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Abstract

In this paper, we introduce the Orlicz sequence spaces generated by Riesz mean

associated with a fixed multiplier sequence of non-zero scalars. Furthermore, we emphasize

several algebraic and topological properties relevant to these spaces. Finally, we determine

the Köthe-Toeplitz dual of the spaces ℓ
′

M (Rq,Λ) and hM (Rq,Λ).

1. Introduction

By ω, we shall denote the space of all complex valued sequences. Any

vector subspace of ω is called as a sequence space. We shall write ℓ∞, c and

c0 for the spaces of all bounded, convergent and null sequences, respectively.

Also by bs, cs, ℓ1 and ℓp ; we denote the spaces of all bounded, convergent,

absolutely and p- absolutely convergent series, respectively; where 1 ≤ p <

∞. A sequence space λ with a linear topology is called a K-space provided

each of the maps pi : λ → C defined by pi(x) = xi is continuous for all

i ∈ N; where C denotes the complex field and N = {0, 1, 2, . . .}. A K-space

λ is called an FK-space provided λ is a complete linear metric space. An

FK-space whose topology is normable is called a BK-space (see Chaudary

and Nanda ([2, pp.272-273]).

A function M : [0,∞) → [0,∞) which is convex with M(u) ≥ 0 for

u ≥ 0, and M(u) → ∞ as u → ∞, is called as an Orlicz function. An Orlicz
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function M can always be represented in the following integral form

M(u) =

∫ u

0
p(t)dt

where p the kernel of M , is right differentiable for t ≥ 0, p(0) = 0, p(t) > 0

for t > 0, p is non-decreasing and p(t) → ∞ as t → ∞ whenever M(u)
u ↑ ∞

as u ↑ ∞.

Consider the kernel p associated with the Orlicz function M and let

q(s) = sup{t : p(t) ≤ s}.

Then, q possesses the same properties as the function p. Suppose now

Φ(x) =

∫ x

0
q(s)ds.

Then, Φ is an Orlicz function. The functions M and Φ are called mutually

complementary Orlicz functions.

Now, we give the following well-known results.

Let M and Φ be mutually complementary Orlicz functions. Then, we

have:

(i) For all u, y ≥ 0,

uy ≤ M(u) + Φ(y), (Young’s Inequality). (1.1)

(ii) For all u ≥ 0,

up(u) = M(u) + Φ(p(u)). (1.2)

(iii) For all u ≥ 0 and 0 < λ < 1,

M(λu) < λM(u). (1.3)

An Orlicz function M is said to satisfy the ∆2-condition for small u or at 0 if

for each k ∈ N, there exists Rk > 0 and uk > 0 such that M(ku) ≤ RkM(u)

for all u ∈ (0, uk]. Moreover, an Orlicz function M is said to satisfy the
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∆2-condition if and only if

lim sup
u→0+

M(2u)

M(u)
< ∞.

Two Orlicz functionsM1 andM2 are said to be equivalent if there are positive

constants α, β and b such that

M1(αu) ≤ M2(u) ≤ M1(βu) for all u ∈ [0, b]. (1.4)

Orlicz used the Orlicz function to introduce the sequence space ℓM (see

Musielak [3]; Lindenstrauss and Tzafriri [4]), as follows

ℓM =

{
x = (xk) ∈ ω :

∑

k

M

(
|xk|

ρ

)
< ∞ for some ρ > 0

}
.

For simplicity in notation, here and in what follows, the summation without

limits runs from 0 to ∞. For relevant terminology and additional knowledge

on the Orlicz sequence spaces and related topics, the reader may refer to

[3-19].

Throughout the present article, we assume that Λ = (λk) is the sequence

of non-zero complex numbers. Then, for a sequence space E, the multiplier

sequence space E(Λ) associated with the multiplier sequence Λ is defined by

E(Λ) = {x = (xk) ∈ ω : Λx = (λkxk) ∈ E}.

The scope for the studies on sequence spaces was extended by using the

notion of associated multiplier sequences. G. Goes and S. Goes defined the

differentiated sequence space dE and integrated sequence space
∫
E for a

given sequence space E, using the multiplier sequences (1/k) and (k) in [20],

respectively. A multiplier sequence can be used to accelerate the convergence

of sequences in some spaces. In some sense, it can be viewed as a catalyst,

which is used to accelerate the process of chemical reaction. Sometimes the

associated multiplier sequence delays the rate of convergence of a sequence.

Thus, it also covers a larger class of sequences for study.

Let t = (tk) be a sequence of non-negative real numbers with t0 > 0 and



✐

“BN11N24” — 2016/5/17 — 22:03 — page 374 — #4
✐

✐

✐

✐

✐

374 SERKAN DEMİRİZ [June

write

Tn =

n∑

k=0

tk for all n ∈ N.

Then, the Riesz means with respect to the sequence t = (tk) is defined by

the matrix Rt = (rtnk) which is given by

rtnk =





tk
Tn

, 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈ N [1].

Definition 1.1. Let M be any Orlicz function and

δ(M,x) :=
∑

k

M(|xk|)

where x = (xk) ∈ ω. Then, we define the sets ℓ̃M (Rt,Λ) and ℓ̃M by

ℓ̃M(Rt,Λ) :=

{
x = (xk) ∈ ω : δ̂Rt(M,x) =

∑

k

M

(
|
∑k

j=0 λjtjxj|

Tk

)
< ∞

}

and

ℓ̃M := {x = (xk) ∈ ω : δ(M,x) < ∞}.

Definition 1.2. Let M and Φ be mutually complementary functions. Then,

we define the set ℓM(Rt,Λ) by

ℓM (Rt,Λ) =

{
x = (xk) ∈ ω :

∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

converges for all y = (yk) ∈ ℓ̃Φ

}

which is called as Orlicz sequence space associated with the multiplier se-

quence Λ = (λk) and generated by Riesz matrix.

The α-dual or Köthe-Toeplitz dual Xα of a sequence space X is defined

by

Xα =

{
a = (ak) ∈ ω :

∑

k

|akxk| < ∞ for all x = (xk) ∈ X

}
.
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It is known that if X ⊂ Y , then Y α ⊂ Xα. It is clear that X ⊂ Xαα. If

X = Xαα, then X is called as an α space. In particular, an α space is called

a Köthe space or a perfect sequence space.

The main purpose of this paper is to introduce the sequence spaces

ℓM(Rt,Λ), ℓ̃M (Rt,Λ), ℓ
′

M (Rt,Λ) and hM (Rt,Λ), and investigate their cer-

tain algebraic and topological properties. Furthermore, it is proved that the

spaces ℓ
′

M (Rt,Λ) and hM (Rt,Λ) are topologically isomorphic to the spaces

ℓ∞(Rt,Λ) and c0(R
t,Λ) when M(u) = 0 on some interval, respectively. Fi-

nally, the α-dual of the spaces ℓ
′

M (Rt,Λ) and hM (Rt,Λ) are determined,

and therefore the non-perfectness of the space ℓ
′

M (Rt,Λ) is showed when

M(u) = 0 on some interval.

2. Main Results

In this section, we emphasize the sequence spaces ℓM (Rt,Λ), ℓ̃M (Rt,Λ),

ℓ
′

M(Rt,Λ) and hM (Rt,Λ), and give their some algebraic and topological

properties.

Proposition 2.1. For any Orlicz function M , the inclusion ℓ̃M (Rt,Λ) ⊂

ℓM(Rt,Λ) holds.

Proof. Let x = (xk) ∈ ℓ̃M (Rt,Λ). Then, since
∑

k M

(
|
∑k

j=0 λjtjxj |

Tk

)
< ∞

we have from (1.1) that

∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

∣∣∣∣ ≤
∑

k

∣∣∣∣
(∑k

j=0 λjtjxj

Tk

)
yk

∣∣∣∣

≤
∑

k

M

(∣∣∣∣

∑k
j=0 λjtjxj

Tk

∣∣∣∣
)
+

∑

k

Φ(|yk|) < ∞

for every y = (yk) ∈ ℓ̃Φ. Thus, x = (xk) ∈ ℓM (Rt,Λ). ���

Proposition 2.2. For each x = (xk) ∈ ℓM (Rt,Λ),

sup

{∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ∞. (2.1)
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Proof. Suppose that (2.1) does not hold. Then, for each n ∈ N, there exists

yn with δ(Φ, yn) ≤ 1 such that

∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
ynk

∣∣∣∣ > 2n+1.

Without loss of generality, we can assume that
∑k

j=0 λjtjxj

Tk
, yn ≥ 0. Now, we

can define a sequence z = (zk) by

zk =
∑

n

1

2n+1
ynk

for all k ∈ N. By the convexity of Φ, we have

Φ

( l∑

n=0

1

2n+1
ynk

)
≤

1

2

[
Φ(y0k) + Φ

(
y1k +

y2k
2

+ · · ·+
ylk
2l−1

)]

≤

l∑

n=0

1

2n+1
Φ(ynk )

for any positive integer l. Hence, using the continuity of Φ, we have

δ(Φ, z) =
∑

k

Φ(zk) ≤
∑

k

∑

n

1

2n+1
Φ(ynk ) ≤

∑

n

1

2n+1
= 1.

But for every l ∈ N, it holds

∑

k

(∑k
j=0 λjtjxj

Tk

)
zk ≥

∑

k

(∑k
j=0 λjtjxj

Tk

) l∑

n=0

1

2n+1
ynk

=

l∑

n=0

∑

k

(∑k
j=0 λjtjxj

Tk

)
1

2n+1
ynk ≥ l.

Hence,
∑

k

(∑k
j=0 λjtjxj

Tk

)
zk diverges and this implies that x /∈ ℓM (Rt,Λ), a

contradiction. This leads us to the required result. ���

The preceding result encourages us to introduce the following norm ‖.‖R
t

M

on ℓM (Rt,Λ).

Proposition 2.3. The following statements hold:



✐

“BN11N24” — 2016/5/17 — 22:03 — page 377 — #7
✐

✐

✐

✐

✐

2016] ON SOME NEW ORLICZ SEQUENCE SPACES DERIVED 377

(i) ℓM (Rt,Λ) is a normed linear space under the norm ‖.‖R
t

M defined by

‖.‖R
t

M = sup

{∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

∣∣∣∣ : δ(Φ, y) ≤ 1

}
. (2.2)

(ii) ℓM (Rt,Λ) is a Banach space under the norm defined by (2.2).

(iii) ℓM (Rt,Λ) is a BK-space under the norm defined by (2.2).

Proof. (i) It is easy to verify that ℓM (Rt,Λ) is a linear space with respect

to the co-ordinatewise addition and scalar multiplication of sequences. Now

we show that ‖.‖R
t

M is a norm on the space ℓM (Rt,Λ).

If x = 0, then obviously ‖.‖R
t

M = 0. Conversely, assume ‖.‖R
t

M = 0. Then,

using the definition of the norm given by (2.2), we have

sup

{∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

∣∣∣∣ : δ(Φ, y) ≤ 1

}
= 0.

This implies that

∣∣∣∣
∑

k

(∑k
j=0 λjtjxj

Tk

)
yk

∣∣∣∣ = 0 for all y such that δ(Φ, y) ≤ 1.

Now considering y = ek if Φ(1) ≤ 1 otherwise considering y = ek/Φ(1) so

that λktkxk = 0 for all k ∈ N, where ek is a sequence whose only non-zero

terms is 1 in kth place for each k ∈ N. Hence, we have xk = 0 for all k ∈ N,

since (λk) is a sequence of non-zero scalars and t = (tk) be a sequence of

non-negative real numbers with t0 > 0. Thus, x = 0.

It is easy to show that ‖αx‖R
t

M = |α|‖x‖R
t

M and ‖x+y‖R
t

M ≤ ‖x‖R
t

M +‖y‖R
t

M

for all α ∈ C and x, y ∈ ℓM(Rt,Λ).

(ii) Let (xp) be any Cauchy sequence in the space ℓM (Rt,Λ). Then, for

any ε > 0, there exists a positive integer n0 such that ‖xp − xq‖R
t

M < ε for

all p, q ≥ n0. Using the definition of norm given by (2.2), we get

sup

{∣∣∣∣
∑

k

[∑k
j=0 λjtj(x

p
j − xqj)

Tk

]
yk

∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε

for all p, q ≥ n0. This implies that

∣∣∣∣
∑

k

[∑k
j=0 λjtj(x

p
j − xqj)

Tk

]
yk

∣∣∣∣ < ε
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for all y with δ(Φ, y) ≤ 1 and for all p, q ≥ n0. Now considering y = ek if

Φ(1) ≤ 1, otherwise considering y = ek/Φ(1) we have {λktkx
p
k}k is a Cauchy

sequence in C for all k ∈ N. Hence, it is a convergent sequence in C for all

k ∈ N.

Let

lim
p→∞

λktkx
p
k = xk

for each k ∈ N. Using the continuity of the modulas, we can derive for all

p ≥ n0 as q → ∞, that

sup

{∣∣∣∣
∑

k

[∑k
j=0 λjtj(x

p
j − xj)

Tk

]
yk

∣∣∣∣ : δ(Φ, y) ≤ 1

}
≤ ε.

It follows that (xp − x) ∈ ℓM (Rt,Λ). Since (xp) is in the space ℓM (Rt,Λ)

and ℓM (Rt,Λ) is a linear space, we have x = (xk) ∈ ℓM (Rt,Λ).

(iii) From the above proof, one can easily conclude that ‖xp‖R
t

M → 0

implies that xpk → 0 for each p ∈ N which leads us to the desired result.

Therefore, the proof of the theorem is completed. ���

Proposition 2.4. ℓM (Rt,Λ) is a normed linear space under the norm ‖.‖R
t

(M)

defined by

‖x‖R
t

(M) = inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
≤ 1

}
. (2.3)

Proof. Clearly ‖x‖R
t

(M) = 0 if x = 0. Now, suppose that ‖x‖R
t

(M) = 0. Then,

we have

‖x‖R
t

(M) = inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
≤ 1

}
= 0.

This yields the fact for a given ε > 0 that there exists some ρε ∈ (0, ε) such

that

sup
k∈N

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρεTk

)
≤ 1
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which implies that

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρεTk

)
≤ 1

for all k ∈ N. Thus,

M

(∣∣∑k
j=0 λjtjxj

∣∣
εTk

)
≤ M

(∣∣∑k
j=0 λjtjxj

∣∣
ρεTk

)
≤ 1

for all k ∈ N. Suppose

∣∣∑k
j=0 λjtjxj

∣∣
εTk

6= 0 for some k ∈ N. Then,

∣∣∑k
j=0 λjtjxj

∣∣
εTk

→ ∞ as ε → 0. It follows that M

(∣∣∑k
j=0 λjtjxj

∣∣
εTk

)
→ ∞ as ε → 0 for some

k ∈ N, which is a contradiction. Therefore,

∣∣∑k
j=0 λjtjxj

∣∣
εTk

= 0 for all k ∈ N. It

follows that λktkxk = 0 for all k ∈ N. Hence x = 0, since (λk) is a sequence

of non-zero scalars and t = (tk) be a sequence of non-negative real numbers

with t0 > 0.

Let x = (xk) and y = (yk) be any two elements of ℓM(Rt,Λ). Then,

there exists ρ1, ρ2 > 0 such that

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ1Tk

)
≤ 1 and

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ2Tk

)
≤ 1.

Let ρ = ρ1 + ρ2. Then, by the convexity of M , we have

M

(∣∣∑k
j=0 λjtj(xj + yj)

∣∣
ρTk

)
≤

ρ1
ρ1 + ρ2

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ1Tk

)

+
ρ2

ρ1 + ρ2

∑

k

M

(∣∣∑k
j=0 λjtjyj

∣∣
ρ2Tk

)
≤ 1.

Hence, we have

‖x+ y‖R
t

(M) = inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtj(xj + yj)

∣∣
ρTk

)
≤ 1

}

≤ inf

{
ρ1 > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ1Tk

)
≤ 1

}
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+ inf

{
ρ2 > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjyj

∣∣
ρ2Tk

)
≤ 1

}

which gives that ‖x+ y‖R
t

(M) ≤ ‖x‖R
t

(M) + ‖y‖R
t

(M).

Finally, let α be any scalar and define r by r = ρ/|α|. Then,

‖αx‖R
t

(M) = inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjαxj

∣∣
ρTk

)
≤ 1

}

= inf

{
r|α| > 0 :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
rTk

)
≤ 1

}
= |α|‖x‖R

t

(M).

This completes the proof. ���

Proposition 2.4 inspires us to define the following sequence space.

Definition 2.5. For any Orlicz function M , we define

ℓ
′

M (Rt,Λ) :=

{
x=(xk)∈ω :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
<∞ for some ρ>0

}
.

Now, we can give the corresponding proposition on the space ℓ
′

M (Rt,Λ)

to the Proposition 2.3.

Proposition 2.6. The following statements hold:

(i) ℓ
′

M (Rt,Λ) is a normed linear space under the norm ‖x‖R
t

(M) defined by

(2.3).

(ii) ℓ
′

M (Rt,Λ) is a Banach space under the norm defined by (2.3).

(iii) ℓ
′

M (Rt,Λ) is a BK-space under the norm defined by (2.3).

Proof. (i) Since the proof is similar to the proof of Proposition 2.4, we omit

the detail.

(ii) Let (xp) be any Cauchy sequence in the space ℓ
′

M (Rt,Λ). Let δ > 0

be fixed and r > 0 be given such that 0 < ε < 1 and rδ ≥ 1. Then, there

exists a positive integer n0 such that ‖xp − xq‖R
t

(M) < ε/rδ for all p, q ≥ n0.
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Using the definition of the norm given by (2.3), we get

inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtj(x

p
j − xqj)

∣∣
ρTk

)
≤ 1

}
<

ε

rδ

for all p, q ≥ n0. This implies that

∑

k

M

(∣∣∑k
j=0 λjtj(x

p
j − xqj)

∣∣
‖xp − xq‖R

t

(M)Tk

)
≤ 1

for all p, q ≥ n0. It follows that

M

(∣∣∑k
j=0 λjtj(x

p
j − xqj)

∣∣
‖xp − xq‖R

t

(M)Tk

)
≤ 1

for all p, q ≥ n0 and for all k ∈ N. For r > 0 with M(rδ/2) ≥ 1, we have

M

(∣∣∑k
j=0 λjtj(x

p
j − xqj)

∣∣
‖xp − xq‖R

t

(M)Tk

)
≤ M

(
rδ

2

)

for all p, q ≥ n0 and for all k ∈ N. Since M is non-decreasing , we have

∣∣∑k
j=0 λjtj(x

p
j − xqj)

∣∣
Tk

≤
rδ

2
·
ε

rδ
=

ε

2

for all p, q ≥ n0 and for all k ∈ N. Hence, {λktkx
p
k}k is a Cauchy sequence

in C for all k ∈ N which implies that it is a convergent sequence in C for all

k ∈ N. Let limp→∞ λktkx
p
k = xk for each k ∈ N. Using the continuity of an

Orlicz function and modulus, we can have

inf

{
ρ > 0 :

∑

k

M

(∣∣∑k
j=0 λjtj(x

p
j − xj)

∣∣
ρTk

)
≤ 1

}
< ε

for all p ≥ n0, as q → ∞. It follows that (xp − x) ∈ ℓ
′

M (Rt,Λ). Since xp is

in the space ℓ
′

M(Rt,Λ) and ℓ
′

M (Rt,Λ) is a linear space, we have x = (xk) ∈

ℓ
′

M(Rt,Λ).

(iii) From the above proof, one can easily conclude that ‖xp‖R
t

(M) → 0 as

p → ∞, which implies that xpk → 0 as k → ∞ for each p ∈ N. This leads us

to the desired result. ���
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Definition 2.7. For any Orlicz function M , we define

hM (Rt,Λ) :=

{
x=(xk)∈ω :

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
<∞ for each ρ>0

}
.

Clearly hM (Rt,Λ) is a subspace of ℓ
′

M (Rt,Λ). Here and after we shall

write ‖.‖ instead of ‖.‖R
t

(M) provided it does not lead to any confusion. The

topology hM (Rt,Λ) is induced by ‖.‖.

Proposition 2.8. The inequality
∑

k M

(∣∣∑k
j=0 λjtjxj

∣∣
‖x‖R

t

(M)
Tk

)
≤ 1 holds for all

x = (xk) ∈ ℓ
′

M (Rt,Λ).

Proof. This is immediate from the definition of the norm ‖x‖R
t

(M) defined

by (2.3). ���

Proposition 2.9. Let M be an Orlicz function. Then, (hM (Rt,Λ), ‖.‖) is

an AK-BK space.

Proof. First we show that hM (Rt,Λ) is an AK-space. Let x = (xk) ∈

hM (Rt,Λ). Then, for each ε ∈ (0, 1), we can find n0 such that

∑

k≥n0

M

(∣∣∑k
j=0 λjtjxj

∣∣
εTk

)
≤ 1.

Define the nth section x[n] of a sequence x = (xk) by x[n] =
∑n

k=0 xke
k.

Hence for n ≥ n0, it holds

‖x− x[n]‖ = inf

{
ρ > 0 :

∑

k≥n0

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
≤ 1

}

≤ inf

{
ρ > 0 :

∑

k≥n

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
≤ 1

}
< ε.

Thus, we can conclude that hM (Rt,Λ) is an AK-space.

Next to show that hM (Rt,Λ) is a BK-space, it is enough to show

hM (Rt,Λ) is a closed subspace of ℓ
′

M (Rt,Λ). For this, let (xn) be a sequence

in hM (Rt,Λ) such that ‖xn−x‖ → 0 as n → ∞ where x = (xk) ∈ ℓ
′

M (Rt,Λ).
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To complete the proof we need to show that x = (xk) ∈ hM (Rt,Λ), i.e.,

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
< ∞ for all ρ > 0.

There is l corresponding to ρ > 0 such that ‖xl −x‖ ≤ ρ/2. Then, using the

convexity of M , we have by Proposition 2.8 that

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)

=
∑

k

M

(
2
∣∣∑k

j=0 λjtjx
l
j − 2

(∣∣∑k
j=0 λjtjx

l
j

∣∣−
∣∣∑k

j=0 λjtjxj
∣∣)

2ρTk

)

≤
1

2

∑

k

M

(
2
∣∣∑k

j=0 λjtjx
l
j

∣∣
ρTk

)
+

1

2

∑

k

M

(
2
∣∣∑k

j=0 λjtj(x
l
j − xj)

∣∣
ρTk

)

≤
1

2

∑

k

M

(
2
∣∣∑k

j=0 λjtjx
l
j

∣∣
ρTk

)
+

1

2

∑

k

M

(
2
∣∣∑k

j=0 λjtj(x
l
j − xj)

∣∣
‖xl − x‖Tk

)

< ∞.

Hence, x=(xk)∈hM (Rt,Λ) and consequently hM (Rt,Λ) is a BK-space. ���

Proposition 2.10. Let M be an Orlicz function. If M satisfies the ∆2-

condition at 0, then ℓ
′

M (Rt,Λ) is an AK-space.

Proof. We shall show that ℓ
′

M (Rt,Λ) = hM (Rt,Λ) if M satisfies the ∆2-

condition at 0. To do this it is enough to prove that ℓ
′

M(Rt,Λ) ⊂ hM (Rt,Λ).

Let x = (xk) ∈ ℓ
′

M (Rt,Λ). Then for some ρ > 0,

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
< ∞.

This implies that

lim
k→∞

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
= 0. (2.4)

Choose an arbitrary l > 0. If ρ ≤ l, then
∑

k M

(∣∣∑k
j=0 λjtjxj

∣∣
lTk

)
< ∞. Now,

let l < ρ and put k = ρ/l. Since M satisfies ∆2-condition at 0, there exists
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R ≡ Rk > 0 and r ≡ rk > 0 with M(kx) ≤ RM(x) for all x ∈ (0, r]. By

(2.4), there exists a positive integer n1 such that

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
< p(

r

2
)
r

2
for all k ≥ n1.

We claim that

∣∣∑k
j=0 λjtjxj

∣∣
ρTk

≤ r for all k ≥ n1. Otherwise, we can find

d > n1 with

∣∣∑d
j=0 λjtjxj

∣∣
ρTd

> r and thus

M

(∣∣∑d
j=0 λjtjxj

∣∣
ρTd

)
≥

∫
∣∣∑d

j=0 λjtjxj

∣∣
ρTd

r/2
p(t)dt > p(

r

2
)
r

2
,

a contradiction. Hence, our claim is true. Then, we can find that

∑

k≥n1

M

(∣∣∑k
j=0 λjtjxj

∣∣
lTk

)
≤ R

∑

k≥n1

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
.

Hence,

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣
lTk

)
< ∞ for all l > 0.

This completes the proof. ���

Proposition 2.11. Let M1 and M2 be two Orlicz functions. If M1 and M2

are equivalent, then ℓ
′

M1
(Rt,Λ) = ℓ

′

M2
(Rt,Λ) and the identity map

I :

(
ℓ
′

M1
(Rt,Λ), ‖.‖R

t

M1

)
→

(
ℓ
′

M2
(Rt,Λ), ‖.‖R

t

M2

)

is a topological isomorphism.

Proof. Let α, β and b be constants from (1.4). Since M1 and M2 are

equivalent, it is obvious that (1.4) holds. Let us take any x = (xk) ∈

ℓ
′

M2
(Rt,Λ). Then,

∑

k

M2

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)
< ∞ for some ρ > 0.
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Hence, for some l ≥ 1,

∣∣∑k
j=0 λjtjxj

∣∣
lρTk

≤ b for all k ∈ N. Therefore,

∑

k

M1

(
α
∣∣∑k

j=0 λjtjxj
∣∣

lρTk

)
≤

∑

k

M2

(∣∣∑k
j=0 λjtjxj

∣∣
ρTk

)

which shows that the inclusion

ℓ
′

M2
(Rt,Λ) ⊂ ℓ

′

M1
(Rt,Λ) (2.5)

holds. One can easily see in the same way that the inclusion

ℓ
′

M1
(Rt,Λ) ⊂ ℓ

′

M2
(Rt,Λ) (2.6)

also holds. By combining the inclusions (2.5) and (2.6), we conclude that

ℓ
′

M1
(Rt,Λ) = ℓ

′

M2
(Rt,Λ).

For simplicity in notation, let us write ‖.‖1 and ‖.‖2 instead of ‖.‖R
t

M1

and ‖.‖R
t

M2
, respectively. For x = (xk) ∈ ℓ

′

M2
(Rt,Λ), we get

∑

k

M2

(∣∣∑k
j=0 λjtjxj

∣∣
‖x‖2Tk

)
≤ 1.

One can find µ > 1 with

b

2
µp2(

b

2
) ≥ 1

where p2 is the kernel associated with M2. Hence,

M2

(∣∣∑k
j=0 λjtjxj

∣∣
‖x‖2Tk

)
≤

b

2
µp2(

b

2
)

for all k ∈ N. This implies that

∣∣∑k
j=0 λjtjxj

∣∣
µ‖x‖2Tk

≤ b for all k ∈ N.

Therefore,

∑

k

M1

(
α
∣∣∑k

j=0 λjtjxj
∣∣

µ‖x‖2Tk

)
< 1.
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Hence, ‖x‖1 ≤ (µ/α)‖x‖2. Similarly, we can show that ‖x‖2 ≤ βγ‖x‖1 by

choosing γ with γβ > 1 such that γβ(b/2)p1(b/2) ≥ 1. Thus,

α

µ
‖x‖1 ≤ ‖x‖2 ≤ βγ‖x‖1

which establish that I is a topological isomorphism. ���

Proposition 2.12. Let M be an Orlicz function and p be the corresponding

kernel. If p(x) = 0 for all x in [0, b], where b is some positive number,

then the spaces ℓ
′

M (Rt,Λ) and hM (Rt,Λ) are topologically isomorphic to the

spaces ℓ∞(Rt,Λ) and c0(R
t,Λ), respectively; where ℓ∞(Rt,Λ) and c0(R

t,Λ)

are defined by

ℓ∞(Rt,Λ) =

{
x = (xk) ∈ ω : sup

k∈N

1

Tk

k∑

j=0

|λjtjxj | < ∞

}

and

c0(R
t,Λ) =

{
x = (xk) ∈ ω : lim

k→∞

1

Tk

k∑

j=0

|λjtjxj| = 0

}
.

It is easy to see that the spaces ℓ∞(Rt,Λ) and c0(R
t,Λ) are the Banach

spaces under the norm

‖x‖R
t

∞ = sup
k∈N

1

Tk

k∑

j=0

|λjtjxj|.

Proof. Let p(x) = 0 for all x in [0, b]. If y ∈ ℓ∞(Rt,Λ), then we can find ρ >

0 such that

∣∣∑k
j=0 λjtjyj

∣∣
ρTk

≤ b for all k ∈ N. Hence,
∑

k M

(∣∣∑k
j=0 λjtjyj

∣∣
ρTk

)
<

∞. That is to say that y ∈ ℓ
′

M(Rt,Λ). On the other hand, let y ∈ ℓ
′

M (Rt,Λ).

Then, for some ρ > 0, we have

∑

k

M

(∣∣∑k
j=0 λjtjyj

∣∣
ρTk

)
< ∞.

Therefore,

∣∣∑k
j=0 λjtjyj

∣∣
ρTk

≤ K < ∞ for a constant K > 0 and for all k ∈ N

which yields that y ∈ ℓ∞(Rt,Λ). Hence, y ∈ ℓ∞(Rt,Λ) if and only if y ∈

ℓ
′

M (Rt,Λ). We can easily find x1 such that M(x1) ≥ 1. Let y ∈ ℓ∞(Rt,Λ)
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and

α = ‖y‖∞ = sup
k∈N

1

Tk

k∑

j=0

|λjtjyj| > 0.

For every ε ∈ (0, α), we can determine d with
∑d

j=0
|λjtjyj |

Td
> α− ε and so

∑

k

M

(∣∣∑k
j=0 λjtjyj

∣∣x1
αTk

)
≥ M

(
α− ε

α
x1

)
.

Since M is continuous,
∑

k M

(∣∣∑k
j=0 λjtjyj

∣∣x1

αTk

)
≥ 1, and so ‖y‖∞ ≤ x1‖y‖,

otherwise

∑

k

M

(∣∣∑k
j=0 λjtjyj

∣∣x1
‖y‖Tk

)
> 1

which contradicts Proposition 2.8. Again,

∑

k

M

(∣∣∑k
j=0 λjtjxj

∣∣x1
αTk

)
= 0

which gives that ‖y‖ ≤ ‖y‖∞/x1. That is to say that the identity map

I : (ℓ
′

M (Rt,Λ), ‖.‖) → (ℓ∞(Rt,Λ), ‖.‖) is a topological isomorphism.

For the last part, let y ∈ hM (Rt,Λ). Then, for any ε > 0,

∣∣∑k
j=0 λjtjyj

∣∣
Tk

≤

εx1 for all sufficiently large k, where x1 is a positive number such that p(x1) >

0. Hence, y ∈ c0(R
t,Λ). Conversely, let y ∈ c0(R

t,Λ). Then, for any ρ > 0,∣∣∑k
j=0 λjtjyj

∣∣
ρTk

< x1
2 for all sufficiently large k. Thus,

∑
k M

(∣∣∑k
j=0 λjtjyj

∣∣
ρTk

)
<

∞ for all ρ > 0 and so y ∈ hM (Rt,Λ). Hence, hM (Rt,Λ) = c0(R
t,Λ) and

this step completes the proof. ���

Proposition 2.13. c0(R
t,Λ), c(Rt,Λ) and ℓ∞(Rt,Λ) are convex sets.

Proof. We prove the Theorem for c0(R
t,Λ) and for other cases it will follow

on applying similar arguments.

Let x, y ∈ c0(R
t,Λ). Then, there exists ρ1, ρ2 > 0 such that

lim
k→∞

M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ1Tk

)
= 0 and lim

k→∞
M

(∣∣∑k
j=0 λjtjyj

∣∣
ρ2Tk

)
= 0.
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For µ = 0 or µ = 1, the result is obvious. Let 0 < µ < 1. Considering

ρ = max{|µ|ρ1, |1 − µ|ρ2}, we have

M

(∣∣∑k
j=0 λjtj[µxj + (1− µ)yj ]

∣∣
2ρTk

)

≤
1

2
M

(∣∣∑k
j=0 λjtj(µxj)

∣∣
ρTk

)
+

1

2
M

(∣∣∑k
j=0 λjtj[(1− µ)yj]

∣∣
ρTk

)

≤
1

2
M

(∣∣∑k
j=0 λjtjxj

∣∣
ρ1Tk

)
+

1

2
M

(∣∣∑k
j=0 λjtjyj

∣∣
ρ2Tk

)
.

This completes the proof. ���

Prior to giving our final two consequences concerning the α-dual of the

spaces ℓ
′

M (Rt,Λ) and hM (Rt,Λ), we present the following easy lemma with-

out proof.

Lemma 2.14. For any Orlicz function M , Λx = (λkxk) ∈ ℓ∞ whenever

x = (xk) ∈ ℓ
′

M (Rt,Λ).

Proposition 2.15. Let M be an Orlicz function and p be the corresponding

kernel of M . Define the sets D1 and D2 by

D1 :=

{
a = (ak) ∈ ω :

∑

k

∣∣ak
λk

∣∣ < ∞

}

and

D2 :=

{
s = (sk) ∈ ω : sup

k∈N
|λksk| < ∞

}
.

If p(x) = 0 for all x in [0, d], where d is some positive number, then the

following statements hold:

(i) Köthe-Toeplitz dual of ℓ
′

M (Rt,Λ) is the set D1.

(ii) Köthe-Toeplitz dual of D1 is the set D2.

Proof. Since the proof of Part (ii) is similar to that of the proof of Part (i),

to avoid the repetition of the similar statements we prove only Part (i).

Let a = (ak) ∈ D1 and x = (xk) ∈ ℓ
′

M (Rt,Λ). Then, since

∑

k

|akxk| =
∑

k

|akλ
−1
k ||λkxk| ≤ sup

k∈N
|λkxk|

∑

k

|akλ
−1
k | < ∞,
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applying Lemma 2.14, we have a = (ak) ∈ {ℓ
′

M (Rt,Λ)}α. Hence, the inclu-

sion

D1 ⊂ {ℓ
′

M (Rt,Λ)}α (2.7)

holds.

Conversely, suppose that a = (ak) ∈ {ℓ
′

M (Rt,Λ)}α. Then, (akxk) ∈ ℓ1,

the space of all absolutely convergent series, for every x = (xk) ∈ ℓ
′

M (Rt,Λ).

So, we can take xk = λ−1
k for all k ∈ N because x = (xk) ∈ ℓ

′

M (Rt,Λ) by

Proposition 2.12 whenever x = (xk) ∈ ℓ∞(Rt,Λ). Therefore,
∑

k |akλ
−1
k | =

∑
k |akxk| < ∞ and we have a = (ak) ∈ D1. This leads us to the inclusion

{ℓ
′

M (Rt,Λ)}α ⊂ D1. (2.8)

By combining the inclusion relations (2.7) and (2.8), we have {ℓ
′

M (Rt,Λ)}α =

D1. ���

Proposition 2.15 (ii) shows that {ℓ
′

M (Rt,Λ)}αα 6= ℓ
′

M (Rt,Λ) which leads

us to the consequence that ℓ
′

M (Rt,Λ) is not perfect under the given condi-

tions.

Proposition 2.16. Let M be an Orlicz function and p be the corresponding

kernel of M and the set D1 be defined as in the Proposition 2.15. If p(x) = 0

for all x in [0, b], where b is a positive number, then the Köthe-Toeplitz dual

of hM (Rt,Λ) is the set D1.

Proof. Let a = (ak) ∈ D1 and x = (xk) ∈ hM (Rt,Λ). Then, since

∑

k

|akxk| =
∑

k

|akλ
−1
k ||λkxk| ≤ sup

k∈N
|λkxk|

∑

k

|akλ
−1
k | < ∞,

we have a = (ak) ∈ {hM (Rt,Λ)}α. Hence, the inclusion

D1 ⊂ {hM (Rt,Λ)}α (2.9)

holds.

Conversely, suppose that a = (ak) ∈ {hM (Rt,Λ)}α\D1. Then, there
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exists a strictly increasing sequence (ni) of positive integers ni such that

ni+1∑

k=ni+1

|ak||λk|
−1 > i.

Define x = (xk) by

xk :=

{
λ−1
k sgn

ak
i
, ni < k ≤ ni+1,

0, 0 ≤ k < n0,

for all k ∈ N. Then, since x = (xk) ∈ c0(R
t,Λ) and so by Proposition 2.12

x = (xk) ∈ hM (Rt,Λ). Therefore, we have

∑

k

|akxk| =

n1∑

k=n0+1

|akxk|+ · · ·+

ni+1∑

k=ni+1

|akxk|+ · · ·

=

n1∑

k=n0+1

|akλ
−1
k |+ · · ·+

1

i

ni+1∑

k=ni+1

|akλ
−1
k |+ · · ·

> 1 + · · · + 1 + · · · = ∞,

which contradicts the hypothesis. Hence, a = (ak) ∈ D1. This leads us to

the inclusion

{hM (Rt,Λ)}α ⊂ D1. (2.10)

By combining the inclusion relations (2.9) and (2.10), we obtain the

desired result {hM (Rt,Λ)}α = D1. This completes the proof. ���

3. Conclusion

The general aim of this study is to fill a gap in literature by extending

certain Orlicz sequence spaces and to investigate some topological properties.

The Orlicz difference sequence spaces ℓM (∆,Λ) and ℓ̃M(∆,Λ) were re-

cently been studied by H. Dutta [21]. Quite recently, generalized Orlicz

difference sequence spaces c0(M,∆m), c(M,∆m) and ℓ∞(M,∆m) have been

examined by the same author in [22]. Of course, the sequence spaces in-

troduced in this paper can be redefined as a domain of a suitable matrix

in the Orlicz sequence space ℓM . Indeed, if we define the infinite matrix
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Rt(λ) = {rtnk(λ)} via the multiplier sequence Λ = (λk) by

rtnk(λ) :=





λktk
Tn

, 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈ N, then the sequence spaces ℓ
′

M (Rt,Λ), c0(R
t,Λ) and ℓ∞(Rt,Λ)

represent the domain of the matrix Rt(λ) in the sequence spaces ℓM , c0
and ℓ∞, respectively. Nevertheless, the present results does not compare

with the results obtained by [23]. But our results are more general and

more comprehensive than the corresponding results of Dutta and Başar [23],

since the spaces ℓM (Rt,Λ), ℓ̃M (Rt,Λ), ℓ
′

M (Rt,Λ) and hM (Rt,Λ) reduce in the

cases λk = 1 and tk = 1 to the ℓM (C,Λ), ℓ̃M (C,Λ), ℓ
′

M (C,Λ) and hM (C,Λ),

respectively, where C = (cnk) is the matrix of Cesáro of order one.
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