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Abstract

We study the existence and the asymptotic stability of time-periodic solutions to

the drift-diffusion model for semiconductors. If alternating-current voltage is applied to

PN-junction diodes, a time-periodic current flow is observed. The main purpose of the

present paper is mathematical analysis on this periodic flow. We construct a time-periodic

solution by utilizing the Galerkin method. The solution is unique in a neighborhood of a

thermal equilibrium, and it is globally stable. Proofs of the uniqueness and the stability

are based on the energy method employing an energy form.

1. Introduction

PN-junction diodes are widely utilized as a rectifier. Joining P-type

and N-type semiconductors yields this diode. If applied voltage is negative,

a current flows through this diode. On the contrary, if positive voltage

is applied, the current is almost zero. Hence, this diode allows a flow of

electricity in one direction but not in the opposite direction. This property is

called rectification and converts alternating current (AC) into direct-current

(DC).
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As a first step of mathematical understanding of this conversion pro-

cess, we investigate the existence and the time-asymptotic stability of time-

periodic solutions to the drift-diffusion model for semiconductors. The drift-

diffusion model consists of two continuity equations for the density of elec-

trons and holes, adopting constitutive current relations, coupled with the

Poisson equation for the electrostatic potential (for details, see [6, 7, 8, 11,

12]):

nt = (nx − nvx)x −R(n, p), (1.1a)

pt = (px + pvx)x −R(n, p), (1.1b)

εvxx = n− p−D, (t, x) ∈ I × Ω, (1.1c)

where Ω = (0, 1) and I ⊂ R is an interval. The unknown functions n, p and v

denote the electron density, the hole density and the electrostatic potential,

respectively. The recombination-generation term R accounts for instanta-

neous generation or annihilation of electron-hole pairs. In most application,

it is given by the Shockley-Read-Hall form

R(n, p) := ν
np− 1

n+ p+ 2
,

where ν is some positive constant. The positive constant ε is the scaled

Debye length. The doping profile D denotes the density of ionized impurities

in the semiconductors and determines the performance of the devices. It

is supposed that D is a bounded measurable function. We prescribe the

boundary data

n(t, 0) = nl, p(t, 0) = pl, v(t, 0) = 0, (1.2a)

n(t, 1) = nr, p(t, 1) = pr, v(t, 1) = φ(t) (1.2b)

and the initial data

(n, p)(0, x) = (n0, p0)(x), (1.3a)

n0(x), p0(x) ≥ 0 a.e. x ∈ (0, 1). (1.3b)

The positive constants nl, pl, nr and pr in (1.2) are supposed to be in thermal

equilibrium

nlpl = 1, nrpr = 1.

We do not assume the Ohmic contacts
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nl − pl −D(0) = 0, nr − pr −D(1) = 0,

although it is adopted to uniquely determine the boundary data nl, pl, nr and

pr in the numerical simulation of the devices. Moreover, since we consider

the situation that alternating-current voltage is applied to the devices, the

function φ ∈ C(R) in (1.2b) is assumed to be periodic with period T∗ > 0.

Namely,
φ(t+ T∗) = φ(t) for any t ∈ R.

Let us mention some known results. The drift-diffusion model was de-

rived by Roosbroeck in [12]. Mock in [9] first studied the existence of the

stationary solution in a multi-dimensional bounded domain. In his another

paper [10], the asymptotic stability of the stationary solution was also dis-

cussed. In these two results, he treated the Neumann boundary condition

which does not allow any electron and hole flow through the boundary.

Gajewski and Gröger in [1] showed the unique existence and the stabil-

ity for general cases. More precisely, they adopted the Dirichlet-Neumann

mixed boundary condition which covers the case that a current permeates

the boundary. However, they investigated only a special stationary solution

(N,P, V ) in thermal equilibrium, that is,

NP = 1, (logN − V )x = (log P + V )x = 0. (1.4)

Here the second equality means that the electron and the hole currents are

zero. Under the general condition which admits stationary solutions in non-

thermal equilibrium, Fang and Ito showed that time global solutions converge

to an absorbing set as t tends to infinity in [3, 4, 5]. The relation between

the absorbing set and the stationary solution was not made clear.

Time-periodic solutions are closely related to rectification of PN-junction

diodes. However, its study is quite limited in the existing literature. Seidman

in [13] constructed the time-periodic solutions with adopting the boundary

condition different from that in the device simulation. On the other hand,

the uniqueness and the stability have been quite open problems. The diffi-

culty to study these problem arises in the fact that time-periodic solutions

are usually in non-thermal equilibrium state. Indeed, even the stationary

problem, which is a special case of the time-periodic problem, is investi-

gated only in the thermal equilibrium state.
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The main purpose of this paper is to show the unique existence and the

global stability of the time-periodic solution. This also covers the situation

that the stationary current flows in semiconductors if letting φ(t) be a con-

stant. This situation was not treated in [1]. Before stating our main results,

we give a definition of solutions to (1.1).

Definition 1.1. We say that (n, p, v) is a solution to the problem (1.1) and

(1.2) if (n, p, v) satisfies (1.1) and (1.2) with the conditions (i)–(iii):

(i) n, p ∈ C(I;H1(Ω)) ∩ L2
loc(Ī;H

2(Ω)) ∩H1
loc(Ī;L

2(Ω)).

(ii) v ∈ C(I;H2(Ω)).

(iii) n(t, x), p(t, x) ≥ 0 for any (t, x) ∈ I × Ω.

If (n∗, p∗, v∗) is a solution with I = R and additionally satisfies the following

condition, we call (n∗, p∗, v∗) a time-periodic solution with period T∗.

(iv) (n∗, p∗, v∗)(t+ T∗, x) = (n∗, p∗, v∗)(t, x) for any (t, x) ∈ R× Ω.

If a solution (n, p, v) with I = (0, T ) satisfies (n, p)(t, ·) → (n0, p0) in L
2(Ω)×

L2(Ω) as t ↓ 0, (n, p, v) is said to be a solution to the initial-boundary value

problem (1.1)–(1.3).

The existence of time-periodic solutions is established without any re-

striction of φ(t). On the other hand, the uniqueness is proved under the

assumption that maxt∈[0,T∗] |φ(t)− φr| is small enough, where

φr := Vb(1), Vb(x) := log
Nb(x)

nl
, Nb(x) := nl(1− x) + nrx, Pb(x) :=

1

Nb(x)

(1.5)

(there notations are often used throughout this paper). This smallness as-

sumption implies that the time-periodic solution is in a neighborhood of the

stationary solution which is in thermal equilibrium. Note that Gajewski and

Gröger in [1] constructed this stationary solution.

Proposition 1.2 ([1]). The stationary problem to (1.1) and (1.2) with

φ(t) = φr has a unique solution (N,P, V ) ∈ H2(Ω) satisfying N,P > 0.

Moreover, it satisfies (1.4).

The unique existence result of time-periodic solutions is summarized in the

next theorem.



2015] EXISTENCE AND STABILITY OF TIME-PERIODIC SOLUTIONS 619

Theorem 1.3. The problem (1.1) and (1.2) has a time-periodic solution.

Moreover, there exists δ > 0 depending only on ν, ε, nl, nr, pl, pr, T∗, φr
and |D|∞ such that if maxt∈[0,T∗] |φ(t) − φr| < δ, the time-periodic solution

to (1.1) and (1.2) is unique.

Next let us consider the initial-boundary value problem (1.1)–(1.3). We

prove not only the global solvability but also universal a priori estimates.

Proposition 1.4. For any (n0, p0) ∈ L2(Ω)×L2(Ω), the problem (1.1)–(1.3)

admits a unique global solution (n, p, v). Moreover, the solution satisfies

lim sup
t→∞

(‖n(t)‖1 + ‖p(t)‖1 + ‖v(t)‖1) ≤ C, (1.6)

lim sup
t→∞

(

|n(t)−1|∞ + |p(t)−1|∞
)

≤ C, (1.7)

where C is some positive constant depending only on ν, ε, nl, nr, pl, pr,

maxt∈[0,T∗] |φ(t)| and |D|∞.

Finally we give a global stability theorem for the time-periodic solution under

the smallness condition on maxt∈[0,T∗] |φ(t)− φr|.

Theorem 1.5. There exists δ > 0 depending only on ν, ε, nl, nr, pl, pr, T∗,

φr and |D|∞ such that if maxt∈[0,T∗] |φ(t)−φr| < δ, then every global solution

(n, p, v) to the problem (1.1)–(1.3) converges to the time-periodic solution

(n∗, p∗, v∗) exponentially fast in L∞ × L∞ ×W 2,∞ as t goes to infinity.

Outline of the paper. This paper is organized as follows. Section 2 estab-

lishes the existence and the uniqueness of time-periodic solutions. To show

the existence, we first find a time-periodic solution to a modified problem by

the Galerkin method, and then verify that the solution satisfies the original

problem. The uniqueness is proved by employing an energy form. In Section

3, we discuss the global stability of the time-periodic solution. The key to

showing the stability is to derive universal bounds for global solutions. Such

bounds are obtained by an energy method.

Notation. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the Lebesgue space equipped

with the norm | · |p. For a nonnegative integer l ≥ 0, H l(Ω) denotes the

l-th order Sobolev space in the L2 sense, equipped with the norm ‖ · ‖l. We

note H0 = L2 and ‖ · ‖ := ‖ · ‖0. Moreover, for a nonnegative integer l ≥ 0,
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W l,∞(Ω) denotes the l-th order Sobolev space in the L∞ sense. For a ∈ R

and k > 0, we define

a+ := max{a, 0}, a− := min{a, 0}, ak := min{a+, k}.

Lastly c and C denote generic positive constants depending only on ν, ε, nl,

nr, pl, pr, T∗, maxt∈[0,T∗] |φ(t)| and |D|∞. We denote a generic positive con-

stant depending additionally on other parameters α, β, · · · by C[α, β, · · · ].

2. Construction of a Time-Periodic Solution

2.1. Existence

This subsection is devoted to the construction of a time-periodic solu-

tion to the problem (1.1) and (1.2). We begin with seeking a time-periodic

solution (n, p, v) to the modified problem

nt = nxx − (nkvx)x −Rk(n, p), (2.1a)

pt = pxx + (pkvx)x −Rk(n, p), (2.1b)

εvxx = n− p−D, (t, x) ∈ R× Ω (2.1c)

with (1.2), where n+ = max{n, 0}, nk = min{n+, k} for a positive constant

k and

Rk(n, p) := ν
(n+p+)

k2 − 1

n+ + p+ + 2
.

After constructing the solution to (2.1), we show nk = n and pk = p by

deriving a priori bounds independent of k. More precisely, we prove the

next two propositions.

Proposition 2.1. For any k > max{nl, pl, nr, pr}, the problem (2.1) and

(1.2) has a time-periodic solution (n, p, v) satisfying the conditions (i)−(iv)

in Definition 1.1.

Proposition 2.2. There exists K > 0 depending only on ν, ε, nl, nr, pl, pr,

T∗, maxt∈[0,T∗] |φ(t)| and |D|∞ such that if k > K, then every time-periodic

solution (n, p, v) to (2.1) and (1.2) satisfies nk = n and pk = p.

To prove Proposition 2.1, we reduce the problem (2.1) with (1.2) to the

problem for (ñ, p̃) = (n−Nb, p− Pb):
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ñt = ñxx − {(ñ +Nb)
kvx}x −Rk(ñ+Nb, p̃+ Pb) +Nbxx, (2.2a)

p̃t = p̃xx + {(p̃ + Pb)
kvx}x −Rk(ñ +Nb, p̃+ Pb) + Pbxx, (2.2b)

v = Φ[ñ, p̃] :=
1

ε

∫ x

0

∫ y

0
(ñ − p̃)(t, z) + (Nb − Pb −D)(z) dzdy

− x

ε

∫ 1

0

∫ y

0
(ñ− p̃)(t, z) + (Nb − Pb −D)(z) dzdy + φ(t)x,

(2.2c)

ñ(t, 0) = ñ(t, 1) = p̃(t, 0) = p̃(t, 1) = 0, (2.2d)

where Nb and Pb are defined in (1.5) and Φ is a solution operator of the

Poisson equation. The Galerkin method establishes the existence of a time-

periodic solution to the problem (2.2) (for the details of the Galerkin method,

see [15]). We take a complete orthonormal system {wi(x) :=
√
2 sin iπx}∞i=1

in L2(Ω) and then contract an approximate solution (ñj(t, x) :=
∑j

i=1

ai(t)wi(x), p̃j(t, x) :=
∑j

i=1 bi(t)wi(x)) by solving the system of nonlinear

ordinary differential equations for (a1, a2, . . . , aj , b1, b2, . . . , bj):

(ñjt, wi) = (ñjxx, wi)− ({(ñj +Nb)
kΦ[ñj , p̃j]x}x +Rk(ñj +Nb, p̃j + Pb)

−Nbxx, wi), (2.3a)

(p̃jt, wi) = (p̃jxx, wi) + ({(p̃j + Pb)
kΦ[ñj, p̃j]x}x −Rk(ñj +Nb, p̃j + Pb)

+Pbxx, wi), (2.3b)

(ai, bi)(t+ T∗) = (ai, bi)(t) (2.3c)

for i = 1, 2, . . . , j, where (·, ·) denotes the standard L2 inner product.

Lemma 2.3. The problem (2.3) admits a solution (a1, a2, . . . , aj , b1, b2, . . .,

bj) ∈ (C1(R))2j .

Proof. We define a map L : (α1, α2, . . . , αj , β1, β2, . . . , βj) 7→ (a1, a2, . . . , aj ,

b1, b2, . . . , bj) over the Banach space (C0
per(R))

2j , where C0
per(R) := {f ∈

C0(R); f(t + T∗) = f(t) for t ∈ R}, by solving the following linear problem

for (a1, a2, . . . , aj , b1, b2, . . . , bj):

(ñjt, wi) = (ñjxx, wi)− ({(nj +Nb)
kΦ[nj, pj]x}x +Rk(nj +Nb, pj + Pb)

−Nbxx, wi), (2.4a)

(p̃jt, wi) = (p̃jxx, wi) + ({(pj + Pb)
kΦ[nj, pj ]x}x −Rk(nj +Nb, pj + Pb)

+Pbxx, wi), (2.4b)
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(ai, bi)(t+ T∗) = (ai, bi)(t) (2.4c)

for i = 1, 2, . . . , j, where

nj(t, x) :=

j
∑

i=1

αi(t)wi(x), pj(t, x) :=

j
∑

i=1

βi(t)wi(x).

The solvability of (2.4) follows from the standard theory of ordinary differ-

ential equations. It is also straightforward to check that L is continuous and

compact over (C0
per(R))

2j . Hence, to construct a solution of the nonlinear

problem (2.3) by the Leary-Schauder fixed point theorem (Theorem 11.3 in

[2]), it is sufficient to show the boundedness

max
t∈[0,T∗]

(‖ñj(t)‖2 + ‖p̃j(t)‖2) ≤M (2.5)

for any solution (ñj(t, x), p̃j(t, x)) of

(ñjt, wi) = (ñjxx, wi)− λ({(ñj +Nb)
kΦ[ñj , p̃j ]x}x+Rk(ñj +Nb, p̃j + Pb)

−Nbxx, wi), (2.6a)

(p̃jt, wi) = (p̃jxx, wi) + λ({(p̃j + Pb)
kΦ[ñj , p̃j]x}x−Rk(ñj +Nb, p̃j + Pb)

+Pbxx, wi) (2.6b)

with (2.4c) for i = 1, 2, . . . , j and λ ∈ [0, 1], where M is some positive

constant independent of λ and j.

Multiply (2.6a) by ai(t) and (2.6b) by bi(t), respectively. By summing

up these resulting equalities for i = 1, 2, . . . , j and applying integration by

parts, we have

1

2

d

dt

∫ 1

0
(ñj)

2 + (p̃j)
2 dx+

∫ 1

0
(ñjx)

2 + (p̃jx)
2dx

= −λ
∫ 1

0
G[ñj +Nb, p̃j + Pb]Φxx dx+

1

2
λ
(

n2r − p2r
)

Φx(t, 1)

−1

2
λ
(

n2l − p2l
)

Φx(t, 0)− λ

∫ 1

0

{

(ñj +Nb)
kNbx − (p̃j + Pb)

kPbx

}

Φx

+Rk(ñj + p̃j)−Nbxxñj − Pbxxp̃j dx, (2.7)

where

G[n, p] := nk
(

n− 1

2
nk

)

− pk
(

p− 1

2
pk
)

.
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We estimate the right-hand side of (2.7) separately. By (2.2c), the first term

is rewritten as

(1st term) = −λ
ε

∫ 1

0
G[ñj +Nb, p̃j + Pb](ñj +Nb − p̃j − Pb)

−G[ñj +Nb, p̃j + Pb]Ddx

≤ λ

ε

∫ 1

0
G[ñj +Nb, p̃j + Pb]Ddx

≤ C[k](1 + ‖ñjx‖+ ‖p̃jx‖),

where we have used the nonnegativity of G[n, p](n − p) in deriving the first

inequality and the Schwarz and the Poincaré inequalities in deriving the last

inequality. C[k] is some positive constant depending on k but independent

of λ and j. One can also handle the other terms as

(other terms) ≤ C[k](1 + ‖ñjx‖+ ‖p̃jx‖)

by utilizing |Φ[ñj , p̃j]|∞ ≤ C[k](1+ ‖ñj‖+ ‖p̃j‖). Substituting these estima-

tions into (2.7) and applying the Schwarz inequality give

d

dt

(

‖ñj‖2 + ‖p̃j‖2
)

+ ‖ñjx‖2 + ‖p̃jx‖2 ≤ C[k]. (2.8)

Integrate this inequality over [0, T∗] and apply the mean value theorem

for integration to see that there exists t∗ ∈ [0, T∗] such that ‖ñjx(t∗)‖2 +

‖p̃jx(t∗)‖2 ≤ C[k]. Moreover, integrating (2.8) over [t∗, t∗ + T∗] again and

utilizing the periodicity and the Poincaré inequality, we conclude

max
t∈[0,T∗]

(

‖ñj(t)‖2 + ‖p̃j(t)‖2
)

+

∫ T∗

0
‖ñjx(t)‖2 + ‖p̃jx(t)‖2 dt ≤ C[k]. (2.9)

Hence, the desired boundedness (2.5) holds. This ensures the existence of a

fixed point of the mappings L. Moreover, it is obvious that this fixed point

is a solution (a1, a2, . . . , aj , b1, b2, . . . , bj) ∈ (C1(R))2j of (2.3). ���

Since the construction of the approximate solution has been complete,

we are now at a position to prove Proposition 2.1.

Proof of Proposition 2.1. It is seen from Lemma 2.3 and its proof that

the approximate solution (ñj, p̃j) ∈ C1(R;H1
0 (Ω) ∩ H2(Ω)) satisfies (2.9).

We derive the estimate of the higher order derivatives. Multiply (2.3a) by



624 TORU KAN AND MASAHIRO SUZUKI [December

ait(t)−(iπ)2ai(t) and (2.3b) by bit(t)−(iπ)2bi(t), respectively. Sum up them

for i = 1, 2, . . . , j and integrate by parts. Note that wixx = −(iπ)2wi. The

result is

d

dt

∫ 1

0
(ñxj)

2 + (p̃xj)
2 dx+

∫ 1

0
(ñjxx)

2 + (p̃jxx)
2 + (ñjt)

2 + (p̃jt)
2 dx

=

∫ 1

0
(−{(ñj +Nb)

kΦx}x −Rk +Nbxx)(ñjt − ñjxx) dx

+

∫ 1

0
({(p̃j + Pb)

kΦx}x −Rk + Pbxx)(p̃jt − p̃jxx) dx.

In a similar way to the derivation of (2.9), this equality yields

max
t∈[0,T∗]

(

‖ñxj(t)‖2 + ‖p̃xj(t)‖2
)

+

∫ T∗

0
‖ñjt(t)‖2 + ‖p̃jt(t)‖2 + ‖ñjxx(t)‖2

+‖p̃jxx(t)‖2 dt ≤ C[k], (2.10)

where C[k] is some positive constant depending on k but independent of λ

and j. As this derivation is easier than that of (2.9), we omit the details.

By virtue of the boundedness (2.9) and (2.10), there exists a subse-

quence, still denoted by {(ñj, p̃j)}∞j=1, and ñ, p̃ ∈ C([0, T∗];L
2)∩L2(0, T∗;H

1
0

∩H2) ∩H1(0, T∗;L
2) such that

ñj, p̃j → ñ, p̃ in C([0, T∗];L
2(Ω)) strongly,

ñj, p̃j ⇀ ñ, p̃ in L2(0, T∗;H
1
0 (Ω) ∩H2(Ω)) weakly,

ñjt, p̃jt ⇀ ñt, p̃t in L2(0, T∗;L
2(Ω)) weakly.

Notice that (ñ, p̃)(0) = (ñ, p̃)(T∗) holds (in L2) thanks to (ñj, p̃j)(0) =

(ñj, p̃j)(T∗). Hence, extending the domain of ñ and p̃ from [0, T∗] to R

periodically, we see that (ñ, p̃) is a desired time-periodic solution to (2.2).

The standard theory of parabolic equations ensures the regularity ñ, p̃ ∈
C([0, T∗];H

1). Consequently, it is immediately seen that (n, p, v) = (ñ +

Nb, p̃ + Pb,Φ[ñ, p̃]) is a time-periodic solution to (2.1) satisfying the condi-

tions (i), (ii) and (iv) in Definition 1.1.

Lastly, we show that the constructed time-periodic solution satisfies the

condition (iii) in Definition 1.1. Multiply (2.1a) by n− := min{n, 0} and
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integrate by parts over Ω to obtain

1

2

d

dt

∫ 1

0
(n−)

2 dx+

∫ 1

0
{(n−)x}2 dx =

∫ 1

0
nkvx(n−)x dx−

∫ 1

0
Rk(n, p)n− dx.

Notice that the first term of the right-hand side is zero and the second

term is nonpositive. Thus, integrating the above equality over [0, T∗] yields
∫ T∗
0 ‖(n−)x(t)‖2 dt ≤ 0 owing to the periodicity. This together with the

Poincaré inequality gives n− = 0, which means n ≥ 0. In the same way, we

have p ≥ 0 from (2.1b). ���

Next we show Lemmas 2.4 and 2.5 which immediately lead to Proposi-

tion 2.2 owing to the Morrey inequality. In the proofs, we utilize

‖u‖ ≤ ‖ux‖ ≤ ‖uxx‖ for any u ∈ H1
0 (Ω) ∩H2(Ω). (2.11)

Here and hereafter, we need the arguments using the mollifier with respect

to the time variable t due to the insufficiency of the regularity of solutions

and φ. However, we omit these arguments since they are standard.

Lemma 2.4. Let (n, p, v) be a time-periodic solution to (2.1) and (1.2) sat-

isfying the conditions (i)−(iv) in Definition 1.1. For any k > max{nl, pl, nr,
pr}, it holds that

max
t∈[0,T∗]

(‖n(t)‖2+‖p(t)‖2+‖vx(t)‖2)+
∫ T∗

0
‖(nx(t)‖2+‖px(t)‖2+‖vxx(t)‖2dt≤C,

(2.12)

where C is some positive constant independent of k.

Proof. Differentiating (2.1c) with respect to t and utilizing the equations

(2.1a) and (2.1b) give

εvxxt = nt − pt = nxx − pxx − {(nk + pk)vx}x.

Multiply this equation by −(v − φx) and integrate it by parts over Ω to

obtain

ε

2

d

dt

∫ 1

0
{(v − φx)x}2 dx

=

∫ 1

0
−(n−Nb − p+ Pb)(v − φx)xx + (Nb − Pb)x(v − φx)x
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−(nk + pk){(v − φx)x}2 − φ(nk + pk)(v − φx)x dx

= −ε
∫ 1

0
(vxx)

2 + (nk + pk)(vx)
2 dx+ I1, (2.13)

I1 :=

∫ 1

0
(Nb − Pb −D)vxx + (Nb − Pb)x(v − φx)x + φ(nk + pk)vx dx,

where we have used (2.1c) in deriving the last equality of (2.13). By the

Schwarz inequality and (2.11), I1 is estimated as

|I1| ≤ µ(‖vxx‖2 + ‖
√
nkvx‖2 + ‖

√
nkvx‖2 + ‖n‖2 + ‖p‖2) + C[µ], (2.14)

where µ is a positive constant to be determined later and C[µ] is some

constant depending on µ but independent of k.

Multiply (2.1a) by n − Nb and (2.1b) by p − Pb, respectively. Then

adding both results and integrating by parts over Ω lead to

1

2

d

dt

∫ 1

0
(n−Nb)

2 + (p− Pb)
2 dx+

∫ 1

0
(nx)

2 + (px)
2 dx

=

∫ 1

0
nxNbx − {(nk)xvx + nkvxx}n + (nkvx)xNb

+pxPbx + {(pk)xvx + pkvxx}p − (pkvx)xPb

−Rk(n, p){(n −Nb) + (p− Pb)} dx

= −
∫ 1

0
G[n, p]vxxdx−

∫ 1

0
Rk(n, p){(n−Nb)+(p−Pb)}dx+I2, (2.15)

I2 :=

∫ 1

0
nxNbx + pxPbx − (nkNbx − pkPbx)vx dx+

1

2

(

n2r − p2r
)

vx(t, 1)

−1

2

(

n2l − p2l
)

vx(t, 0),

where G[n, p] is given in (2.7). Let us estimate each term of the right-hand

side of (2.15). Substituting (2.1c) into the first term and using 2G[n, p](n−
p) ≥ (nk + pk)(n − p)2 and |G[n, p]| ≤ 2(nk + pk)|n− p|, we have

−
∫ 1

0
G[n, p]vxxdx = −1

ε

∫ 1

0
G[n, p](n− p) dx− 1

ε

∫ 1

0
G[n, p]D dx

≤ − 1

4ε

∫ 1

0
(nk + pk)(n− p)2 dx+ µ(‖n‖2 + ‖p‖2) + C[µ]. (2.16)

Moreover, from the fact that −C ≤ Rk(a, b) ≤ C(1 + a+ b) for any a, b ≥ 0,
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one can handle the second term as

−
∫ 1

0
Rk(n, p){(n −Nb) + (p− Pb)}dx

=−
∫ 1

0
Rk(n, p){(n −Nb)+ + (p− Pb)+}dx

−
∫ 1

0
Rk(n, p){(n −Nb)− + (p− Pb)−}dx

≤ C

∫ 1

0
{(n −Nb)+ + (p − Pb)+}dx

− C

∫ 1

0
(1 + n+ p){(n −Nb)− + (p− Pb)−}dx

≤ µ(‖n‖2 + ‖p‖2) + C[µ]. (2.17)

For the estimation of I2, we use

‖n‖+ ‖p‖ ≤ C(1 + ‖nx‖+ ‖px‖), (2.18)

|vx|∞ ≤ C(1 + ‖n‖+ ‖p‖). (2.19)

Note that the first inequality follows from (2.11) and the second inequality

is derived from the solution formula v = Φ[n − Nb, p − Pb]. From these we

have

|I2| ≤ µ(‖nx‖2 + ‖px‖2) + C[µ]. (2.20)

Add (2.13) and (2.15) and substitute (2.14), (2.16), (2.17) and (2.20).

Then, taking µ appropriately and using (2.18), we conclude

d

dt

(

‖n−Nb‖2+‖p−Pb‖2+‖(v − φx)x‖2
)

+
1

2

(

‖nx‖2+‖px‖2+‖vxx‖2
)

≤C,
(2.21)

where C is some positive constant independent of k. Integrate this inequality

over [0, T∗] and apply the mean value theorem for integration to see that

there exists t∗ ∈ [0, T∗] such that ‖nx(t∗)‖2 + ‖px(t∗)‖2 + ‖vxx(t∗)‖2 ≤ C.

In addition, integrate (2.21) over [t∗, t∗ + T∗] again and utilize (2.11), (2.18)

and the periodicity to obtain (2.12). The proof is complete. ���
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Lemma 2.5. Under the same assumptions as in Lemma 2.4, it holds that

max
t∈[0,T∗]

(‖nx(t)‖2 + ‖px(t)‖2) +
∫ T∗

0
‖nxx(t)‖ + ‖pxx(t)‖2 dt ≤ C. (2.22)

Proof. By multiplying (2.1a) by −nxx and integrating over Ω, we have

1

2

d

dt

∫ 1

0
(nx)

2dx =−
∫ 1

0
(nxx)

2dx+

∫ 1

0
{(nk)xvx + nkvxx +R(n, p)}nxxdx

≤− 1

2
‖nxx‖2 + |vx|2∞‖nx‖2 + ‖vxx‖2|n|2∞

+ C(‖n‖2 + ‖p‖2 + 1). (2.23)

The Morrey inequality, (2.1c), (2.18) and (2.19) yield

|vx|2∞‖nx‖2 + ‖vxx‖2|n|2∞ ≤ C(‖n‖2 + ‖p‖2 + 1)(‖nx‖2 + 1)

≤ 1

4
‖nxx‖2 + C(‖n‖4 + ‖p‖4 + 1). (2.24)

Substituting (2.24) into (2.23) gives (d/dt)‖nx‖2 + ‖nxx‖2/2 ≤ C. In a

similar way, we have (d/dt)‖px‖2 + ‖pxx‖2/2 ≤ C. Then we obtain (2.22) in

the same way as the derivation of (2.12) from (2.21). ���

2.2. A priori bounds

In this subsection, we discuss several estimates of a time-periodic solu-

tion (n∗, p∗, v∗) to (1.1) and (1.2). More precisely, we show a priori bounds

in Lemma 2.6 and estimates of the difference between the time-periodic so-

lution and the stationary solution (N,P, V ) to (1.1) and (1.2) with φ(t) = φr

in Lemma 2.7. These estimates are utilized in the proof of the uniqueness.

Lemma 2.6. Every time-periodic solution (n∗, p∗, v∗) to (1.1) and (1.2)

satisfies

max
t∈[0,T∗]

(‖n∗(t)‖21 + ‖p∗(t)‖21+‖v∗x(t)‖2)+
∫ T∗

0
‖n∗x(t)‖21 + ‖p∗x(t)‖21dt ≤ C,

(2.25)

max
t∈[0,T∗]

(|n∗(t)|∞ + |p∗(t)|∞) ≤ C, (2.26)
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max
t∈[0,T∗]

(|n∗(t)−1|∞ + |p∗(t)−1|∞) ≤ C, (2.27)

where C is some positive constant depending only on ν, ε, nl, nr, pl, pr, T∗,

maxt∈[0,T∗] |φ(t)| and |D|∞.

Proof. By the same manner as in the proof of Lemmas 2.4 and 2.5, we

obtain (2.25). The Morrey inequality together with (2.25) leads to (2.26).

To derive (2.27), let us take m0 > 0 sufficiently small so that

m0 ≤ min{nl, nr, pl, pr},
ν

2(C1 + 1)
−m0−

m0

ε
(2C1+‖D‖∞)−νm0C1

2
≥ 0,

where C1 is a positive constant verifying (2.26) with C = C1, and putm(t) :=

m0(1 − e−(t−t0)) for t0 ∈ R. Multiplying (1.1a) by (n∗ − m)−, integrating

the resulting equality by parts and utilizing the fact that 0 ≤ n∗ ≤ m0 if

(n∗ −m)− < 0, we have

1

2

d

dt

∫ 1

0
{(n∗ −m)−}2 dx+

∫ 1

0
[{(n∗ −m)−}x]2 dx

=

∫ 1

0

{

−m0e
−(t−t0)− 1

2ε
(n∗−p∗−D)(n∗+m)−ν n∗p∗ − 1

n∗ + p∗ + 2

}

(n∗ −m)−dx

≤
{

ν

2(C1 + 1)
−m0 −

m0

ε
(2C1 + ‖D‖∞)− ν

m0C1

2

}
∫ 1

0
(n∗ −m)−dx

≤ 0.

This together with the nonnegativity of n∗ yields ‖(n∗ −m0)−(t)‖2 = 0 for

any t > t0. Therefore

lim sup
t→∞

|n∗(t)−1|∞ ≤ lim
t→∞

m(t)−1 = m−1
0 .

Hence, n∗ ≥ m0 holds owing to the periodicity. The same argument is valid

for (1.1b) and thus we conclude (2.27) . ���

To estimate the difference between the time-periodic solution (n∗, p∗, v∗)

and the stationary solution (N,P, V ), we employ an energy form

E = E [n1, p1, v1, n2, p2, v2]

:=

∫ ϕ

0
log

(

1 +
y

n2

)

dy +

∫ ψ

0
log

(

1 +
y

p2

)

dy +
ε

2
(ηx − η|x=1)

2,
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where

ϕ = ϕ[n1, n2] := n1−n2, ψ = ψ[p1, p2] := p1−p2, η = η[v1, v2] := v1−v2.

It is seen that the energy form E for any two solutions (n1, p1, v1) and

(n2, p2, v2) to (1.1) satisfies

Et = −D + J +K + L+M+ Bx, (2.28)

where D,J , . . . ,B are defined by

D = D[n1, p1, v1, n2, p2, v2]

:= n1

{(

log
n1
n2

− η

)

x

}2

+ p1

{(

log
p1
p2

+ η

)

x

}2

,

J = J [n1, p1, v1, n2, p2, v2]

:= −
{

n1

(

log
n1
n2

− η

)

x

− p1

(

log
p1
p2

+ η

)

x

}

(η|x=1),

K = K[n1, p1, n2, p2]

:= −(R(n1, p1)−R(n2, p2))(log n1p1 − log n2p2),

L = L[n1, p1, n2, p2]

:= R(n2, p2)

(
∫ ϕ

0

y

n2(n2 + y)
dy +

∫ ψ

0

y

p2(p2 + y)
dy

)

,

M = M[n1, p1, v1, n2, p2, v2]

:= {ϕ(log n2 − v2)x − ψ(log p2 + v2)x}{ηx − (η|x=1)},

B = B[n1, p1, v1, n2, p2, v2]

:= n1

(

log
n1
n2

− η

)

x

(

log
n1
n2

− {η − (η|x=1)x}
)

+p1

(

log
p1
p2

+ η

)

x

(

log
p1
p2

+ {η − (η|x=1)x}
)

+{n1(log n2 − v2)x} log
n1
n2

+ {n2(log n2 − v2)x}
(

1− n1
n2

)

+{p1(log p2 + v2)x} log
p1
p2

+ {p2(log p2 + v2)x}
(

1− p1
p2

)

−{ϕ(log n2 − v2)x − ψ(log p2 + v2)x}{η − (η|x=1)x}

+ε{η − (η|x=1)x}{η − (η|x=1)x}xt.
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Moreover, we utilize the elementary inequalities

b2

2(a+ b+)
≤

∫ b

0
log

(

1 +
y

a

)

dy ≤ b log

(

1 +
b

a

)

for any a > 0, b > −a
(2.29)

and the equations for (ϕ,ψ, η)

ϕt = ϕxx − (n1ηx + ϕv2x)x −R(n1, p1) +R(n2, p2), (2.30a)

ψt = ψxx + (p1ηx + ψv2x)x −R(n1, p1) +R(n2, p2), (2.30b)

ε{η − (η|x=1)x}xx = ϕ− ψ. (2.30c)

Lemma 2.7. Let (N,P, V ) be the stationary solution to (1.1) and (1.2) with

φ(t) = φr. Then every time-periodic solution (n∗, p∗, v∗) to (1.1) and (1.2)

satisfies

max
t∈[0,T∗]

(‖(n∗ −N)(t)‖21 + ‖(p∗ − P )(t)‖21 + ‖(v∗x − Vx)(t)‖2)

≤ C max
t∈[0,T∗]

|φ(t) − φr|2, (2.31)

|n∗p∗ − 1|∞ + ‖(log n∗ − v∗)x‖+ ‖(log p∗ + v∗)x‖
≤ C max

t∈[0,T∗]
|φ(t) − φr|, (2.32)

where C is some positive constant depending only on ν, ε, nl, nr, pl, pr, T∗,

maxt∈[0,T∗] |φ(t)| and |D|∞.

Proof. Since (2.32) follows from (1.4) and (2.31), it is sufficient to show

(2.31). Substitute (n1, p1, v1, n2, p2, v2) = (n∗, p∗, v∗, N, P, V ) into ϕ, ψ, η,

E , D, . . ., B and write them by ϕe, ψe, ηe, Ee, De, . . ., Be, respectively.

Integrate (2.28) over Ω and use (1.2) and (1.4). The result is

d

dt

∫ 1

0
Ee dx+

∫ 1

0
De dx =

∫ 1

0
Je dx+

∫ 1

0
Ke dx. (2.33)

First we estimate
∫ 1
0 Ee dx from below. Owing to (2.11), (2.26) and

(2.29), it holds that

∫ 1

0
Ee dx ≥ C(‖ϕe‖2 + ‖ψe‖2 + ‖ηe − (ηe|x=1)x‖21). (2.34)
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For the estimation of
∫ 1
0 Ee dx from above, we use the inequality

ε‖ηex − (ηe|x=1)‖2 =
∫ 1

0
(−ϕe + ψe)ηe dx+ (ηe|x=1)

∫ 1

0
x(ϕe − ψe) dx,

which follows from (2.30c). This together with (2.11) and (2.29) leads to

∫ 1

0
Ee dx ≤

∫ 1

0
ϕe

(

log
n∗
N

− ηe

)

+ ψe

(

log
p∗
P

+ ηe

)

dx

+ (ηe|x=1)

∫ 1

0
x(ϕe − ψe) dx

≤µ
(

‖ϕe‖2 + ‖ψe‖2
)

+ C[µ]

(
∫ 1

0
De dx+ (ηe|x=1)

2

)

, (2.35)

where µ > 0 is an arbitrary constant. Combining (2.34) and (2.35) and

taking µ appropriately, we deduce

∫ 1

0
Ee dx ≤ C

(
∫ 1

0
De dx+ (ηe|x=1)

2

)

. (2.36)

Let us estimate the right-hand side of (2.33). By the Schwarz inequality

and (2.25), the first term is handled as

∫ 1

0
Je dx ≤ µ

∫ 1

0
De dx+ C[µ](ηe|x=1)

2. (2.37)

Moreover,
∫ 1
0 Ke dx ≥ 0 follows from (1.4) and (n∗p∗ − 1) log n∗p∗ ≥ 0.

Thus the second term is negligible. Substituting (2.37) into (2.33), letting µ

sufficiently small and then using (2.36) and ηe|x=1 = φ(t)− φr, we conclude

d

dt

∫ 1

0
Ee dx+ c

∫ 1

0
Ee dx ≤ C max

t∈[0,T∗]
|φ(t)− φr|2.

Hence, by the same calculations as the derivation of (2.12) from (2.21) with

the aid of (2.34), we have

max
t∈[0,T∗]

(‖ϕe(t)‖2 + ‖ψe(t)‖2 + ‖ηex(t)‖2) ≤ C max
t∈[0,T∗]

|φ(t)− φr|2.

Let us derive the estimate of the first order derivatives of ϕe and ψe.
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Multiplying (2.30a) by −ϕexx and integrating over Ω give

1

2

d

dt

∫ 1

0
(ϕex)

2dx

= −
∫ 1

0
(ϕexx)

2dx+

∫ 1

0
{(n∗ηex + ϕeVx)x +R(n∗, p∗)−R(N,P )}ϕexxdx

≤ −1

2
‖ϕxx‖2 + |ηex|2∞‖n∗x‖2 + ‖ηexx‖2|n∗|2∞ + |Vx|2∞‖ϕex‖2 + ‖Vxx‖2|ϕe|2∞

+ C(‖ϕe‖2 + ‖ψe‖2). (2.38)

The Morrey inequality, (2.11), (2.25), (2.26) and (2.30c) yield

|ηex|2∞‖n∗x‖2 + ‖ηexx‖2|n∗|2∞ + |Vx|2∞‖ϕex‖2 + ‖Vxx‖2|ϕe|2∞
≤ C

(

‖ϕe‖21 + ‖ψe‖2
)

≤ 1

4
‖ϕexx‖2 + C

(

‖ϕe‖2 + ‖ψe‖2
)

. (2.39)

Substituting (2.39) into (2.38) gives (d/dt)‖ϕex‖2+‖ϕexx‖2/2 ≤ Cmaxt |φ(t)
−φr|2. Similarly, the inequality (d/dt)‖ψex‖2 + ‖ψexx‖2/2 ≤ Cmaxt |φ(t) −
φr|2 follows from (2.30b). Therefore we obtain

max
t∈[0,T∗]

(‖ϕex(t)‖2 + ‖ψex(t)‖2) ≤ C max
t∈[0,T∗]

|φ(t)− φr|2

by the same computations as the derivation of (2.12) from (2.21). The proof

is complete. ���

2.3. Uniquness

The existence of a time-periodic solution has been established in Sub-

section 2.1. To complete the proof of Theorem 1.3, it is sufficient to prove

the uniqueness under the smallness assumption on maxt |φ(t)− φr|.

Proof of Theorem 1.3. Let (n1, p1, v1) and (n2, p2, v2) be time-periodic so-

lutions to (1.1) and (1.2) with period T∗ > 0. Substitute (n1, p1, v1, n2, p2, v2)

into ϕ, ψ, η, E , D, . . ., B and write them by ϕ∗, ψ∗, η∗, E∗, D∗, . . ., B∗, re-

spectively. Integrate (2.28) over Ω and use (1.2) to obtain

d

dt

∫ 1

0
E∗ dx+

∫ 1

0
D∗ dx =

∫ 1

0
K∗ dx+

∫ 1

0
L∗ +M∗ dx. (2.40)
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Firstly, we have

c(‖ϕ∗‖2 + ‖ψ∗‖2 + ‖η∗‖2) ≤
∫ 1

0
E∗ dx ≤ C

∫ 1

0
D∗ dx (2.41)

in a similar way to the derivations of (2.34) and (2.36) with the aid of

η∗|x=1 = 0. The term
∫ 1
0 K∗ dx is estimated from above as

∫ 1

0
K∗ dx = −ν

∫ 1

0

n1p1 − n2p2
n1 + p1 + 2

log
n1p1
n2p2

dx

+ ν

∫ 1

0

(n2p2 − 1)(ϕ∗ + ψ∗)

(n1 + p1 + 2)(n2 + p2 + 2)
log

n1p1
n2p2

dx

≤ ν

4
|n2p2 − 1|∞

∫ 1

0
(|ϕ∗|+ |ψ∗|)

∣

∣

∣

∣

log
n1p1
n2p2

∣

∣

∣

∣

dx

≤ C max
t∈[0,T∗]

|φ(t) − φr|
∫ 1

0
D∗ dx, (2.42)

where we have used the nonnegativity (a − b)(log a− log b) ≥ 0 in deriving

the first inequality and used (2.26), (2.27), (2.32) and (2.41) in deriving the

last inequality. By (2.26) and (2.27), one can handle
∫ 1
0 L∗ +M∗ dx as

∫ 1

0
L∗ +M∗ dx ≤C‖R(n2, p2)‖∞(‖ϕ∗‖2 + ‖ψ∗‖2)

+ C(‖ϕ∗‖‖(log n2 − v2)x‖+ ‖ψ∗‖‖(log p2 + v2)x‖)‖η∗x|∞

≤C max
t∈[0,T∗]

|φ(t)− φr|
∫ 1

0
D∗ dx, (2.43)

where we have used (2.32), (2.41) and the elliptic estimate ‖η∗‖22 ≤ C(‖ϕ∗‖2
+‖ψ∗‖2) in deriving the last inequality.

Substituting (2.42) and (2.43) into (2.40), making maxt |φ(t)−φr| small

enough and then utilizing (2.41), we conclude

d

dt

∫ 1

0
E∗ dx+ c

∫ 1

0
E∗ dx ≤ 0.

Consequently, integrating this inequality over [0, T∗] together with the peri-

odicity and (2.41) yields (n1, p1, v1) = (n2, p2, v2). ���
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3. Asymptotic Behavior of Solutions

In this section we consider the global stability of the time-periodic solu-

tion constructed in the previous section. Throughout this section, the initial

value (n0, p0) is assumed to belong to L2(Ω)× L2(Ω) and a constant C > 0

is independent of (n0, p0).

3.1. Global solvability and a priori bounds

This subsection is devoted to proving Proposition 1.4 which ensures the

global existence and the universal bounds of solutions to the initial-boundary

value problem (1.1)–(1.3).

Before proving Proposition 1.4, we show the local solvability.

Lemma 3.1. The problem (1.1)–(1.3) admits a unique solution for some

interval I = (0, T ) with T = C−1e−C(‖n0‖2+‖p0‖2).

Proof. Let T >0 and define a mapping S : (L2(0, T ;L2))2 → (L2(0, T ;L2))2

as follows. Let (n, p) ∈ (L2(0, T ;L2))2 and set v = Φ[n − Nb, p − Pb] ∈
L2(0, T ;H2), where Φ is defined in (2.2c). The Morrey inequality gives

‖vx‖L2(0,T ;L∞) ≤ C(‖n‖L2(0,T ;L2) + ‖p‖L2(0,T ;L2)).

From this and the fact that |R(a+, b+)| ≤ C(|a|+ |b|+ 1), one can show by

the Galerkin method that there exists a unique solution (ñ, p̃) of the linear

system

{

ñ′ = (ñx − vxñ)x −R(n+, p+),

p̃′ = (p̃x + vxp̃)x −R(n+, p+), a.e. t ∈ (0, T ) in H−1

with the conditions

(ñ−Nb, p̃− Pb) ∈ (L2(0, T ;H1
0 ))

2, (ñ′, p̃′) ∈ (L2(0, T ;H−1))2,

(ñ, p̃)(0, ·) = (n0, p0).

Furthermore, it is straightforward to derive the estimates

max
t∈[0,T ]

‖ñ(t)‖2 + max
t∈[0,T ]

‖p̃(t)‖2
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≤ C(‖n0‖2 + ‖p0‖2 + 1) exp

(

C

∫ T

0

(

‖n(t)‖2 + ‖p(t)‖2 + 1
)

dt

)

, (3.1)

∫ T

0
‖ñ(t)‖21dt+

∫ T

0
‖p̃(t)‖21dt+

∫ T

0
‖ñ′(t)‖2H−1dt+

∫ T

0
‖p̃′(t)‖2H−1dt

≤ C

(

max
t∈[0,T ]

‖ñ(t)‖2 + max
t∈[0,T ]

‖p̃(t)‖2
)
∫ T

0

(

‖n(t)‖2 + ‖p(t)‖2 + 1
)

dt. (3.2)

Then the mapping S is defined by S((n, p)) := (ñ, p̃).

Fixed points of S and solutions of (1.1)–(1.3) are one-to-one correspon-

dence. Indeed, we see from the regularity theory for parabolic equations that

every fixed point (n, p) of S satisfies the condition (i) in Definition 1.1. In

addition, the fixed point (n, p) also satisfies the condition (iii) since testing

n− and p− gives

d

dt
(‖n−‖2 + ‖p−‖2) ≤ C(1 + ‖n‖2 + ‖p‖2)(‖n−‖2 + ‖p−‖2).

Note that v := Φ[n−Nb, p− Pb] satisfies the condition (ii).

For (ñ1, p̃1) = S((n1, p1)) and (ñ2, p̃2) = S((n2, p2)) one can derive

d

dt

(

‖ñ1 − ñ2‖2 + ‖p̃1 − p̃2‖2
)

≤ C(1 + ‖n1‖2 + ‖p1‖2)(‖ñ1 − ñ2‖2 + ‖p̃1 − p̃2‖2)
+C(1 + ‖ñ2‖2 + ‖p̃2‖2)(‖n1 − n2‖2 + ‖p1 − p2‖2).

This shows that S is continuous and S has at most one fixed point.

Let us show the existence of a fixed point of S. Put M := 1 + ‖n0‖2 +
‖p0‖2 and

KT :=

{

(n, p) ∈ (L2(0, T ;L2))2 ;

∫ T

0

(

‖n(t)‖2 + ‖p(t)‖2
)

dt ≤M

}

.

Since (3.1) yields
∫ T
0 ‖ñ(t)‖2dt+

∫ T
0 ‖p̃(t)‖2dt ≤ CMTeC(M+T ) for all (n, p) ∈

KT , S maps from KT to KT if T ≤ C−1e−CM . Moreover, by (3.1), (3.2) and

the Aubin-Lions lemma (see [14, Section 8]), we see that the image S(KT )

is precompact in (L2(0, T ;L2))2. Thus the Schauder fixed point theorem

(see, for instance, [2, Corollary 11.2]) shows that S has a fixed point in KT ,

provided T ≤ C−1e−CM . Therefore we obtain the conclusion. ���
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We are now in a position to prove Proposition 1.4.

Proof of Proposition 1.4. Let (n, p, v) be a solution of (1.1)–(1.3) with

I = (0, T ). Then we can show by the same computations as in the proof of

Lemma 2.4 that

d

dt

{

‖n−Nb‖2+‖p− Pb‖2+‖(v − φx)x‖2
}

+
1

2

{

‖nx‖2+‖px‖2+‖vxx‖2
}

≤ C

for 0 < t < T . Using (2.11) and multiplying the above inequality by et/2, we

have

‖n(t)‖+ ‖p(t)‖ + ‖vx(t)‖ ≤ (‖n(0)‖+ ‖p(0)‖ + ‖vx(0)‖) e−t/2 + C.

From this estimate and Lemma 3.1, we conclude that the problem (1.1)–

(1.3) has a unique global solution. Furthermore, the estimates (1.6) and

(1.7) can be derived in the same way as in the proofs of Lemmas 2.5 and

2.6. Therefore the assertion follows. ���

3.2. Global stability of the time-periodic solution

In this subsection we give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let (n, p, v) be a global solution to (1.1)–(1.3)

and (n∗, p∗, v∗) be a time-periodic solution to (1.1) and (1.2). By Lemma

2.6 and Proposition 1.4, we can take t0 ≥ 0 such that

sup
t≥t0

(‖n(t)‖1 + ‖p(t)‖1 + ‖n∗(t)‖1 + ‖p∗(t)‖1) ≤ C, (3.3)

sup
t≥t0

(|n(t)−1|∞ + |p(t)−1|∞ + |n∗(t)−1|∞ + |p∗(t)−1|∞) ≤ C. (3.4)

Let E = E [n, p, v, n∗, p∗, v∗], ϕ = ϕ[n, n∗], ψ = ψ[p, p∗] and η = η[v, v∗]

be defined as before. By using (3.3) and (3.4) and making the same argu-

ments as in the proof of Theorem 1.3, we find

∫ 1

0
E dx ≥ C(‖ϕ‖2 + ‖ψ‖2 + ‖η‖21),

d

dt

∫ 1

0
E dx+ c

∫ 1

0
E dx ≤ 0

for t ≥ t0, provided that maxt |φ(t)−φr| is small enough. These inequalities
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immediately give

‖ϕ(t)‖ + ‖ψ(t)‖ + ‖η(t)‖1 ≤ Ce−c(t−t0). (3.5)

Thanks to (3.3), (3.5) and the Gagliardo-Nirenberg interpolation inequality,

ϕ and ψ decay exponentially fast in L∞ as t → ∞. From (2.30c), we deduce

the decay of η in W 2,∞. Thus the proof is complete. ���
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