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Abstract

We study the vanishing viscosity–capillarity limit under the assumption of self–

similarity when the underlying nonlinear hyperbolic system of conservation laws is for-

mulated as a boundary value problem on the half-line. We establish a uniform bound on

the total variation of solutions for the corresponding viscous–capillary boundary Riemann

problem, provided the capillarity coefficient does not exceed a critical threshold. This

leads us to a convergence theorem, as well as an existence result for the boundary Riemann

problem for systems with sufficiently small Riemann data and sufficiently small capillarity.

Furthermore, allowing for a possibly large capillarity coefficient, we then derive an equa-

tion governing the boundary layer and we introduce the notion of “viscous–capillary set of

admissible boundary states”, which, following Dubois and LeFloch, represents all possible

boundary states arising in the vanishing viscosity-capillarity limit. This set may involve,

both, classical (compressive) and nonclassical (undercompressive) shock layers, the latter

being typically determined by a kineric relation associated with the problem.
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1. Introduction

Our general motivation is to investigate the structure of boundary layers

associated with nonlinear hyperbolic systems, when vanishing viscosity and

capillarity effects are taken into account. Our analysis covers the general

regime when the boundary is characteristic, that is, one of the wave speeds

may vanish. In the present paper, we address this problem first in the case

of the Riemann problem associated with a scalar conservation law in one

space dimension. That is, we consider weak solutions to the equation

∂tu+ ∂xf(u) = 0, t > 0, x > 0, (1.1)

with smooth prescribed flux f : R → R and unknown u = u(t, x) ∈ R,

subjected to the boundary and initial conditions

u(t, 0) = ub, t > 0,

u(0, x) = u0, x > 0,
(1.2)

the two constant values ub, u0 are prescribed. In the second part of this

paper, we will also treat general hyperbolic systems of conservation laws.

Solutions to hyperbolic conservation laws are generally discontinuous

and are not uniquely determined by their initial data, unless some entropy

criterion is added. In addition, since we consider the boundary value prob-

lem, an additional difficulty arises at the boundary and a layer is expected

to develop (in a sequence of approximations to the above problem, say). As

discussed in Dubois and LeFloch [5], the prescribed boundary condition at

x = 0 in (1.2) can not be achieved as stated, but must be weakened.

We rely here on extensive work by Joseph and LeFloch [7, 8, 9, 10]

on the (boundary) Riemann problem with vanishing viscosity, as well as

on a paper by LeFloch and Rohde [17] concerning the Riemann problem

with viscosity and capillarity. The general methodology was introduced by

Tzavaras [22] in order to cope with system and an artificial viscosity term nd

extended earlier works by Slemrod et a. [6, 20, 21]. Specifically, we construct

here solutions uε,γ = uε,γ(x) to the boundary Riemann problem by adding
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vanishing diffusion–dispersion terms, as follows:

− xu′ε,γ + f(uε,γ)
′ = ε u′′ε,γ + γ ε2u′′′ε,γ , x > 0,

uε,γ(0) = ub, uε,γ(+∞) = u0,
(1.3)

where γ is a fixed parameter and ε → 0. For definiteness, we take γ >

0 and, without loss of generality for our purpose, we assume ε ∈ (0, 1].

Hence, we treat here the regime when the diffusion ε u′′ε,γ is in balance with

the dispersion ε2u′′′ε,γ . Observe that (1.3) is equivalent to adding a time–

dependent diffusion–dispersion regularization to the right–hand side of (1.1),

that is,

∂tuε,γ + ∂xf(uε,γ) = εt ∂xxuε,γ + γε2t2 ∂xxxuε,γ .

Since this problem is directly motivated by models arising in fluid dynamics,

especially models of complex fluid flows including viscosity and capillarity, it

is natural to refer to the former term as “viscosity” and the latter as “capil-

larity”. The regularization (1.3) provides a selection of physically admissible

solutions to the Riemann problem (1.1), and, of course, is also relevant for

the general Cauchy problem; see LeFloch [14, 15, 16] for a background on

diffusive-dispersive limits.

The self-similar strategy for the Riemann problem was investigated first

by Dafermos [1, 2, 3] (without a boundary and without capillarity term), in

order to develop an existence theory for the Riemann problem. We do not

attempt to review the large literature on this subject but refer to [4, 15] for

background and additional references.

An outline of this paper is as follows. In Section 2, we study a “linearized

problem” which is used later to construct an integral form of the problem. In

Section 3, we establish the existence of solutions and derive a uniform bound

for the total variation. Section 4 is devoted to the analysis of the boundary

set. Then, in Sections 5 and 6 we extend our analysis and conclusions to

general systems of conservation laws. The analysis threin is more involved,

since the nonilnear coupling within the system must be analyzed.
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2. A Linear Second–Order Problem

It is convenient to introduce the notation λ(u) := fu(u) for the wave

speed function associated with the scalar conservation law. We consider a

bounded interval [0, L] and begin by considering (1.3) in which the left–hand

side −xu′ε,γ + f(uε,γ)
′ = (−x+ λ(uε,γ))u

′
ε,γ , the speed coefficient λ(uε,γ) is

replaced by a fixed function λ : [0, L] → R which is assumed to be smooth

and bounded function and is defined in the interval [0, L], which is yet to be

specified. Then, we solve (1.3) in terms of φ := u′ε,γ/(u0 − ub), (1.3) which

becomes a second–order differential equation. We set

λM := max
[0,L]

λ, λM+ := max
(
0, λM

)
,

λm := min
[0,L]

λ, λm+ := max
(
0, λm

)
.

We asssume that the upper bound L is large enough so that

λM < L. (2.1)

Consider the second–order differential equation

γ ε2 φ′′(x) + ε φ′(x) + (x− λ(x))φ(x) = 0, x ∈ [0, L]. (2.2)

As we will now show, our key assumption about the coefficient of this equa-

tion is that γ is sufficiently small so that

µ(x) := λ(x)− x+
1

4 γ
> 0, x ∈ [0, L]. (2.3)

In fact, provided the inequality

γ <
1

4 (λM+ − λm)
(2.4)

holds, we can then choose L sufficient close (but larger) to λM+ so that

λm − L+
1

4 γ
> 0

is satisfied, which implies precisely (2.3).
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Our first objective is to show the existence of fundamental solutions to

(2.2), which will be unique up to a multiplicative constant and be normalized

later on. Consider first the function p : [0, L] → R defined by

p(x) := −x− L

2 γ
−
∫ L

x

√

µ(y)

γ
dy =

1

2 γ

∫ L

x

(

1−
√

1 + 4 γ (λ(y)− y)
)

dy.

Observe that, clearly, in the limit γ → 0 we obtain

lim
γ→0

(

µ(x)− 1

4γ

)

= λ(x)− x, p(x) =

∫ L

x

(
y − λ(y)

)
dy.

Hence, µ plays the role, roughly speaking, of the wave speed λ (up to a linear

shift) when the viscosity and capillarity are taken into account.

Proposition 2.1. There exists a real ρ ∈ [λm+ , λ
M
+ ] such that p′(ρ) = 0 if

ρ > 0 and, more precisely,

(i) p′(x) < 0, x ∈ (λM+ , L],

(ii) p(x) ≤ p(ρ), x ∈ [0, L],

and the behavior of p is further described as follows, with constants c, C > 0

independent of γ,

(iii) p(x)− p(ρ) ≥ −c |x− ρ|, x ∈ [0, λM+ ],

(iv) p(x)− p(ρ) ≤ −C (x− λM+ )2, x ∈ [λM+ , L].

Proof. 1. If x > λM+ we have µ(x) < 1/(4 γ) and, therefore,

p′(x) = − 1

2 γ
+

√

µ(x)

γ
,

which is negative. By continuity, the function p achieves its maximum value

at some point of the interval [0, λM+ ], which we denote by ρ.

2. Let us consider first the case ρ > 0, that is, the maximum is an

(interior) point of the interval (0, L). Then, it follows that p′(ρ) = 0 and we

deduce that 1
2 γ =

√
µ(ρ)
γ , and hence

p(x)− p(ρ) =

∫ ρ

x

(√

µ(ρ)

γ
−
√

µ(y)

γ

)

dy.
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This identity is now used in order to derive the first estimate of interest.

For definiteness, we treat the interval [ρ, λM+ ], since the argument in the

interval (0, ρ] is completely similar. Since for y ∈ [0, λM+ ] one has

µ(y) ≥ λm − y +
1

4 γ
, µ(ρ) ≤ λM − ρ+

1

4 γ
,

we find that, for all x ∈ [ρ, λM+ ],

p(x)− p(ρ) =

∫ x

ρ

(√

µ(y)

γ
−
√

µ(ρ)

γ

)

dy

≥ 1

2 γ

∫ x

ρ

(√

1− 4 γ (y − λm)−
√

1 + 4 γ (λM − ρ)
)

dy

=
1

12γ2

((
1− 4 γ (ρ− λm)

)3/2 −
(
1− 4 γ (x− λm)

)3/2

− 6γ(x− ρ)
(
1 + 4 γ (λM − ρ)

)1/2
.
)

Since g = g(ρ) =
(
1− 4 γ (ρ− λm)

)3/2
is a concave function, this yields

p(x)− p(ρ) ≥ 1

12 γ2
(
g(ρ)− (x− ρ) g′(ρ)− g(x)

)

+
1

2γ
(x− ρ)

((
1 + 4 γ (λm − ρ)

)1/2 −
(
1 + 4 γ (λM − ρ)

)1/2
)

≥ −c (x− ρ)

and

c :=
1

2γ

((
1 + 4 γ (λM − ρ)

)1/2 −
(
1 + 4 γ (λm − ρ)

)1/2
)

≥ 2(λM − λm)
(
1 + 4 γ (λM − ρ)

)1/2
+
(
1 + 4 γ (λm − ρ)

)1/2
≥ c′ > 0,

since 1+4 γ (λm−ρ) ≤ 1 and 1+4 γ (λM −ρ) ≤ 1+λM+ /(λ
M
+ −λm), so that

our estimate is independent of the parameter γ. This completes the proof

of (iii).
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We now turn our attention to interval x ∈ [λM+ , L] and write

p(x)− p(ρ) ≤ p(x)− p(λM+ ) =
1

2 γ

∫ x

λM
+

(

− 1 +
√

1 + 4γ (λ(y)− y)
)

dy

≤ 1

2 γ

∫ x

λM
+

(

− 1 +
√

1 + 4γ (λM − y)
)

dy

≤ 1

2
(λM+ − λM )2 − 1

2
(x− λM )2 ≤ −1

2
(x− λM+ )2,

where we used −1 +
√
1 + α ≤ α/2 for α > −1.

3. It remains to consider the case ρ = 0, that is, the maximum is at the

left–hand boundary of the interval. Then, it follows that p′(ρ) ≤ 0 and it

is not difficult to check the inequalities above remain true. In this case, we

can actually establish a better estimate than (iii), as follows:

p(x)− p(ρ) =p(x)− p(0) = − x

2γ
+

∫ x

0

√

µ(y)

γ
dy

≥− x

2γ
+

1

2γ

∫ x

0

√

1− 4γ(y − λm) dy

=
1

12γ2

(

(1 + 4γλm)3/2 − (1− 4γ(x− λm))3/2 − 6γx
)

and thus, with the function g defined earlier,

p(x)− p(ρ) ≥ 1

12γ2

(

g(0) − xg′(0) − g(x) + 6γx
(

(1 + 4γλm)1/2 − 1
))

≥ 1

2γ

(

(1 + 4γλm)1/2 − 1
)

x ≥ 2min(0, λm)x, x ∈ [0, λM+ ].

The argument for (iv) is completely similar, and the proof of the proposition

is now completed. ���

We arrive at the main result of the present section.

Theorem 2.2. The equation (2.2) admits a smooth solution φ : [0, L] → R+

of the form

φ(x) =
1 + Φ(x)

(
4 γ µ(x)

)1/4
e

p(x)−p(ρ)
ε ,
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in which the remainder Φ satisfies, for all x ∈ [0, L],

‖Φ‖L∞(0,L) +
ε
√
γ

2
‖µ−1/2Φ′‖L∞(0,L) ≤

ε

4

√
γ K,

K :=
5

4
‖µ−5/2 (µ′)2‖L1(0,L) + ‖µ−3/2 µ′′‖L1(0,L),

(2.5)

provided the following condition on the parameter ε, γ hold

ε

4

√
γ K ≤ 1. (2.6)

In particular, for some constant C > 1 independent of ε, γ, one has

(i) 0 < φ(x) ≤
(

4

γ µ(x)

)1/4

, (ii)
ε

C
≤
∫ L

0
φ(y) dy ≤ C.

Proof. 1. The function H(x) := e
x

2 γ ε φ(x) is easily found to satisfy the

equation

H ′′(x)− µ(x)

γ ε2
H(x) = 0.

Since the coefficient µ is bounded below by a positive constant on the interval

[0, L], Theorem 2.1 of Chapter 6 in [19] provides us with the existence of a

solution φ having the form stated in the theorem, together with the pointwise

estimate

|Φ(x)|+ ε
√
γ

2
µ(x)−1/2 |Φ′(x)| ≤ e

1
2
TV x

0 (F ) − 1,

where F : [0, L] → R is defined by

F ′(x) = ε
√
γ µ(x)−1/4

(

µ(x)−1/4
)′′

= ε
√
γ µ(x)−1/4

( 5

16
µ(x)−9/4|µ′(x)|2 − 1

4
µ(x)−5/4µ′′(x)

)

,

so that its total variation is bounded, as follows:

TV x
0 (F ) ≤ ε

√
γ

∫ x

0

( 5

16
µ(y)−5/2 |µ′(y)|2 + 1

4
µ(y)−3/2 |µ′′(y)|

)

dy

≤ ε

4

√
γ K.
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Observe that eA/2 ≤ 1+A for 0 ≤ A < 1, which motivates us to impose the

condition (2.6).

2. Next, we note that

|Φ(x)| ≤ 1

2
TV x

0 ≤ 1

2

ε

4

√
γ K ≤ 1

2
,

so that 1+Φ(x) ≥ 1
2 and the unknown function φ(x) is positive. Furthermore,

the upper bound in (i) follows from the property p(x)− p(ρ) ≤ 0.

3. We now establish (ii). Provided (ε/4)
√
γ K < 1, we find φ(x) > 0

for all x ∈ [0, L], and the coefficient in φ satisfies

(
4 γ µ(x)

)−1/4 ≥
(
1 + λM+ /(λ

M
+ − λm)

)−1/4

and, therefore, is bounded away from zero by a constant independent of γ.

Hence, for some uniform C1, we find

∫ L

0
φ(y) dy ≥ C1

∫ L

0
e

p(y)−p(ρ)
ε dy,

but

∫ L

0
e

p(y)−p(ρ)
ε dy ≥

∫ λM
+

0
e−c

|ρ−y|
ε dy = ε

∫ (λM
+ −ρ)/ε

(−ρ)
ε

e−c |y| dy ≥ C2 ε,

where, in the last inequality, we have used that ε is bounded above (and,

actually, ε ∈ (0, 1]). This establishes the lower bound.

For the upper bound, we note that
(
4 γ µ(x)

)−1/4 ≤
(
1−4γ(L−λm)

)−1/4

and thus is uniformly bounded in [0, L]. For some constant C3 > 0, we obtain

∫ L

0
φ(y) dy ≤ C3

∫ L

0
e

p(y)−p(ρ)
ε dy ≤ C3 L,

which completes the proof of Theorem 2.2. ���

3. Viscous–Capillary Boundary Riemann Problem

We are now in a position to treat the problem of interest (1.3), associated
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with prescribed data ub, u0. We write

I(ub, u0) := [min(ub, u0),max(ub, u0)]

and from the flux function f we determine the smallest and largest wave

speeds

λM (ub, u0) := max
u∈I(ub,u0)

λ(u), λM+ (ub, u0) := max
(
0, λM (ub, u0)

)
,

λm(ub, u0) := min
u∈I(ub,u0)

λ(u).

Theorem 3.1 (Viscous–capillary boundary Riemann problem). Given bound-

ary and initial data ub, u0 ∈ R, a viscosity coefficient ε ∈ (0, 1], and a (suf-

ficiently small) capillarity coefficient γ satisfying

γ <
1

4
(
λM+ (ub, u0)− λm(ub, u0)

) , (3.1)

the boundary Riemann problem with viscosity and capillarity (1.3) admits a

unique solution uε,γ = uε,γ(x) defined on some interval [0, L] with L > λM+ .

This solution is smooth, strictly monotone, and satisfies

min(ub, u0) ≤ uε,γ ≤ max(ub, u0),

uε,γ(0) = ub, uε,γ(x) = u0, x ∈ (λM+ , L],

TV L
0 (uε,γ) = |u0 − ub|.

(3.2)

Furthermore, one has the uniform bound

ε ‖u′ε,γ‖L∞(0,L) + γε2 ‖u′′ε,γ‖L∞(0,L) ≤ C, x ∈ [0, L], (3.3)

where the constant C is independent of ε, γ.

Based on this result, we can next justify the limit ε→ 0, while γ is kept

fixed.

Theorem 3.2 (Boundary Riemann problem for the hyperbolic conservation

law). As ε → 0, the solutions uε,γ given by Theorem 3.1 converge almost

everywhere to a limiting function uγ : [0, L] → I(ub, u0) ⊂ R, which is

monotone and has bounded total variation less or equal to the prescribed
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jump, that is,

TV L
0 (uγ) ≤ |u0 − ub|, (3.4)

and is a weak solution of the self–similar boundary Riemann problem (1.1)–

(1.2). The solution also satisfies the following properties: uγ(x) = u0 for

x ∈ (λM+ , L]. If x ∈ suppu′γ ∩ (0, λM+ ] is a point of continuity of uγ, then

λ(uγ(x)) = x, (3.5)

which is the equation of a rarefaction wave. If x ∈ suppu′γ ∩ (0, λM+ ] is

a point of jump discontinuity, then uγ satisfies the Lax shock admissibility

inequalities [11, 12]:

λ(uγ(x−)) ≥ x ≥ λ(uγ(x+)). (3.6)

Thanks to the monotonicity property established for the solutions uε,γ,

we see that this limit can not contain nonclassical shocks, but only shocks

satisfying the standard shock admissibility conditions.

Proof.[Proof of Theorem 3.1] Given a function v : [0, L] → R satisfying the

boundary conditions

v(0) = ub, v(L) = u0,

we can determine the corresponding function φ[v] : [0, L] → R from Theo-

rem 2.2: it has the form

φ[v](x) =
1 + Φ[v](x)

(
4 γ µ(v(x))

)1/4
e

p[v](x)−p[v](ρ)
ε ,

in which the argument p[v] is given by

p[v](x) := −x− L

2 γ
+ γ−1/2

∫ x

L
µ(v(y))1/2 dy

and the remainder term Φ[v] satisfies the inequality (2.5), with obvious no-
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tation. Then, we recover a “new” function w : [0, L] → R by setting

w(x) = ub + (u0 − ub)

∫ x

0
φ(y) dy

∫ L

0
φ(y) dy

, x ∈ [0, L],

which allows us to define a map T : v 7→ T [v] = w.

Given the data ub, u0, we introduce the affine space of continuous func-

tions with prescribed boundary values

E(0, L) :=
{
v ∈ C[0, L] / min(ub, u0) ≤ v ≤ max(ub, u0)

}
.

Observe that T maps E into itself, and we can endow E(0, L) with the uniform

norm ‖ · ‖L∞(0,L). We want now to apply the Schauder fixed point theorem:

it is clear that E(0, L) is bounded, closed, and convex subset of C[0, L]; thus,

we only need to check that T is continuous and compact.

If vn → v is a converging sequence in E(0, L), then

|p[v](x) − p[vn](x)| ≤ γ−1/2

∫ L

x

∣
∣
∣µ(v(y))1/2 − µ(vn(y))

1/2
∣
∣
∣ dy

≤ C (L− x) ‖µ′µ−1/2‖L∞(0,L)‖v − vn‖L∞(0,L).

Similary, we can write

∣
∣
∣
∣

1 + Φ[v](x)

4γµ(v(x))1/4
− 1 + Φ[vn](x)

4γµ(vn(x))1/4

∣
∣
∣
∣

≤
(

‖Φ′‖L∞(0,L)

4γ‖µ1/4‖L∞(0,L)

+
1 + ‖Φ‖L∞(0,L)

16γ‖µ5/4‖L∞(0,L)

‖µ′‖L∞(0,L)

)

‖v − vn‖L∞(0,L)

and we deduce that T [vn] → T [v]; hence, the map T is continuous.

Furthermore, let us check that T is compact. If {vn} be a bounded

sequence in E(0, L), we have the inequality

|p[vn](x) − p[vn](x
′)| ≤ C‖µ′µ−1/2‖L∞(0,L)‖vn‖L∞(0,L)|x− x′|

≤ C |x− x′| ‖µ′µ−1/2‖L∞(0,L) sup
n

‖vn‖L∞(0,L)

shows that
{
p[vn]

}
is equicontinuous. Obviously

{
p[vn]

}
is bounded, hence,
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by Ascoli’s theorem,
{
p[vn]

}
is relatively compact. So, T is the composition

of a compact operator and a continuous one and, thus, a compact operator.

In conclusion, by Schauder’s fixed point theorem, T admits a fixed point

which we denote by uε,γ and is easily checked to satisfy all of the conditions

in the theorem. The corresponding function φ as defined above is denoted

by φε,γ

To derive (3.3), we simply observe that

u′ε,γ = (u0 − ub)
φε,γ

∫ L

0
φε,γ(y) dy

,

in which
∫ L
0 φε,γ(y) dy is bounded below by C ε. ���

Proof of Theorem 3.2. 1. In view of Theorem 3.1, we can now take

the limit ε → 0 in the family of solutions uε,γ . Since we have established a

uniform bound on the total variation, Helly’s theorem allows us to extract a

converging subsequence which converges to some limit uγ : (0, L] → R which

is also a function of bounded variation, i.e.

uε,γ(y) → uγ(y), y ∈ (0, L].

Since uε,γ connect monotonically ub to u0, it is clear that the total variation

of the limit uγ is less or equal to the jump |u0 − ub|. Note that it can

be smaller, however, due to the possible formation of a boundary layer at

x = 0. We can also assume that the sequence of measures u′ε,γ converges in

the weak–star sense

u′ε,γ ⇀ u′γ weakly.

With obvious notation, we can also extract a converging subsequence so that

ρε,γ → ργ and in the uniform norm

pε,γ(y)− pε,γ(ρε,γ) −→ pγ(x)− pγ(ργ)

=
1

2 γ

∫ ργ

x

(

1−
√

1 + 4 γ (λ(uγ(y))− y)

)

dy.

Since uε,γ solves

−y u′ε,γ + f(uε,γ)
′ = ε u′′ε,γ + γ ε2u′′′ε,γ , x > 0,



652 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December

we immediately deduce that uγ is a weak solution to the hyperbolic conser-

vation law

−y u′γ + f(uγ)
′ = 0.

Moreover, the exponential decay properties yield that the boundary condi-

tion at u0 holds, and u is a solution of the boundary Riemann problem,

except that the boundary condition at x = 0 need not hold.

2. We now discuss the structure of this solution. Using the inequality

|u′ε,γ | ≤ C φε,γ and the decay properties for the functions φε,γ , we see that

for small η > 0

u′ε,γ(y) → 0 uniformly in y ∈ [λM + η, L].

Therefore, u is constant equal to u0 on the interval (λM , L].

Now, we show that if y ∈ suppϕγ , then

pγ(x) ≥ pγ(y) = 0, x ∈ (0, L).

This shows that the points in the support of ϕγ are global maxima for the

function pγ .

Namely, fix y and some α > 0 and consider the set

A =
{
x ∈ [0, L] / pγ (x)− pγ(y) < −α < 0

}
.

The functions pγ being (Lipschitz) continuous, we have either A = ∅ or A

contains a non-empty open interval. In the second case, we shall show that

there is an open interval I containing y such that

∫ L

0
φγψ dx = 0

for every ψ with compact support in I. This will show that y /∈ suppφγ .

Henceforth if y ∈ suppφγ , we can only be in the first case A = ∅ for every α

and thus pγ(x)− pγ(y) ≥ 0 for all x ∈ [0, L], which is the desired conclusion.

3. First, we conclude the proof of the theorem as follows. Fix y and use
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that u has bounded variation to write:

lim
x→y±

pγ(x)− pγ(y)

x− y
= lim

x→y±

1

x− y

∫ x

y

(

− 1

2 γ
+

√

µ(uγ(z))

γ

)

dz.

Therefore, we find

p′γ(y) = − 1

2 γ
+

√

µ(uγ(y))

γ
if y is a point of continuity of uγ ,

while the left- and right-derivative exist at a point of jump of uγ and

p′γ(y±) = − 1

2 γ
+

√

µ(uγ(y±))

γ
if y is a point of jump of uγ .

Suppose now that y ∈ suppu′γ ∩ [λm+ , λ
M
+ ], thus y ∈ suppφγ and, using

the above claim,

pγ(x) ≥ pγ(y),

so
pγ(x)−pγ(y)

x−y ≥ 0 when x−y ≥ 0, while
pγ(x)−pγ(y)

x−y ≤ 0 when x−y ≤ 0. This

leads us to, both, − 1
2 γ +

√
µ(uγ (y±))

γ ≥ 0 and − 1
2 γ +

√
µ(uγ (y±))

γ ≤ 0. This

implies y − λ(uγ(y+)) ≥ 0 and y − λ(uγ(y−)) ≤ 0. Of course, the equality

holds when uγ is continuous at the point y.

4. We can determine an interval I = (y − δ, y + δ) in which

0 < φε,γ(s) ≤
e−

α
2ε

meas (A)
→ 0.

Since pε,γ is continuous, we have

|pγ(θ)− pγ(y)| <
α

6
, θ ∈ (y − δ, y + δ),

|pε,γ(θ)− pγ(θ)| <
α

6
, θ ∈ [0, λM+ ].

Thus for all θ ∈ (y − δ, y + δ) and x ∈ A

pε,γ(x)− pε,γ(θ)

≤ pγ(x)− pγ(y) + |pγ(y)− pγ(θ)|+ |pε,γ(θ)− pγ(θ)|+ |pε,γ(x)− pγ(x)|
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≤ −α
2
< 0.

That is, the inequality defining the set A remains valid for the functions pε,γ

and in a uniform neighborhood of y.

Returning to the definition, for some constant C > 0 and for all θ ∈
(y − δ, y + δ),

0 < φε,γ(θ) ≤
C

∫

A exp(−1
ε

(
pε,γ(x)− pε,γ(θ)

)
dx

≤ C

exp( α
2ε)meas (A)

→ 0, as ε→ 0.

Thus 〈φε,γ , ψ〉 → 0 and 〈φγ , ψ〉 = 0 for all ψ compactly supported in I. ���

4. The Viscous–Capillarity Set of Admissible Boundary Values

Derivation of the layer equation

In this section, we rigorously derive the equation describing the bound-

ary layer which, in general, arises near x = 0 in the solutions uε,γ to the

boundary Riemann problem. Our objective is thus to establish a relation

between the prescribed boundary data, that is, ub, and and the trace uγ(0+)

of the solution uγ to the boundary Riemann problem constructed in Theo-

rem 3.2. More precisely, we are going to establish that this layer is governed

by the following ordinary differential problem with unknown Vγ = Vγ(y):

γ V ′′
γ + V ′

γ = f(Vγ)− f(Vγ,∞), y ∈ R+,

Vγ(0) = ub, Vγ(+∞) = Vγ,∞,
(4.1)

in which Vγ,∞ is expected to be closely related to, but need not coincide

with, uγ(0+).

The smallness assumption made on the capillarity coefficient is not nec-

essary in the present analysis, which therefore does cover the possibility of

nonclassical shocks. So, we proceed here under the assumption that the to-

tal variation of a sequence of viscous–capillary boundary Riemann solutions

uε,γ is uniformly bounded (which is valid for small γ, at least), and now we

perform the corresponding boundary layer analysis. As we are going to see,
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the structure of this layer is much richer than the one obtained by adding

viscosity, only.

Theorem 4.3 (Boundary layer equation for the vanishing viscosity–capillar-

ity limit). The trace uγ(0+) of the boundary Riemann solution constructed

in Theorem 3.2 satisfies the following property. There exists Vγ,∞ ∈ R and

a smooth function Vγ : [0,∞) → R which satisfies the boundary layer prob-

lem (4.1) and the following jump relation at infinity:

f(Vγ,∞) = f(uγ(0)). (4.2)

Proof. We follow the argument in [8] and consider an arbitrary sequence

ξε > 0 such that

ξε = o(ε).

Define the function Vε,γ(y) = uε,γ(ξε+εy) for all y > 0. Since uε,γ is uniformly

bounded and of uniformly bounded total variation, the functions Vε,γ are

also bounded and of uniformly bounded total variation. So there exists a

function Vγ = Vγ(y) of bounded total variation defined on the interval [0,∞)

and there exist two constants Vγ,0, Vγ,∞ such that

lim
ε→0

Vε,γ(y) = Vγ(y), y > 0

Vγ(0+) = Vγ,0, lim
y→+∞

Vγ(y) = Vγ,∞.
(4.3)

To check that, in fact, V0 = ub, we note that

|Vγ(0)− ub| = lim
y→0+

|V (y)− ub| = lim
y→0

lim
ε→0+

|uε,γ(ξε + εy)− ub|

and

|uε,γ(ξε + εy)− ub| ≤
∫ ξε+εy

0
|u′ε,γ(s)| ds ≤

C

ε

∫ ξε+εy

0
ds = C(y + ξε/ε),

where we used |u′ε,γ | ≤ C ε. Since ξε = o(ε), we deduce that Vγ(0) = ub.

Next we derive the boundary layer equation (4.1). Integrating (1.3) from
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some point a to ξε + εy, we get

εu′ε,γ(ξε + εy)− εu′ε,γ(a) + γε2u′′ε,γ(ξε + εy)− γε2u′′ε,γ(a)

= −(ξε + εy)uε,γ(ξε + εy) + f(uε,γ(ξε + εy))

+ auε,γ(a)− f(uε,γ(a)) +

∫ ξε+εy

a
uε,γ(s) ds.

After integration with respect to a ∈ (0, δ), this identity becomes

d

dy
(uε,γ(ξε + εy))− ε

δ

∫ δ

0
u′ε,γ(a)da+γ

d2

dy2
(uε,γ(ξε + εy))− γε2

δ

∫ δ

0
u′′ε,γ(a)da

=− (ξε + εy)uε,γ(ξε + εy) + f (uε,γ(ξε + εy))

+
1

δ

∫ δ

0
(auε,γ(a)− f (uε,γ(a))) da+

1

δ

∫ δ

0

∫ ξε+εy

a
uε,γ(s) ds da.

We now integrate with respect to y, starting at 0:

uε,γ(ξε + εy)− uε,γ(ξε)−
ε

δ
y

∫ δ

0
u′ε,γ(a) da + γ

d

dy
(uε,γ(ξε + εy))

−γ d
dy

(uε,γ(ξε))− γε2y

∫ δ

0
u′′ε,γ(a) da

=

∫ y

0

{

− (ξε + εx)uε,γ(ξε + εx) + f (uε,γ(ξε + εx))
}

dx

+
y

δ

∫ δ

0
(auε,γ(a)− f (uε,γ(a))) da

+
1

δ

∫ y

0

∫ δ

0

∫ ξε+εx

a
uε,γ(s) ds da dx. (4.4)

Next, letting ε→ 0 in (4.4) and using (4.3) and (4.4), we arrive at

Vγ(y)− ub + γV ′
γ(y)− γV ′

γ(0)

=

∫ y

0
f(Vγ(x)) dx +

y

δ

∫ δ

0
(a uγ(a)− f(uγ(a))) da+

y

δ

∫ δ

0

∫ 0

a
uγ(s) ds da

for all δ, y > 0. Next when δ → 0, it follows that

Vγ(y)− ub + γV ′
γ(y)− γV ′

γ(0) =

∫ y

0
f(Vγ(x)) dx− yf(uγ(0+)),
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which is equivalent to the first equation in (4.1).

Integrating the equation (4.1) from n to n+ 1, it follows that

∫ n+1

n
f(Vγ(x)) dx− f(uγ(0+)) = Vγ(n+ 1)− Vγ(n) + γV ′

γ(n+ 1)− γV ′
γ(n).

(4.5)

Since Vγ and V ′
γ have bounded total variation and Vγ converges to Vγ,∞ at

infinity, we have

∫ n+1

n
|f(Vγ(x))− f(Vγ,∞)| dx ≤

∫ n+1

n
|Vγ(x)− Vγ,∞| dx

≤C TV n+1
n (Vγ) + C |Vγ(n)− Vγ,∞|,

in which the upper bound vanishes in the limit n→ +∞. Therefore letting n

tend to +∞ in (4.5), we obtain f(Vγ,∞) = f(uγ(0+)), which is the condition

(4.2) stated in the theorem. ���

Notion of set of admissible boundary states

Following Dubois and LeFloch’s approach based on sets of admissible

boundary values [5], we define the set of admissible boundary states

Φγ(ub) :=
{
V∞ /There exists a solution Vγ : [0,+∞) → R

to the boundary problem (4.1)
}
.

and now determine this set under various circumstances. One may not be

able to establish directly that uγ(0+) coincides with Vγ,∞ but, yet, we may

conclude that sufficient information is deduced from the boundary layer anal-

ysis in the sense that existence and uniqueness is recovered at the level of

the boundary Riemann problem. We consider the cases when the boundary

is non-characteristic or the capillarity is vanishing.

Increasing flux

Suppose that

λ(u) > 0 for all u ∈ R. (4.6)

The condition (4.6) implies that the flux-function f is one-to-one on the

interval [0,∞) and hence the condition (4.2) is equivalent to saying uγ(0+) =



658 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December

Vγ,∞. It is also elementary to check that the viscous-capilary equation admits

no solution Vγ = Vγ(y) except the trivial one Vγ(y) = ub, hence

Φγ(ub) =
{
ub
}
.

This concludes the proof that the Riemann problem (1.3) admits a weak

solution and the boundary condition must be imposed in the strong sense

u(t, 0) = ub. (4.7)

Decreasing flux

Suppose that

λ(u) < 0 for all u ∈ R. (4.8)

The discussion is similar to the one in the increasing case, except that now

the boundary value is not achieved by the limiting solution. It is elementary

to see that any Vγ,∞ can now be achieved, that is, there exists a boundary

layer connecting ub to any Vγ,∞, so that

Φγ(ub) = R. (4.9)

The Riemann problem (1.3) admits a weak solution and no boundary con-

dition is necessary at y = 0.

Viscous boundary layer

The case α = 0 was treated in [13] (see also the references therein and

[8]) and leads to the following result:

Φ0(ub) =
{
ub
}⋃{

V∞

/ f(V∞)− f(k)

V∞ − k
< 0, k ∈ I(ub, V∞)

}

.

In particular, we have the following two special cases:

• Case of a strictly convex function f tending to infinity at infinity and nor-

malized so that f(0) = f ′(0) = 0. Provided we normalize the boundary

data so that ub ≥ 0, it follows that

Φ0(ub) = (−∞, u′b) ∪
{
ub
}
,
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where u′b ≤ 0 is defined by f(u′b) = f(ub).

• Case of a flux f having a single inflection point and tending to infinity

at infinity and satisfying, say with f(0) = 0 and f ′(0) < 0, having a

maximum at some u−M < 0 and a minimum at u+m > 0. Let us define

u+M > 0 and u−m < 0 by the condition f(u−m) = f(u+m) and f(u−M ) =

f(u+M ). Depending on the value of the boundary data ub with respect

to u−m < u−M < 0 < u+m < u+M , we obtain the following boundary set

(omitting certain isolated values):

- If ub < u−m, then Φ0(ub) =
{
ub
}
.

- If ub ∈ (u−m, u
−
M ), then Φ0(ub) =

{
ub
}
∪ [u∗b , u

+
m], where u∗b is charac-

terized by f(ub) = f(u∗b) and f
′(u∗b) < 0.

- If ub ∈ (u−M , u
+
m), then Φ0(ub) = [u−M , u

+
m].

- If ub ∈ (u+m, u
+
M ), then Φ0(ub) = [u−M , u

∗
b ], where u

∗
b is characterized

by f(u∗b) = f(ub) and f
′(u∗b) < 0.

- If ub > u+M , then Φ0(ub) =
{
ub
}
.

Viscous–capillary boundary set

A full analysis of the boundary layer with viscosity and capillarity is

not realistic, since even the traveling wave solutions are understood only

under certain conditions on the flux and require a rather technical analysis;

see [15]. Consequently, we propose to follow Dubois and LeFloch [5] who

observed that, for scalar equations, the boundary set based on viscosity can

be equivalently determined from the Riemann problem on the real line. We

thus determine here the boundary layer set which is based on the nonclassical

solutions to the Riemann problem described in [15], while conjecturing that

it should coincide with the one defined from the boundary layer equations

—except for certain exceptional values so that it is convenient to look at the

closure of this set.

We assume that the flux f : R → R is concave/convex in the following

sense:

u f ′′(u) > 0 (u 6= 0), lim
u→±∞

f ′(u) = +∞.
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Denote by ϕ♮ : R → R the tangent function characterized by

f ′ ◦ ϕ♮(u) =
f ◦ ϕ♮(u)− f(u)

ϕ♮(u)− u
(u 6= 0).

Recall that an analysis of traveling wave solutions to the viscosity–capillarity

model allows one to define a kinetic function ϕ♮
γ : R → R satisfying [15]

uϕ−♮(u) < uϕ♭
γ(u) ≤ uϕ♮

γ(u), u ∈ R,

where ϕ−♮ : R → R denotes the inverse of the function ϕ♮. To this kinetic

function we associate its companion ϕ♯
γ : R → R defined by uϕ♭ < uϕ♯

γ for

u 6= 0 and

f ◦ ϕ♯
γ(u)− f(u)

ϕ♯
γ(u)− u

=
f ◦ ϕ♭

γ(u)− f(u)

ϕ♭
γ(u)− u

(u 6= 0).

We also assume f ′(0) < 0 and introduce u−m < u−M < 0 < u+m < u+M as in the

previous subsection.

The structure of the boundary set in presence of nonclassical shocks

induced by viscosity and capillarity is much more involved. For definiteness,

we begin with the (most interesting) case that ub < 0 with f ′(ub) > 0

(entering boundary data) and its kinetic state ϕ♭
γ(ub) has f ′ ◦ ϕ♭

γ(ub) > 0

(entering kinetic image). To the boundary data we associate u∗b defined by

the conditions

f(ub) = f(u∗b), f ′(u∗b) < 0.

To the kinetic image we also associate ϕ♭(ub)
∗ by the conditions

f ◦ ϕ♭
γ(ub)

∗ = f ◦ ϕ♭
γ(ub), f ′ ◦ ϕ♭

γ(ub)
∗ < 0.

We then distinguish between two cases, as follows:

• When ϕ♯
γ(ub) < ϕ♭

γ(ub)
∗, we find

Φγ(ub) =
{
ub
}
∪
{
ϕ♭

γ(ub)
}
∪ [u∗b , ϕ

♭(ub)
∗].

• When ϕ♭
γ(ub)

∗ < ϕ♯(ub), we find

Φγ(ub) =
{
ub
}
.
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Hence, it appears that the shock set does depend upon the kinetic function

and, therefore, the shock layer equation can be thought of as a “composite”

of classical as well as nonclassical shock layer equations.

5. Systems with Diffusion and Dispersion

Formulation of the problem

Our method also applies to the boundary and initial value problem for

a nonlinear hyperbolic system of conservation laws [4, 15, 18]

∂tu+ ∂xf(u) = 0, (5.1)

where u = u(x, t) ∈ B(u∗, δ0) is the unknown, and B(u∗, δ0) denotes the

open ball with center u∗ and radius δ0, and f : B(u∗, δ0) → RN is a smooth

mapping, such that A(u) := Df(u) admits N real and distinct eigenvalues

λ1(u) < · · · < λN (u).

We denote by lj(u) and rj(u) corresponding basis of left and right eigenvec-

tors normalised so that for all u ∈ B(u∗, δ0),

li(u) · rk(u) = δik

It is well known that weak solutions are not uniquely determined by bound-

ary and initial data. In this paper we consider the simplest initial boundary

value problem namely the Riemann initial boundary value problem. One

very successful approach is to study the self similar zero-diffusion method.

In the present paper, we consider a different regularization namely the self

similar zero-diffusion-dispersion method. So, consider (5.1) in the quarter-

plane x > 0, t > 0 and assume that the data at x = 0 and at t = 0 are two

constants, uI and uB(∈ B(u∗, δ0)), respectively. Let us continue to denote

the self-similar variable x
t by x itself.

− xu′ε,γ + f(uε,γ)
′ = ε u′′ε,γ + γε2u′′′ε,γ , x > 0, (5.2)

lim
x→∞

uε,γ(x) = uI , (5.3)

uε,γ(0) = uB. (5.4)
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The linearized problem

In this section we study a linearized version of the problem (5.2)-(5.4).

Given data uI , uB ∈ B(u∗, δ), the unknown function uε,γ will take its values

in B(u∗, C∗ δ) for C∗ δ < δ0. We assume that (5.1) is strict hyperbolic at

u∗ but the characteristic fields are not necessarily genuinely nonlinear nor

linearly degenerate. Further we assume that the boundary x = 0 is not

characteristic. Thus we assume that for δ0 small enough, the eigenvalues

satisfies

λm1 < λM1 < λm2 < · · ·λMp < 0 < λmp+1 < · · ·λMN−1 < λmN < λN (u) < λMN ,

for u ∈ B(u∗, δ0). Since Df(u) depends smoothly upon u, one can ensure

that λMk − λmk = O(δ0).

Given uI , uB ∈ B(u∗, δ) for some δ < δ0, we are going to construct a

solution uε of (5.2)-(5.4) having uniformly bounded variation, i.e.,

TV (uε,γ) :=

∫ ∞

0
|u′ε,γ(x)| dx = O(1).

We shall henceforth write uε,γ as u itself. We set

u′(x) =
N∑

k=1

ak(x) rk(u(x)),

where ak (k = 1, . . . , N) satisfy ak(x) = lk(u(x)). u
′(x) and are determined

by the system

γε2a′′j + εa′j + (x− λj(u))aj = D1(a) +D2(a, a
′), (5.5)

where

D1
k(a) = −lk(u) ·

N∑

j,i=1

aiaj(Dri(u) · rj(u)),

D2
k(a, a

′) = −lk(u) ·
(∑

k,i

(2aia
′
j + a′iaj)(Dri · rj)(u) (5.6)

+

N∑

k,i,l=1

aiakalD(Dri · rk)rl(u)
)

.
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Now we look for solutions of (5.5) having an asymptotic expansion of the

form

ai(x) = τiφi(x) + θi(x), x ∈ [0, L] (5.7)

The vector τ = (τ1, . . . , τN ) encodes the wave-strengths and θi is of second-

order with respect to τ .

From (5.5) it then follows that φi satisfy the decoupled homogeneous

equations

γε2φ′′i + εφ′i + (x− λi(u))φi = 0, i = 1, . . . , N, (5.8)

whereas θi satisfy the following coupled system of N inhomogeneous equa-

tions

γε2θ′′i + εθ
′
i+(x− θi(u))θi = εD1

i (a)+ γε
2D2

i (a, a
′), i = 1, . . . , N. (5.9)

Let us therefore consider the linear equation

γε2φ′′i + εφ′i + (x− λi(x))φi = 0.

We have already seen one of the solutions, we shall call it φi, for the above

second order equation in Theorem 2.2. The other solution is described below.

We write

qi(x) =
L− x

2γ
+

∫ L

x

√

µi(y)

γ
dy

=
1

2γ

∫ L

x

(

1 +
√

1 + 4γ(λi(y)− y)
)

dy.

Theorem 5.1. The linearized equation admits a smooth solution ψ̌i defined

in [0, L] satisfying the following asymptotic formula

ψ̌i(x) =
1 + Ψ̌i(x)

(4γµi(x))
1
4

e
qi(x)−qi(ρi)

ε , (5.10)

where

|Ψ̌i(x)|+
ε
√
γ

2µi(x)
1
2

|Ψ̌′
i(x)| ≤ ε

√
γK, (5.11)

with K, ρi as chosen in Theorem 2.2.
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Let us introduce the notation

φ̌i(x) := − ψ̌i(x)

Det(φ̂i, ψ̌i)(x)
, ψ̂i(x) :=

φ̂i(x)

Det(φ̂i, ψ̌i)(x)
, (5.12)

where Det(φ̂i, ψ̌i) := φ̂iψ̌
′
i − φ̂′iψ̌i. The following theorem, which describes

an asymptotic form for φ̌i and ψ̂i, will also be of importance later.

Theorem 5.2. Assuming that

K ≤ C
γ

1
2

ε
,

one has

Det(φ̂i, ψ̌i)(x) = Det(φ̂i, ψ̌i)(ρi)e
ρi−x

γε , x ∈ [0, L]

and, for some constant C > 1,

1

Cγε
≤ |Det(φ̂i, ψ̌i)(ρi)| ≤

C

γε
.

Also up to constant multiplication factors, the functions φ̌i, ψ̂i have the form

φ̌i(x) = γε
1 + Φ̌i(x)

(γµi(x))
1
4

e
pi(ρi)−pi(x)

ε , ψ̂i(x) = γε
1 + Ψ̂i(x)

(γµi(x))
1
4

e
qi(ρi)−qi(x)

ε (5.13)

with Ψ̂i, Φ̌i satisfying the bounds as in Theorems 2.2 and 5.1.

Now given a continuous and bounded source S : [0, L] → R, let us

consider the non-homogeneous equation

θ′′(x) +
1

γε
θ′(x) +

1

γε2
(x− λ(x))θ(x) = S(x), x ∈ [0, L]. (5.14)

Then it can be proved that the general bounded solution θ of the above

equation can be represented as

θ(x) = ψ̌(x)

∫ x

0
ψ̂(y)S(y) dy + φ̂(x)

∫ x

c
φ̌(y)S(y) dy, (5.15)

where c is an arbitrary non-negative constant.
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Wave interaction estimates

To begin with let us fix some i = 1, 2, . . . , N and some smooth function

v : [0, L] → B(u∗, δ0) satisfying the condition

|v′(x)| ≤ C

ε
, x ∈ [0, L]. (5.16)

Let us then consider the linearized equation

γε2φ′′i + εφ′i + (x− λi(v))φi = 0

and denote by µi, pi, φ̂i, qi, ψ̌i, φ̌iand ψ̂i the corresponding solutions. More

specifically we have

µi(x) = λi(x)− x+
1

4γ
,

pi(x) =
L− x

2γ
+

∫ x

L

√

µi(y)

γ
dy, qi(x) =

L− x

2γ
+

∫ L

x

√

µi(y)

γ
dy,

(5.17)

where the coefficients µi satisfy the bounds

γµi(x) ≥ c > 0, x ∈ [0, L],

|µ′i(x)| ≤
C

ε
, x ∈ [0, L].

(5.18)

Let pi(x, ρ) := pi(x) − pi(ρ) and qi(x, ρ) := qi(x) − qi(ρ). Then upto

constant multiplicating factors, we have

φ̂i(x) =
1 + Φ̂i(x)

(γµi(x))
1
4

e
pi(x,ρi)

ε , φ̌i(x) = γε
1 + Φ̌i(x)

(γµi(x))
1
4

e−
pi(x,ρi)

ε ,

ψ̂i(x) = γε
1 + Ψ̂i(x)

(γµi(x))
1
4

e−
qi(x,ρi)

ε , ψ̌i(x) =
1 + Ψ̌i(x)

(γµi(x))
1
4

e
qi(x,ρi)

ε ,

(5.19)

where ρi is as defined before. Further we assume that the constant K ap-

pearing in Theorem 2.2 satisfies the condition 0 < K ≤ γ
1
2

2ε which further

leads to the fact that for x ∈ [0, L], we have

|Φ̂i(x)|, |Φ̌i(x)|, |Ψ̂i(x)|, |Ψ̌i(x)| ≤
γ

2
≤ 1

2
,
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for all i = 1, 2, . . . , N . Similar inequalities hold for their derivatives as well.

Let us consider the normalized function

φi(x) :=
φ̂i(x)

I(φ̂i)
, where I(φ̂i) =

∫ L

0
φ̂i(y) dy, i = 1, 2, .., N.

Let us define a weight function ωγ by

ωγ(x) =
1 + x+ λm1+

γ
, x ∈ [0, L].

Proposition 5.3. There exist constants C, c > 0, independent of ε and γ,

such that for all i = 1, 2, . . . , N and x ∈ [0, L]

0 < φi ≤
C

ε
, (5.20)

|φ′i(x)| ≤ C

ε
ωγ(x)φi(x), (5.21)

φi(x) ≤ C

ε
e−

c
ε
(x−λM

i+)2 , x ∈ [λMi+, L] (5.22)

Proof. We have already seen that 0 < φ̂i(x) <
2

(4γµi(x))
1
4
and ε

C ≤
∫ L
0 φ̂i(x)

≤ C which imply that

0 < φi(x) <
2C

ε(4γµi(x))
1
4

.

Now using the fact that γµi(x) ≥ c > 0 (see (5.18)), we have 0 ≤ φi(x) ≤ C
ε .

For x ∈ [λM+ , L], we have

φi(x) =
φ̂i(x)

∫ L
0 φ̂i(y) dy

≤ C

ε
φ̂i(x) ≤

C

ε

1 + Φ̂i(x)

(4γµ(x))
1
4

e
pi(x)−pi(ρi)

ε ≤ C

ε
e−

c
ε
(x−λM

i+)2

and therefore

φi(x) ≤
C

ε
e−

c
ε
(x−λM

i+)2 , x ∈ [λMi+, L]

which proves (5.22).
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Differentiating φi(x), we get φ′i(x) =
φ̂′
i(x)

I(φ̂i)
and hence

φ′i(x)

φi(x)
=
φ̂′i(x)

φ̂i(x)
=

Φ̂′
i(x)

1 + Φ̂i(x)
+
p′i(x)

ε
− µ′i(x)

4µi(x)
:= I1 + I2 + I3.

To estimate I2, we begin by noting that p′i(x) =
1
2γ (−1+

√

1 + 4γ(λi(x)− x))

and hence

|p′i(x)| ≤
1

2γ
| − 1 +

√

1 + 4γ(λi(x)− x)|.

Using the fact that 4γ(λi(x)−x) > −1, x ∈ [0, L] and the inequality | − 1+
√
1 + α| ≤ |α|, α > −1, we then obtain

|p′i(x)| ≤
1

2γ
|4γ(λi(x)− x)| ≤ 2(|x| + |λi|) ≤ Cωγ(x).

I3 can be estimated as

|I3| =
∣
∣
∣
µ′i(x)

4µi(x)

∣
∣
∣ ≤ C

ε
≤ C

ε
ωγ(x).

Let us next estimate I1. First we note that 1
1+Φ̂i(x)

≤ 2. Also, we have

|Φ̂′
i(x)| ≤ Ck

√
µi ≤

C

ε

√
γµi.

Now using the inequality −1 +
√
1 + α ≤ α

2 , α > −1, we have

√
γµi =

1

2

√

1 + 4γ(λi(x)− x) ≤ 1

2
+ γ(λi(x)− x)

≤ 1 + |x|+ |λi(x)| (using γ < 1)

≤ (1 + |x|+ |λi(x)|)
1

γ
≤ Cωγ(x).

Hence we get |Ii| ≤ C
ε ωγ(x). ���

Observe in passing that for some constants 0 < C1 < C2, the following

relations hold:

C1(1 + γωγ) ≤
√
γµi ≤ C2(1 + γωγ).
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Henceforth, we shall assume that, for all x ∈ [0, L],

µi(x) = λi(x)− x+
1

4γ
≥ 1

8γ
. (5.23)

We note that this is a slightly stronger condition on γ than that we had

assumed till now. Let us fix a number ci such that

{

ci ∈ (λmi , λ
M
i ), if i ≥ p+ 1,

ci = 0, if i ≤ p,

and consider the interaction terms defined, for i, j, k, l = 1, . . . , N , by

F 1
ijk(x) =

φ̂i(x)

γε

∫ x

ci

φ̌iφjφk dy,

F 2,1
ijk (x) = φ̂i(x)

∫ x

ci

φ̌iφjφ
′
k dy, F

2,2
ijkl(x) = φ̂i(x)

∫ x

ci

φ̌iφjφkφl dy,

(5.24)

and

G1
ijk(x) =

ψ̌i(x)

γε

∫ x

0
ψ̂iφjφk dy,

G2,1
ijk(x) = ψ̌i(x)

∫ x

0
ψ̂iφjφ

′
k dy, G

2,2
ijkl(x) = ψ̌i(x)

∫ x

0
ψ̂iφjφkφl dy.

(5.25)

With the above notation, we have the following result.

Theorem 5.4. For some fixed, sufficiently small, δ0 and γ0, there exists

a uniform constant C > 0 such that for any smooth function v : [0, L] →
B(u∗, δ0) satisfying the condition

|v′(x)| ≤ C

ε
, x ∈ [0, L],

one has (for all x ∈ [0, L] and all i, j, k, l)

|F 1
ijk(x)|+ |F 2,1

ijk (x)|+ |F 2,2
ijkl(x)| ≤ C

N∑

m=1

φm(x), (5.26)

|G1
ijk(x)|+ |G2,1

ijk(x)|+ |G2,2
ijkl(x)| ≤ Cγ

N∑

m=1

φm(x). (5.27)
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Proof. To begin with we note that an application of the Cauchy-Schwartz

inequality leads to

N∑

i,j,k,l=1

|F 1
ijk(x)|+ |F 2,1

ijk (x)|+ |F 2,2
ijkl(x)| ≤ C

N∑

i,j=1

F̃ij(x),

N∑

i,j,k,l=1

|G1
ijk(x)|+ |G2,1

ijk(x)|+ |G2,2
ijkl(x)| ≤ Cγ

N∑

i,j=1

G̃ij(x),

where

F̃ij(x) =
φ̂i(x)

γε

∫ x

ci

φ̌i(y)φ
2
j (y)(1 + γωγ(y)) dy,

(5.28)

G̃ij(x) =
ψ̌i(x)

γε

∫ x

0
ψ̂i(y)φ

2
j (y)(1 + γωγ(y)) dy.

Hence it would be enough to prove the required estimates (5.26)-(5.27) for

F̃ij and G̃ij respectively.

Estimating G̃ij

Let us define Dij(y) := −qi(y, ρi) + 2pj(y, ρj). Then for all x ∈ [0, L], it

follows using (5.23) that

D′
ij(x) = −q′i(x) + 2p′j(x) =

1

2γ
+

√

µi(x)

γ
− 1

γ
+ 2

√

µj(x)

γ

= − 1

2γ
+

√

µi(x)

γ
+ 2

√

µj(x)

γ

≥ − 1

2γ
+

3

2γ
√
2
≥ 1

2γ
> 0. (5.29)

Also since the maximal value of 1 + γωγ in the interval [0, L] is bounded, it

can also be seen that

1 + γωγ(x) ≤ CγD′
ij(x) (5.30)
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Then, we have

|G̃ij(x)| ≤ C(γµi(x))
− 1

4 e
qi(x,ρi)

ε

×
∫ x

0
(γµi(y))

− 1
4 e−

qi(y,ρi)

ε

( e
pj (y,ρj)

ε

(γµj(y))
1
4 I(φ̂j)

)2
(1 + γωγ(y)) dy

≤ C(1+γωγ(x))
− 1

2
e

qi(x,ρi)

ε

I(φ̂j)2

∫ x

0
e−

qi(y,ρi)

ε e
2pj (y,ρj)

ε (1 + γωγ(y))
− 1

2 dy

≤ C(1+γωγ(x))
− 1

2
e

qi(x,ρi)

ε

I(φ̂j)2

∫ x

0
e

Dij (y)

ε (1 + γωγ(y))
− 1

2 dy.

Now, we obtain

Gij(x) := (1 + γωγ(x))
− 1

2
e

qi(x,ρi)

ε

I(φ̂j)2

∫ x

0
e

Dij (y)

ε (1 + γωγ(y))
− 1

2 dy

= (1 + γωγ(x))
− 1

2
φj(x)

2

φ̂j(x)2
e

qi(x,ρi)

ε

∫ x

0
e

Dij (y)

ε (1 + γωγ(y))
− 1

2 dy

≤ C(1 + γωγ(x))
1
2φj(x)

2e−
Dij (x)

ε

∫ x

0
e

Dij (y)

ε (1 + γωγ(y))
− 1

2 dy

≤ C(1 + γωγ(x))
1
2φj(x)

2e−
Dij (x)

ε

×
∫ x

0

1 + γωγ(y)

D′
ij(y)

D′
ij(y)e

Dij (y)

ε (1 + γωγ(y))
− 3

2 dy

≤ Cγε(1 + γωγ(x))
1
2φj(x)

2e−
Dij(x)

ε

∫ x

0

D′
ij(y)

ε
e

Dij(y)

ε dy,

since (1 + γωγ(y))
− 3

2 ≤ 1, so that

Gij(x)≤ Cγε(1 + γωγ(x))
1
2φj(x)

2e−
Dij(x)

ε e
Dij (x)

ε

− Cγε(1 + γωγ(x))
1
2φj(x)

2e−
Dij (x)

ε e
Dij (0)

ε

≤ Cγε(1+γωγ(x))
1
2φj(x)

2

︸ ︷︷ ︸

P1

−Cγε(1 + γωγ(x))
1
2φj(x)

2e
1
ε
[Dij(0)−Dij (x)]

≤ P1
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To estimate P1, we note that

εφj(x)
2 = ε

φ̂j(x)
2

I(φ̂j)2
=

ε

I(φ̂j)

φ̂j(x)
2

I(φ̂j)

≤ Cφj(x)φ̂j(x) ≤ Cφj(x)
1

(γµj(x))
1
4

[since pj(x, ρj) ≤ 0]

≤ C(1 + γωγ(x))
− 1

2φj(x) (5.31)

and, therefore,

|P1| ≤ Cγφj(x).

Hence we have |Gij(x)| ≤ Cγφj(x). and therefore

|G̃ij(x)| ≤ Cγφj(x).

Estimating F̃ij

We begin by observing that

F̃ij(x) ≤ C(1 + γωγ(x))
− 1

2
e

pi(x,ρi)

ε

I(φ̂j)2

∫ x

ci

e
−pi(y,ρi)+2pj (y,ρj)

ε (1 + γωγ(y))
− 1

2 dy

Then using the fact that pi(x, ρ)− pi(y, ρ) = pi(x, y) we have

F̃ij(x) ≤ C(1 + γωγ(x))
− 1

2
e

2pj (x,ρj)

ε

I(φ̂j)2

×
∫ x

ci

e
[−pi(y,ρi)+pi(x,ρi)+2pj(y,ρj)−2pj (x,ρj)]

ε (1 + γωγ(y))
− 1

2 dy

≤ C(1 + γωγ(x))
1
2
φ̂j(x)

2

I(φ̂j)2

∫ x

ci

e
pi(x,y)−2pj(x,y)

ε (1 + γωγ(y))
− 1

2 dy.

Let us define the term Eij(x, y) := pi(x, y)− 2pj(x, y) and define

Fij(x) := (1 + γωγ(x))
1
2

φ̂2j(x)

I(φ̂j)2

∫ x

ci

e
1
ε
Eij(x,y)(1 + γωγ(y))

− 1
2 dy.

Thus it is enough to estimate the term Fij .

First let us consider the case when i = j. Then Eii(x, y) = −pi(x, y)
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and

Fii(x) = (1 + γωγ(x))
1
2
φ̂2i (x)

I(φ̂i)2

∫ x

ci

e
1
ε
Eii(x,y)(1 + γωγ(y))

− 1
2 dy

= (1 + γωγ(x))
1
2
φ̂2i (x)

I(φ̂i)2

∫ x

ci

e−
1
ε
pi(x,y)(1 + γωγ(y))

− 1
2 dy,

which implies

|Fii(x)| ≤ C
(1 + γωγ(x))

1
2

(γµi(x))
1
2

e
2
ε
pi(x,ρi)

I(φ̂i)2
|
∫ x

ci

e−
1
ε
pi(x,y)(1 + γωγ(y))

− 1
2 dy|

≤ C(1 + γωγ(x))
− 1

2
e

1
ε
pi(x,ρi)

I(φ̂i)2
|
∫ x

ci

e
1
ε
pi(y,ρi)(1 + γωγ(y))

− 1
2 dy|

≤ C(1 + γωγ(x))
− 1

2
e

1
ε
pi(x,ρi)

I(φ̂i)

|
∫ x
ci
e

1
ε
pi(y,ρi)(1 + γωγ(y))

− 1
2 dy|

I(φ̂i)

≤ Cφi(x)

∫ L

0
φi(y) dy ≤ Cφi(x).

Next we consider the cases i < j and skip the case i > j since the proofs

are analogous. For α > 0, let us define

Λm
ij = min

x∈[0,L]
Λij(x)− αδ0,

ΛM
ij = sup

x∈[0,L]
Λij(x) + αδ0,

(5.32)

where Λij(x) := 2λj(x)− λi(x). Hence for α sufficiently small,

λMj < Λm
ij ≤ Λij(x) ≤ ΛM

ij < L, x ∈ [0, L]

ΛM
ij − Λm

ij = O(δ0).
(5.33)

Let us choose a point aij ∈ (λMj ,Λ
m
ij ) such that

aij = Λm
ij − κ,

where κ > 0 is sufficiently small. In case Λm
ij < 0, we shall choose aij = 0.
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Case i < j and j ≥ p+ 1.

Case 1: 0 < λi < λj. Let us briefly collect some properties of Eij(x, y) to

be used later. For a fixed ρ ∈ [0, L], for any x ∈ [0, λmj ], using the fact that

µi(x) ≤ µj(x), it follows that

∂1Eij(x, ρ) =
1

2γ
− 2

√

µj(x)

γ
+

√

µi(x)

γ

≤ −p′j(x) ≤ −ωγ(x).

Now for x ∈ [0, L], using the expansion (with respect to γ)

√

1 + 4γ(λl(x)− x) = 1 + 2γ(λl(x)− x) +O(γ2),

we obtain

∂1Eij(x, ρ) = 2(x− (2λj(x)− λi(x))) +O(γ).

Using these we find that ∂1Eij(x, ρ) is strictly less than a negative constant,

when x ≤ aij and is negative (positive) for x < Λm
ij (x > ΛM

ij ). Therefore,

for each ρ ∈ [0, L], Eij(x, ρ) achieves its minimum at a point ρij ∈ [Λm
ij ,Λ

M
ij ].

It can then be easily checked that

Eij(x, ρij) ≥ 0, x ∈ [0, L].

Also when ΛM
ij < 0, it follows that

Eij(x, 0) ≥ 0.

Let us suppose that x ∈ [0, aij ]. Using the fact Eij(x, y) = Eij(x, ρij)

−Eij(y, ρij),

|Fij(x)| ≤ C(1 + γωγ(x))
1
2

φ̂2j (x)

I(φ̂j)2
e

Eij (x,ρij)

ε

×
∣
∣
∣

∫ x

ci

∂1Eij(y, ρij)

∂1Eij(y, ρij)
e−

Eij (y,ρij)

ε (1 + γωγ(y))
− 1

2 dy
∣
∣
∣.
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Similarly as in the case of D′
ij (see (5.30)), we can show that

∣
∣
∣
1 + γωγ(x)

∂1Eij(x, ρij)

∣
∣
∣ ≤ C, x ∈ [0, aij ].

Using this, we find that

|Fij(x)| ≤ C(1 + γωγ(x))
1
2
φ̂2j(x)

I(φ̂j)2
e

Eij(x,ρij )

ε

×
∣
∣
∣

∫ x

ci

∂1Eij(y, ρij)e
−

Eij (y,ρij)

ε (1 + γωγ(y))
− 3

2 dy
∣
∣
∣

≤ Cε(1 + γωγ(x))
1
2
φ̂2j (x)

I(φ̂j)2
e

Eij (x,ρij)

ε

(

e−
Eij (x,ρij)

ε + e−
Eij(ci,ρij)

ε

)

= C(1 + γωγ(x))
1
2

(

ε
φ̂2j(x)

I(φ̂j)2
+
ε(1 + γωγ(x))

−1

I(φ̂j)2
e

Eij (x,ci)+2pj (x,ρj)

ε

)

:= C(1 + γωγ(x))
1
2 (T1 + T2).

(5.34)

The term T1 can be estimated as in the case of P1 above (see (5.31)). For

the term T2 we proceed as follows

T2 ≤ Cε
(1 + γωγ(x))

−1

I(φ̂j)2
e

Eij (x,ci)+2pj (x,ρj)−pi(x,ρi)

ε I(φ̂i)(1 + γωγ(x))
1
2
φ̂j(x)

I(φ̂i)

≤ Cε
(1 + γωγ(x))

− 1
2

I(φ̂j)2
e

Eij(x,ci)+2pj (x,ρj)−pi(x,ρi)

ε I(φ̂i)φi(x). (5.35)

Now , we have

Eij(x, ci) + 2pj(x, ρj)− pi(x, ρi)

= pi(x, ci)− 2pj(x, ci) + 2pj(x, ρj)− pi(x, ρi)

= pi(ρi, ci)− 2pj(ρj , ci)− 2pj(ρi, ci) + 2pj(ρi, ci)

= Eij(ρi, ci) + 2pj(ρi, ρj)

and therefore

T2 ≤ (1 + γωγ(x))
− 1

2
C

ε
e

Eij (ρi,ci)+2pj (ρi,ρj)

ε φi(x).

Thus it will be enough if we can prove that Eij(ρi, ci)+2pj(ρi, ρj) is strictly
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less than a negative number.

Now using the fact that for x, ρ ∈ [λmi , L], the partial derivative

|∂1Eij(x, ρ)| is bounded by a positive constant that is independent of γ and

the fact that ρi, ci ∈ [λmi , λ
M
i ], we have

|Eij(ρi, ci)| ≤ max
x∈[λm

i ,λM
i ]
{∂1Eij(x, ci)}|ρi − ci|,

which implies Eij(ρi, ci) = O(δ0).

On the other hand, using the fact that for x ∈ [0, L],
√

1 + 4γ(λl(x)− x)

= 1 + 2γ(λl(x)− x) +O(γ2), we obtain

pj(ρi, ρj) =
ρj − ρi
2γ

− 1

2γ

∫ ρj

ρi

√

1 + 4γ(λj(y)− y) dy

= −
∫ ρj

ρi

(λj(y)− y) dy +O(γ)

= −
∫ λm

j

ρi

(λj(y)− y) dy −
∫ ρj

λm
j

(λj(y)− y) dy +O(γ)

≤ −
∫ λm

j

ρi

(λmj − y) dy +O(δ0) +O(γ)

≤ −1

2
(λmj − λMi )2 +O(δ0) +O(γ).

Therefore choosing γ, δ0 small enough, we find that Eij(ρi, ci) + 2pj(ρi, ρj)

is dominated by the strictly negative term −1
2(λ

m
j −λMi )2, which proves the

required estimate on T2, that is,

T2 ≤ C(1 + γωγ(x))
− 1

2φi(x).

Hence it follows that

|Fij(x)| ≤ Cφi(x).

Let us suppose that x ∈ [aij , L]. For this case we proceed as follows:

|Fij(x)| = (1 + γωγ(x))
1
2

φ̂2j(x)

I(φ̂j)2

∫ x

ci

e
Eij (x,y)

ε (1 + γωγ(y))
− 1

2 dy

≤ φj(x)

I(φ̂j)
e

pj (x,ρj)+Eij(x,ρij )

ε

∫ x

ci

e−
Eij (y,ρij)

ε dy.
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Now using the properties of Eij(y, ρij), it can be easily shown that
∫ x
ci
e−

Eij (y,ρij)

ε dy is bounded. Therefore it is enough to estimate

|Fij(x)| ≤
C

ε
φj(x)e

Pij (x)

ε ,

where

Pij(x) := pj(x, ρj) + pi(x, ρij)− 2pj(x, ρij).

In particular we shall now prove that Pij(x) is strictly less than a negative

constant.

Pij(x) = pj(ρij , ρj) + pi(x, ρij)− pj(x, ρij)

=
ρj − ρij

2γ
+

∫ ρij

ρj

√

µj(y)

γ
dy +

∫ x

ρij

(
√

µi(y)

γ
−
√

µj(y)

γ

)

dy

=
ρj − ρij

2γ
+

1

2γ

∫ ρij

ρj

√

1 + 4γ(λj(y)− y) dy

+
1

2γ

∫ x

ρij

(√

1 + 4γ(λi(y)− y)−
√

1 + 4γ(λj(y)− y)
)

dy

=
( ∫ ρij

ρj

(λj(y)− y) dy +

∫ x

ρij

(λi(y)− λj(y)) dy
)

+O(γ)

:= P̃ij(x) +O(γ).

Now using the fact that λi(y) < λj(y) we find that P̃ij takes its maximum at

aij. In what follows we prove that P̃ij(aij) is less than a negative constant,

which in turn would prove the required estimate.

P̃ij(aij) ≤
∫ ρij

ρj

(λj(y)− y) dy +

∫ aij

ρij

(λi(y)− λj(y)) dy +O(γ)

≤ −
∫ ρij

ρj

(y − λMj ) dy + (ρij − aij)(λ
M
j − λmi ) +O(γ)

≤ −1

2
((ρij − λMj )2 − (ρj − λMj )2) + (ρij − aij)(λ

M
j − λmi ) +O(γ)

= −1

2
(ρij − λMj )2 + (ρij − aij)(λ

M
j − λmi ) +O(δ0) +O(γ).

Now choosing γ, δ0 and κ (as in the definition of aij) small enough, we obtain

that P̃ij(aij) < −C with C strictly positive, whence the desired estimate for

Fij follows.
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Case 2: λi < 0 < λj.

Let us suppose that x ∈ [0, aij ]. Proceeding as in Case 1, we deduce (5.34)

and (5.35) corresponding to this case as well. The estimate for T1 is again

obtained as before. For T2 proceeding as in the previous case, we have

Eij(x, ci)+2pj(x, ρj)−pi(x, ρi)= Eij(ρi, ci)+2pj(ρi, ρj)

= 2pj(0, ρj), using the fact that ρi = 0 = ci.

But 2pj(0, ρj) is strictly negative (pj attains its maximum at ρj and is strictly

increasing in [0, λmj ]) and therefore

T2 ≤
C

ε
(1 + γωγ(x))

− 1
2 e2pj(0,ρj)φi(x)

≤ C(1 + γωγ(x))
− 1

2φi(x),

whereby it follows again that |Fij(x)| ≤ Cφi(x).

Let us next suppose that x ∈ [aij , L]. The proof in this case is analogous

to that corresponding to the previous one and hence we omit the proof.

Case i < j ≤ p.

Then we have ci = 0, ρi = 0 = ρj . We can then write

|Fij(x)| ≤
φj(x)

I(φ̂j)
e

pj (x,0)+Eij(x,0)

ε

∫ x

0
e−

Eij (y,0)

ε dy

≤ C

ε
φj(x)e

Pij (x)

ε

∫ x

0
e−

Eij (y,0)

ε dy,

where Pij(x) := pj(x, 0)+Eij(x, 0). Observe here that choosing α sufficiently

small, we can always make ΛM
ij 6= 0.
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Let us first consider the case when ΛM
ij < 0. We have

Pij(x) = pi(x, 0) − pj(x, 0) = (pi(x)− pi(0))− (pj(x)− pj(0))

=
L− x

2γ
+

∫ x

L

√

µi(y)

γ
dy − L

2γ
−
∫ 0

L

√

µi(y)

γ
dy

−
(L− x

2γ
+

∫ x

L

√

µj(y)

γ
dy − L

2γ
−
∫ 0

L

√

µj(y)

γ
dy
)

=

∫ x

0

(
√

µi(y)

γ
−
√

µj(y)

γ

)

dy ≤ 0,

since µi(y) ≤ µj(y). Now ∂1Eij(x, 0) = 2(x − (2λj(x)− λi(x))) +O(γ) and

hence choosing γ to be sufficiently small, we obtain

−∂1Eij(x, 0) = 2((2λj(x)− λi(x))− x) +O(γ)

≤ 2ΛM
ij +O(γ)

≤ −C1, where C1 is a positive constant.

Integrating this from 0 to y, and using the fact that Eij(0, 0) = 0, we obtain

−Eij(y, 0) ≤ −C1 y

and since Pij is nonpositive, we further have Pij(x)− Eij(y, 0) ≤ −C1 y.

Therefore, we obtain

|Fij(x)| ≤
C

ε
φj(x)

∫ L

0
e

Pij (x)−Eij(y,0)

ε dy

≤ C

ε
φj(x)

∫ L

0
e−

C1y
ε dy

≤ Cφj(x)
1

ε

e−
C1
ε
L − 1

−C1
ε

≤ Cφj(x)(1 − e−
C1
ε
L)

and hence we obtain

|Fij(x)| ≤ Cφj(x).
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Next let us consider the case ΛM
ij > 0. We have

Pij(x)− Eij(y, 0) =

∫ x

y

(
√

µi(s)

γ
−
√

µj(s)

γ

)

ds + pj(y, 0)

≤ pj(y, 0),

using the fact that µi(s) < µj(s) and y ≤ x. Therefore it is enough to

estimate the term

C

ε
φj(x)

∫ x

0
e

pj (y,0)

ε dy.

We obtain

pj(y, 0) = − y

2γ
+

∫ y

0

√

µj(s)

γ
ds

= − y

2γ
+

1

2γ

∫ y

0

√

1 + 4γ(λj(s)− s) ds

= − y

2γ
+

1

2γ

∫ y

0
[1 + 2γ(λj(s)− s) +O(γ2)(λj(s)− s)2] ds

=
1

2γ

∫ y

0
[2γ(λj(s)− s) +O(γ2)(λj(s)− s)2] ds

< −C1 y,

choosing γ sufficiently small. Therefore, we find

C

ε
φj(x)

∫ x

0
e

pj (y,0)

ε dy ≤ C

ε
φj(x)

∫ L

0
e−

C1y
ε dy

= Cφj(x)(1 − e−
C1L
ε ) ≤ Cφj(x)

and therefore |Fij(x)| ≤ Cφj(x). This completes the proof of the theo-

rem. ���

6. Existence Theory for Systems with Diffusion and Dispersion

We now establish the existence of a solution for the boundary Riemann

problem (5.2)-(5.4) with diffusion and dispersion. Throughout this section

ε > 0 is a given parameter; all the estimates below are uniform in the limit

ε→ 0. We follow the previous works of LeFloch and Rohde [17], and Joseph
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and LeFloch [8, 9, 10] and since the proof of the theorems are straightforward

adaptation of these papers, we omit all the proofs.

The first step is to analyze the coupled system

γε2a′′k + εa′k + (x− λk(v))ak =
1

γε
D1

k(a) +D2
k(a, a

′), (6.1)

where

D1
k(a) = −lk(v) ·

N∑

j,i=1

aiaj(Dri(v) · rj(v)),

D2
k(a, a

′) = −lk(v) ·
(∑

k,i

(2aia
′
j + a′iaj)(Dri · rj)(v) (6.2)

+
N∑

k,i,l=1

aiakalD(Dri · rk)rl(v)
)

,

for a fixed function v : [0,∞) → B(u∗, C∗ δ).

We are given the boundary value uB ∈ B(u∗, δ) and, instead of using

a right-end state uI , we first describe the Riemann solutions using a “wave

strength” vector τ ∈ RN . The coefficients aεk are sought in the form of an

asymptotic expansion in the wave strength:

aεk(x; v, τ) = τk ϕ
ε
k(x; v) + θεk(x; v, τ), (6.3)

where τ = (τ1, . . . , τN ) ∈ B(0, δ1), the ball in R
N having center 0 and radius

δ1 > 0 and ϕ are solutions of the homogeneous system constructed in in the

previous section. The remainder θεk(x; v, τ) in (6.3) is sought to be second-

order in τ . In view of (6.1), the coefficients x 7→ θεk(x; v) must satisfy the

coupled system (k = 1, . . . , N)

θεk
′′ +

1

γε
θεk

′ +
1

γε2
(x− λk(v)) θ

ε
j =

Di
k(a)

γε
+D2

k(a, a
′). (6.4)

Using an equivalent integral equation for θ = (θ1, . . . θN), we have

θk(x) = ψk(x)

∫ x

0
ψk(y)Sk(θ)(y)dy + ϕk(x)

∫ x

ck

ϕk(y)Sk(θ)(y)dy, (6.5)
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where

Sk(θ) =
1

γε
D1

k(a) +D2
k(a, a

′), a = (a1, . . . , aN ),

aεk(x; v, τ) = τk ϕ
ε
k(x; v) + θεk(x; v, τ),

and by a straightforward generalization of [17], we get the following theorem.

Theorem 6.1. There exist constants δ, δ1, C∗, C > 0 with the following prop-

erty. For all ε > 0 and every continuous function v : [0,∞) → B(u∗, C∗ δ)

and for every τ ∈ B(0, δ1), there exists a unique solution (θε1, . . . , θ
ε
N ) of

(6.4) satisfying (6.5) with following estimates,

|θεk(·; v, τ)| +
ε

ωγ
|θεk(·; v, τ)′| ≤ C|τ |2

N∑

j=1

ϕε
j(·; v), k = 1, . . . , N. (6.6)

Furthermore for |τ |, |σ| ≤ δ1 we have the continuous dependence estimate

|θεk(·; v, τ) − θεk(·; v, σ)| +
ε

ωγ
|θεk(·; v, τ)′ − θεk(·; v, σ)′|

≤ C δ1 |τ − σ|
N∑

j=1

ϕε
j(·; v), k = 1, . . . , N. (6.7)

Next we construct solution to the nonlinear problem. For each uB and

each vector of wave strengths τ , we construct a solution uε of the Riemann

problem (5.2)-(5.4) with diffusion and dispersion.

Theorem 6.2. There exist δ, δ1, C∗, C > 0 with the following property. For

all ε > 0 and all uB ∈ B(u∗, δ) and τ ∈ B(0, δ1), the boundary Riemann

problem (5.2)-(5.4) admits a solution x 7→ uε(x; τ) ∈ B(u∗, C∗ δ) leaving

from uB = uε(0; τ) and reaching some state uI := uε(+∞; τ), with

uε′ =

N∑

k=1

aεk rk(u
ε), (6.8)

aεk(x; τ) = τk ϕ
ε
k(x; τ) + θεk(x; τ), |θεk(x; τ)| ≤ C |τ |2

N∑

j=1

ϕε
j(x; τ),

ϕε
k(x; τ) =

e
(pε

k
(x;τ)−pε

k
(ρk;τ))

ε

∫∞
0 e

(pε
k
(x;τ)−pε

k
(ρk;τ))

ε dx
, pεk(x; τ) = − x

2γ
+

∫ x

0

√

µk(y)

γ
dy, (6.9)



682 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December

µk(y) = λk(u
ε(y; τ)) − x+

1

4γ
.

In particular this implies that uε has uniformly bounded total variation, in-

deed

|uε′| ≤ O(1) |τ |
N∑

j=1

ϕε
j (6.10)

and, thus,

TV (uε) ≤ O(1) |τ |. (6.11)

We now consider the Riemann problem with both ends uB and uI fixed.

Theorem 6.3 (The Riemann problem with diffusion and dispersion). There

exist δ, C∗, C > 0 with the following property. For every ε > 0, uB, uI ∈
B(u∗, δ), the Riemann problem (5.2)-(5.4) admits a solution x 7→ uε(x) con-

necting uB = uε(0) to uI = uε(+∞) and satisfying uε(x) ∈ B(u∗, C∗ δ) for

all x > 0. It satisfies also the expansion (6.8)-(6.9) for some τ = τ ε with

1

C
|τ ε| ≤ |uI − uB | ≤ C |τ ε|. (6.12)

Furthermore, uε is of uniformly bounded total variation and satisfies (6.10)-

(6.11).

The proof of this theorem relies on the invertibility of the mapping

Sε : τ = (τ1, . . . , τN ) ∈ B(0, δ1) → Sε(v, τ) ∈ B(u∗, C∗ δ)

defined for each function v by

Sε(v, τ) = uB +

N∑

k=1

∫ ∞

0

(
τk ϕ

ε
k(·; v) + θεk(·; v, τ)

)
rk(v) dx,

the right-hand side being defined by Theorem 6.2 from the data uB , τ and

v. We state the result, the proof is similar to LeFloch and Rohde [17] and

is omitted.

Proposition 6.4. There exist δ, δ1, C∗, C > 0 with the following property.

For all ε > 0, uB ∈ B(u∗, δ) and each function v : [0,∞) → B(u∗, C∗ δ), we

have the following.
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For each uI ∈ B(u∗, δ), there exists a unique solution τ ∈ B(0, δ1) of

the equation

Sε(v, τ) = uI .

The mapping Sε is thus locally invertible and S−1
ε is uniformly bounded in ε

in the sense that

|S−1
ε (uI)| ≤ C |uI − uB |.

7. Analysis of Boundary Layers and Convergence Results

In this section we study the structure of the limiting solution u =

limε→0 u
ε. This analysis rely on the estimate uε obtained in the previous

section. Our objective is to describe the boundary layer that generally arises

in the solution at x = 0. We refer to Joseph and LeFloch [8] for a discussion

of this problem in the general framework of L∞ solutions. First of all, as an

easy consequence of Theorem 6.3 we obtain the following result when ε→ 0.

Theorem 7.1 (Existence theory for nonlinear hyperbolic systems). There

exist δ, C∗, C > 0 such that the following property holds. For every uB, uI ∈
B(u∗, δ), the solution u

ε (or at least a subsequence) of the boundary Riemann

problem (5.2)-(5.4) converges pointwise to a weak solution x 7→ u(x) of

−xu′ + f(u)′ = 0,

which is a function of bounded variation connecting some value u(0+) to

uI = u(+∞) and satisfying u(x) ∈ B(u∗, C∗ δ) for all x > 0. Moreover, we

have

u(x) = uI for all x > λMN

and

TV (u) ≤ C |uI − uB|.

Therefore the condition (5.3) at infinity holds for the limiting function.

However the condition (5.4) does not pass to the limit in general due to the

formation of boundary layers near x = 0 and must be relaxed and expressed

in the weak form.
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To determine the value u(0+), we analyze the boundary layer near 0.

The same analysis as in the scalar case leads to the following result for the

boundary layer.

Theorem 7.2 (The boundary layer for systems with diffusion and disperi-

son). The trace u(0+) of the Riemann solution constructed in Theorem 7.1

satisfies the following property. There exist a vector V∞ and a smooth func-

tion y ≥ 0 7→ V (y) such that

γV ′′′ + V ′′(y) = f(V (y))′,

V (0) = uB , lim
y→∞

V (y) = V∞,

lim
y→∞

V ′(y) = lim
y→∞

V ′′(y) = 0

(7.1)

and

f(V∞) = f(u(0+)). (7.2)

Let us now introduce the admissible set based on the diffusive-dispersive

regularization:

Φγ(uB) :=
{
V∞ /There exists a solution Vγ : [0,+∞) → R

to the boundary problem (7.1)-(7.2)
}
.

(7.3)

Then we claim that the trace u(0+) of the Riemann solution constructed in

Theorem 7.1 belongs to this set. This follows because the flux-function f is

locally one-to-one and the condition (7.2) is equivalent to saying

u(0+) = V∞.

In other words, the solution satisfies the boundary condition

u(0+) ∈ Φγ(uB).

Now, it is important to check that, in some sense, the boundary set Φγ(uB)

is not too large, which is the purpose of the following section.
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Analysis of diffusive-dispersive boundary layer

One integration of (7.1) gives after using the boundary condition

γV ′′ + V ′ = f(V )− f(V∞),

V (0) = uB , V (∞) = V∞,

lim
y→∞

V ′(y) = lim
y→∞

V ′′(y) = 0.

(7.4)

Setting W = V ′, we can write the second order system (7.4) as the first

order system

V ′ =W,

γW ′ = f(V )− f(V∞)−W,
(7.5)

with boundary conditions

V (0) = uB, lim
y→∞

V (y) = V∞,

lim
y→∞

V ′(y) = lim
y→∞

W (∞) = 0.
(7.6)

Note that (V,W ) = (V∞, 0) is a stationary point for the system (7.5) and we

are interested in the set of V∞ ∈ RN for which it has a solution satisfying

(7.6).

Setting Z = V − V∞, we write our system

Z ′ =W,

γW ′ = Df(V∞)Z −W + [f(Z + V∞)− f(V∞)−Df(v∞)Z],
(7.7)

with boundary conditions

Z(0) = uB − V∞, lim
y→∞

Z(y) = lim
y→∞

W (y) = 0. (7.8)

Now (Z,W ) = (0, 0) is the critical point of the system (7.7). We write the

system as linear part at (0, 0) and the quadratic part namely

(

Z ′

W ′

)

=

(

0 Id
1
γDf(V∞) − 1

γ Id

)(

Z

W

)

+

(

0
1
γ [g(Z,W )]

)

, (7.9)
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where

g(Z,W ) = f(Z + V∞)− f(V∞)−Df(v∞)Z = O(||(Z,W )||2).

First we analyse the eigenvalues and eigenvectors of the matrix

A(V∞, γ) =

(

0 Id
1
γDf(V∞) − 1

γ Id

)

. (7.10)

Proposition 7.3. A(V∞, γ) has 2N distinct eigenvalues µ±k with correspond-

ing basis of left and right eigenvectors L±
k , R

±
k , k = 1, 2, . . . , N given by

µ−k (V∞, γ) =
−1− (1 + 4γλk(V∞))1/2

2γ
, k = 1, 2, . . . , N,

µ+k (V∞, γ) =
−1 + (1 + 4γλk(V∞))1/2

2γ
, k = 1, 2, . . . , N,

(7.11)

R±
k (V∞, γ) = (rk(V∞), µ±k (V∞, γ)rk(V∞)),

L±
k (V∞, γ) = ±αk(−µ∓k (V∞, γ)lk(V∞), lk(V∞)),

(7.12)

where

αk =
γ

(1 + 4γλk(V∞))1/2
. (7.13)

The eigenvalues µ−k (V∞, γ), k = 1, 2, . . . , N and µ+k (V∞, γ) (k = 1, 2, . . . , p)

are negative and µ+k (V∞, γ) (k = p+1, . . . , N) are positive. Further as γ ≈ 0,

µ−k (V∞, γ) ≈ −1

γ
, µ+k (V∞, γ) ≈ λk(V∞). (7.14)

Proof. We note that µ is an eigenvalue of the matrix A(V∞, γ) with eigen-

vector (R1, R2), R1, R2 ∈ RN iff

−µR1 +R2 = 0,
1

γ
Df(V∞)R1 −

1

γ
R2 − λR2 = 0.

This system is equivalent to

Df(V∞)R1 = (1 + µγ)µR1, R2 = µR1.
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This means that µ(1 + γµ) is an eigenvalue λk(V∞) of Df(V∞) with R1 =

rk(V∞), k = 1, 2, . . . , N . So µ satisfies the equation

γµ2 + µ− λk(V∞) = 0, (7.15)

and with corresponding right eigenvectors

(R1, R2) = (rk(V∞), µ rk(V∞)). (7.16)

Left eigenvector (L1, L2), L1, L2 ∈ RN corresponding to the eigenvalue sat-

isfies the equation

1

γ
Df(V∞)TL2 = µL1, L1 −

1

γ
L2 = µL2

which leads to

Df(V∞)TL2 = (1 + µγ)µL2, L1 = (
1

γ
+ µ)L2

This relation says that up to a scalar multiple the left eigenvector corre-

sponding to the eigenvalue µ is of the form

(L1, L2) = ((
1

γ
+ µ)lk(V∞), lk(V∞)), (7.17)

where µ is a solution to (7.15). Solving (7.15) for µk we get

µ±k =
−1± (1 + 4γλk(V∞))1/2

2γ
.

Also we have

1

γ
+ µ±k =

1± (1 + 4γλk(V∞))1/2

2γ
= −µ∓k .

Thus A(V∞) has 2N distinct eigenvalues

µ−k =
−1− (1 + 4γλk(V∞))1/2

2γ
, k = 1, 2, . . . , N,

µ+k =
−1 + (1 + 4γλk(V∞))1/2

2γ
, k = 1, 2, . . . , N.

(7.18)
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Also up to a scalar multiple, the right and the left eigenvectors corresponding

to µ±k , k = 1, 2, . . . , N are

R±
k = (rk(V∞), µ±k rk(V∞)),

and

L±
k = (−µ∓k lk(V∞), lk(V∞))

Now, we have

L+
k · R−

k = L−
k ·R+

k = L±
k .R

±
j = 0, j 6= k, j, k = 1, 2, . . . , N,

L±
k .R

±
k = ±(1 + 4γλk(V∞))1/2

γ
.

We normalize them so that L±
k .R

±
j = δkj. This leads to the choice of

normalization factor αk, stated in the proposition. Since λk(V∞) < 0 for

k = 1, 2, . . . , p and λk(V∞) > 0 for k = (p + 1), . . . , N , it easily follows

that µ−k (V∞), k = 1, 2, . . . , n and µ+k (V∞), k = 1, 2, . . . , p are negative and

µ+k , k = p + 1, . . . , N are positive. The asymptotic form of µk as γ goes

to 0 follows from the formula. This, therefore, completes the proof of the

theorem. ���

In studying the system (7.7)-(7.8), it is convenient to write it in terms

of the components in the directions of the eigenvectors of A(V∞, γ). Thus

we decompose (Z,W ) = (V −V∞,W ) with respect the basis given by (7.12)

in the previous theorem.

(

V −V∞
W

)

=

N∑

k=1

L+
k .

(

V − V∞
W

)

·R+
k +

N∑

k=1

L−
k ·
(

V − V∞
W

)

·R−
k . (7.19)

Let us denote

a±k (y, γ) := ±αk(V∞)lk(V∞) · [∓µ∓k (V∞)(V (y, γ)− V∞) +W (y, γ)]. (7.20)

Then
(

V − V∞
W

)

=

N∑

k=1

a+k (y, γ)R
+
k +

N∑

k=1

a−k (y, γ)R
−
k . (7.21)
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The system (7.9) in a = (a+1 , a
+
2 , . . . , a

+
N , a

−
1 , a

−
2 , . . . , a

−
N ) becomes

a+k
′

(y, γ) = µ+k (V∞, γ)a
+
k (y, γ) + g+k (a(y, γ)), k = 1, 2, . . . , N,

a−k
′

(y, γ) = µ−k (V∞, γ)a
+
k (y.γ) + g−k (a(y, γ)), k = 1, 2, . . . , N,

(7.22)

g+k (a) = −(1 + 4γλk(V∞))−1/2lk(V∞)ḡ(a) = O(||a||2), k = 1, . . . , N,

g−k (a) = (1 + 4γλk(V∞))−1/2lk(V∞)ḡ(a) = O(||a||2), k = 1, . . . , N, (7.23)

ḡ(a) = g(Z,W ) = f(Z + V∞)− f(V∞)−Df(v∞)Z, Z = V − V∞.

We remark that the estimate for g±k in (7.23) is uniform in γ ≈ 0 and γ > 0

and we used the fact that (Z,W ) = (V −V∞,W ) can be written in terms of

a. From (7.21) we have,

lk(V∞) · (V (y)− V∞) = (1 + 4γλk(V∞))−1/2(a+k (y, γ) + a−k (y, γ))
(7.24)

lk(V∞) ·W = (1 + 4γλk(V∞))1/2(µ−k (V∞, γ)a
−
k (y, γ) − µ+k (V∞, γ)a

−
k (y, γ))

which gives

(V (y)− V∞) =

N∑

k=1

(1 + 4γλk(V∞))1/2(a+k (y, γ)+a
−
k (y, γ))rk(V∞)

(7.25)

W =
N∑

k=1

(1 + 4γλk(V∞))1/2(µ−k (V∞, γ)a
−
k (y, γ)−µ+k (V∞, γ)a−k (y, γ))rk(V∞).

The boundary conditions (7.8) becomes

a±k (0) = ±αk(V∞)lk(V∞) · [∓µ∓k (V∞)(uB − V∞) +W (0)]

lim
y→∞

a±k (y) = 0, k = 1, 2, . . . , N
(7.26)

We observe that W (0) is not prescribed and depends on uB. In fact

W (y) depends on uB , V∞ and γ through the relation W = V ′. With these

observations in the next theorem we analyze the structure of boundary layer.

Theorem 7.4 (A property of the boundary layer set). There exists γ0 > 0

such that for any 0 < γ < γ0, the set Φγ(uB) contains the point uB and near

uB, it is a p dimensional manifold whose tangent plane at uB is given by

uB+ Span of {rk(uB), k = 1, 2, . . . , p}.
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Proof. First we observe that (0, 0) is a hyperbolic stationary point for the

system (7.22) with N+p negative eigenvalues and N−p positive eigenvalues.
So by standard theory of hyperbolic points of systems, near (0, 0) the system

has a stable invariant manifold of dimension N + p whose tangent space at

(0, 0) is generated byR−
k (V∞, γ), k = 1, 2, . . . , N , R+

k (V∞, γ)k, k = 1, 2, . . . , p.

So the initial value problem has a solution vanishing at infinity iff the initial

data for a±k (0, γ) lies in this stable manifold.

Let us note that the standard way to get stable solutions of the system

is by a fixed point argument applied to an equivalent system of integral

equations

a−k (y, γ) = eµ
−
k
(V∞,γ)ya−k0+

∫ y

0
eµ

−
k
(V∞,γ)(y−s)O(||a(s)||2)ds, k=1, . . . , N,

a+k (y, γ) = eµ
+
k
(V∞,γ)ya+k0+

∫ y

0
eµ

+
k
(V∞,γ)(y−s)O(||a(s)||2)ds, k=1, . . . , p,(7.27)

a+k (y, γ) =−
∫ ∞

y
eµ

+
k
(V∞,γ)(y−s)O(||a(s)||2)ds, k = p+ 1, . . . , N,

with a−k0, k = 1, 2, . . . , n and a+k0, k = 1, 2, . . . , p are constants close to 0.

We note that for stable solutions, we do not prescribe those components

of the initial data in the direction of eigenvectors corresponding to positive

eigenvalues and impose that these components are in the stable invariant

manifold. This means

a+k (0, γ) = −
∫ ∞

0
e−µ+

k
(V∞,γ)sO(||a(s)||2)ds, k = p+ 1, . . . , N (7.28)

If we denote the right hand side of (7.28) by Gk(a
−
1 (0), . . . , a

−
n (0), a

+
1 (0), . . .,

a+p (0)), k = p + 1, . . . , N , then G = (Gp+1, . . . , GN ) together with partial

derivatives of the G in each of its arguments vanish at 0.

Now let us come to our problem of determining the data V∞ for which

the system (7.4) has a solution, or equivalently the problem (7.22) and

(7.26) has a solution. Above analysis shows that the right hand side of

G = (Gp+1, . . . , GN ) depends only on

a−k (0, γ) =−αk(V∞, γ)lk(V∞) · [+µ+k (V∞, γ)(uB−V∞)+W (0)], k = 1, . . . , N

a+k (0, γ) = αk(V∞, γ)lk(V∞) · [−µ−k (V∞, γ)(uB − V∞) +W (0)], k = 1, . . . , p



2015] SELF–SIMILAR BOUNDARY LAYERS 691

but not on

a+k (0, γ) = αk(V∞, γ)lk(V∞)·[−µ−k (V∞, γ)(uB−V∞)+W (0)], k = p+1, . . . , N

Let F = (Fp+1, . . . , FN ) with

Fk(uB , V∞, γ) = αk(V∞, γ)lk(V∞) · [−µ−k (V∞, γ)(uB − V∞) +W (0)],

k = p+ 1, . . . , N

Considering G as a function of (uB , V∞, γ), the solvability condition becomes

F (uB , V∞, γ)−G(uB , V∞, γ) = 0. (7.29)

Now writingW (0) =W (γ, uB , V∞, γ) and using the factW (γ, uB , uB , γ)

= 0, we get

DV∞Fk(uB , uB , γ) = [−µ−k (uB , γ)−DV∞W (γ, uB , uB , γ)]αk(uB , γ)lk(uB),

k = p+ 1, . . . , N

and

DV∞Gk(uB , uB , γ) = 0.

Since the function

αk(V∞)Det[−µ−k (uB , γ)Id−DV∞W (γ, uB , uB)] (7.30)

is an analytic function of γ, its zeros are isolated and so we find γ0 > 0

such that for 0 < γ < γ0 this determinant is not zero. Thus the rank of

DV∞(F−G)(uB , uB , γ) = N−p. So in the V -space the relation (7.29) defines

a p dimensional manifold containing uB and if V∞ is in this manifold we have

a solution for the problem (7.4) satisfying u(0) = uB and V (∞) = V∞ and

the tangent space at uB is spanned by rj(uB), j = 1, . . . , p. ���

Remark 7.5. For any stable solution (a+k (y, γ), a
−
k (y, γ)) of (7.22), the

components a−k (y, γ) goes to zero uniformly for y ≥ δ for all δ > 0 since

µ−k (V∞, γ) ≈ −1
γ as γ ≈ 0. Taking limit in the expression (7.24), we get,

a+k (y) = lk(V∞) · (V (y)− V∞), k = 1, 2, . . . , N,
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which is exactly the expressions for coefficient of the rk(V∞) in the expan-

sion of V (y) for the case γ = 0, which was analyzed in [8]. In fact the

corresponding expression appearing in (7.30) is just one.

We summarize our convergence analysis by the following theorem.

Theorem 7.6 (The Riemann problem for systems with diffusion and dis-

persion). Assume that the system (5.1) is strictly hyperbolic with p negative

eigenvalues and N − p positive eigenvalues (we would like to recall that here

x denotes the space variable, and not the self-similar variable).

• (Existence) There exist δ, C > 0 with the following property. Given

uB , uI ∈ B(u∗, δ) there exists a weak solution u(x, t) of (5.1) which

is self-similar and of bounded total variation. The solution u satisfies

with initial condition u(x, 0) = uI and a weak form of boundary condi-

tion u(0+, t) ∈ Φγ(uB) the set of boundary values given by (7.3). Fur-

ther the solution satisfies the Lax entropy condition λk(u(x+, t)) ≤ s ≤
λk(u(x−, t)), where s is the speed of the discontinuity.

• (Local structure of admissible set) The set Φγ(uB) defined in (7.3) con-

tains the point uB and, locally near uB, is a manifold with dimension

p whose tangent space at uB is spanned by the eigenvectors rj(uB),

j = 1, 2 . . . , p.

The above facts were already established during our analysis, except the

assertion that the solution satisfies the Lax shock inequality, which follows

by the same analysis as for the scalar case in Section 3.
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