX =
3w2

XX (X0, Y0)

4
p0 6= 0 , xY = −

1 + cos z0
4

q0 6= 0 . (3.29)

tX = tXX = tXXX = tXXXX = tXY = tXXY = 0, (3.30)

tXXXXX =
3w2

XX(X0, Y0)

4c(u0)
p0 6= 0 , tY =

1 + cos z0
4c(u0)

q0 6= 0 . (3.31)

This yields the Taylor approximations

x(X,Y ) = x0 −
1 + cos z0

4
q0(Y − Y0) +

3w2
XX(X0, Y0)

5! 4
p0(X −X0)

5
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+O(1) ·
(
|X −X0|

6 + |Y − Y0|
2
)
, (3.32)

t(X,Y ) = t0 +
1 + cos z0
4c(u0)

q0(Y − Y0) +
3w2

XX(X0, Y0)

5! 4 c(u0)
p0(X −X0)

5

+O(1) ·
(
|X −X0|

6 + |Y − Y0|
2
)
. (3.33)

Combining (3.32) with (3.33) we obtain

(X −X0)
5 =

5! 2

3w2
XX(X0, Y0) p0

·
[
c(u0)(t− t0) + (x− x0)

]

+O(1) ·
(
|X −X0|

6 + |Y − Y0|
2
)
, (3.34)

Y − Y0 =
2

(1 + cos z0) q0
·
[
c(u0)(t− t0)− (x− x0)

]

+O(1) ·
(
|X −X0|

6 + |Y − Y0|
2
)
. (3.35)

Inserting (3.34)−(3.35) into (3.27) we eventually obtain

u(t, x) = u(t0, x0)−
1

24c(u0)
·

(
803 p20

wXX(X0, Y0)

)1/5

·
[
c(u0)(t−t0)+(x−x0)

]3/5

+O(1) ·
(
|t− t0|+ |x− x0|

)4/5
. (3.36)

This proves (3.4).

It remains to show that two singular curves originate or terminate at

the point (x0, t0). To fix the ideas, assume that

κ
.
= −

wXX(X0, Y0)

2wY (X0, Y0)
> 0 . (3.37)

By the implicit function theorem, the curve where w = π can be approxi-

mated as

Y − Y0 = κ(X −X0)
2 +O(1) · |X −X0|

3. (3.38)

On the other hand, by (3.33) we have

Y −Y0 = α(t−t0)−β(X−X0)
5+O(1)·

(
|X−X0|

6+|t−t0|
2+|X−X0| |t−t0|

)
,

(3.39)
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with

α =
4c(u0)

(1 + cos z0)q0
> 0 , β =

3w2
XX(X0, Y0) p0

5! (1 + cos z0)q0
> 0 .

Combining (3.38) with (3.39) we obtain

κ(X −X0)
2 = α(t− t0) +O(1) · |X −X0|

3. (3.40)

Therefore, as shown in Figure 5 in a neighborhood of (X0, Y0) the following

holds:

• The two curves {t(X,Y ) = t0} and {w(X,Y ) = π} intersect exactly at

the point (X0, Y0).

• When τ < t0, the curves {t(X,Y ) = τ} and {w(X,Y ) = π} have no

intersection.

• When τ > t0, the curves {t(X,Y ) = τ} and {w(X,Y ) = π} have two

intersections, at points P1 = (X1, Y1) and P2 = (X2, Y2) with





X1 −X0 = −

√
α

κ
(τ − t0) +O(1) · (τ − t0),

X2 −X0 = +

√
α

κ
(τ − t0) +O(1) · (τ − t0).

(3.41)

{
Y1 − Y0 = α(τ − t0) +O(1) · (τ − t0)

3/2,

Y2 − Y0 = α(τ − t0) +O(1) · (τ − t0)
3/2.

(3.42)

For t > t0, the solution u = u(t, x) is thus singular along two curves

γ−, γ+ in the x-t plane (see Figure 5, right). Our next goal is to derive

an asymptotic description of these curves in a neighborhood of the point

(x0, t0), namely





γ−(t) = x0 − c(u0)(t− t0) + α̃(t− t0)
2 − β̃(t− t0)

5/2 +O(1) · (t− t0)
3,

γ+(t) = x0 − c(u0)(t− t0) + α̃(t− t0)
2 + β̃(t− t0)

5/2 +O(1) · (t− t0)
3,

(3.43)

for suitable constants α̃, β̃.
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Figure 5: Left: the equation w(X,Y ) = π implicitly defines a function Y (X) with
a strict local minimum at X0. Under generic conditions, Y ′′(X0) > 0. The dotted
curves where t(X,Y ) = τ have 0, 1, or 2 intersections respectively, if τ < t0, τ = t0,
or τ > t0. Right: the image of the curve {w = π} under the map Λ in (2.26) consists
of two singular curves γ−, γ+ starting at the point p0 = (x0, t0). For τ > t0, the
distance between these two curves is γ+(τ) − γ−(τ) = O(1) · (τ − t0)

5/2.

To prove (3.43), we need to compute more accurate Taylor approxima-

tions for t and x near the point (X0, Y0).

t(X,Y ) = t0 +
1 + cos z0
4c(u0)

q0(Y −Y0)+a(Y −Y0)
2

+
3w2

XX(X0, Y0)

5! 4c(u0)
p0(X−X0)

5+
w2
Y (X0, Y0)

8c(u0)
p0(X−X0)(Y −Y0)

2

+O(1) ·
(
|X −X0|

6 + |Y − Y0|
3 + |X −X0|

2 |Y − Y0|
2
)
, (3.44)

x(X,Y ) = x0 −
1 + cos z0

4
q0(Y − Y0) + b(Y − Y0)

2

+
3w2

XX(X0, Y0)

5! 4
p0(X−X0)

5+
w2
Y (X0, Y0)

8
p0(X−X0)(Y −Y0)

2

+O(1) ·
(
|X −X0|

6 + |Y − Y0|
3 + |X −X0|

2 |Y − Y0|
2
)
. (3.45)

The constants a and b are here given by

a = −
zY sin z

8c(u)
q +

1 + cos z

8c(u)

(
qY −

c′(u) sin z

4c2(u)
q2
)
,

b =
1

8
zY q sin z −

1

8
(1 + cos z)qY ,

where the right hand sides are evaluated at the point (X0, Y0).

For a fixed τ > t0, let P1 = (X1, Y1) and P2 = (X2, Y2) be the two
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points where the curves {t(X,Y ) = τ} and {w(X,Y ) = π} intersect. Let

x = γ−(τ) and x = γ+(τ) describe the corresponding points in the x-t plane

(see Figure 5).

At the intersection point P1 = (X1, Y1), using (3.41) and (3.42) we

obtain

x(X1, Y1)− x0 + c(u0)(τ − t0)

= (a+ b)(Y1 − Y0)
2 +

3w2
XX(X0, Y0)

5! 2
p0(X1 −X0)

5

+
w2
Y (X0, Y0)

4
p0(X1 −X0)(Y1 − Y0)

2

+O(1) ·
(
|X1 −X0|

6 + |Y1 − Y0|
3 + |X1 −X0|

2 |Y1 − Y0|
2
)

= α2(a+ b)(τ − t0)
2 −

(
3w2

XX(X0, Y0)

5! 2κ5/2
+

w2
Y (X0, Y0)

4κ1/2

)
α5/2p0(τ − t0)

5/2

+O(1) · (τ − t0)
3. (3.46)

This yields the equation for γ− in (3.43), with suitable coefficients α̃, β̃.

An entirely similar argument yields the equation for γ+. In particular, the

distance between these two singular curves is

γ+(t)− γ−(t) = 2β̃(t− t0)
5/2 +O(1) · |t− t0|

3. (3.47)

3.3. Points where two singular curves cross

We now consider a point P = (X0, Y0) where w = z = π.

For a generic solution, satisfying the conclusion of Theorem 2, this im-

plies

wX(X0, Y0) 6= 0, zY (X0, Y0) 6= 0 . (3.48)

On the other hand, (2.10) yields

wY (X0, Y0) = zX(X0, Y0) = 0.

By (2.9) and (2.16), we know that

uX(X0, Y0) = uY (X0, Y0) = uXY (X0, Y0) = 0.
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Hence, in a neighborhood of (X0, Y0) the function u can be approximated

by

u(X,Y ) = u0 −
wX(X0, Y0)

8c(u0)
p0(X −X0)

2 −
zY (X0, Y0)

8c(u0)
q0(Y − Y0)

2

+O(1) ·
(
|X −X0|+ |Y − Y0|

)3
. (3.49)

In addition, by (2.12)−(2.13) we have

t(X,Y ) = t0 +
w2
X(X0, Y0)

24c(u0)
p0(X −X0)

3 +
z2Y (X0, Y0)

24c(u0)
q0(Y − Y0)

3

+O(1) ·
(
|X −X0|+ |Y − Y0|

)4
, (3.50)

x(X,Y ) = x0 +
w2
X(X0, Y0)

24
p0(X −X0)

3 −
z2Y (X0, Y0)

24
q0(Y − Y0)

3

+O(1) ·
(
|X −X0|+ |Y − Y0|

)4
. (3.51)

Using (3.50)−(3.51) in (3.49) we eventually obtain

u(t, x) = u(t0, x0)−
1

8c(u0)

(
144 p0

wX(X0, Y0)

)1/3 [
c(u0)(t− t0) + (x− x0)

]2/3

−
1

8c(u0)

(
144 q0

zY (X0, Y0)

)1/3 [
c(u0)(t− t0)− (x− x0)

]2/3

+O(1) ·
(
|t− t0|+ |x− x0|

)
. (3.52)

This proves (3.5). ���

4. Dissipative Solutions

In this last section we assume c′(u) > 0 and study the structure of a

dissipative solution in a neighborhood of a point where a new singularity

appears. We recall that dissipative solutions can be characterized by the

property that R,S in (2.2) are bounded below, on any compact subset of

the domain {(t, x) ; t > 0, x ∈ R}. As proved in [3], dissipative solutions

can be constructed by the same transformation of variables as in (2.5), (2.7),
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and (2.8). However, the equations (2.10)−(2.11) should now be replaced by





wY = θ · c′(u)
8c2(u)

(cos z − cosw) q ,

zX = θ · c′(u)
8c2(u)

(cosw − cos z) p ,
(4.1)





pY = θ · c′(u)
8c2(u)

[
sin z − sinw

]
pq ,

qX = θ · c′(u)
8c2(u)

[
sinw − sin z

]
pq ,

(4.2)

where

θ =

{
1 if max{w, z} < π ,

0 if max{w, z} ≥ π .
(4.3)

Notice that, by setting θ ≡ 1, one would again recover the conservative

solutions.

It is interesting to compare a conservative and a dissipative solution,

with the same initial data. Consider a point P = (X0, Y0) of Type 2, where

two new singular curves γ−, γ+ originate, in the conservative solution. To fix

the ideas, assume that the singularity occurs in backward moving waves, so

that R → +∞ but S remains bounded. Moreover, let the conditions (3.26)

and (3.37) hold.

Up to the time t0 = t(X0, Y0) where the singularity appears, the conser-

vative and the dissipative solution coincide. For t > t0, they still coincide

outside the domain

Ω
.
=
{
(x, t) ; t ≥ t0 , γ−(t) ≤ x ≤ γ̃(t)

}
, (4.4)

where γ̃ is the forward characteristic through the point (x0, t0). Figure 6

shows the positions of these singularities in the X-Y plane and in the x-t

plane. Figure 7 illustrates the difference in the profiles of the two solutions

for t > t0. Our results can be summarized as follows.

Theorem 4. In the above setting, the conservative solution ucons(t, ·) has

two strong singularities at x = γ−(t) and x = γ+(t), where |uconsx | → ∞,

and is smooth at all other points.

On the other hand, the dissipative solution udiss(t, ·) has a strong sin-

gularity at x = γ−(t), where |udissx | → ∞, and a weak singularity along the

forward characteristic x = γ̃(t), where udissx is continuous but the second

derivative udissxx does not exist.
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Figure 6: The positions of the singularities in the X-Y plane and in the x-t plane.
This refers to a point where a new singularity is formed, in the first family (i.e.,
for backward moving waves). Above: a conservative solution. Below: a dissipative
solution. Notice that the entire region between the curves σ− and σ♯ is mapped onto
the single curve γ−. Indeed, horizontal segments in the X-Y plane are mapped into
a single point. In the x-t plane, the two solutions differ only on the set Ω, bounded
by the characteristic curves γ− (the image of both σ− and σ♯) and γ̃ (the image of
the line σ̃).

The difference between these two solutions can be estimated as

∥∥ucons(t, ·) − udiss(t, ·)‖C0(R) = O(1) · (t− t0). (4.5)

Proof. 1. To fix the ideas, assume that at the point P = (X0, Y0) where

the singularity is formed one has

wXX < 0, wY > 0, c′(u) > 0.

In the X-Y coordinates, for smooth initial data the components (x, t, u, w, z,

p, q) of the conservative solution remain globally smooth. On the other hand,

for a dissipative solution by (4.1)−(4.2) we only know that these components

are Lipschitz continuous.
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Figure 7: Comparing a conservative and a dissipative solution, at a time t > t0, after
a singularity has appeared. The conservative solution has two strong singularities
at γ−(t) < γ+(t), while the dissipative solution has a strong singularity at γ−(t)
and a weak singularity at γ̃(t). The two solutions coincide for x ≤ γ−(t) and for
x ≥ γ̃(t).

2. For X ≥ X0 we denote by Y = σ♯(X) the curve where w = π, in

the dissipative solution. A Taylor approximation for σ♯ is derived from the

identities

w(X,Y0) = w0 + wXX(X0, Y0) ·
(X −X0)

2

2
+O(1) · (X −X0)

3,

wY (X,Y ) = wY (X0, Y0) +O(1) ·
(
|X −X0|+ |Y − Y0|

)
,

valid in the region where w < π. Together, they imply

σ♯(X) = Y0 + κ(X −X0)
2 +O(1) · (X −X0)

3, (4.6)

where κ > 0 is the same constant found in (3.37) for the conservative solu-

tion.

For Y ′ > Y0, (3.38) and (4.6) together imply

X♯(Y ′)−X−(Y ′) = 2

(
Y ′ − Y0

κ

)1/2

+O(1) · |Y ′ − Y0| . (4.7)

3. Consider a point (X,Y ) with X > X0 and Y ≤ σ♯(X). By the second
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Figure 8: Estimating the values of a dissipative solution near a singularity. Notice
that the functions x, t, u are constant on every horizontal segment contained in the shaded
region where w = π.

equation in (2.9) it follows

u(X,Y ) = u(X,Y0) +

∫ Y

Y0

(
sin z

4c(u)
q

)
(X,Y ′) dY ′ . (4.8)

As in Figure 8, for Y ′ ∈ [Y0, Y ], call X−(Y ′) and X♯(Y ′) respectively the

points where σ−(X) = Y ′ and σ♯(X) = Y ′. Since zX = qX = 0 when w = π,

by the second equations in (4.1) and in (4.2) we have

z(X,Y ′) = z(X−(Y ′), Y ′) +

∫ X

X−(Y ′)
zX(X ′, Y ′) dX ′

= z(X−(Y ′), Y ′) +

∫ X

X♯(Y ′)

(
c′(u)

8c2(u)
(cosw − cos z)p

)
(X ′, Y ′)dX ′,

(4.9)

q(X,Y ′) = q(X−(Y ′), Y ′) +

∫ X

X♯(Y ′)

(
c′(u)

8c2(u)

[
sinw − sin z

]
pq

)
(X ′, Y ′)dX ′.

(4.10)

4. For notational convenience, in the following we denote by (x, t, u, w, z, p,

q)(X,Y ) the components describing a dissipative solution, and by (x̂, t̂, û, ŵ,

ẑ, p̂, q̂)(X,Y ) the corresponding components of the conservative solution. We

observe that all these functions are Lipschitz continuous. As shown in Figure

6, these two solutions can be different only at points (X,Y ) in the region

bounded by the curves σ− and σ̃, namely

{
X ≤ X0 , Y > σ−(X)

}
∪
{
X ≥ X0 , Y > Y0

}
.

Consider a point (X,Y ′) with X > X0, Y
′ < σ♯(X). By (4.1), observing
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that z = ẑ for Y ≤ Y0 and using (4.7) we find

ẑ(X,Y ′)− z(X,Y ′)

=

∫ X♯(Y ′)

X−(Y ′)
ẑX(X ′, Y ′) dX ′ +

∫ X

X♯(Y ′)
(ẑX − zX) (X ′, Y ′) dX ′

= −
c′(u0)(1 + cos z0)

8c2(u0)
p0 ·

(
X♯(Y ′)−X−(Y ′)

)

+O(1) ·
(
X♯(Y ′)−X−(Y ′)

)2
+O(1) ·

(
X −X♯(Y ′)

)
(Y ′ − Y0)

= −
c′(u0)(1 + cos z0)

4c2(u0)κ1/2
p0 · (Y

′ − Y0)
1/2 +O(1) · |Y ′ − Y0| . (4.11)

By (4.2), a similar computation yields

q̂(X,Y ′)−q(X,Y ′)

=

∫ X♯(Y ′)

X−(Y ′)
q̂X(X ′, Y ′) dX ′ +

∫ X

X♯(Y ′)
(q̂X − qX) (X ′, Y ′) dX ′

= −
c′(u0) sin z0
8c2(u0)

p0q0 ·
(
X♯(Y ′)−X−(Y ′)

)

+O(1) ·
(
X♯(Y ′)−X−(Y ′)

)2
+O(1) ·

(
X −X♯(Y ′)

)
(Y ′ − Y0)

= −
c′(u0) sin z0
4c2(u0)κ1/2

p0q0 · (Y
′ − Y0)

1/2 +O(1) · |Y ′ − Y0| . (4.12)

Next, using the second equation in (2.9) and recalling that u(X,Y0) =

û(X,Y0), for any X ∈ [X0, X0 + 1] and Y ∈ [Y0, σ
♯(X)] we obtain

û(X,Y )−u(X,Y ) =

∫ Y

Y0

(
sin ẑ

4c(û)
q̂ −

sin z

4c(u)
q

)
(X,Y ′) dY ′

=

∫ Y

Y0

( cos z0
4c(u0)

q0 · (ẑ − z) +
sin z0
4c(u0)

· (q̂ − q)

−
c′(u0) sin z0
4c2(u0)

q0 · (û− u)
)
(X,Y ′) dY ′

+O(1) ·

∫ Y

Y0

(
|ẑ−z|2 + |q̂−q|2 + |û−u|2

)
(X,Y ′)dY ′

+O(1) ·
(
|X −X0|+ |Y − Y0|

)

·

∫ Y

Y0

(
|ẑ − z|+ |q̂ − q|+ |û− u|

)
(X,Y ′) dY ′
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= η0 · (Y − Y0)
3/2 +O(1) · |Y − Y0|

2, (4.13)

where the constant η0 is computed by

η0 =
2

3

[
−
c′(u0)(1 + cos z0)

4c2(u0)κ1/2
p0

]
·
cos z0
4c(u0)

q0 +
2

3

[
−
c′(u0) sin z0

4c2(u0)κ1/2
p0q0

]
·
sin z0
4c(u0)

.

(4.14)

5. Using the second equations in (2.12) and in (2.13), we obtain similar

estimates for the variables x, t. Namely,

x̂(X,Y )−x(X,Y ) = −

∫ Y

Y0

(
1 + cos ẑ

4
q̂ −

1 + cos z

4
q

)
(X,Y ′) dY ′

=

∫ Y

Y0

(
sin z0
4

q0 · (ẑ − z)−
1 + cos z0

4
· (q̂ − q)

)
(X,Y ′) dY ′

+O(1) ·

∫ Y

Y0

(
|ẑ − z|2 + |q̂ − q|2

)
(X,Y ′) dY ′

+O(1) ·
(
|X −X0|+ |Y − Y0|

)
·

∫ Y

Y0

(
|ẑ − z|+ |q̂ − q|

)
(X,Y ′) dY ′

= O(1) · |Y − Y0|
2. (4.15)

Indeed, the coefficient of the leading order term O(1) · (Y − Y0)
3/2 vanishes.

Similarly,

t̂(X,Y )−t(X,Y ) = −

∫ Y

Y0

(
1 + cos ẑ

4c(û)
q̂−

1 + cos z

4c(u)
q

)
(X,Y ′) dY ′

=

∫ Y

Y0

( sin z0
4c(u0)

q0 · (ẑ − z)−
1 + cos z0
4c(u0)

· (q̂ − q)

+
1 + cos z0
4c2(u0)

c′(u0)q0 · (û− u)
)
(X,Y ′)dY ′

+O(1) ·

∫ Y

Y0

(
|ẑ − z|2 + |q̂ − q|2 + |û− u|2

)
(X,Y ′) dY ′

+O(1) ·
(
|X−X0|+|Y −Y0|

)
·

∫ Y

Y0

(
|ẑ−z|+|q̂−q|+|û−u|

)
(X,Y ′)dY ′

= O(1) · |Y − Y0|
2. (4.16)

6. The estimate (4.13) provides a bound on the difference û− u between a

conservative and a dissipative solution, at a given point (X,Y ). However,
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our main goal is to estimate the difference û− u as functions of the original

variables x, t. For this purpose, consider a dissipative solution u and a point

P = (x, t) =
(
x(X,Y ), t(X,Y )

)
, (4.17)

with

X > X0, Y0 < Y < σ♯(X). (4.18)

Moreover, let û be the conservative solution with the same initial data, and

let (X̂, Ŷ ) be the point which is mapped to P in the conservative solution,

so that

P = (x, t) =
(
x̂(X̂, Ŷ ), t̂(X̂, Ŷ )

)
. (4.19)

Using (4.13), (4.15), (4.16), and recalling that the conservative solution û =

û(x, t) is Hölder continuous of exponent 1/2 w.r.t. both variables x, t, we

obtain

|û(x, t)−u(x, t)| ≤
∣∣û(X̂, Ŷ )−û(X,Y )

∣∣+
∣∣û(X,Y )−u(X,Y )

∣∣

= O(1) ·
(∣∣x̂(X̂, Ŷ )− x̂(X,Y )

∣∣1/2+
∣∣t̂(X̂, Ŷ )− t̂(X,Y )

∣∣1/2
)

+O(1) · |Y − Y0|
3/2

= O(1) ·
(∣∣x(X,Y )− x̂(X,Y )

∣∣1/2+
∣∣t(X,Y )− t̂(X,Y )

∣∣1/2
)

+O(1) · |Y − Y0|
3/2

= O(1) · |Y − Y0|. (4.20)

In a neighborhood of (x0, t0) we have

tY =
1 + cos z

4c(u)
q >

1 + cos z0
5c(u0)

q0 > 0 . (4.21)

For (x, t) as in (4.17)-(4.18), one has

t−t0 =
[
t(X,Y )−t(X,Y0)

]
+
[
t(X,Y0)−t(X0, Y0)

]
≥

1 + cos z0
5c(u0)

q0 ·|Y −Y0| .

Together with (4.20), this proves (4.5).

7. It remains to prove that the solution u = u(t, x) is not twice differ-

entiable along the forward characteristic γ̃.
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Consider a point (x1, t1) =
(
x(X,Y0), t(X,Y0)

)
on γ̃, with X > X0. Let

x = γ(t) be the backward characteristic through (x1, t1), so that

γ(t1) = x1, γ̇(t) = c(u(γ(t), t)).

Assume that u were twice differentiable at the point (x1, t1). Then the map

t 7→ u(γ(t), t) would also be twice differentiable at t = t1. Indeed

d

dt
u
(
γ(t), t

)
= −c(u)ux + ut ,

d2

dt2
u
(
γ(t), t

)
= −c′(u)

(
−c(u)ux + ut

)
ux+c2(u)uxx−2c(u)uxt+utt. (4.22)

To reach a contradiction, consider the map τ 7→ Y (τ) implicitly defined by

t(X,Y (τ)) = τ .

By (4.21) this map is well defined. In particular, Y (t1) = Y0. We thus have

d

dt
u
(
γ(t), t

)
=

d

dt
u(X,Y (t)) = uY ·

4c(u)

(1 + cos z)q
=

sin z

1 + cos z
. (4.23)

We now show that this first derivative cannot be a Lipschitz continuous

function of time, for t ≈ t1. Indeed, by (4.23) and the mean value theorem

we have

d

dt
u(X,Y (t)) −

d

dt
u(X,Y (t1))

=
sin z(X,Y (t))

1 + cos z(X,Y (t))
−

sin z(X,Y0)

1 + cos z(X,Y0)

=
1

1 + cos z(X,Y ♯)
·
[
z(X,Y (t))− z(X,Y0)

]
, (4.24)

for some intermediate value Y ♯ ∈ [Y0, Y (t)]. Call ẑ = ẑ(X,Y ) the cor-

responding conservative solution. Observe that ẑ is smooth and coincides

with z on the horizontal line {Y = Y0}. Using (4.11) we obtain

∣∣z(X,Y (t))− z(X,Y0)
∣∣

≥
[
z(X,Y (t))− ẑ(X,Y (t))

]
−
[
ẑ(X,Y (t))− ẑ(X,Y0)

]

≥
c′(u0)(1 + cos z0) p0

4c2(u0)κ1/2
· (Y (t)− Y0)

1/2 −O(1) · |Y (t)− Y0| .
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As a consequence, for t ≈ t1, the function t 7→ z(X,Y (t)) is not Lipschitz

continuous, and the same applies to the left hand side of (4.24). We thus

conclude that the map t 7→ u(γ(t), t) cannot be twice differentiable at t = t1,

in contradiction with (4.22). This completes the proof of Theorem 4. ���
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	1. Introduction
	2. Review of the Equations
	3. Singularities of Conservative Solutions
	3.1. Singular curves
	3.2. Points where two singular curves originate or terminate
	3.3. Points where two singular curves cross

	4. Dissipative Solutions

