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Abstract

We study the initial value problem for a hyperbolic Cahn-Hilliard equation in n-

dimensional space. The dissipative structure of our linearized equation is of the regularity-

loss type. We overcome the difficulty caused by the regularity-loss property by introducing

a set of suitable time-weighted spaces and prove the global existence and optimal decay of

solutions under smallness and enough regularity assumptions on the initial data. Moreover,

we investigate the asymptotic behavior of our nonlinear solutions as t → ∞. When n ≥ 3,

they are asymptotic to the linear diffusion wave expressed by the fundamental solution of

the equation vt +∆2
v = 0. On the other hand, when n = 1 or n = 2, they are asymptotic

to the nonlinear diffusion wave which can be expressed in terms of the self-similar solution

of the equation vt +∆2
v = ∆v

1+ 2

n .

1. Introduction

We consider the initial value problem of the following “hyperbolic Cahn-

Hilliard equation” in the n-dimensional whole space R
n:

(1−∆)utt +∆2u+ ut = ∆f(u). (1.1)
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The initial data are given as

u(x, 0) = u0(x), ut(x, 0) = u1(x). (1.2)

Here u = u(x, t) is the unknown function of x = (x1, · · · , xn) ∈ R
n and t > 0,

and the nonlinear term f(u) is a smooth function of u under consideration

and satisfies f(u) = O(uν) for u→ 0, where ν = max{1 + 2
n , 2}; notice that

ν = 3 for n = 1 and ν = 2 for n ≥ 2. We write

f(u) = g(u) +O(uν+1) (1.3)

for u→ 0, where g(u) = auν with a constant a 6= 0.

The linearized equation corresponding to (1.1) is given by

(1−∆)utt +∆2u+ ut = 0. (1.4)

This is the dissipative plate equation with the rotational inertia effects de-

scribed by the term −∆utt. It was observed in [42] (cf. [32]) that the dissi-

pative structure of the equation (1.4) is of the regularity-loss type which is

characterized by the property

Reλ(ξ) ≤ −
c|ξ|4

(1 + |ξ|2)3
,

where λ(ξ) denotes the eigenvalue of the equation obtained by taking Fourier

transform of (1.4). The corresponding decay property of the linearized equa-

tion (1.4) will be reviwed in Section 2.

On the other hand, if we neglect the term (1−∆)utt, then our equation

(1.1) is reduced to

ut +∆2u = ∆f(u), (1.5)

which is a “Cahn-Hilliard type equation”. We note that the standard Cahn-

Hilliard equation is the equation (1.5) with f(u) = u(u2−1) (see [1]); notice

that this f(u) does contain a linear part, which is excluded in our situation.

However, our assumption for the nonlinearity (1.3) is close to the one of the

equation (1.5). Namely, Evans-Galaktionov-Williams [5] considered (1.5)

with the single power type nonlinear term f(u) = |u|p−1u for p > 1 as the

limit case of γ → 0+ of (1.5) with a standard double potential function
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fγ(u) = |u|p−1u − γ|u|pu. They studied the asymptotic behavior of the

global and blow-up solutions.

We also note that the modification of the equation (1.5) are introduced

in many directions to describe physical phenomena accurately (see e.g. [40]

and references therein). Especially, a hyperbolic Cahn-Hilliard equation

εutt +∆2u+ ut = ∆f(u), ε > 0, (1.6)

is proposed from the observation of the experimental data (cf. [6]-[9]). The

modified equation (1.6) has its own interesting aspects from mathematical

point of view, since it is easy to guess that the properties of the solutions

of (1.5) and (1.6) are totally different (see e.g. [11]-[16], [43]). Our equation

(1.1) can be regarded as one of the modification of (1.6), with the regularity-

loss structure. For reasons discussed in the above, we call our equation (1.1)

as a hyperbolic Cahn-Hilliard equation, including a rough indication of the

form of the equation itself.

The main purpose of this paper is to investigate the large-time asymp-

totic behavior of solutions to the problem (1.1), (1.2). First, we show the

global existence and optimal decay of solutions under smallness and enough

regularity assumptions on the initial data. When the regularity index s is

large enough and the the norm E1 = ‖u0‖Hs+1∩L1 + ‖u1‖Hs∩L1 of the initial

data is small, our global solution exists and satisfies the decay estimates

‖∂kxu(t)‖Hs+1−σ0(k)−j ≤ CE1(1 + t)−
j

2
− k

4 , (1.7)

‖∂kxu(t)‖Hs−σ1(k,n) ≤ CE1(1 + t)−
n
8
− k

4 (1.8)

for 0 ≤ j ≤ [n4 ] and k ≥ 0 with σ0(k)+ j ≤ s+1 in (1.7), and 0 ≤ k ≤ s0 and

σ1(k, n) ≤ s in (1.8). Here σ0(k) = k+[k+1
2 ] and σ1(k, n) = k+[n+2k−1

4 ] are

the indices introduced in [42] to describe the regularity-loss property, and

s0 = [n2 ] + 1 is the standard regularity index for the nonlinear problem.

Moreover, we show that when n ≥ 3, our solution u is asymptotic to the

linear diffusion wave v∗ defined by

v∗(x, t) :=MG0(x, t+ 1), (1.9)
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where G0(x, t) = F−1[e−|ξ|4t](x) is the fundamental solution of the linear

parabolic equation

vt +∆2v = 0, (1.10)

and the mass M is determined by M :=
∫

Rn(u0 + u1)(x)dx. We note that

G0(x, t) = t−
n
4G∗(xt

− 1
4 ) with G∗(x) = F−1[e−|ξ|4 ](x). On the other hand,

when n = 1 or n = 2, we show that the solution u is asymptotic to the

nonlinear diffusion wave v∗ which is defined as

v∗(x, t) := (t+ 1)−
n
4 ΦM (x(t+ 1)−

1
4 ). (1.11)

Here the function t−
n
4 ΦM(xt−

1
4 ) is the self-similar solution to the semilinear

parabolic equation

vt +∆2v = ∆g∗(v) (1.12)

satisfying the mass condition
∫

Rn ΦM(x) dx = M :=
∫

Rn(u0 + u1)(x)dx,

where g∗(v) = av1+
2
n . Note that g∗(v) = g(v) when n = 1, 2.

The similar approximation theory based on the diffusion waves was first

developed in [24] for hyperbolic-parabolic systems of conservation equations.

Then the theory was extended to the hyperbolic relaxation systems of the

discrete Boltzmann equations ([25]) and the hyperbolic-elliptic systems of ra-

diating gases ([26]). See also [31, 22, 47, 23] for related sharp approximation

results.

The study on the global existence and asymptotic behavior of solutions

to dissipative hyperbolic-type equations has a long history. We refer to

[34, 38, 37, 46] for damped wave equations and [49, 50, 44, 45] for higher

order wave equations which are similar to our fourth order equation. Also

we refer to [42, 29, 30] for various aspects of dissipation and regularity-loss

property of the plate equation.

The decay property of the regularity-loss type which is similar to our

case is known also for other interesting model systems. We refer to [39, 18,

19, 41, 35, 36] for the Timoshenko system, [17, 27] for a hyperbolic-elliptic

system of radiating gas, [2, 48] for the compressible Euler-Maxwell system,

and [3] for the Vlasov-Maxwell-Boltzmann system.

In our study it is also an important step to analyze the semilinear

parabolic equations such as (1.5) and (1.12), for we finally need to show
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that the solution to the hyperbolic problem (1.1), (1.2) is approximated in

large time by the solution to the parabolic equation (1.5) with the initial

data u0 + u1. For a wide class of semilinear parabolic equations there is an

extensive literature on the large time behavior of solutions. One heuristic

but important principle is to look at the balance between the linearity and

the nonlinearity in view of scaling. When the linear part, such as ∂t +∆2 in

(1.5), is dominant in view of scaling, one can establish the large-time asymp-

totic expansion of solutions rather explicitly and systematically; e.g., see [21]

for a recent general result. On the other hand, when the linearity balances

with the nonlinearity in view of scaling, the large time behavior of solutions

is often described by the self-similar solutions. Again there is a lot of work

related to this issue, and here we only refer to [28] which established the

abstract framework for the analysis of evolution equations in the presence of

scaling invariance.

The contents of the paper are as follows. In Section 2 we study the

linearized equation (1.4) and review the result of [42] on the temporal decay

estimates and the regularity-loss property of the associated evolution oper-

ators. The first main result of this paper is stated in Section 3 (Theorem

3.1), where we show the global existence of solutions to (1.1), (1.2) and their

decay estimates (1.7), (1.8). Moreover, in Corollary 3.4 we see that the solu-

tion is approximated by the solution to the linear hyperbolic equation (1.4)

when n ≥ 3. Section 4 is devoted to the study of the large time behavior

of solutions to (1.4), from which we obtain the linear diffusion wave (1.9)

as the asymptotic profile for solutions to (1.1) when n ≥ 3; see Proposition

4.6. In Section 5 we consider the parabolic equation of Cahn-Hilliard type

(1.5) and obtain the global solvability and the decay property of solutions to

(1.5). Then, in Section 6 we return to the original hyperbolic problem (1.1),

(1.2), and show that the solution is approximated by the solution to the

parabolic equation (1.5). This is our second main result on the asymptotic

behavior of solutions to (1.1), (1.2), stated as Theorem 6.1. It should be

emphasized that there is no restriction on the dimension in Theorem 6.1.

This is contrastive to Corollary 3.4 and Proposition 4.6, where we need the

condition n ≥ 3. In Section 7 we show the unique existence and the sta-

bility of self-similar solutions to the parabolic equation (1.12). Combining

the result in Section 7 with Theorem 6.1, we finally conclude that, in the

case n = 1, 2, the solution to (1.1), (1.2) asymptotically converges to the

nonlinear diffusion wave (1.11); see Corollary 7.3.
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Notations. We give some notations which are used in this paper. Let F [u]

denote the Fourier transform of u defined by

F [u](ξ) = û(ξ) :=

∫

Rn

u(x)e−ix·ξdx,

and we denote its inverse transform by F−1:

F−1[v](x) := (2π)−n

∫

Rn

v(ξ)eix·ξdξ.

For a nonnegative integer k, ∂kx denotes the totality of all the k-th order

derivatives with respect to x ∈ R
n.

For 1 ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space with

the norm ‖ · ‖Lp . Let m ∈ R. Then Lp
m = Lp

m(Rn) denotes the weighted Lp

space with the norm

‖u‖Lp
m
= ‖〈x〉mu‖Lp , (1.13)

where 〈x〉 = (1 + |x|2)
1
2 . When p = 2, L2

m is a Hilbert space whose inner

product 〈 · , · 〉L2
m

is defined in the natural manner. Let s be a nonnegative

integer. Then W s,p = W s,p(Rn) denotes the Sobolev space of Lp functions,

equipped with the norm ‖·‖W s,p . When p = 2, we simply write asHs =W s,2.

Also, Ck(I;W s,p) denotes the space of k-times continuously differentiable

functions on the interval I with values in the Sobolev space W s,p.

Finally, in this paper, we denote every positive constant by the same

symbol C or c without confusion. [ · ] is the Gauss symbol.

2. Linearized Equation

In this section we review the results obtained in [42] for the linearized

equation

(1−∆)utt +∆2u+ ut = 0. (2.1)

We first give the solution formula for the initial value probelm (2.1), (1.2),

and then describe the decay propery of the equation (2.1). Finally, we give

the decay estimates of the solution to the problem (2.1), (1.2).
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2.1. Solution formula

We consider the linearized equation (2.1) with the initial data (1.2). Let

us denote this linear solution by uL. We have the solution formula

uL(t) = G(t) ∗ (u0 + u1) +H(t) ∗ u0, (2.2)

where ∗ denotes the convolution with respect to x ∈ R
n, and G(x, t) and

H(x, t) are the ”modified” fundamental solutions of (2.1); G+H and H are

the fundamental solutions corresponding to u0 and u1, respectively. These

fundamental solutions are given explicitly in the Fourier space as follows:

Ĝ(ξ, t) =
1

λ+(ξ)− λ−(ξ)
(eλ+(ξ)t − eλ−(ξ)t),

(2.3)
Ĥ(ξ, t) =

1

λ+(ξ)− λ−(ξ)

{

(1 + λ+(ξ))e
λ−(ξ)t − (1 + λ−(ξ))e

λ+(ξ)t
}

.

Here λ = λ±(ξ) are the eigenvalues of the ordinary differential equation

obtained by taking the Fourier transform of (2.1). We see that these eigen-

values are the solution of the characteristic equation (1+|ξ|2)λ2+λ+|ξ|4 = 0,

and are given explicitly in the form

λ±(ξ) =
1

2(1 + |ξ|2)

{

− 1±
√

1− 4|ξ|4(1 + |ξ|2)
}

. (2.4)

It was observed in [42] that

Reλ±(ξ) ≤ −
c|ξ|4

(1 + |ξ|2)3
, (2.5)

where c is a positive constant. More precisely, we see from (2.4) that

λ+(ξ) = −|ξ|4
(

1 +O(|ξ|2)
)

, λ−(ξ) = −1 +O(|ξ|2) (2.6)

for |ξ| → 0, and

λ±(ξ) = −
1

2
|ξ|−2

(

1 +O(|ξ|−2)
)

± i|ξ|
(

1 +O(|ξ|−2)
)

(2.7)

for |ξ| → ∞. In view of (2.6) and (2.7), we see that the estimate (2.5) is

optimal. This inequality (2.5) shows that the dissipative structure of the
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equation (2.1) is of the regularity-loss type, which will be explained in the

next subsection.

2.2. Decay property

In this subsection we review the decay property of the linearized equa-

tion (2.1). It was shown in [42] that the solution operators G(t)∗ and H(t)∗

appearing in the solution formula (2.2) verify the following decay estimates.

Lemma 2.1 ([42]). Let 1 ≤ q ≤ 2 and k ≥ 0. Then we have the following

decay estimates:

‖∂kxG(t) ∗ φ‖L2 ≤C(1+t)
−n

4
( 1
q
− 1

2
)−k

4 ‖φ‖Lq+C(1 + t)−
l+1
2 ‖∂(k+l)+

x φ‖L2 , (2.8)

‖∂kxH(t) ∗ ψ‖L2 ≤C(1+t)−
n
4
( 1
q
− 1

2
)−k

4
− 1

2 ‖ψ‖Lq+C(1 + t)−
l
2 ‖∂k+l

x ψ‖L2 , (2.9)

where l + 1 ≥ 0 and (k + l)+ = max{k + l, 0} in (2.8), and l ≥ 0 in (2.9).

Remark. Note that the above decay estimates are of the regularity-loss

type. In fact, for example in (2.9), we have the decay rate (1 + t)−
l
2 only

by assuming the additional l-th order regularity on the initial data ψ. Such

a decay property of the regularity-loss type was also investigated for other

interesting systems. See [18, 19] for the dissipative Timoshenko system,

[35, 36] for the Timoshenko system with heat conduction, [17, 27] for a

hyperbolic-elliptic system of a radiating gas model, and [2, 48] for the Euler-

Maxwell system.

For the proof of Lemma 2.1, we need to show the pointwise estimates

for Ĝ and Ĥ. By applying the standard energy method in the Fourier space

for (2.1) together with the formula (2.2), we find that

|Ĝ(ξ, t)| ≤ C(1 + |ξ|2)−
1
2 e−cη(ξ)t, |Ĥ(ξ, t)| ≤ Ce−cη(ξ)t (2.10)

for ξ ∈ R
n and t ≥ 0, where η(ξ) = |ξ|4

(1+|ξ|2)3
is the same function appearing

in (2.5). More precisely, we can show that there is a small positive constant

r0 such that

|Ĝ(ξ, t)| ≤ Ce−c|ξ|4t, |Ĥ(ξ, t)| ≤ C|ξ|2e−c|ξ|4t + Ce−ct (2.11)
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for |ξ| ≤ r0 and t ≥ 0, and

|Ĝ(ξ, t)| ≤ C|ξ|−1e−c|ξ|−2t, |Ĥ(ξ, t)| ≤ Ce−c|ξ|−2t (2.12)

for |ξ| ≥ r0 and t ≥ 0. The estimate for Ĥ in (2.11) is obtained from

the expression (2.3) together with the asymptotic expansion (2.6), while

the other estimates in (2.11) and (2.12) are the consequences of (2.10). The

desired decay estimates in Lemma 2.1 follows from these pointwise estimates

and the Plancherel theorem. For the details, see [42].

To state the next decay estimates for the solution operators G(t)∗ and

H(t)∗, we introduce the indices

σ0(k) = k + [k+1
2 ], σ1(k, n) = k + [n+2k−1

4 ]. (2.13)

These indices are first introduced in [42] to describe the regularity-loss prop-

erty of the solution to our equation (2.1). With these indices, we have the

following decay result.

Lemma 2.2 ([42]). Let s ≥ 0. We have the decay estimates

‖∂kxG(t) ∗ φ‖Hs+1−σ0(k)−j ≤ C(1 + t)−
j
2
− k

4 ‖φ‖Hs∩L1 , (2.14)

‖∂kxH(t) ∗ ψ‖Hs+1−σ0(k)−j ≤ C(1 + t)−
j

2
− k

4 ‖ψ‖Hs+1∩L1 , (2.15)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s + 1 in (2.14), and k ≥ 0,

0 ≤ j ≤ [n4 ] + 1 and σ0(k) + j ≤ s+ 1 in (2.15). Also, we have

‖∂kxG(t) ∗ φ‖Hs−σ1(k,n) ≤ C(1 + t)−
n
8
− k

4 ‖φ‖Hs∩L1 , (2.16)

‖∂kxH(t) ∗ ψ‖Hs−σ1(k,n)−j ≤ C(1 + t)−
n
8
− j

2
− k

4 ‖ψ‖Hs+1∩L1 , (2.17)

where k ≥ 0 and σ1(k, n) ≤ s in (2.16), and k ≥ 0, 0 ≤ j ≤ 1 and σ1(k, n)+

j ≤ s in (2.17).

Proof. Although these decay estimates in Lemma 2.2 were shown in [42],

for completeness, we here give the proof of (2.14) and (2.16) to show how

the indices σ0(k) and σ1(k, n) appear in the decay estimates. First we prove

(2.14). Let k ≥ 0 and h ≥ 0. We have from (2.8) with k replaced by k + h
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and with q = 1 that

‖∂k+h
x G(t) ∗ φ‖L2 ≤ C(1 + t)−

n
8
− k+h

4 ‖φ‖L1 + C(1 + t)−
l+1
2 ‖∂mx φ‖L2 , (2.18)

where l + 1 ≥ 0 and m := (k + h + l)+ ≤ s. Now, letting 0 ≤ j ≤ [n4 ],

we choose l in (2.18) as the smallest integer satisfying l+1
2 ≥ j

2 + k
4 , i.e.,

l ≥ k
2 + j − 1. This implies l = [k+1

2 ] + j − 1 = σ0(k) − k + j − 1. For this

choice of l, we obtain from (2.18) that

‖∂k+h
x G(t) ∗ φ‖L2 ≤ C(1 + t)−

j

2
− k

4 ‖φ‖Hs∩L1

for 0 ≤ h ≤ s+ 1− σ0(k)− j. This proves (2.14).

To show (2.16), we choose l in (2.18) as the smallest integer satisfying
l+1
2 ≥ n

8 + k
4 , i.e., l ≥

n+2k
4 − 1. This leads to l = [n+2k−1

4 ] = σ1(k, n) − k.

For this choice of l, we obtain

‖∂k+h
x G(t) ∗ φ‖L2 ≤ C(1 + t)−

n
8
− k

4 ‖φ‖Hs∩L1

for 0 ≤ h ≤ s − σ1(k, n), which proves (2.16). This completes the proof of

Lemma 2.2. ���

2.3. Linear decay

As a direct consequence of Lemma 2.2, we have the following decay

estimates for the linear solution uL given by the formula (2.2).

Proposition 2.3 ([42]). Let n ≥ 1 and let s ≥ 0 be specified below. Suppose

that u0 ∈ Hs+1 ∩ L1 and u1 ∈ Hs ∩ L1, and put

E1 = ‖u0‖Hs+1∩L1 + ‖u1‖Hs∩L1 . (2.19)

Then the linear solution uL of the problem (2.1), (1.2), which is given by the

formula (2.2), satisfies the decay estimates

‖∂kxuL(t)‖Hs+1−σ0(k)−j ≤ CE1(1 + t)−
j

2
− k

4 , (2.20)

‖∂kxuL(t)‖Hs−σ1(k,n) ≤ CE1(1 + t)−
n
8
− k

4 , (2.21)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s + 1 in (2.20), and k ≥ 0 and

σ1(k, n) ≤ s in (2.21).
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We put φ = u0+u1 and ψ = u0 in Lemma 2.2. Then our decay estimate

(2.20) follows from (2.14) and (2.15), while (2.21) follows from (2.16) and

(2.17) with j = 0.

3. Global Solution and Decay Estimates

In this section we consider the nonlinear problem (1.1), (1.2). By the

Duhamel principle, we see that the solution u verifies the integral equation

u(t) = G(t)∗(u0+u1)+H(t)∗u0+

∫ t

0
G(t−τ)∗(1−∆)−1∆f(u)(τ)dτ, (3.1)

where G and H are the fundamental solutions of (2.1). The equation (3.1)

is simply written in the form

u(t) = uL(t) + F [u](t), (3.2)

where uL is the linear solution given in (2.2) and the nonlinear term F [u] is

defind by

F [u](t) :=

∫ t

0
G(t− τ) ∗ (1−∆)−1∆f(u)(τ)dτ. (3.3)

3.1. Global existence and decay

We want to solve the problem (3.2) by applying the fixed point theorem.

To this end, we define the Banach space X as follows:

X = X1 ∩X2, ‖u‖X = ‖u‖X1 + ‖u‖X2 , (3.4)

where X1 and X2 are also the Banach spaces

X1 = {u ∈ C0([0,∞);Hs+1); ‖u‖X1 <∞},

X2 = {u ∈ C0([0,∞);Hs); ‖u‖X2 <∞},

with the norms

‖u‖X1 :=

[n
4
]

∑

j=0

∑

σ0(k)+j≤s+1

sup
t≥0

(1 + t)
j

2
+ k

4 ‖∂kxu(t)‖Hs+1−σ0(k)−j , (3.5)
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‖u‖X2 :=

s0
∑

k=0

sup
t≥0

(1 + t)
n
8
+ k

4 ‖∂kxu(t)‖Hs−σ1(k,n) , (3.6)

respectively, where s0 = [n2 ] + 1. Here we have assumed that s ≥ σ1(s0, n)

for the regularity exponent s. Notice that σ1(s0, n) = 2[n2 ] + 1, so that we

have σ1(s0, n) = n if n is odd, and σ1(s0, n) = n + 1 if n is even. Also, we

note that σ1(k, n) ≤ s for k ≥ 0 implies that σ0(k) + j ≤ s+1 for k ≥ 0 and

0 ≤ j ≤ [n4 ].

Now we can state our result on the global existence and decay of solution

to the problem (1.1), (1.2) as follows.

Theorem 3.1 (Global existence and decay). Let n ≥ 1 and s ≥ σ1(s0, n),

where s0 = [n2 ] + 1. Suppose that u0 ∈ Hs+1 ∩ L1 and u1 ∈ Hs ∩ L1, and

define the norm E1 of the initial data by (2.19). Then there is a positive

constant δ1 such that if E1 ≤ δ1, then the problem (1.1), (1.2) admits a

unique global solution u ∈ X satisfying ‖u‖X ≤ CE1. More precisely, the

solution u verifies the decay estimates

‖∂kxu(t)‖Hs+1−σ0(k)−j ≤ CE1(1 + t)−
j

2
− k

4 , (3.7)

‖∂kxu(t)‖Hs−σ1(k,n) ≤ CE1(1 + t)−
n
8
− k

4 , (3.8)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k)+ j ≤ s+1 in (3.7), and 0 ≤ k ≤ s0 and

σ1(k, n) ≤ s in (3.8).

3.2. Preliminary

We need some preparations for the proof of Theorem 3.1. First, we show

the decay estimate for the term G(t) ∗ (1−∆)−1∆f in (3.1).

Lemma 3.2. Let k ≥ 0 and 1 ≤ q ≤ 2. Then we have

‖∂kxG(t) ∗ (1−∆)−1∆f‖L2

≤ C(1 + t)
−n

4
( 1
q
− 1

2
)− k+2−j

4 ‖∂jxf‖Lq + C(1 + t)−
l+1
2 ‖∂(k+l)+

x f‖L2 , (3.9)

where l + 1 ≥ 0, 0 ≤ j ≤ k + 2 and (k + l)+ = max{k + l, 0}.

This is a simple corollary of (2.8) and we omit the proof.



2015] HYPERBOLIC CAHN-HILLIARD EQUATION 491

By virtue of the above lemma, we can show the decay estimate for the

nonlinear term F [u] in (3.3). To state its result, we observe that

‖u(t)‖L∞ ≤ C‖u‖X2(1 + t)−
n
4 . (3.10)

This can be proved by applying the Gagliardo-Nirenberg inequality together

with the definition of the norm ‖u‖X2 . In fact, we have

‖u‖L∞ ≤ C‖∂s0x u‖
θ
L2‖u‖

1−θ
L2 (3.11)

with θ = n
2s0

, where s0 = [n2 ] + 1. On the other hand, it follows from

(3.6) that ‖∂kxu(t)‖L2 ≤ ‖u‖X2(1 + t)−
n
8
− k

4 for 0 ≤ k ≤ s0. Substituting this

inequality with k = s0 and k = 0 into (3.11) and using the fact that s0θ
4 = n

8 ,

we obtain the desired estimate (3.10).

The decay estimate for the nonlinear term F [u] is now given as follows.

Lemma 3.3. Let s ≥ σ1(s0, n) and suppose that u, v ∈ X. Then we have

the following decay estimates:

‖∂kx(F [u]− F [v])(t)‖Hs+1−σ0(k)−j

≤C‖(u, v)‖ν−1
X ‖u−v‖Xρ(t)(1+t)

− j

2
− k

4 , (3.12)

‖∂kx(F [u]− F [v])(t)‖Hs−σ1(k,n)

≤C‖(u, v)‖ν−1
X ‖u−v‖Xρ(t)(1+t)

−n
8
− k

4 , (3.13)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s + 1 in (3.12), k ≥ 0 and

σ1(k, n) ≤ s in (3.13), and ρ(t) is the function given below.

The function ρ(t) in Lemma 3.3 is given by

ρ(t) =



























1 n = 1, 2

(1 + t)−
1
4 n = 3

(1 + t)−
1
2 log(2 + t) n = 4

(1 + t)−
1
2 n ≥ 5

(3.14)

Proof of Lemma 3.3. Let k, h ≥ 0. We apply ∂k+h
x to the difference
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F [u]− F [v] and take the L2 norm to obatin

‖∂k+h
x (F [u] − F [v])(t)‖L2

≤

∫ t

0
‖∂k+h

x G(t− τ) ∗ (1−∆)−1∆(f(u)− f(v))(τ)‖L2dτ

=

∫ t
2

0
+

∫ t

t
2

=: J1 + J2.

For the term J1, we apply (3.9) with k replaced by k + h, and with q = 1

and j = 0. This yields

J1 ≤ C

∫ t
2

0
(1 + t− τ)−

n
8
− k+h+2

4 ‖(f(u)− f(v))(τ)‖L1dτ

+C

∫ t
2

0
(1 + t− τ)−

l+1
2 ‖∂mx (f(u)− f(v))(τ)‖L2dτ =: J11 + J12, (3.15)

where l + 1 ≥ 0 and m := (k + h+ l)+ ≤ s+ 1. On the other hand, for the

term J2, we apply (3.9) with k replaced by k+ h, and with q = 2, j = k+ h

and l = 0. This gives

J2 ≤ C

∫ t

t
2

(1 + t− τ)−
1
2 ‖∂k+h

x (f(u)− f(v))(τ)‖L2dτ. (3.16)

First we estimate the term J11. Since f(u) = O(uν), we see that ‖f(u)−

f(v)‖L1 ≤ C‖(u, v)‖ν−2
L∞ ‖(u, v)‖L2‖u−v‖L2 . Therefore, using (3.6) and (3.8),

we find that

‖(f(u)− f(v))(t)‖L1 ≤ C‖(u, v)‖ν−1
X2

‖u− v‖X2(1 + t)−
n
4
(ν−1).

Consequently, we can estimate the term J11 as

J11 ≤ C‖(u, v)‖ν−1
X ‖u− v‖X

∫ t
2

0
(1 + t− τ)−

n
8
− k+h+2

4 (1 + τ)−
n
4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖X(1 + t)−

n
8
− k

4
− 1

2

∫ t
2

0
(1 + τ)−

n
4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖Xρ(t)(1 + t)−

n
8
− k

4 (3.17)

for h ≥ 0, where ρ(t) is given in (3.14). Here we used the fact that n
4 (ν−1) =
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1
2 for n = 1, 2 and n

4 (ν − 1) = n
4 for n ≥ 3.

Next we estimate the term J12. When we prove (3.12), we let 0 ≤ j ≤ [n4 ]

and choose l in (3.15) as the smallest integer satisfying l+1
2 ≥ j

2 +
k
4 +

1
2 , i.e.,

l ≥ j+ k
2 . This lead to l = [k+1

2 ]+ j = σ0(k)− k+ j. For this choice of l, the

requirement m := (k+h+ l)+ ≤ s+1 implies that 0 ≤ h ≤ s+1−σ0(k)− j.

Also, we have

‖∂mx (f(u)− f(v))‖L2

≤ C‖(u, v)‖ν−2
L∞ {‖(u, v)‖L∞‖∂mx (u− v)‖L2 + ‖∂mx (u, v)‖L2‖(u− v)‖L∞}

≤ C‖(u, v)‖ν−2
L∞ {‖(u, v)‖L∞‖u− v‖Hs+1 + ‖(u, v)‖Hs+1‖(u− v)‖L∞}.

Therefore, using (3.5), (3.6) and (3.11), we find that

‖∂mx (f(u)− f(v))(t)‖L2

≤ C‖(u, v)‖ν−2
X2

{‖(u, v)‖X2‖u−v‖X1+‖(u, v)‖X1‖u−v‖X2}(1+t)
−n

4
(ν−1)

≤ C‖(u, v)‖ν−1
X ‖u− v‖X(1 + t)−

n
4
(ν−1). (3.18)

Consequently, similarly as in (3.17), we can estimate J12 as

J12 ≤ C‖(u, v)‖ν−1
X ‖u− v‖X

∫ t
2

0
(1 + t− τ)−

j
2
− k

4
− 1

2 (1 + τ)−
n
4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖Xρ(t)(1 + t)−

j

2
− k

4 (3.19)

for 0 ≤ h ≤ s+ 1− σ0(k)− j, where 0 ≤ j ≤ [n4 ], and ρ(t) is in (3.14).

On the other hand, when we prove (3.13), we choose l in (3.15) as the

smallest integer satisfying l+1
2 ≥ n

8 + k
4 + 1

2 , i.e., l ≥
n+2k

4 . This leads to

l = [n+2k−1
4 ] + 1 = σ1(k, n) − k + 1. For this choice of l, the requirement

m := (k+ h+ l)+ ≤ s+1 implies 0 ≤ h ≤ s− σ1(k, n). In this case, we also

have (3.18). Therefore we obtain

J12 ≤ C‖(u, v)‖ν−1
X ‖u− v‖X

∫ t
2

0
(1 + t− τ)−

n
8
− k

4
− 1

2 (1 + τ)−
n
4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖Xρ(t)(1 + t)−

n
8
− k

4 (3.20)

for 0 ≤ h ≤ s− σ1(k, n), where ρ(t) is in (3.14).
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Finally we estimate the term J2. We see that

‖∂k+h
x (f(u)− f(v))‖L2

≤ C‖(u, v)‖ν−2
L∞ {‖(u, v)‖L∞‖∂kx(u− v)‖Hh + ‖∂kx(u, v)‖Hh‖(u− v)‖L∞}.

When we show (3.12), we let 0 ≤ j ≤ [n4 ] and 0 ≤ h ≤ s+ 1− σ0(k)− j. In

this case, using (3.5), (3.6) and (3.11), we find that

‖∂k+h
x (f(u)− f(v))(t)‖L2 ≤ C‖(u, v)‖ν−2

X2
{‖(u, v)‖X2‖u− v‖X1

+‖(u, v)‖X1‖u− v‖X2}(1 + t)−
j

2
− k

4
−n

4
(ν−1)

≤ C‖(u, v)‖ν−1
X ‖u− v‖X(1 + t)−

j
2
− k

4
−n

4
(ν−1).

Substituting this estimate into (3.16), we can estimate J2 as

J2 ≤ C‖(u, v)‖ν−1
X ‖u− v‖X

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

j

2
− k

4
−n

4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖X(1 + t)−

j

2
− k

4
−n

4
(ν−1)

∫ t

t
2

(1 + τ)−
1
2 dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖Xρ1(t)(1 + t)−

j

2
− k

4 , (3.21)

where 0 ≤ j ≤ [n4 ], 0 ≤ h ≤ s+ 1− σ0(k)− j, and ρ1(t) is given by

ρ1(t) := (1 + t)−{n
4
(ν−1)− 1

2
} =

{

1 n = 1, 2

(1 + t)−(n
4
− 1

2
) n ≥ 3.

(3.22)

On the other hand, when we show (3.13), we let 0 ≤ h ≤ s − σ1(k, n).

In this case, by using (3.6) and (3.11), we have

‖∂k+h
x (f(u)− f(v))(t)‖L2 ≤ C‖(u, v)‖ν−1

X2
‖u− v‖X2(1 + t)−

n
8
− k

4
−n

4
(ν−1).

Therefore, similarly as in (3.21), we can estimate J2 as

J2 ≤ C‖(u, v)‖ν−1
X ‖u− v‖X

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

n
8
− k

4
−n

4
(ν−1)dτ

≤ C‖(u, v)‖ν−1
X ‖u− v‖Xρ1(t)(1 + t)−

n
8
− k

4 (3.23)

for 0 ≤ h ≤ s− σ1(k, n), where ρ1(t) is given in (3.22).
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Now the estimate (3.12) (resp. (3.13)) follows from (3.17), (3.19) and

(3.21) (resp. (3.17), (3.20) and (3.23)). Thus the proof of Lemma 3.3 is

complete. ���

3.3. Proof of Theorem 3.1

We prove Theorem 3.1 by applying the contraction mapping principle.

We define the mapping Φ by

Φ[u] := uL + F [u] (3.24)

for u ∈ X, where uL is the linear solution given in (2.2), F [u] is the nonlinear

term defined in (3.3), and X denotes the Banach space defined in (3.3)

with the regularity s ≥ σ1(s0, n). To define a subset S of X, we recall

the estimates (2.20) and (2.21) for the linear solution uL. These estimates

together with (3.5) and (3.6) give

‖uL‖X ≤ C0E1, (3.25)

where C0 is a positive constant and E1 is the norm of the initial data given

in (2.19). With this constant C0, we define the subset S of X by

S := {u ∈ X; ‖u‖X ≤ 2C0E1}. (3.26)

Then we claim that Φ is a contraction mapping of S into itself, provided

that E1 is suitably small.

We verify this claim. Let u, v ∈ X. Then it follows from Lemma 3.3

that

‖F [u] − F [v]‖X ≤ C1‖(u, v)‖
ν−1
X ‖u− v‖X , (3.27)

where C1 is a positive constant. Now we suppose that u ∈ S, i.e., ‖u‖X ≤

2C0E1. Then we have from (3.25) and (3.27) with v = 0 that

‖Φ[u]‖X ≤ ‖uL‖X + ‖F [u]‖X ≤ C0E1 + C1(2C0E1)
ν ≤ 2C0E1,

provided that E1 is so small as C1(2C0E1)
ν−1 ≤ 1

2 . This shows that Φ is a



496 H. TAKEDA, Y. MAEKAWA AND S. KAWASHIMA [December

mapping of S into itself. Next, letting u, v ∈ S, we have from (3.27) that

‖Φ[u]− Φ[v]‖X = ‖F [u]− F [v]‖X ≤ C1(2C0E1)
ν−1‖u− v‖X ≤

1

2
‖u− v‖X

provided that C1(2C0E1)
ν−1 ≤ 1

2 . Thus we have shown that Φ is a contrac-

tion mapping of S into itself if E1 is suitably small.

As the consequence of the contraction mapping principle, our mapping

Φ has a unique fixed point u in S. This fixed point u satisfies u = Φ[u] =

uL+F [u] and ‖u‖ ≤ 2C0E1, and hence is the desired solution to our problem

(3.2). This complete the proof of Theorem 3.1.

As the direct consequence of Theorem 3.1 and Lemma 3.3, we have the

following linear approximation result for n ≥ 3.

Corollary 3.4 (Linear approximation). Assume the same condition in The-

orem 3.1. Let u be the global solution to the nonlinear problem (1.1), (1.2),

which is obtained in Theorem 3.1, and let uL be the linear solution given

in (2.2). When n ≥ 3, the nonlinear solution u is asymptotic to the linear

solution uL as t→ ∞. More precisely, we have

‖∂kx(u− uL)(t)‖Hs+1−σ0(k)−j ≤ CEν
1ρ(t)(1 + t)−

j

2
− k

4 , (3.28)

‖∂kx(u− uL)(t)‖Hs−σ1(k,n) ≤ CEν
1ρ(t)(1 + t)−

n
8
− k

4 , (3.29)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s + 1 in (3.7), 0 ≤ k ≤ s0 and

σ1(k, n) ≤ s in (3.8), and ρ(t) is given in (3.14).

Proof. In Theorem 3.1 we have shown that ‖u‖X ≤ CE1. Therefore,

applying Lemma 3.3 with v = 0 to the expression u−uL = F [u], we conclude

the desired estimates (3.28) and (3.29). This completes the proof. ���

4. Linear Approximation for n ≥ 3

In the last section, we observed that the nonlinear solution u is approx-

imated by the linear solution uL for n ≥ 3. The aim of this section is to

show the further approximation of the linear solution uL by the solution vL
of the simpler linear problem (1.10) with

v(x, 0) = v0(x) := u0(x) + u1(x), (4.1)
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where u0 and u1 are the initial data in (1.2). This solution vL is given by

the formula

vL(t) = G0(t) ∗ (u0 + u1), (4.2)

where G0 is the fundamental solution of (1.10). We note that

G0(x, t) = F−1[e−|ξ|4t](x) = t−
n
4G∗(xt

− 1
4 ), (4.3)

where G∗(x) = F−1[e−|ξ|4 ](x). Since G∗ is a rapidly decreasing function, it

is not difficult to show the following Lp-Lq estimate

‖∂kxG0(t) ∗ φ‖Lp ≤ Ct
−n

4
( 1
q
− 1

p
)− k

4 ‖φ‖Lq , (4.4)

where k ≥ 0 and 1 ≤ q ≤ p ≤ ∞. As a simple consequence, we have

‖∂kxvL(t)‖Hs−k ≤ CE1(1 + t)−
n
8
− k

4 (4.5)

for 0 ≤ k ≤ s. Here we used the fact that ‖u0 + u1‖Hs∩L1 ≤ E1, where E1

is given in (2.19).

4.1. Simpler linear approximation

For our purpose, we first prepare the decay estimate for (G−G0)(t)∗.

Lemma 4.1 ([42]). Let 1 ≤ q ≤ 2 and k ≥ 0. Then we have the following

decay estimate:

‖∂kx(G−G0)(t) ∗ φ‖L2

≤ C(1 + t)−
n
4
( 1
q
− 1

2
)− 1

2
− k

4 ‖φ‖Lq

+C(1 + t)−
l+1
2 ‖∂(k+l)+

x φ‖L2 + Ct−
j

4 e−ct‖∂k−j
x φ‖L2 , (4.6)

where l + 1 ≥ 0, (k + l)+ = max{k + l, 0} and 0 ≤ j ≤ k in (4.6).

To verify this lemma, we consider the difference Ĝ − Ĝ0. By using

the asymptotic expansion (2.6) in the expression (2.3) for Ĝ and noting

Ĝ0(ξ, t) = e−|ξ|4t, we find that

|(Ĝ− Ĝ0)(ξ, t)| ≤ C|ξ|2e−c|ξ|4t + Ce−ct (4.7)
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for |ξ| ≤ r0 and t ≥ 0, where r0 is a small positive constant. In the region

|ξ| ≥ r0, we have (2.12) and |Ĝ0(ξ, t)| = e−|ξ|4t. These pointwise estimates

together with the Plancherel theorem yield the desired estimate (4.6). For

the details, we refer to [42].

Next we prepare the decay estimates for (G − G0)(t)∗ in the form of

Lemma 2.2.

Lemma 4.2. Let s ≥ 0. We have the decay estimates

‖∂kx(G−G0)(t) ∗ φ‖Hs−σ0(k)−j ≤ C(1 + t)−
j+1
2

− k
4 ‖φ‖Hs∩L1 , (4.8)

‖∂kx(G−G0)(t) ∗ φ‖Hs−σ1(k,n)−j ≤ C(1 + t)−
n
8
− j

2
− k

4 ‖φ‖Hs∩L1 , (4.9)

where k ≥ 0, 0 ≤ j ≤ [n4 ], σ0(k) + j ≤ s in (4.8), and k ≥ 0, 0 ≤ j ≤ 1 and

σ1(k, n) + j ≤ s in (4.9).

Proof. Let k ≥ 0 and h ≥ 0. We have from (4.6) with k replaced by k + h

and with q = 1 and j = 0 that

‖∂k+h
x (G−G0)(t) ∗ φ‖L2

≤ C(1 + t)−
n
8
−1

2
−k+h

4 ‖φ‖L1+C(1+t)−
l+1
2 ‖∂mx φ‖L2+Ce−ct‖∂k+h

x φ‖L2 ,(4.10)

where l+1 ≥ 0, m := (k+h+ l)+ ≤ s and k+h ≤ s. To prove (4.8), we set

0 ≤ j ≤ [n4 ]. For this j, we choose l in (4.10) as the smallest integer satisfying
l+1
2 ≥ j+1

2 + k
4 , i.e., l ≥

k
2 + j. This gives l = [k+1

2 ] + j = σ0(k)− k + j. For

this choice of l, we get from (4.10) that

‖∂k+h
x (G−G0)(t) ∗ φ‖L2 ≤ C(1 + t)−

j+1
2

− k
4 ‖φ‖Hs∩L1

for 0 ≤ h ≤ s− σ0(k)− j, which proves (4.8).

To show (4.9), we set 0 ≤ j ≤ 1 and choose l in (4.10) as the smallest

integer satisfying l+1
2 ≥ n

8 + j
2 + k

4 , i.e., l ≥
n+2k

4 + j − 1. This leads to

l = [n+2k−1
4 ] + j = σ1(k, n)− k + j. For this choice of l, we obtain

‖∂k+h
x (G−G0)(t) ∗ φ‖L2 ≤ C(1 + t)−

n
8
− j

2
− k

4 ‖φ‖Hs∩L1

for 0 ≤ h ≤ s − σ1(k, n) − j, which proves (4.9). Thus the proof of Lemma

4.2 is complete. ���
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Now we can show that the linear solution uL is approximated by the

simpler solution vL.

Proposition 4.3 (Simpler linear approximation). Let n ≥ 1 and assume the

same conditions as in Proposition 2.3. Let uL be the linear solution given in

(2.2) and let vL be the simpler solution in (4.2). Then uL is asymptotic to

vL as t → ∞ in the following sense:

‖∂kx(uL − vL)(t)‖Hs−σ0(k)−j ≤ CE1(1 + t)−
j+1
2

− k
4 , (4.11)

‖∂kx(uL − vL)(t)‖Hs−σ1(k,n)−1 ≤ CE1(1 + t)−
n
8
− 1

2
− k

4 , (4.12)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s in (4.11), and k ≥ 0 and

σ1(k, n) + 1 ≤ s in (4.12).

Proof. We have from (2.2) and (4.2) that

(uL − vL)(t) = (G−G0)(t) ∗ (u0 + u1) +H(t) ∗ u0.

By applying (4.8) and (2.15) with j replaced by j+1, we easily obtain (4.11)

for k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s. On the other hand, applying (4.9)

and (2.17) both with j = 1, we get (4.12) for k ≥ 0 and σ1(k, n) + 1 ≤ s in

(4.12). This completes the proof. ���

4.2. Approximation by the linear diffusion wave

In the last part of this section, we show that the nonlinear solution u is

approximated by the linear diffusion wave

v∗(x, t) :=MG0(x, t+ 1), M :=

∫

Rn

(u0 + u1)(x)dx.

We note that since G0(x, t + 1) is a solution of (1.10) with the initial data

G0(x, 1) = G∗(x), we have the expression G0(·, t+1) = G0(t)∗G∗. Therefore

v∗(t) =MG0(t) ∗G∗.

Observing Corollary 3.4 and Proposition 4.3, we recognize that the following

decomposition of the difference (u− v∗)(t) is useful to show our purpose:

(u− v∗)(t) = (u− uL)(t) + (uL − vL)(t) + (vL − v∗)(t). (4.13)
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Then we only need to show the decay estimate for (vL − v∗)(t) = G0(t) ∗

(u0 + u1 −MG∗). To this aim, we prepare the following lemma.

Lemma 4.4. Let n ≥ 1 and φ ∈ L1
1 with

∫

Rn φ(x)dx = 0. Then we have

‖∂kxG0(t) ∗ φ‖Lp ≤ Ct
−n

4
(1− 1

p
)− k+1

4 ‖φ‖L1
1
, (4.14)

where 1 ≤ p ≤ ∞ and k ≥ 0.

Proof.By
∫

Rn φ(x)dx = 0 and the mean value theorem, we see that

∂kxG0(t) ∗ φ = ∂kxG0(t) ∗ φ− ∂kxG0(t)

∫

Rn

φ(y)dy

=

∫

Rn

∂kx
(

G0(x− y, t)−G0(x, t)
)

φ(y)dy

=

∫

Rn

{

∫ 1

0
(−y) · ∂k+1

x G0(x− θy, t)dθ
}

φ(y)dy. (4.15)

Thus noting that ‖∂kxG0(t)‖Lp = Ct−
n
4
(1− 1

p
)− k

4 with some constant C > 0,

we obtain that

‖∂kxG0(t) ∗ φ‖Lp ≤

∫

Rn

|y| ‖∂k+1
x G0(·, t)‖Lp

x
|φ(y)| dy

≤ Ct−
n
4
(1− 1

p
)− k+1

4

∫

Rn

|y||φ(y)| dy

≤ Ct
−n

4
(1− 1

p
)− k+1

4 ‖φ‖L1
1
, (4.16)

which is the desired estimate. The proof of Lemma 4.4 is complete. ���

As a direct consequence of Lemma 4.4, we have the following approx-

imation results for vL by the linear diffusion wave v∗ corresponding to the

regularity of v0.

Corollary 4.5. Let n ≥ 1 and s ≥ 0. Assume that v0 := u0+u1 ∈ H
s ∩L1.

Then the difference vL − v∗ satisfies

‖∂kx(vL − v∗)(t)‖Hs−k = o(t−
n
8
− k

4 ) (4.17)

as t→ ∞, where 0 ≤ k ≤ s. Also, if v0 := u0 + u1 ∈ Hs ∩ L1
1, then we have

‖∂kx(vL − v∗)(t)‖Hs−k ≤ C‖v0‖Hs∩L1
1
(1 + t)−

n
8
− k+1

4 , (4.18)
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where 0 ≤ k ≤ s.

Proof. We only show the estimate (4.18) and omit the proof of (4.17).

Observe that (vL − v∗)(t) = G∗(t) ∗ φ, where φ := v0 − MG∗ and M =
∫

Rn v0(x)dx. Since
∫

Rn G∗(x)dx = Ĝ∗(0) = 1, we see that
∫

Rn φ(x)dx =

0. Also, noting |M | ≤ ‖v‖L1 , we have ‖φ‖L1
1
≤ C‖v0‖L1

1
and ‖φ‖Hs ≤

C‖v0‖Hs∩L1 . Therefore, applying (4.14) with p = 2, we obtain

‖∂kx(vL − v∗)(t)‖Hs−k ≤ C‖v0‖L1
1
t−

n
8
− k+1

4 , (4.19)

where 0 ≤ k ≤ s. Also, using (4.4) with p = q = 2, we have

‖∂kx(vL − v∗)(t)‖Hs−k ≤ C‖v0‖Hs∩L1
1
, (4.20)

where 0 ≤ k ≤ s. Combining (4.19) and (4.20), we have the desired estimate

(4.18). The proof of Corollary 4.5 is complete. ���

As mentioned above, as a consequence of Corollary 3.4, Proposition 4.3,

and Corollary 4.5, we can derive the approximation of the nonlinear solution

u by the linear diffusion wave v∗:

Proposition 4.6. Let n ≥ 3. Assume the same condition in Theorem 3.1.

Let u be the global solution to the nonlinear problem (1.1), (1.2), which is

obtained in Theorem 3.1, and let v∗ be the linear diffusion wave. Then the

nonlinear solution u is approximated by the linear diffusion wave v∗. Namely,

we have

‖∂kx(u− v∗)(t)‖Hs−σ1(k,n)−1 = o(t−
n
8
− k

4 ) (4.21)

as t→ ∞. Furthermore, suppose in addition that v0 = u0+u1 ∈ L1
1 and put

Ẽ1 = E1 + ‖u0 + u1‖L1
1
. Then we have

‖∂kx(u− v∗)(t)‖Hs−σ1(k,n)−1 ≤ CẼ1(1 + t)−
n
8
− k+1

4 , (4.22)

where k ≥ 0 and σ1(k, n) + 1 ≤ s in (4.21) and (4.22).

Remark 4.7. We note that (4.21) and (4.22) mean that the upper bound

(3.8) of u(t) is sharp. Indeed, if v0 ∈ L1 and M =
∫

Rn v0(x)dx 6= 0, we see
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that ‖∂kxv∗(t)‖L2 = c0(1 + t)−
n
8
− k

4 for some constant c0 > 0. Therefore we

observe that

‖∂kxu(t)‖L2 ≥ ‖∂kxv∗(t)‖L2 − ‖∂kx(u− v∗)(t)‖L2

≥ c0(1 + t)−
n
8
− k

4 + o(t−
n
8
− k

4 )

as t→ ∞ and hence

c(1 + t)−
n
8
− k

4 ≤ ‖∂kxu(t)‖L2 ≤ C(1 + t)−
n
8
− k

4 (4.23)

for large t, where the constants c > 0 and C > 0 in (4.23) are independent

of t.

Proof of Proposition 4.6. We apply the estimates (3.29) and (4.12) to

the decomposition (4.13) to have

‖∂kx(u− v∗)(t)‖Hs−σ1(k,n)−1 ≤ ‖∂kx(u− uL)(t)‖Hs−σ1(k,n)−1

+ ‖∂kx(uL − vL)(t)‖Hs−σ1(k,n)−1 + ‖∂kx(vL − v∗)(t)‖Hs−σ1(k,n)−1

≤ CEν
1ρ(t)(1+t)

−n
8
− k

4 +CE1(1 + t)−
n
8
− k+2

4 +‖∂kx(vL−v∗)(t)‖Hs−σ1(k,n)−1 .

(4.24)

Therefore (4.17) and (4.18) yield the desired estimates (4.21) and (4.22).

The proof is complete. ���

We give a final remark on the corresponding estimates for ‖∂kx(u −

v∗)(t)‖Hs−σ0(k)−j .

Remark 4.8. If v0 ∈ L1, we have

‖∂kx(u− v∗)(t)‖Hs−σ0(k)−j ≤ CE1ηj(t)(1 + t)−
j

2
− k

4 , (4.25)

where ηj(t) = max{ρ(t), o(1)(1 + t)−
1
2
(n
4
−j)}. Also, if v0 ∈ L1

1, then we have

‖∂kx(u− v∗)(t)‖Hs−σ0(k)−j ≤ CẼ1η̃j(t)(1 + t)−
j

2
− k

4 , (4.26)

where η̃j(t) = max{ρ(t), (1 + t)−
1
4
− 1

2
(n
4
−j)}. Here k ≥ 0, 0 ≤ j ≤ [n4 ] and

σ0(k) + j ≤ s in (4.25) and (4.26).
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Indeed, we apply the estimates (3.28) and (4.11) to the decomposition

(4.13) to have

‖∂kx(u− v∗)(t)‖Hs−σ0(k)−j ≤ ‖∂kx(u− uL)(t)‖Hs−σ0(k)−j

+‖∂kx(uL − vL)(t)‖Hs−σ0(k)−j + ‖∂kx(vL − v∗)(t)‖Hs−σ0(k)−j

≤ C(E1 +Eν
1 )ρ(t)(1 + t)−

j
2
− k

4 + ‖∂kx(vL − v∗)(t)‖Hs−σ0(k)−j . (4.27)

Then, using (4.17) and (4.18), we obtain the desired estimates (4.25) and

(4.26).

5. Cahn-Hilliard Type Equation

In this section we consider the parabolic equation

vt +∆2v = ∆g(v) (5.1)

with the initial data v0 = u0 + u1 as in (4.1), where g(v) = avν for some

constant a 6= 0. The associated integral equation is

v(t) = G0(t) ∗ v0 +

∫ t

0
G0(t− τ) ∗∆g(v)(τ)dτ , (5.2)

where G0(t) is given by (4.3), and the solution to (5.1) is always understood

as the solution to (5.2). Let us recall that the number ν in the nonlinear term

is 1+ 2
n for n = 1, 2, while ν = 2 for n ≥ 3. In view of the global behavior of

solutions, there is a significant difference between the case n = 1, 2 and the

case n ≥ 3. To see this briefly, we observe that (5.1) is invariant under the

following scaling:

v(x, t) 7−→ vλ(x, t) =







λ
n
4 v(λ

1
4x, λt) , n = 1, 2 ,

λ
1
2 v(λ

1
4x, λt) , n ≥ 3 .

(5.3)

Then, for sufficiently localized and small initial data, the nonlinearity should

be negligible in large time if n ≥ 3, while the nonlinear effect essentially

comes into the large time behavior of solutions if n = 1, 2. We will discuss

this problem specific to the critical case n = 1, 2 later in Section 7, and in

this section we mainly focus on the global existence and the temporal decay

estimates of solutions to (5.2). The main result is stated as follows.
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Theorem 5.1. Set pn = 1 if n = 1, 2 and pn = n
2 if n ≥ 3. There is a

positive constant δ = δ(n) such that if ‖v0‖Lpn ≤ δ, then (5.2) admits a

unique solution v ∈ C0([0,∞);Lpn) satisfying

‖∂kxv(t)‖Lp ≤ C‖v0‖Lpn t
−n

4
( 1
pn

− 1
p
)− k

4 , t > 0 , (5.4)

for k ≥ 0 and pn ≤ p ≤ ∞. Moreover, if v0 ∈ Hs ∩ L1 for some s ≥ 0 in

addition, then

‖v(t) −G0(t) ∗ v0‖L1 ≤ C‖v0‖
ν
L1∩Lpn ρ(t) , (5.5)

‖∂kx
(

v(t)−G0(t) ∗ v0
)

‖Hs−k ≤ C‖v0‖
ν
Hs∩L1∩Lpn ρ(t)(1 + t)−

n
8
− k

4 , (5.6)

where 0 ≤ k ≤ s in (5.6), and ρ(t) is the function defined by (3.14).

Remark 5.2. (i) The solution obtained in Theorem 5.1 satisfies

‖v(t)‖L1 ≤ C‖v0‖L1∩Lpn , (5.7)

‖∂kxv(t)‖Hs−k ≤ C‖v0‖Hs∩L1∩Lpn (1 + t)−
n
8
− k

4 , (5.8)

‖∂s+1
x v(t)‖L2 ≤ C‖v0‖Hs∩L1∩Lpn t

− 1
4 (1 + t)−

n
8
− s

4 , t > 0 , (5.9)

where 0 ≤ k ≤ s in (5.8).

(ii) The estimates (5.8) and (5.9) will be used in the next section, where

we will show that the solution u to the original problem (1.1), (1.2), con-

structed in Theorem 3.1, is approximated by the solution v to (5.2) obtained

in Theorem 5.1 for large time.

Proof of Theorem 5.1. As usual, we look for the solution to (5.2) as a

fixed point of the mapping

Φ0[v](t) = G0(t) ∗ v0 +

∫ t

0
G0(t− τ) ∗∆g(v)(τ)dτ (5.10)

in the closed ball

SR = {v ∈ C0([0,∞);Lpn) ; ‖v‖ ≤ R } ,

‖v‖ : =
∑

k=0,1

sup
t>0

t
k
4

(

‖∂kxv(t)‖Lpn + t
n

4pn ‖∂kxv(t)‖L∞

)

,
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where R > 0 will be determined later. Let k = 0, 1. For v ∈ SR we have

from (4.4),

‖∂kxΦ0[v](t)‖Lpn ≤ ‖∂kxG0(t) ∗ v0‖Lpn +

∫ t

0
‖∂kxG0(t− τ) ∗∆g(v)(τ)‖Lpn dτ

≤ Ct−
k
4 ‖v0‖Lpn + C

∫ t

0
(t− τ)−

k+2
4 ‖g(v)(τ)‖Lpn dτ.

Here, since ‖g(v)‖Lpn ≤ C‖v‖ν−1
L∞ ‖v‖Lpn , we see that

‖g(v)(t)‖Lpn ≤ C‖v‖νt−
n

4pn
(ν−1) = C‖v‖νt−

1
2 . (5.11)

Consequently, we obtain

‖∂kxΦ0[v](t)‖Lpn ≤ Ct−
k
4 ‖v0‖Lpn + C‖v‖ν

∫ t

0
(t− τ)−

k+2
4 τ−

1
2 dτ

≤ Ct−
k
4 ‖v0‖Lpn + Ct−

k
4 ‖v‖ν .

Similarly, we have again from (4.4),

‖∂kxΦ0[v](t)‖L∞ ≤ ‖∂kxG0(t) ∗ v0‖L∞ +

∫ t

0
‖∂kxG0(t− τ) ∗∆g(v)(τ)‖L∞dτ

≤ Ct
− n

4pn
− k

4 ‖v0‖Lpn + C

∫ t
2

0
(t− τ)

− n
4pn

− k+2
4 ‖g(v)(τ)‖Lpn dτ

+ C

∫ t

t
2

(t− τ)−
k+2
4 ‖g(v)(τ)‖L∞dτ

Here we have ‖g(v)‖L∞ ≤ C‖v‖νL∞ and hence ‖g(v)(t)‖L∞ ≤ C‖v‖νt
− 1

2
− n

4pn .

Using this estimate and (5.11), we obtain

‖∂kxΦ0[v](t)‖L∞ ≤ Ct
− n

4pn
− k

4 ‖v0‖Lpn + C‖v‖ν
∫ t

2

0
(t− τ)

− n
4pn

− k+2
4 τ−

1
2 dτ

+ C‖v‖ν
∫ t

t
2

(t− τ)−
k+2
4 τ−

1
2
− n

4pn dτ

≤ Ct−
n

4pn
− k

4 ‖v0‖Lpn + Ct−
n

4pn
− k

4 ‖v‖ν .
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Hence we have shown that

‖Φ0[v]‖ ≤ C0‖v0‖Lpn + C1‖v‖
ν (5.12)

for some constants C0 and C1 depending only on n. By the same calculation

as above, using the estimate ‖g(v) − g(ṽ)‖Lp ≤ C‖(v, ṽ)‖ν−1
L∞ ‖v − ṽ‖Lp , we

also have

‖Φ0[v]− Φ0[ṽ]‖ ≤ C2‖(v, ṽ)‖
ν−1‖v − ṽ‖ (5.13)

for some C2 depending only on n. Now we take R = 2C0‖v0‖Lpn and assume

that ‖v0‖Lpn ≤ δ with sufficiently small δ > 0 depending only on C0, C1, C2.

Then it is easy to see that Φ0 is a contraction mapping from SR into SR.

Hence, there is a unique fixed point of Φ0 in SR, which is the solution to

(5.2). By the above construction of the solution and by the interpolation

we have already proved (5.4) for k = 0, 1. The same estimate for k ≥ 2 is

obtained by the standard bootstrap argument, and we omit the details here.

Next we assume in addition that v0 ∈ Hs∩L1 for some s ≥ 0. Then, by

the bootstrap argument we observe that v(t) ∈ L1 for any t > 0. Moreover,

we have from (4.4),

‖v(t)‖L1 ≤ C‖v0‖L1 + C

∫ t

0
(t− τ)−

1
2 ‖g(v)(τ)‖L1dτ

≤ C‖v0‖L1 + C‖v0‖
ν−1
Lpn

∫ t

0
(t− τ)−

1
2 τ−

1
2 ‖v(τ)‖L1dτ ,

(5.14)

where we used ‖g(v)‖L1 ≤ C‖v‖ν−1
L∞ ‖v‖L1 and ‖v(t)‖ν−1

L∞ ≤ C‖v‖ν−1t−
1
2 ≤

C‖v0‖
ν−1
Lpn t

− 1
2 . Since ‖v0‖Lpn is sufficiently small, the above inequality im-

plies

sup
t>0

‖v(t)‖L1 ≤ C‖v0‖L1 . (5.15)

In particular, (5.14) and (5.15) imply (5.5) for n = 1, 2. To prove (5.5) for

n ≥ 3, we first show the following L∞ estimate:

‖v(t)‖L∞ ≤ Ct−
n
4 ‖v0‖L1∩Lpn , t > 0. (5.16)
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To veriy this, by applying (4.4) and using ‖v(t)‖L∞ ≤ C‖v0‖Lpn t−
1
2 (for

n ≥ 3) and (5.15), we observe that

‖v(t)‖L∞ ≤ Ct−
n
4 ‖v0‖L1 +C

∫ t
2

0
(t− τ)−

n
4
− 1

2 ‖v(τ)‖L∞‖v(τ)‖L1dτ

+ C

∫ t

t
2

(t− τ)−
1
2‖v(τ)‖2L∞dτ (5.17)

≤ Ct−
n
4 ‖v0‖L1 +C‖v0‖L1‖v0‖Lpn

∫ t
2

0
(t− τ)−

n
4
− 1

2 τ−
1
2dτ

+ C‖v0‖Lpn

∫ t

t
2

(t− τ)−
1
2 τ−

1
2 ‖v(τ)‖L∞ dτ

≤ Ct−
n
4 ‖v0‖L1∩Lpn + C‖v0‖Lpn

∫ t

t
2

(t− τ)−
1
2 τ−

1
2 ‖v(τ)‖L∞dτ.

(5.18)

Then, the smallness of ‖v0‖Lpn yields the estimate (5.16). Now we go back

to the similar inequality to (5.14) and apply (5.16) for τ > 1, which gives

for t > 2,

‖v(t)−G0(t) ∗ v0‖L1

≤ C‖v0‖
2
L1∩Lpn

∫ 1

0
(t− τ)−

1
2 τ−

1
2 dτ + C‖v0‖

2
L1∩Lpn

∫ t

1
(t− τ)−

1
2 τ−

n
4 dτ

≤ Ct−
1
2‖v0‖

2
L1∩Lpn + Cρ(t)‖v0‖

2
L1∩Lpn . (5.19)

Thus the estimate (5.5) has been proved.

For later use we also derive the similar estimate in L∞. We employ the

similar inequality to (5.17) and use the estimate (5.16) for τ > 1. This yields

for t > 2,

‖v(t) −G0(t) ∗ v0‖L∞

≤ C‖v0‖
2
L1∩Lpn

∫ 1

0
(t− τ)−

n
4
− 1

2 τ−
1
2 dτ

+C‖v0‖
2
L1∩Lpn

∫ t
2

1
(t−τ)−

n
4
− 1

2 τ−
n
4 dτ+C‖v0‖

2
L1∩Lpn

∫ t

t
2

(t−τ)−
1
2 τ−

n
2 dτ

≤ Ct−
n
4
− 1

2‖v0‖
2
L1∩Lpn +Cρ(t)t

−n
4 ‖v0‖

2
L1∩Lpn +Ct

−n
2
+ 1

2 ‖v0‖
2
L1∩Lpn . (5.20)
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Hence, by interpolating (5.19) and (5.20), we obtain

‖v(t)−G0(t) ∗ v0‖Lp ≤Cρ(t)t−
n
4
(1− 1

p
)‖v0‖

2
L1∩Lpn , t > 2, 1 ≤ p ≤ ∞. (5.21)

Finally, let us prove (5.6). We note that (5.6) for 0 < t < 1 follows from

the assumption v0 ∈ L1 ∩Lpn ∩Hs without difficulty, whose proof is similar

to the proof for the existence of v stated above. So we omit the details and

focus on the estimate for t ≥ 1. Since ρ(t) = 1 for n = 1, 2, thanks to (5.4)

with p = 2, it suffices to consider the case n ≥ 3. By applying (4.4), we have

‖∂k+1
x

(

v(t)−G0(t) ∗ v0
)

‖L2

≤ C

∫ t
2

0
(t− τ)−

n
8
− k+3

4 ‖g(v)(τ)‖L1dτ + C

∫ t

t
2

(t− τ)−
3
4 ‖∂kxg(v)(τ)‖L2dτ

≤ C

∫ t
2

0
(t− τ)−

n
8
− k+3

4 ‖v(τ)‖2L2dτ

+C‖v0‖L1∩Lpn

∫ t

t
2

(t− τ)−
3
4 τ−

n
4 ‖∂kxv(τ)‖L2dτ , (5.22)

where we used ‖g(v)‖L1 ≤ C‖v‖2L2 , ‖∂
k
xg(v)‖L2 ≤ C‖v‖L∞‖∂kxv‖L2 (for n ≥

3), and (5.16). The estimate (5.22) shows that the desired estimate (5.6)

(for n ≥ 3) is obtained if we establish the estimate

‖∂jxv(t)‖L2 ≤ C(1 + t)−
n
8
− j

4‖v0‖Hj∩L1∩Lpn , 0 ≤ j ≤ k, (5.23)

which will be proved again from (5.22) by the induction on k as follows.

Firstly, we note that

‖∂kxG0(t) ∗ v0‖L2 ≤ C(1 + t)−
n
8
− k

4 ‖v0‖Hk∩L1 . (5.24)

Thus, (5.23) with k = 0 is a direct consequence of (5.21). Assume that

(5.23) holds for k. Then, (5.22) yields

‖∂k+1
x

(

v(t)−G0(t) ∗ v0
)

‖L2

≤ C‖v0‖
2
L1∩Lpn∩L2

∫ t
2

0
(t− τ)−

n
8
− k+3

4 (1 + τ)−
n
4 dτ

+C‖v0‖
2
Hk∩L1∩Lpn

∫ t

t
2

(t− τ)−
3
4 τ−

n
4 (1 + τ)−

n
8
− k

4 dτ
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≤ Cρ(t)t−
n
8
− k+1

4 ‖v0‖
2
Hk∩L1∩Lpn , t > 1 .

This estimate together with (5.24) for k + 1 gives (5.23) for k + 1. Thus we

have proved (5.6) for n ≥ 3. The proof of Theorem 5.1 is complete. ���

6. Nonlinear Approximation

In this section, we show that the nonlinear solution u is approximated

by the solution v of Cahn-Hilliard type equation (5.1) with v(0) = u0 + u1.

For our purpose, we need to introduce the quantities N(t), N1(t) and N2(t)

as follows:

N(t) :=N1(t) +N2(t), (6.1)

N1(t) :=

[n
4
]

∑

j=0

∑

σ0(k)+j≤s

sup
0≤τ≤t

(1 + τ)
j

2
+ k

4 ρ̃(τ)−1‖∂kx(u− v)(τ)‖Hs−σ0(k)−j ,(6.2)

N2(t) :=

s0
∑

k=0

sup
0≤τ≤t

(1 + τ)
n
8
+ k

4 ρ̃(τ)−1‖∂kx(u− v)(τ)‖Hs−σ1(k,n)−1 , (6.3)

where s0 = [n2 ] + 1, s ≥ σ1(s0, n) + 1, and ρ̃(t) is given by

ρ̃(t) :=















(1 + t)−
1
4 n = 1

(1 + t)−
1
2
+ε n = 2

(1 + t)−
1
2 n ≥ 3

(6.4)

with small ε > 0. We also introduce the Banach space X ′:

X ′ = {u ∈ C0([0,∞);Hs); ‖u‖X′ <∞},

with the norm

‖u‖X′ = ‖u‖X′
1
+ ‖u‖X′

2
, (6.5)

‖u‖X′
1
:=

[n
4
]

∑

j=0

∑

σ0(k)+j≤s

sup
t≥0

(1 + t)
j

2
+ k

4 ‖∂kxu(t)‖Hs−σ0(k)−j , (6.6)

‖u‖X′
2
:=

s0
∑

k=0

sup
t≥0

(1 + t)
n
8
+ k

4 ‖∂kxu(t)‖Hs−σ1(k,n)−1 , (6.7)
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where s0 = [n2 ] + 1 and s ≥ σ1(s0, n) + 1. Notice that X ′ is the space X in

(3.4) with s replaced by s− 1.

Futhermore, we define the Banach space Y :

Y = {u ∈ C0([0,∞);Hs) ∩ C0((0,∞);Hs+1); ‖u‖Y <∞},

with the norms

‖u‖Y :=
s
∑

k=0

sup
t≥0

(1 + t)
n
8
+ k

4 ‖∂kxu(t)‖Hs−k + sup
t>0

(1 + t)
n
8
+ s

4 t
1
4‖∂s+1

x u(t)‖L2 .

(6.8)

This space Y is used for the solution v of (5.2). In fact, it follows from

Theorem 5.1 together with the estimates (5.8) and (5.9) that if v0 is small

in Hs ∩ L1 with s ≥ s0, then we have the solution v ∈ Y of (5.2) satisfying

‖v‖Y ≤ C‖v0‖Hs∩L1 . For this solution v, we see that

‖g(v)(τ)‖L1 ≤ C‖v‖ν−2
L∞ ‖v‖2L2 ≤ C‖v‖νY (1 + τ)−

n
4
(ν−1), (6.9)

‖∂mx g(v)(τ)‖L2 ≤ C‖v‖ν−1
L∞ ‖∂mx v‖2 ≤ C‖v‖νY (1 + τ)−

n
8
−m

4
−n

4
(ν−1)τ−

θ
4 ,(6.10)

where θ = 0 for 0 ≤ m ≤ s and θ = 1 for m = s+1. Moreover, by the similar

procedure in the proof of Lemma 3.3, for u, v ∈ X ′ (notice that v ∈ Y ⊂ X ′),

we have

‖(g(u) − g(v))(τ)‖L1 ≤C‖(u, v)‖ν−1
X′ N2(t)ρ̃(τ)(1+τ)

−n
4
(ν−1), (6.11)

‖∂k+h
x (g(u)−g(v))(τ)‖L2 ≤C‖(u, v)‖ν−1

X′ N(t)ρ̃(τ)(1+τ)−
j

2
− k

4
−n

4
(ν−1), (6.12)

‖∂k+h
x (g(u)−g(v))(τ)‖L2 ≤C‖(u, v)‖ν−1

X′ N2(t)ρ̃(τ)(1+τ)
−n

8
− k

4
−n

4
(ν−1),(6.13)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and 0 ≤ h ≤ s − σ0(k) − j in (6.12), k ≥ 0 and

0 ≤ h ≤ s− σ1(k, n)− 1 in (6.13).

In the above situation, we have the following asymptotic behavior of the

solution of the problem (1.1), (1.2).

Theorem 6.1. Let n ≥ 1 and s ≥ σ1(s0, n)+1. Assume the same condition

in Theorem 3.1. Let u be the global solution to the nonlinear problem (1.1),

(1.2) and v be the solution of (5.1) with v(0) = u0 +u1. Then the nonlinear

solution u is asymptotic to v as t→ ∞ in the following sense:

‖∂kx(u− v)(t)‖Hs−σ0(k)−j ≤ CE1ρ̃(t)(1 + t)−
j

2
− k

4 , (6.14)
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‖∂kx(u− v)(t)‖Hs−σ1(k,n)−1 ≤ CE1ρ̃(t)(1 + t)−
n
8
− k

4 , (6.15)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s in (6.14), 0 ≤ k ≤ s0 and

σ1(k, n) ≤ s− 1 in (6.15), and ρ̃(t) is given in (6.4).

For the proof of Theorem 6.1, we take the difference between the integral

equations (3.1) and (5.2) and decompose into five parts:

(u− v)(t) = (uL − vL)(t)

+

∫ t

0
G(t− τ) ∗ (1−∆)−1∆(f(u)− g(u))(τ)dτ

+

∫ t

0
G(t− τ) ∗ (1−∆)−1∆(g(u) − g(v))(τ)dτ

+

∫ t

0
(G−G0)(t− τ) ∗ (1−∆)−1∆g(v)(τ)dτ

+

∫ t

0
G0(t− τ) ∗ {(1−∆)−1 − 1}∆g(v)(τ)dτ

= A0(t) +A1(t) +A2(t) +A3(t) +A4(t). (6.16)

In what follows, we estimate Aj(t) (j = 1, · · · , 4), respectively.

6.1. Preliminaries

First, we show the estimate for the term A1.

Lemma 6.2. Let s ≥ σ1(s0, n) and suppose that u ∈ X. Then we have the

following decay estimates:

‖∂kxA1(t)‖Hs+1−σ0(k)−j ≤ C‖u‖ν+1
X ρ̃(t)(1 + t)−

j

2
− k

4 , (6.17)

‖∂kxA1(t)‖Hs−σ1(k,n) ≤ C‖u‖ν+1
X ρ̃(t)(1 + t)−

n
8
− k

4 , (6.18)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s + 1 in (6.17), k ≥ 0 and

σ1(k, n) ≤ s in (6.18), and ρ̃(t) is the function given in (6.4).

The proof of Lemma 6.2 is given in a similar fashion to the proof of

Lemma 3.3. In fact, to show Lemma 6.2, we only follow the proof of Lemma

3.3 with f(u)− f(v) replaced by f(u)− g(u) = O(uν+1). Here we omit the

proof.
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Secondly we consider the estimate for the term A2. In this case, we can

obtain the decay estimate with minor change of the proof of Lemma 3.3.

Lemma 6.3. Let s ≥ σ1(s0, n) + 1 and suppose that u, v ∈ X ′. Then we

have the following decay estimates:

‖∂kxA2(t)‖Hs−σ0(k)−j ≤ C‖(u, v)‖ν−1
X′ N(t)ρ̃(t)(1 + t)−

j

2
− k

4 , (6.19)

‖∂kxA2(t)‖Hs−σ1(k,n)−1 ≤ C‖(u, v)‖ν−1
X′ N(t)ρ̃(t)(1 + t)−

n
8
− k

4 , (6.20)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s in (6.19), k ≥ 0 and σ1(k, n) ≤

s− 1 in (6.20), and ρ̃(t) is the function given in (6.4).

The proof of Lemma 6.3 is also given in a similar way of the proof of

Lemma 3.3. In fact, making use of the estimates (6.11), (6.12) and (6.13),

we can show the desired estimates (6.19) and (6.20) in the same way as in

the proof of Lemma 3.3. We omit the details.

For the term A3 and A4, we prepare the linear estimates, which are

useful to show the estimates for A3 and A4 in our framework.

Lemma 6.4. Let n ≥ 1, s ≥ 0 and 1 ≤ q ≤ 2. Then we have:

‖∂kx(G−G0)(t) ∗ (1−∆)−1∆f‖L2

≤ C(1 + t)
−n

4
( 1
q
− 1

2
)− k+4−j

4 ‖∂jxf‖Lq

+C(1 + t)−
l+1
2 ‖∂(k+l)+

x f‖L2 + Ce−ctt−
j′

4 ‖∂k−j′
x f‖L2 , (6.21)

‖∂kxG0(t) ∗ {(1−∆)−1 − 1}∆f‖L2

≤ C(1 + t)
−n

4
( 1
q
− 1

2
)− k+4−j

4 ‖∂jxf‖Lq + Ce−ctt−
j′

4 ‖∂k+2−j′
x f‖L2 , (6.22)

where 0 ≤ k ≤ s, 0 ≤ j ≤ k+4, 0 ≤ j′ ≤ k, l+1 ≥ 0, (k+l)+ = max{k+l, 0}

in (6.21) and 0 ≤ k ≤ s, 0 ≤ j ≤ k + 4, 0 ≤ j′ ≤ k + 2 in (6.22).

Proof. First, we prove (6.21). Here we recall (4.7). Then it is easy to see

that

|(Ĝ− Ĝ0)(ξ, t)|(1 + |ξ|2)−1|ξ|2 ≤ C|ξ|4e−c|ξ|4t + Ce−ct (6.23)

for |ξ| ≤ r0 and by (2.12) and the definition of G0,

|(Ĝ− Ĝ0)(ξ, t)|(1 + |ξ|2)−1|ξ|2 ≤ C|ξ|−1e−c|ξ|−2t + Ce−c|ξ|4t (6.24)



2015] HYPERBOLIC CAHN-HILLIARD EQUATION 513

for |ξ| ≥ r0, where r0 is a small positive constant. Therefore the pointwise

estimates (6.23) and (6.24) and the Plancherel formula yield the estimate

(6.21). Next, we show (6.22). In this case, we use the expression Ĝ0(ξ, t) =

e−|ξ|4t and

∣

∣(1 + |ξ|2)−1 − 1
∣

∣ |ξ|2 ≤

{

C|ξ|4 for |ξ| ≤ r0,

C|ξ|2 for |ξ| ≥ r0,

for small positive constant r0. Then we again apply the Plancherel formula

to have the estimate (6.22). The proof of Lemma 6.4 is complete. ���

Based on the estimate (6.21), we have the estimate for A3 as follows:

Lemma 6.5. Let s ≥ σ1(s0, n) + 1 and suppose that v ∈ Y . Then we have

the following decay estimates:

‖∂kxA3(t)‖Hs−σ0(k)−j ≤ C‖v‖νY η(t)(1 + t)−
j

2
− k

4 , (6.25)

‖∂kxA3(t)‖Hs−σ1(k,n)−1 ≤ C‖v‖νY η(t)(1 + t)−
n
8
− k

4 , (6.26)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s in (6.25), k ≥ 0 and σ1(k, n) ≤

s− 1 in (6.26), and η(t) is the function given below:

η(t) := (1 + t)−
1
2 ρ(t). (6.27)

Proof. To show the estimates (6.25) and (6.26), we apply ∂k+h
x to A3 and

decompose into two parts:

‖∂k+h
x A3(t)‖L2 ≤

∫ t

0
‖∂k+h

x (G−G0)(t− τ) ∗ (1−∆)−1∆g(v)(τ)‖L2dτ

=

∫ t
2

0
+

∫ t

t
2

=: A31 +A32.

For the term A31, we apply (6.21) with k replaced by k + h and with j =
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j′ = 0. Then we see that

A31(t) ≤ C

∫ t
2

0
(1 + t− τ)−

n
8
− k+h+4

4 ‖g(v)(τ)‖L1dτ

+ C

∫ t
2

0
(1 + t− τ)−

l+1
2 ‖∂mx g(v)(τ)‖L2dτ

+ C

∫ t
2

0
e−c(t−τ)‖∂k+h

x g(v)(τ)‖L2dτ

=: A311 +A312 +A313,

(6.28)

where m = (k+h+ l)+ ≤ s+1. To obtain the estimate for A311, using (6.9),

we have

A311 ≤ C‖v‖νY

∫ t
2

0
(1 + t− τ)−

n
8
− k+h+4

4 (1 + τ)−
n
4
(ν−1)dτ

≤ C‖v‖νY ρ(t)(1 + t)−
n
8
− k+2

4 = C‖v‖νY η(t)(1 + t)−
n
8
− k

4

(6.29)

for h ≥ 0. Next, we show the estimates for A312. For the proof of (6.25),

we choose l in (6.28) as the smallest integer satisfying l+1
2 ≥ j

2 + k+4
4 , i.e.,

l ≥ j+ k
2 +1. This leads to l = σ0(k)− k+ j+1. In this case, the regularity

assumption m := (k + h + l)+ ≤ s + 1 means that 0 ≤ h ≤ s − σ0(k) − j.

Then we see that

A312 ≤ C‖v‖νY

∫ t
2

0
(1 + t− τ)−

j

2
− k+4

4 (1 + τ)−
n
8
−m

4
−n

4
(ν−1)τ−

θ
4 dτ

≤ C‖v‖νY η(t)(1 + t)−
j

2
− k

4

(6.30)

for 0 ≤ h ≤ s − σ0(k) − j, where we used (6.10). To show (6.26), we

choose l in (6.28) as the smallest integer satisfying l+1
2 ≥ n

8 + k+4
4 , i.e.,

l ≥ n+2k
4 + 1. This leads to l = σ1(k, n) − k + 2. Then the regularity

assumption m := (k + h+ l)+ ≤ s+ 1 means that 0 ≤ h ≤ s− σ1(k, n)− 1.

Therefore we have

A312 ≤ C‖v‖νY

∫ t
2

0
(1 + t− τ)−

n
8
− k+4

4 (1 + τ)−
n
8
−m

4
−n

4
(ν−1)τ−

θ
4 dτ

≤ C‖v‖νY η(t)(1 + t)−
n
8
− k

4

(6.31)

for 0 ≤ h ≤ s − σ1(k, n) − 1, where we used (6.10). For the term A313, the
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estimate (6.10) yields that

A313 ≤ C‖v‖νY

∫ t
2

0
e−c(t−τ)(1 + τ)−

n
8
− k+h

4
−n

4
(ν−1)dτ ≤ C‖v‖νY e

−ct. (6.32)

Finally, we estimate the term A32. We apply (6.21) with k replaced by

k+h and q = 2, j = k+h+1, j′ = 0 and l = 1. This choice of l = 1 requires

0 ≤ h ≤ s− k since (k + h+ l)+ ≤ s+ 1. Then we see

A32(t) ≤ C

∫ t

t
2

(1 + t− τ)−
3
4 ‖∂k+h+1

x g(v)(τ)‖L2dτ

+C

∫ t

t
2

(1 + t− τ)−1‖∂k+h+1
x g(v)(τ)‖L2dτ

+C

∫ t

t
2

e−c(t−τ)‖∂k+h
x g(v)(τ)‖L2dτ

=: A321 +A322 +A323.

For the terms A321 and A322, we use the estimate (6.10) with m = k+ h+1

to have

A321+A322 ≤ C‖v‖νY

∫ t

t
2

(1 + t− τ)−
3
4 (1 + τ)−

n
8
− k+h+1

4
−n

4
(ν−1)τ−

θ
4 dτ

≤ C‖v‖νY (1 + t)−
n
8
− k

4
−n

4
(ν−1) ≤ C‖v‖νY η(t)(1 + t)−

n
8
− k

4 (6.33)

for 0 ≤ h ≤ s − k, where we used the fact that (1 + t)−
n
4
(ν−1) = (1 +

t)−
1
2ρ1(t) ≤ η(t) with ρ1(t) in (3.22). Similarly, using (6.10) with m =

k + h (≤ s), we have

A323 ≤ C‖v‖νY

∫ t

t
2

e−c(t−τ)(1 + τ)−
n
8
− k+h+2

4
−n

4
(ν−1)dτ

≤ C‖v‖νY (1 + t)−
n
8
− k+2

4
−n

4
(ν−1) ≤ C‖v‖νY η(t)(1 + t)−

n
8
− k

4 (6.34)

for 0 ≤ h ≤ s − k. Summing up the above argument, we have the estimate

(6.25) (resp. (6.26)) from (6.29), (6.30), (6.32), (6.33) and (6.34) (resp.

(6.29), (6.31), (6.32), (6.33) and (6.34)). ���

For the last term A4, we can obtain the desired estimate without

regularity-loss.
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Lemma 6.6. Let s ≥ s0 and v ∈ Y . Then we have

‖∂kxA4(t)‖Hs−k ≤ C‖v‖νY η(t)(1 + t)−
n
8
− k

4 , (6.35)

where 0 ≤ k ≤ s, and η(t) is defined by (6.27).

Proof. Let k, h ≥ 0. We apply ∂k+h
x to A4 and take the L2 norm to obtain

‖∂k+h
x A4(t)‖L2 ≤

∫ t

0
‖∂k+h

x G0(t− τ) ∗ {(1 −∆)−1 − 1}∆g(v)(τ)‖L2dτ

=

∫ t
2

0
+

∫ t

t
2

=: A41 +A42. (6.36)

For the term A41, we apply (6.22) with k replaced by k+h and q = 1, j = 0

and j′ = 2. Then we have

A41(t) ≤ C

∫ t
2

0
(1 + t− τ)−

n
8
− k+h+4

4 ‖g(v)(τ)‖L1dτ

+C

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 ‖∂k+h

x g(v)(τ)‖L2dτ

=: A411 +A412. (6.37)

The term A411 is just the same as A311 and we have A411 = A311 ≤

C‖v‖νY η(t)(1 + t)−
n
8
− k

4 for h ≥ 0. Also, the term A412 is similar to A313

and by using (6.10) with m = k + h, we have

A412 ≤ C‖v‖νY

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 (1 + τ)−

n
8
− k

4
−n

4
(ν−1)dτ ≤ C‖v‖νY e

−ct

for 0 ≤ h ≤ s − k. To show the estimate of the term A42, we apply (6.22)

with k replaced by k + h and q = 2, j = k + h+ 1 and j′ = 2. Thus we see

A42(t) ≤ C

∫ t

t
2

(1 + t− τ)−
3
4 ‖∂k+h+1

x g(v)(τ)‖L2dτ

+C

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2‖∂k+h

x g(v)(τ)‖L2dτ

=: A421 +A422. (6.38)

Here the term A421 is just the same as A321 and we have A421 = A321 ≤
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C‖v‖νY η(t)(1 + t)−
n
8
− k

4 for 0 ≤ h ≤ s− k. Also, the term A422 is similar to

A323 and we have

A422 ≤ C‖v‖νY

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2 (1 + τ)−

n
8
− k+h

4
−n

4
(ν−1)dτ

≤ C‖v‖νY (1 + τ)−
n
8
− k

4
−n

4
(ν−1) ≤ C‖v‖νY η(t)(1 + t)−

n
8
− k

4

for 0 ≤ h ≤ s− k. Then combining all these estimates, we have (6.35). The

proof of Lemma 6.6 is complete. ���

6.2. Proof of Theorem 6.1

We show Theorem 6.1 by using Lemmas which we prepared in the pre-

vious subsection. Let s ≥ σ(s0, n) + 1. Let u ∈ X be the global solution to

the problem (1.1), (1.2), which was obtained in Theorem 3.1, and let v ∈ Y

be the global solution of (5.1) with v(0) = v0 := u0 + u1 ∈ Hs ∩ L1, which

is obtained in Theorem 5.1. Then we apply Lemmas 6.2, 6.3, 6.5 and 6.6 to

(6.16). This yields

‖∂kx(u− v)(t)‖Hs−σ0(k)−j

≤
4
∑

l=0

‖∂kxAl(t)‖Hs−σ0(k)−j

≤ C(E1 + ‖u‖ν+1
X + ‖(u, v)‖ν−1

X′ N(t) + ‖v‖νY )ρ̃(t)(1 + t)−
j

2
− k

4

≤ C(E1 +Eν+1
1 + Eν−1

1 N(t) + Eν
1 )ρ̃(t)(1 + t)−

j

2
− k

4 ,

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s. Here we used ‖(u, v)‖X′ ≤

‖u‖X + ‖v‖Y ≤ CE1. Then, multiplying ρ̃(t)−1(1 + t)
j

2
+ k

4 to the both sides

and taking summation in j and k, we see

N1(t) ≤ CE1 + CEν−1
1 N(t). (6.39)

By the similar way, we have

‖∂kx(u−v)(t)‖Hs−σ1(k,n)−1 ≤ C(E1+E
ν+1
1 +Eν−1

1 N(t)+Eν
1 )ρ̃(t)(1+ t)

−n
8
− k

4 ,
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where 0 ≤ k ≤ s0 and σ1(k, n) ≤ s− 1 and then

N2(t) ≤ CE1 + CEν−1
1 N(t). (6.40)

It follows from (6.39) and (6.40) that N(t) ≤ CE1 + CEν−1
1 N(t). There-

fore, if E1 is sufficiently small, then we have N(t) ≤ CE1, which implies

the desired estimates (6.14) and (6.15). Thus the proof of Theorem 6.1 is

complete.

7. Nonlinear Asymptotic Profile

In this section we consider the parabolic equation

vt +∆2v = ∆g∗(v), (7.1)

with the initial data v0 := u0 + u1 as in (4.1), where the nonlinear term g∗
is given as

g∗(v) =







a v1+
2
n , n = 1, 2 ,

a |v|
2
n v , n ≥ 3 .

Here a 6= 0 is a fixed constant. In (7.1) one may replace the nonlinear

term g∗(v) by a |v|
2/nv or a |v|1+2/n, which does not give rise to an essential

change of the argument below, except for the statements on the higher-order

regularity of solutions. For simplicity we assume a = 1.

One of the basic properties of (7.1) is the invariance under the action

v(x, t) 7−→ vλ(x, t) = λ
n
4 v(λ

1
4x, λt) , λ > 0 . (7.2)

Indeed, if v satisfies(7.1) then vλ also satisfies (7.1) for any λ > 0, while the

equality supt>0 ‖vλ(t)‖L1 = supt>0 ‖v(t)‖L1 holds. In the presence of such an

invariance, even for a sufficiently localized initial data, a simple linearization

vL given in (4.2) does not provide a correct asymptotics in large-time for

solutions to (7.1) in general. Instead, one usually needs to consider the self-

similar solution, which represents the balance between the linear diffusion

by −∆2 and the nonlinear reaction by ∆g∗.

The purpose of this section is to show the existence of self-similar solu-

tions to (7.1) and to establish their asymptotic stability. For later use we
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introduce the scaling operator {Rλ}λ>0 as

(Rλf)(x) = λ
n
4 f(λ

1
4x) , λ > 0 . (7.3)

As in the previous sections, the equation (7.1) is always understood as

its integral form

v(t) = G0(t− s) ∗ v(s) +

∫ t

s
G0(t− τ) ∗∆g∗(v)(τ)dτ , t > s > 0 , (7.4)

and the solution to the Cauchy problem of (7.1) with initial data v0 is the

solution to (7.4) with s = 0 and v(0) = v0 as in Section 5. We say that v is

a self-similar solution to (7.1) if v satisfies (7.4) for t > s > 0 and also if v is

invariant under the scaling (7.2), or equivalently, v is written in the form

v(x, t) = (R 1
t
Φ)(x) , t > 0 ,

for some profile function Φ which is independent of the time variable. Our

first result in this section is on the unique existence of small self-similar

solutions, stated as follows.

Theorem 7.1. Fix m > n
2 . Then there is a positive constant δ2 = δ2(m,n)

such that, for each |δ| ∈ [0, δ2], the equation (7.1) admits a unique self-similar

solution R 1
t
Φδ satisfying

∫

Rn

Φδ(x)dx = δ ,
∑

k=0,1

‖∂kxΦδ‖L2
m∩L∞

m+n
2

≤ C|δ| . (7.5)

Moreover, if n = 1, 2, then ∂kxΦδ ∈ L2
m for any k ≥ 0 with the norms in

L2
m ∩ L∞

m+n
2
of the order O(|δ|).

The next theorem shows the asymptotic stability of the self-similar so-

lution obtained in Theorem 7.1.

Theorem 7.2. There is a positive constant δ3 = δ3(n) such that if ‖v0‖L1
1
≤

δ3, then the Cauchy problem (7.1), (4.1) admits a unique solution v ∈

C0([0,∞);L1) satisfying

‖∂kx(v(t) −R 1
1+t

Φδ)‖Lp ≤ C‖v0‖L1
1
t
−n

4
(1− 1

p
)− k

4 (1 + t)−
1
4 , t > 0 , (7.6)
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for k = 0, 1 and 1 ≤ p ≤ ∞. Here Φδ is the profile of the self-similar

solution in Theorem 7.1 with δ =
∫

Rn v0(x)dx and m > n
2 + 1. Moreover, if

in addition n = 1, 2, then (7.6) holds for any k ≥ 0, and in particular, in

the case v0 ∈ H
s for some s ≥ 0 we have

‖∂kx(v(t)−R 1
1+t

Φδ)‖Hs−k ≤ C‖v0‖Hs∩L1
1
(1 + t)−

n
8
− k+1

4 , (7.7)

where 0 ≤ k ≤ s.

As a direct consequence of Theorems 6.1 and 7.2, we can conclude that

the nonlinear diffusion wave R 1
1+t

Φδ is an asymptotic profile of the solution

of (1.1), (1.2).

Corollary 7.3. Let n = 1, 2 and s ≥ σ1(s0, n) + 1, where s0 = [n2 ] + 1.

Suppose that u0 ∈ Hs+1 ∩ L1, u1 ∈ Hs ∩ L1 and v0 := u0 + u1 ∈ L1
1, and

put Ẽ1 = E1 + ‖u0 + u1‖L1
1
. Let u be the global solution to the nonlinear

problem (1.1), (1.2), which is obtained in Theorem 3.1. Then the nonlinear

solution u is approximated by the nonlinear diffusion wave v∗ := R 1
1+t

Φδ

with δ = M :=
∫

Rn(u0 + u1)(x)dx. More precisely, the difference u − v∗

verifies the decay estimates

‖∂kx(u− v∗)(t)‖Hs−σ0(k)−j ≤ CẼ1(1 + t)−
j

2
− k+1

4 , (7.8)

‖∂kx(u− v∗)(t)‖Hs−σ1(k,n)−1 ≤ CẼ1(1 + t)−
n
8
− k+1

4 , (7.9)

where k ≥ 0, 0 ≤ j ≤ [n4 ] and σ0(k) + j ≤ s in (7.8), 0 ≤ k ≤ s0 and

σ1(k, n) ≤ s− 1 in (7.9).

Remark 7.4. The estimate (7.9) implies the lower bound of the norm of the

nonlinear solution u for large t, provided thatM 6= 0. Indeed, using the self-

similar property of v∗ = R 1
1+t

Φδ, we see that ‖∂kxv
∗(t)‖L2 = c0(1 + t)−

n
8
− k

4

with some constant c0 > 0 depending on M . Therefore we have

‖∂kxu(t)‖L2 ≥ ‖∂kxv
∗(t)‖L2 − ‖∂kx(u− v∗)(t)‖L2

= c0(1 + t)−
n
8
− k

4 − ‖∂kx(u− v∗)(t)‖L2 . (7.10)

Since the second term on the right hand side of (7.10) decays as in (7.9), the

estimate (7.10) means the lower bound of the norm of u.
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To prove Theorems 7.1 and 7.2 we follow the argument of Kagei and

Maekawa [28], where the abstract theory is developed for the evolution equa-

tions in the presence of scaling invariance.

7.1. Similarity transform

As is well known, the existence and the asymptotic stability of self-

similar solutions are equivalent with the existence and the stability of sta-

tionary solutions to the equation derived through a similarity transform asso-

ciated with the invariant scaling. Before introducing the similarity transform

related to (7.2), we first note that the one parameter family {G0(t)∗}t≥0 in

(4.2) defines a C0-analytic semigroup in Lp
m, 1 ≤ p <∞, with the generator

−∆2 whose domain is characterized as

DLp
m
(−∆2) = {f ∈ Lp

m ; ∂kxf ∈ Lp
m , 0 ≤ k ≤ 4} . (7.11)

For convenience we use the notation e−t∆2
for the operator G0(t)∗. By using

the scaling operator {Rλ}λ>0 in (7.3), the invariance of (7.1) with respect

to the scaling (7.2) is represented by the following identities.

Rλe
−λt∆2

= e−t∆2
Rλ , λRλ∆g∗(v) = ∆g∗(Rλv) . (7.12)

Then the associated similarity transform is defined as

w(x, t) =
(

Retv(e
t − 1)

)

(x) = e
n
4
tv(e

t
4x, et − 1) . (7.13)

Since {Rλ}λ>0 is a strongly continuous action of the multiplicative group

{λ > 0} on Lp
m for 1 ≤ p < ∞, the first identity of (7.12) implies that the

one-parameter family {Rete
−(et−1)∆2

}t≥0 defines a C0-semigroup in Lp
m for

1 ≤ p <∞; see [28, Lemma 2.1]. We denote by A the associated generator,

i.e.,

etA = Rete
−(et−1)∆2

= e−(1−e−t)∆2
Ret (by (7.12)) . (7.14)

If v is the solution to the Cauchy problem (7.1), (4.1), then the integral

equation for w is given as

w(t) = etAw0 +

∫ t

0
e(t−s)A∆g∗(w(s))ds , t > 0 , (7.15)
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with w0 = v0. We note that the self-similar solution R 1
t
Φ to (7.1) is, in the

similarity variables, nothing but the stationary solution to (7.15), i.e.,

Φ = etAΦ+

∫ t

0
esA∆g∗(Φ)ds , t > 0 . (7.16)

As will be seen in Lemma 7.8 (iii) below, the function etAϕ converges to δG∗

as t → ∞, where δ =
∫

Rn ϕdx and G∗(x) = F−1[e−|ξ|4 ](x) is the eigenfunc-

tion with
∫

Rn G∗(x)dx = 1 to the first simple eigenvalue 0 of A. One can

also verify from Lemma 7.8 (ii) that the integral
∫∞
0 esA∆ϕds converges in

the case ϕ ∈ L2
m with m > n

2 . Thus, by taking t→ ∞ in (7.16) we formally

obtain the equation for Φ as follows.

Φ = δG∗ +

∫ ∞

0
esA∆g∗(Φ)ds , δ ∈ R . (7.17)

The number δ is now a given parameter, and it represents the mass of the

stationary solution due to the property
∫

Rn

∫∞
0 (esA∆ϕ)(x)dxds = 0, which

is justified for ϕ ∈ L2
m with m > n

2 . Clearly (7.16) and (7.17) are formally

equivalent.

In Subsection 7.2 we prove the unique existence of small solutions to

(7.17) by a standard fixed point argument. In particular, Theorem 7.1 is an

immediate consequence of Proposition 7.5. In Subsection 7.3 we show the

stability of stationary solutions obtained in Subsection 7.2 with respect to

small perturbations. Then Theorem 7.2 follows by returning to the original

variables. The estimates for the semigroup {etA}t≥0 are the most funda-

mental tool in Subsections 7.2 and 7.3, which are collected in Subsection

7.4. As is explained in Remark 7.7 below, thanks to the presence of ∆ in

the nonlinear term, we do not need to analyze the detailed spectral property

of the linearization around the stationary solution in order to obtain the

optimal convergence rate (1 + t)−
1
4 in Theorem 7.2. Therefore we can skip,

to some extent, the detailed spectral analysis of the generator A. However,

the study of the spectral property of A seems to have its own interest and

applications, so we go into the details on this topic in Subsection 7.5.
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7.2. Existence of stationary solution

In this subsection we prove the existence and the uniqueness of small

solutions to (7.17) for a small fixed δ. The next proposition directly leads

to Theorem 7.1.

Proposition 7.5. Fix m > n
2 . Then there is a positive constant δ2 =

δ2(m,n) such that, for each |δ| ∈ [0, δ2], the equation (7.17) admits a unique

solution Φδ satisfying

∫

Rn

Φδ(x)dx = δ ,
∑

k=0,1

‖∂kxΦδ‖L2
m∩L∞

m+n
2

≤ C|δ| . (7.18)

Moreover, if n = 1, 2, then ∂kxΦδ ∈ L2
m for any k ≥ 0 with the norms in

L2
m ∩ L∞

m+n
2
of the order O(|δ|).

Proof. We look for the solution to (7.17) of the form Φ = δG∗ + φ, where

φ is the function in the class

XR = {f ∈ L∞
m+n

2
;
∑

k=0,1 ‖∂
k
xf‖L∞

m+n
2

≤ R ,
∫

Rn f(x)dx = 0} .

The number R > 0 will be chosen later, which is of the order O(|δ|1+
2
n ).

Then φ should satisfy

φ = F (φ) :=

∫ ∞

0
esA∆g∗(δG∗ + φ)ds . (7.19)

Set a(t) = 1− e−t. From Lemma 7.8 (ii) below we have

∑

k=0,1

‖∂kxF (φ)‖L∞
m+ n

2

≤ C

∫ ∞

0

e−
s
2

a(s)
3
4

‖g∗(δG∗ + φ)‖L∞
m+n

2

ds

≤ C‖δG∗ + φ‖
1+ 2

n

L∞
m+n

2

≤ C1

(

|δ|1+
2
n + ‖φ‖

1+ 2
n

L∞
m+n

2

)

, φ ∈ XR . (7.20)

On the other hand, we have for φ, φ̃ ∈ XR,

∑

k=0,1

‖∂kx(F (φ) − F (φ̃))‖L∞
m+ n

2
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≤ C

∫ ∞

0

e−
s
2

a(s)
3
4

‖g∗(δG∗ + φ)− g∗(δG∗ + φ̃)‖L∞
m+n

2

ds

≤ C2

(

|δ|
2
n + ‖φ‖

2
n

L∞ + ‖φ̃‖
2
n

L∞

)

‖φ− φ̃‖L∞
m+n

2

. (7.21)

Let us take R = 2C1|δ|
1+ 2

n and |δ| ≤ δ3 with δ3 small enough depending on

C1 and C2. Then F is a contraction mapping from XR into XR, and hence,

there is a unique fixed point of F in XR, as desired. Let φ be the fixed point

of F in XR. Note that g∗(f) ∈ L∞
α(1+ 2

n
)
if f ∈ L∞

α . Thus we have again from

Lemma 7.8 (ii),

∑

k=0,1

‖∂kxF (φ)‖L2
m
≤ C

∫ ∞

0

e−
s
2

a(s)
3
4

‖g∗(δG∗ + φ)‖L2
m
ds

≤ C‖δG∗ + φ‖
1+ 2

n

L∞
m+n

2

≤ C
(

|δ|1+
2
n + ‖φ‖

1+ 2
n

L∞
m+ n

2

)

. (7.22)

This proves the estimate of φ in L2
m. If n = 1, 2 then the nonlinear

term g∗ is smooth, and one can show the higher order regularity of φ by

a standard bootstrap argument. The details are omitted here. The proof is

complete. ���

7.3. Stability of stationary solution

In this subsection we prove the stability of stationary solutions obtained

in Proposition 7.5.

Proposition 7.6. There is a positive constant δ3 = δ3(n) such that if

‖w0‖L1
1

≤ δ3 then the Cauchy problem (7.15) admits a unique solution

w ∈ C0([0,∞);L1) satisfying

‖∂kx(w(t)− Φδ)‖Lp ≤
C‖w0‖L1

1
e−

t
4

a(t)
n
4
(1− 1

p
)+ k

4

, t > 0 , (7.23)

for k = 0, 1 and 1 ≤ p ≤ ∞. Here a(t) = 1 − e−t and Φδ is the stationary

solution in Proposition 7.5 with δ =
∫

Rn w0(x)dx and m > n
2 +1. Moreover,

if in addition n = 1, 2, then (7.23) holds for any k ≥ 0, and in particular,
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in the case w0 ∈ Hs for some s ≥ 0 we have

‖∂kx(w(t) − Φδ)‖Hs−k ≤ C‖w0‖Hs∩L1
1
e−

t
4 , t > 0 , (7.24)

where 0 ≤ k ≤ s.

Remark 7.7. (i) The factor e−
t
4 in (7.24) is considered as an optimal. The

reason why one can obtain this optimal rate only from simple estimates in

Lemma 7.8 is due to the presence of ∆ in the nonlinear term. Indeed, from

Lemma 7.8 (i) we have ‖e−(t−s)A∆f‖Lp ≤ Ce−
t−s
2 ‖f‖Lq for t − s ≥ 1, and

therefore, the rate e−
t
4 is derived only from the smallness of the stationary

solution and the perturbation. If the nonlinear term ∆g∗(u) is replaced

by ∇h(u) with h(u) = |u|
3
nu, which also preserves the invariant property

with respect to the scaling (7.2), then it is essential to study the spectrum

of the linearization around the stationary solution in order to achieve the

convergence rate e−
t
4 . In such a case one needs to analyze the spectral

properties of A itself. In particular, the results as in Lemma 7.10 play

a central role, which makes us possible to apply the general perturbation

theory of linear operators.

(ii) Since (7.1) is invariant under the translation in the x variables, by shifting

the stationary solution suitably, one can improve the rate e−
t
4 in (7.24) to

e−
t
2 ; see [28] for details on the abstract argument related to this issue.

Proof of Proposition 7.6. From (7.15) and (7.16) we construct w in the

form w = Φδ + z, where z is the solution to

z(t) = etA(w0 − Φδ) +

∫ t

0
e(t−s)A∆

(

g∗(z +Φδ)− g∗(z)
)

ds

=: F [z](t) .

To this end we look for the fixed point of F in the closed ball

XR = {f ∈ C0([0,∞);L1) ; ‖f‖ ≤ R} ,

‖f‖ :=
∑

k=0,1

sup
t>0

e
t
4
(

a(t)
k
4 ‖∂kxf(t)‖L1 + a(t)

n+k
4 ‖∂kxf(t)‖L∞

)

,

where R > 0 is chosen later. We firstly observe that
∫

Rn(w0 − Φδ)dx = 0

and w0 − Φδ ∈ L1
1 since Φδ ∈ L2

m with m > n
2 + 1. Thus, Lemma 7.8 (iii)
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implies

‖∂kxF [0](t)‖Lp = ‖∂kxe
tA(w0 − Φδ)‖Lp ≤

Ce−
t
4

a(t)
n
4
(1− 1

p
)+ k

4

‖w0−Φδ‖L1
1
, t > 0,

for 1 ≤ p ≤ ∞ and k = 0, 1. This shows

‖F [0]‖ ≤ C1‖w0‖L1
1
. (7.25)

Next we estimate F [z] − F [z̃] for z, z̃ ∈ XR. By the definition of g∗ we

have

‖g∗(z(s) + Φδ)− g∗(z̃(s) + Φδ)‖Lp + ‖g∗(z(s))− g(z̃(s))‖Lp

≤ C
(

‖z(s)‖
2
n

L∞ + ‖z̃(s)‖
2
n

L∞ + ‖Φδ‖
2
n

L∞

)

‖z(s)− z̃(s)‖Lp

≤ Ca(s)−
1
2
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z(s)− z̃(s)‖Lp .

Here we have used the fact 0 < a(s) ≤ 1. For convenience we set

h[z, z̃](s) = g∗(z(s) + Φδ)− g∗(z̃(s) + Φδ) + g∗(z(s))− g(z̃(s)) .

Then we have proved that

‖h[z, z̃](s)‖Lp ≤ Ca(s)−
1
2
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z(s)− z̃(s)‖Lp . (7.26)

Now we consider two cases: (i) t is small and (ii) t is large.

(i) The case 0 < t ≤ 2: In this case we decompose the integral
∫ t
0 into

∫ t
t/2

and
∫ t/2
0 . By using Lemma 7.8 (i) and (7.26) the first term is estimated as,

for p = 1,∞,

∥

∥

∥

∥

∥

∂kx

∫ t

t
2

e(t−s)A∆h[z, z̃](s)ds

∥

∥

∥

∥

∥

Lp

≤ C

∫ t

t
2

a(t− s)−
2+k
4 ‖h[z, z̃](s)‖Lpds

≤ C

∫ t

t
2

a(t− s)−
2+k
4 a(s)−

1
2
−n

4
(1− 1

p
)ds
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖
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≤ Ca(t)−
n
4
(1− 1

p
)− k

4
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ .

On the other hand, the integral
∫ t/2
0 is estimated as

‖∂kx

∫ t
2

0
e(t−s)A∆h[z, z̃](s)ds‖Lp

≤ C

∫ t
2

0
a(t− s)−

2+k
4

−n
4
(1− 1

p
)‖h[z, z̃](s)‖L1ds

≤ C

∫ t

t
2

a(t− s)−
2+k
4

−n
4
(1− 1

p
)a(s)−

1
2ds
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖

≤ Ca(t)
−n

4
(1− 1

p
)− k

4
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ .

Hence we have

∑

k=0,1

sup
0<t≤2

e
t
4

(

a(t)
k
4 ‖∂kx

(

F [z]−F [z̃]
)

(t)‖L1+a(t)
n+k
4 ‖∂kx

(

F [z]−F [z̃]
)

(t)‖L∞

)

≤ C
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ . (7.27)

(ii) The case t > 2: Note that 1 − e−1 ≤ a(s) ≤ 1 for s ≥ t − 1 in this

case. We decompose the integral
∫ t
0 into

∫ t
t−1 and

∫ t−1
0 . The first term is

estimated as

‖∂kx

∫ t

t−1
e(t−s)A∆h[z, z̃](s)ds‖Lp

≤ C

∫ t

t−1
a(t− s)−

2+k
4 ‖h[z, z̃](s)‖Lpds

≤ C

∫ t

t−1
a(t− s)−

2+k
4 e−

s
4 ds
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖

≤ Ce−
t
4
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ , p = 1,∞ .

The second term is estimated as

‖∂kx

∫ t−1

0
e(t−s)A∆h[z, z̃](s)ds‖Lp

≤ C

∫ t−1

0
e−

t−s
2 ‖h[z, z̃](s)‖Lpds
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≤ C

∫ t−1

0
e−

t−s
2 a(s)−

1
2 e−

s
4 ds
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖

≤ Ce−
t
4
(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ , p = 1,∞ .

Thus we obtain

∑

k=0,1

sup
t>2

e
t
4

(

a(t)
k
4 ‖∂kx

(

F [z]−F [z̃]
)

(t)‖L1+a(t)
n+k
4 ‖∂kx

(

F [z]−F [z̃]
)

(t)‖L∞

)

≤ C
(

R
2
n +‖w0‖

2
n

L1
1

)

‖z−z̃‖ . (7.28)

Combining (7.27) with (7.28), we have arrived at the estimate

‖F [z] − F [z̃]‖ ≤ C2

(

R
2
n + ‖w0‖

2
n

L1
1

)

‖z − z̃‖ . (7.29)

Let us take R = 2C1‖w0‖L1
1
and take ‖w0‖L1

1
small enough. Then (7.25)

and (7.29) imply that F is a contraction mapping from XR into XR, and

there is unique fixed point of F in XR, as desired. The estimates of z(t) =

w(t)− Φδ in Lp(Rn) for 1 < p <∞ easily follow from the ones for p = 1,∞

by the interpolation. The estimate (7.23) is obtained from the bootstrap

argument as in the proof of (5.6) in Theorem 5.1. The proof is complete. ���

Proof of Theorem 7.2. We only give a proof of (7.6) for k = 0. The

estimates for k = 1 or (7.7) are proved by the same argument. By the

similarity transform (7.13) we have

v(x, t)−(R 1
1+t

Φδ)(x)=(1 + t)−
n
4
{

w
(

(1+t)−
1
4x, log(1+t)

)

−Φδ((1+t)
− 1

4x)
}

.

Hence, Proposition 7.6 yields

‖v(t)−R 1
1+t

Φδ‖Lp = (1 + t)−
n
4
(1− 1

p
)‖w(log(1 + t))− Φδ‖Lp

≤ C(1 + t)−
n
4
(1− 1

p
)‖v0‖L1

1
a(τ)−

n
4
(1− 1

p
)e−

τ
4 , τ=log(1+t),

which implies

‖v(t)−R 1
1+t

Φδ‖Lp ≤ C‖v0‖L1
1
t−

n
4
(1− 1

p
)(1 + t)−

1
4 ,

as desired. The proof of Theorem 7.2 is complete. ���
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7.4. Basic estimates for {etA}t≥0

In this section we establish the Lp - Lq estimates for the semigroup

{etA}t≥0, which are used in the proof of Theorems 7.1 and 7.2.

Lemma 7.8. Set a(t) = 1− e−t. Let k be a nonnegative integer.

(i) Let 1 ≤ q ≤ p ≤ ∞. Then we have

‖∂kxe
tAf‖Lp ≤

Ce
n
4
(1− 1

q
)t

a(t)
n
4
( 1
q
− 1

p
)+ k

4

‖f‖Lq , t > 0 , (7.30)

‖etA∂kxf‖Lp ≤
Ce

n−k
4

(1− 1
q
)t

a(t)
n
4
( 1
q
− 1

p
)+ k

4

‖f‖Lq , t > 0 . (7.31)

(ii) Let 1 ≤ q ≤ p ≤ ∞ and m > n(1− 1
q ). Then we have

‖∂kxe
tAf‖Lp

m
≤

C

a(t)
n
4
( 1
q
− 1

p
)+ k

4

‖f‖Lq
m
, t > 0 , (7.32)

‖etA∂kxf‖Lp
m
≤

Ce−
k
4
t

a(t)
n
4
( 1
q
− 1

p
)+ k

4

‖f‖Lq
m
, t > 0 . (7.33)

Moreover, we can take m = 0 if q = 1.

(iii) Let 1 ≤ p ≤ ∞ and f ∈ L1
1. Then

‖∂kx
(

etAf − δfG∗

)

‖Lp ≤
Ce−

t
4

a(t)
n
4
(1− 1

p
)+ k

4

‖f‖L1
1
, t > 0 . (7.34)

Here G∗(x) = F−1[e−|ξ|4 ](x) and δf =
∫

Rn f(x)dx.

Proof. We note that G∗(x) = F−1[e−|ξ|4 ](x) is already introduced in (4.3),

and we set G∗,α(x) = ∂αxG∗(x), where α is a multi-index with |α| = k. Then

the definition of etA implies the representation

(∂αx e
tAf)(x) =

e
n
4
t

a(t)
n+k
4

∫

Rn

G∗,α(a(t)
− 1

4 (x− y))f(e
t
4 y)dy , (7.35)
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while by the integration by parts,

(etA∂αx f)(x) =
e

n−k
4

t

a(t)
n+k
4

∫

Rn

G∗,α(a(t)
− 1

4 (x− y))f(e
t
4 y)dy . (7.36)

Therefore, (7.30) and (7.31) follow from the Young inequality. For the proof

of (7.32) and (7.33) we will use the inequality

〈x〉 ≤ 〈x− y〉〈y〉 . (7.37)

Since (7.32) and (7.33) for t ∈ (0, 1] are easily obtained from (7.35), (7.37),

and the Young inequality, we give a proof only for the case t > 1. It suf-

fices to consider the case k = 0. Using the embedding Lq
m →֒ L1 due to

the assumption m > n(1 − 1
q ), we have again from (7.35) and the Young

inequality,

‖etAf‖Lp
m
≤ Ce

n
4
t‖f(e

t
4 ·)‖L1 + Ce

n
4
t‖|x|mf(e

t
4x)‖Lq

≤ C‖f‖L1 + Ce(
n
4
−m

4
− n

4q
)t‖f‖Lq

m

≤ C‖f‖Lq
m
,

as desired. Note that, since t > 1, there is no contribution from the factor

a(t) = 1−e−t in the above calculations. To show (7.34) it suffices to consider

the case t > 1 and k = 0. We observe that G∗ satisfies
∫

Rn G∗(x)dx =

F [G∗](0) = 1 and etAG∗ = G∗ for all t ≥ 0 (since AG∗ = 0). Therefore,

it suffices to estimate etAf̃ for f̃ ∈ L1
1 with

∫

Rn f̃(x)dx = 1 by setting

f̃ = f − δfG∗. Using this zero integral condition, we can write

(etAf̃)(x) =
e

n
4
t

a(t)
n
4

∫

Rn

(

G∗(a(t)
− 1

4 (x− y))−G∗(a(t)
− 1

4x)
)

f̃(e
t
4 y)dy

= −
1

a(t)
n
4

∫ 1

0

∫

Rn

(

∇xG∗

)

(a(t)−
1
4 (x− σe−

t
4 y)) ·

e−
t
4 y

a(t)
1
4

f̃(y)dydσ .

(7.38)

Taking the Lp norm in (7.38), we obtain the desired estimates by the

Minkowski inequality. The proof is complete. ���
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7.5. Spectral property of A

In this section we study spectral properties of A in details. As stated

in Remark 7.7, the results in this section are not necessarily essential in the

proof of Theorems 7.1 and 7.2. However, the spectral analysis of A, which

is a fourth order elliptic operator, will have its own interest, and we focus

on this issue for reader’s convenience. We will mainly work in the space

L2
m, which makes the argument slightly simpler due to the structure of the

Hilbert space.

Firstly, let us introduce the operator B,

DL2
m
(B) = {f ∈ L2

m ; x · ∇f ∈ L2
m} ,

Bf = x
4 · ∇f + n

4 f , f ∈ DL2
m
(B) ,

which is the generator associated with the scaling {Rλ}λ>0 (see (7.3)), i.e.,

Bf = lim
h→0

R1+hf − f

h
in L2

m , f ∈ DL2
m
(B) .

The next lemma describes the domain of the generator of {Rete
−(et−1)∆2

}t≥0.

Lemma 7.9. The generator A of {Rete
−(et−1)∆2

}t≥0 in L2
m is given as

DL2
m
(A) = DL2

m
(∆2) ∩DL2

m
(B)

= {f ∈ L2
m ; ∂kxf ∈ L2

m , 0 ≤ k ≤ 4 , x · ∇f ∈ L2
m} ,

Af = −∆2f + Bf , f ∈ DL2
m
(A) .

Proof. We will use the result in [33]. The direct computations show that

the adjoint of −∆2 in L2
m is given by

DL2
m

(

(−∆2)∗
)

= DL2
m
(−∆2) , (7.39)

(−∆2)∗f = −∆2f +
∑

|γ|≤3

pγ(x)∂
γ
xf , f ∈ DL2

m

(

(−∆2)∗
)

,

where each pγ is a smooth function satisfying

|∂αx pγ(x)| ≤ C〈x〉2m+|γ|−4−|α| , x ∈ R
n .
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Therefore, by the interpolation inequality we have

‖(−∆2)f − (−∆2)∗f‖L2
m
≤
∑

|γ|≤3

‖pγ∂
γ
xf‖L2

m

≤ ǫ‖∆2f‖L2
m
+ Cǫ‖f‖L2

m
(7.40)

for any small ǫ > 0 and f ∈ DL2
m
(−∆2). On the other hand, the adjoint of

B in L2
m is given as

DL2
m
(B∗) = DL2

m
(B) , B∗f = −x

4 · ∇f − m
2 f , f ∈ DL2

m
(B) . (7.41)

Thus we see

‖Bf + B∗f‖L2
m
= (n4 − m

2 )‖f‖L2
m
. (7.42)

Collecting (7.39), (7.40), (7.41), and (7.42), we can apply [33, Theorem 3.9],

and the proof is complete. ���

Next we study the spectrum of A in L2
m, which is the main object of

research in this section.

Lemma 7.10. Fix m ≥ 0. The spectrum of A in L2
m is given as

σ(A) =
{

λ ∈ C ; Re(λ) ≤ 1
4(

n
2 −m)

}

∪ {−k
4 ; k = 0, 1, 2, · · · } . (7.43)

If m > n
2 and if k ∈ N ∪ {0} satisfies k + n

2 < m, then λk = −k
4 is a

semisimple eigenvalue of A with multiplicity
(

n + k − 1
k

)

. Moreover, we have

ress(e
tA) = e−

t
4
(m−n

2
) , t > 0 , (7.44)

where ress(e
tA) is the radius of the essential spectrum of etA.

Remark 7.11. The characterization (7.43) implies that {etA}t≥0 is not

analytic in L2
m, and in such case it is known that the general spectral mapping

theorem is not applied. Therefore, in order to estimate {etA}t≥0 (or its

perturbations) in large time, the information on the essential spectrum of

etA is important, in addition to (7.43). For the definition of the radius of

the essential spectrum, we refer to [4, Chapter IV, Section 1].
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Proof of Lemma 7.10. We follow the argument of Gallay and Wayne [10,

Appendix A], where the spectrum of ∆ + x
2 · ∇+ n

2 in L2
m is determined.

Step 1 (Discrete spectrum): As in the proof of Lemma 7.8, we set

G∗(x) = F−1[e−|ξ|4 ](x) , G∗,α(x) = ∂αxG∗(x) . (7.45)

Note that
∫

Rn G∗(x)dx = 1. It is straightforward to see G∗,α ∈ S(Rn)

and G∗,α is an eigenfunction of A with eigenvalue − |α|
4 . In particular, the

multiplicity of the eigenvalue λk = −k
4 , k ∈ N∪{0}, is greater than or equal

to
(

n+ k − 1

k

)

= #{α ∈ (N ∪ {0})n ; |α| = k}.

Step 2 (Continuous spectrum): Assume that λ ∈ C satisfies Re(λ) < n
8 and

−2λ /∈ N ∪ {0}. Set

Ψλ(x) = F−1[|ξ|−4λe−|ξ|4 ](x) . (7.46)

It is clear that Ψλ ∈ C∞(Rn). Using the representation of A in the Fourier

variables −|ξ|4 − ξ
4 · ∇ξ, we can check that Ψλ solves the eigenvalue problem

AΨλ = λΨλ. Moreover, from the estimate

|∂βξ (ξ
α|ξ|−4λe−|ξ|4)| ≤ Cα,β,n,λ|ξ|

−4Re(λ)+|α|−|β|e−c|ξ|4 , ξ ∈ R
n ,

for some c > 0, it is not difficult to see

|∂αxΨλ(x)| ≤ Cα,n,λ|x|
4Re(λ)−n−|α| , |x| ≥ 1 . (7.47)

Therefore, Ψλ belongs to DL2
m
(A) if Re(λ) < 1

4 (
n
2 −m). Since the spectrum

is a closed set, we have

{

λ ∈ C ; Re(λ) ≤ 1
4 (

n
2 −m)

}

⊂ σ(A) . (7.48)

Step 3 (Expansion of etA): Let l ∈ Z be such that l + n
2 < m. Then we
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define a bounded operator Pl in L
2
m by

Plf =















0 if l < 0 ,
∑

|α|≤l

cα(f)G∗,α if l ≥ 0 .
(7.49)

Here G∗,α is the function in Step 1 and

cα(f) =
1

α!
∂αξ (f̂(ξ)e

|ξ|4)|ξ=0 , (7.50)

which is well-defined if |α| ≤ l and l + n
2 < m. By (7.50) we have

cβ(G∗,α) = δαβ , α, β : multiindices. (7.51)

Hence, P2
l = Pl and Pl is a projection. We also set Ql = I − Pl. It is easy

to see that Plf = 0 if and only if

∫

Rn

xαf(x)dx = 0 whenever |α| ≤ l ,

which implies

∫

Rn

xαQlf(x)dx = 0 if |α| ≤ l . (7.52)

Now we decompose etA in L2
m as

etAf = etAPlf + etAQlf . (7.53)

Take l ∈ Z so that l + n
2 < m ≤ l + n

2 + 1. Then we claim that, for all

multi-index α and ǫ > 0, there exists a positive constant C such that

‖∂αx e
tAQlf‖L2

m
≤
Ce−

t
4
(m−n

2
−ǫ)

a(t)
|α|
4

‖f‖L2
m
, t > 0 . (7.54)

The proof of (7.54) proceeds exactly as same as [10, Proposition A.2]. In-

deed, from the representation (7.35), the estimate (7.54) for t ∈ (0, 1] is

obtained from (7.37) and by the Young inequality. For t > 1 there is no

contribution from the factor a(t), so the problem is reduced to the estimate
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of

S(t)f(x) =

∫

Rn

φ(x− y)f(e
t
4 y)dy ,

for φ ∈ S(Rn). Recalling (7.52), we have from [10, Lemma A.4],

‖S(t)Qlf‖L2
m
≤ Cǫe

− t
4
(m−n

2
−ǫ)‖f‖L2

m
, t > 0 ,

when l + n
2 < m ≤ l + n

2 + 1, which implies (7.54).

Step 4 (Proof of (7.43) and (7.44)): By Step 1 and Step 2 we have already

proved that

{

λ ∈ C ; Re(λ) ≤ 1
4(

n
2 −m)

}

∪ {−k
2 ; k = 0, 1, 2, · · · } ⊂ σ(A) . (7.55)

Take l ∈ Z so that l + n
2 < m ≤ l + n

2 + 1. Since the closed subspace

L2
m,(l) = {f ∈ L2

m ; Plf = 0} = {f ∈ L2
m ;

∫

Rn x
αf(x)dx = 0 , |α| ≤ l}

is invariant uder the action {etA}t≥0, which can be checked by computing

the evolution of each moment
∫

Rn x
αetAf(x)dx with |α| ≤ l for f ∈ DL2

m
(A)

based on the integration by parts, we have Ple
tAQl = 0 for each t ≥ 0.

Hence {etAQl}t≥0 defines a C0-semigroup in L2
m,(l). Then, since etAPl is a

finite rank operator, we have from (7.53) and (7.54),

ress(e
tA) = ress(e

tAQl) ≤ e−
t
4
(m−n

2
) .

If ress(e
tA) ≤ e−

t
4
(m−n

2
+ǫ) for some ǫ > 0 then the set {λ ∈ σ(A) ; Re(λ) >

−1
4(m − n

2 + ǫ)} consists of isolated eigenvalues; see [4, Corollary IV-2.11].

This contradicts with (7.55), and thus, ress(e
tA) = e−

t
4
(m−n

2
). Assume that

λ0 ∈ σ(A) and Re(λ0) >
1
4(

n
2 −m). Then, since ress(e

tA) = e−
t
4
(m−n

2
), again

from [4, Corollary IV-2.11], the spectrum λ0 must be an isolated eigenvalue

with finite algebraic multiplicities. Let f0 be an associated eigenfunction.

Then we have

eλ0tf0 = etAf0 = etAPlf0 + etAQlf0 ,

where l ∈ Z is taken as l+n
2 < m ≤ l+n

2+1. From (7.54), Re(λ0) >
1
4 (

n
2−m),



536 H. TAKEDA, Y. MAEKAWA AND S. KAWASHIMA [December

and f0 6= 0, the number l must be nonnegative and we see

f0 = lim
t→∞

e−λ0tetAPlf0 = lim
t→∞

∑

|α|≤l

e−(λ0+
|α|
4
)tcα(f0)G∗,α .

This implies λ0 = −k
4 for some integer k ≤ l, and f0 =

∑

|α|=k cα(f0)G∗,α.

Thus we have proved that
{

λ ∈ σ(A) ; Re(λ) > 1
4(

n
2 −m)

}

is contained in

{−k
4 ; k = 0, 1, 2, · · · }, that is, (7.43) is proved. Letm > n

2 and let k ∈ N∪{0}

be such that k + n
2 < m. Then the above proof shows that Ker (A + k

4 ) is

spanned by {G∗,α ; |α| = k}, and hence, the geometrical multiplicity of the

eigenvalue −k
4 is

(

n + k − 1
k

)

. To show the semisimple property it suffices to

prove Ker
(

(A + k
4 )

2
)

= Ker (A + k
4 ). Since Ple

tAQl = 0 for all t > 0, we

have

APlf = PlAf , AQl = QlAf , (7.56)

for f ∈ DL2
m
(A). Assume that f ∈ Ker

(

(A+ k
4 )

2
)

. Then

(A+ k
4 )f =

∑

|α|=k aαG∗,α , aα ∈ C ,

and thus,

(A+ k
4 )Qkf = −(A+ k

4 )Pkf +
∑

|α|=k aαG∗,α .

From (7.56) and Q2
k = Qk we conclude that (A + k

4 )Qkf = 0, that is,

Qkf =
∑

|α|=k bαG∗,α = Pk

∑

|α|=k bαG∗,α = PkQkf = 0. Hence, it follows

that f = Pkf =
∑

|α|≤k cα(f)G∗,α, which implies f ∈ Ker
(

(A+ k
4 )

2
)

if and

only if f ∈ Ker
(

A+ k
4

)

. The proof of Lemma 7.10 is complete. ���
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