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Abstract

This article is a résumé of ongoing investigations into the nature and form of heat

kernels of second order partial differential operators. Our operators are given as a sum

of squares of bracket generating vector fields; thus they are (sub)elliptic and induce a

(sub)Riemannian geometry.

The principal part of a heat kernel of an elliptic operator is an exponential whose

exponent is a solution of the associated Hamilton-Jacobi equation. Genuinely subelliptic

heat kernels are given by integrals, where the integrands are similar in form to elliptic

heat kernels. There are differences. In particular, some of the exponents in the known

subelliptic integrands are solutions of a modified Hamilton-Jacobi equation. To clarify this

difference we propose a calculation which may lead to an invariant interpretation of the

modification.

1. Introduction

Given a negative operator A and time t > 0, the exponential etA is the

heat operator associated to A. When A = ∆, the Laplace-Beltrami operator

on a manifold M , then, physically, et∆ represents the time evolution of the

temperature of M :

“If M has temperature u(x) at time t = 0, then its temperature ut(x)

at time t is given by

ut(x) = et∆u(x). ” (1.1)
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Mathematically, the knowledge of etA yields all powers of the operator

A, namely,

(−A)−z =
1

Γ(z)

∫ ∞

0
etAtz−1 dt, z 6= 0,−1,−2, . . . , (1.2)

a simple consequence of Euler’s integral formula for the gamma function;

(1.2) is a useful tool when working with analytic functions of A. Note that

(1.1) is a solution of the heat equation

∂ut
∂t

−Aut = 0. (1.3)

Furthermore, if u(t) is a function-valued function of t, then

∫ t

0
e(t−s)Au(s)ds (1.4)

inverts the heat operator:

∂

∂t

∫ t

0
e(t−s)Au(s)ds = u(t) +A

∫ t

0
e(t−s)Au(s)ds,

or,
(

∂

∂t
−A

)∫ t

0
e(t−s)Au(s)ds = u(t). (1.5)

This result has been used to construct the heat operator etA. Finally, if etA

is an integral operator with kernel p(t, x, y), then p is its heat kernel. Note

that p is characterized by

∂p

∂t
−Ap = 0, and lim

t→0
p(t, x, y) = δ(x − y). (1.6)

In this paper A is a second order (partial) differential operator. “Old”

refers to heat kernels of elliptic operators and “New” to subelliptic heat

kernels.
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2. Elliptic operators

We start with examples.

2.1. M = R and ∆ = 1
2

d2

dx2 :

p(t, x, y) =
1√
2πt

e−
|x−y|2

2t . (2.1)

2.2. M = R
n and ∆ = 1

2

∑n
j=1

∂2

∂x2
j

:

p(t, x, y) =
1

(2πt)n/2
e−

|x−y|2

2t , x, y ∈ R
n. (2.2)

One should note that the exponent is

− [distance(x, y)]2

2t
, (2.3)

and |x|2/(2t) is a solution of the Hamilton-Jacobi equation

∂

∂t

( |x|2
2t

)

+
1

2

n
∑

j=1

(

∂

∂xj

|x|2
2t

)2

= 0. (2.4)

To find z = z(x, t), the solution of (2.4), we calculate as follows. Set

γ = ∂z/∂t, ξj = ∂z/∂xj , j = 1, . . . , n, and

F = γ +H(∇xz) = γ +
1

2

n
∑

j=1

ξ2j . (2.5)

Then the bicharacteristic curve
(

x(s), t(s), ξ(s), γ(s)
)

, 0 ≤ s ≤ t, between

(0, 0) and (x, t) is a solution of

ẋj = Fξj = ξj, ξ̇j = −Fxj
= 0, j = 1, . . . , n, (2.6)

ṫ = Fγ = 1, γ̇ = −Ft = 0,

so ξj(s) = ξj(0) = ξj, j = 1, . . . , n, γ(s) = γ(0) = γ, t(s) = s, 0 ≤ s ≤ t, and

xj(s) =
xj
t
s, j = 1, . . . , n, (2.7)
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since xj(t) = xj and one starts from the origin. Also,

ż(s) =

n
∑

j=1

ξjFξj + γFγ = |ξ|2 + γ =
1

2
|ξ|2, (2.8)

since γ + 1
2 |ξ|2 = 0 by hypothesis. Consequently,

z(x, t) =
1

2

∫ t

0
|ξ(s)|2ds =

|x|2
2t

, (2.9)

as expected.

2.3. M = S1 and ∆ = 1
2

d2

dθ2
, S1 is parameterized by θ. p(t, θ, γ) is obtained

by summing over an orthonormal basis of L2(S1):

p =

∞
∑

k=−∞

e−
1
2
k2t e

ikθ

√
2π

e−ikγ

√
2π

=
1

2π
Θ

(

1

2
(θ − γ),

i

2

t

π

)

(2.10)

is Jacobi’s theta function. The Poisson summation formula yields the needed

geometric version:

p(t, θ) =
1√
2πt

∞
∑

k=−∞

e−
(θ+2kπ)2

2t . (2.11)

Note that
1√
2πt

e−
θ2

2t (2.12)

is a solution of the heat equation on (0, 2π] and

lim
t→0

1√
2πt

e−
θ2

2t = δ(θ),

but (2.12) is not continuous at θ = 0. This can be corrected if we recall

that 1
2

d2

dθ2
is a periodic operator and the periodic extension (2.11) of (2.12)

is continuous in θ. In particular,

p(0, θ) =
∞
∑

k=−∞

δ(θ + 2kπ). (2.13)

When k = 0, θ2 = (distance from 0 to θ)2. When k 6= 0, one gets θ +
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the length of additional great circles. In geometric terms, they represent the

lengths of all the geodesics connecting 0 and θ. For us a geodesic is the

projection of a bicharacteristic onto the base manifold. The Hamiltonian is

H = 1
2ξ

2 and the bicharacteristic curve in cotangent space (θ(s), ξ(s)) is a

solution of

θ̇(s) = Hξ = ξ, ξ̇(s) = −Hθ = 0, =⇒ ξ(s) = constant,

so θ(s) = ξs+ c,

θ(0) = 0 = c, θ(θ) = θ =⇒ ξ = 1, θ(s) = s,

and the point θ is reached at s = θ + 2kπ, k = 0,±1,±2, . . ..

In particular, this teaches us that all the geodesic lengths contribute to

the heat kernel.

2.4. The final elliptic example is the extension of 2.3 to S2n+1 ⊂ C
n+1;

this will be useful in the study of subelliptic operators expressed in terms of

Heisenberg vector fields with variable coefficients. The Laplacian ∆ in C
n+1

is

∆ = 2
n+1
∑

j=1

∂

∂zj

∂

∂zj
= −

n+1
∑

j=1

(

Z∗
jZj + Z∗

j Zj

)

, (2.14)

where z = (z1, . . . , zn+1), zj = xj + ixj+n+1, j = 1, . . . , n + 1, are co-

ordinates in C
n+1 and

√
2Z1, . . . ,

√
2Zn+1 denote an orthonormal basis of

holomorphic vector fields on C
n+1 with respect to the Euclidean metric,

Zj =
∑n+1

k=1 ajk
∂

∂zk
, j = 1, . . . , n + 1, and Z∗

j denotes the adjoint of Zj with

respect to the Euclidean volume dx = dx1 ∧ · · · ∧ dx2n+2. We let ∆S denote

the restriction of the Laplacian ∆ to S2n+1. To find the heat kernel for ∆S

one introduces spherical coordinates:

z1 = r cos θ1e
iϕ1 ,

...

zk = r sin θ1 · · · sin θk−1 cos θke
iϕk , k = 2, . . . , n, (2.15)

...

zn+1 = r sin θ1 · · · sin θn−1 sin θne
iϕn+1 ,



6 PETER GREINER AND YUTIAN LI [March

0 ≤ θj ≤ π/2, j = 1, . . . n, −π < ϕj ≤ π, j = 1, . . . , n + 1, and 0 ≤ r < ∞.

Then

∆ =
1

2

(

∂2

∂r2
+

2n + 1

r

∂

∂r

)

+
1

r2
∆S. (2.16)

On S2n+1 the heat kernel for ∆S only depends on the angle γ between the

origin, which we may choose to denote by (1, 0, . . . , 0), and the point z =

(z1, . . . , zn+1) ∈ S2n+1. In the above coordinate system cos γ = cos θ1 cosϕ1.

On functions of θ1 and ϕ1 only ∆S is reduced to LS,

LS =
1

2

∂2

∂θ21
+
(

(n− 1) cot θ1 + cot(2θ1)
) ∂

∂θ1
+

1

2

1

cos2 θ1

∂2

∂ϕ2
1

. (2.17)

In particular, the heat kernel for LS is also the heat kernel for ∆S after

normalization on S2n+1. Setting x1 = cos θ1 cosϕ1, one has

LS =
1

2
(1− x21)

d2

dx21
−
(

n+
1

2

)

x1
d

dx1
, (2.18)

or

LS =
1

2

d2

dγ2
+ n(cot γ)

d

dγ
, x1 = cos γ. (2.19)

To find the heat kernel for LS we shall work with the formula (2.17). With

(θ1, ϕ1) and the dual variables (ω1, τ1) the Hamiltonian is

H =
1

2

(

ω2
1 +

τ21
cos2 θ1

)

, (2.20)

and the bicharacteristic curve is a solution of

θ̇1(s) = Hω1 = ω1 = ±

√

2H − τ21
cos2 θ1

, (2.21)

ϕ̇1(s) = Hτ1 =
τ1

cos2 θ1
, τ̇1 = −Hϕ1 = 0. (2.22)

Hence, τ1 = constant and so is H along the bicharacteristic.

Lemma 1. Let E2 = 2H. Assuming θ1(0) = 0, ϕ1(0) = 0, one has

sin2 θ1(s) =

(

1− τ21
E2

)

sin2(Es), (2.23)

ϕ1(s) = tan−1
(τ1
E

tan(Es)
)

, (2.24)
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which can be continued for all s > 0.

We have two arbitrary constants τ1 and H which can be used to fix

θ1(t) = θ1, ϕ1(t) = ϕ1. The solution S of the Hamilton-Jacobi equation

0 =
∂S

∂t
+

1

2

(

∂S

∂θ1

)2

+
1

2

1

cos2 θ1

(

∂S

∂ϕ1

)2

=
∂S

∂t
+H (∇θ1,ϕ1S) (2.25)

can be found from

Ṡ(s) = ω1θ̇1 + τ1ϕ̇1 −H = H, (2.26)

so

S = Ht =
1

2
E2t,

and a bit of work with (2.23) and (2.24) yields

S = Ht =

(

cos−1(cos θ1 cosϕ1) + 2kπ
)2

2t
=

(γ + 2kπ)2

2t
, (2.27)

k ∈ Z. A consequence of these calculations is the following result.

Theorem 2. Given z, w ∈ S2n+1, let γ denote the angle subtended by the

arc that joins z and w on a great circle, 0 ≤ γ ≤ π. Then the heat kernel pS

of ∆S on S2n+1 is given by

pS =
e

n2

2
t

(2πt)n+1/2

∞
∑

k=−∞

e−
(γ+2kπ)2

2t vn(γ + 2kπ, t), (2.28)

where

vn(γ, t) = vnwn =

(

γ

sin γ

)n
(

n−1
∑

l=0

wn,l(γ)t
l

)

, (2.29)

with wn,0 = 1 and wn,l, l = 1, 2, . . . , n− 1 are found by iteration,

wn,l(γ) =
1

γl

∫ γ

0
v−nσl−1

(

LS − n2

2

)

vn,l−1dσ, (2.30)

vn,l(γ) = v(γ)nwn,l(γ).

Remark 3. Let L(n)
S denote the reduced operator of ∆

(n)
S , i.e. of ∆S on
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S2n+1, and let un denote a solution of ∂u/∂t = L(n)
S u. Then,

un+1 = e
2n+1

2
t ∂un
2π∂x1

= e
2n+1

2
t ∂un
2π∂(cos γ)

(2.31)

is a solution of ∂u/∂t = L(n+1)
S u. In particular, one has

Lemma 4. Let p
(n)
S stand for pS on S2n+1. Then,

p
(n)
S = e

n2−1
2

t

(

∂

2π∂(cos γ)

)n−1

p
(1)
S , n > 1, (2.32)

which yields an easy derivation of p
(n)
S from p

(1)
S .

We look at p
(1)
S more carefully. One has

p
(1)
S =

e
1
2
t

(2πt)3/2

∞
∑

k=−∞

e−
(γ+2kπ)2

2t
γ + 2kπ

sin γ
. (2.33)

First note that the k = 0 term is well defined on 0 ≤ |γ| < π, but not

at γ = π. All other terms are defined on 0 < |γ| < π only. This is just

a problem of summation. The sum of the k-th and (−k)-th terms is well

defined at γ = 0, and then summing k from 0 to ∞ yields the extension of

p
(1)
S from 0 < |γ| < π to 0 ≤ |γ| < π. Next write

p
(1)
S =

∞
∑

k=−∞

p
(1)
S,k, (2.34)

and note that p
(1)
S,k + p

(1)
S,−k−1 is well defined at γ = π, hence

∞
∑

k=0

(

p
(1)
S,k + p

(1)
S,−k−1

)

(2.35)

extends p
(1)
S from 0 < |γ| < π to 0 < |γ| ≤ π, and we have defined p

(1)
S on all

of S3. Similar construction yields p
(n)
S on all of S2n+1.

The following formula is useful in the quantitative study of p
(n)
S .
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Lemma 5. Given ε > 0, one has

p
(n)
S =

Γ(n)e
n2

2
t

(2π)n−1(2πt)3/2
1

2πi

∫ ε+i∞

ε−i∞

eλ/tdλ

(cosh
√
2λ− cos γ)n

; (2.36)

we note that (2.28) is the residue expansion of (2.36).

Finally, one may use

cos γ = x1y1 + · · · + x2n+2y2n+2 = x · y (2.37)

to return to the original coordinates, where we set zj = xj + ixn+1+j and

wj = yj + iyn+1+j, j = 1, . . . , n+ 1.

We are ready to construct local heat kernels for general second order

elliptic differential operators.

2.5. A second order partial differential operator ∆ is elliptic if one can write

it in the following form

∆ =
1

2

n
∑

j=1

X2
j + · · · , (2.38)

where X1, . . . ,Xn are linearly independent vector fields on an n-dimensional

manifold Mn and · · · stands for lower order terms. Letting X1, . . . ,Xn rep-

resent an orthonormal basis of TMn one obtains a Riemannian metric. With

such a metric Mn is a Riemannian manifold. Given an arbitrary point

Q ∈ Mn, which we may call the origin, one can always find a sufficiently

small neighbourhood of Q in which every point has a unique geodesic con-

nection to the origin. p(t, x, y) is a local heat kernel for ∆ if in a small

neighbourhood U of the origin one has

∂p

∂t
−∆p = 0, and lim

t→0
p(t, x, y) = δ(x− y), x, y ∈ U. (2.39)

2.4 suggests the following:

“One should look for a heat kernel p in the form

p(t, x, y) =
C

tn/2
e−

f(x,y)
t

(

a0(x, y) + a1(x, y)t+ · · ·
)

, (2.40)
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where C is a constant and aj(x, y), j = 1, 2, . . ., are smooth functions near

the diagonal.”

With (2.40) one has

∂p

∂t
−∆p

=
C

tn/2
e−

f
t

{[ ∂

∂t

(

− f

t

)

− 1

2

n
∑

j=1

(

Xj

(

− f

t

))2]

a0(x, y) +O
(1

t

)}

, (2.41)

where the square bracket is of the order of 1/t2. Hence the necessary van-

ishing of (2.41) implies that

∂

∂t

(

−f

t

)

− 1

2

n
∑

j=1

(

Xj

(

− f

t

)

)2

= 0, (2.42)

i.e. f/t is the solution of a Hamilton-Jacobi equation. A simple consequence

is that f is a solution of the eiconal equation

1

2

n
∑

j=1

(

Xj f
)2

= f, (2.43)

and thus represents the local Riemannian distance. Again, the aj ’s are

obtained by iteration.

3. Subelliptic Operators

Consider

∆ =
1

2

m
∑

j=1

X2
j + · · · , (3.1)

on an n-dimensional manifold Mn, where X1, . . . ,Xm are linearly indepen-

dent vector fields and m < n. ∆ is not elliptic, but if we assume that

X1, . . . ,Xm, the horizontal vector fields, are bracket generating then one

has the following a-priori estimate on ∆,

‖u‖ε ≤ C‖∆u‖0 , 0 < ε < 2, (3.2)

locally, see Hörmander [7]; note that ε = 2 when m = n and ∆ is elliptic,



2017] HEAT KERNELS, OLD AND NEW 11

and when ε < 2, ∆ of (3.2) is subelliptic. Bracket generating means that the

horizontal vector fields and their Lie brackets, X1, . . . ,Xm, . . . , [Xi,Xj ], . . .,
[

Xj , [Xk,Xl]
]

, . . . generate TMn.

In 1939 Chow [4] showed that given bracket generating vector fields

X1, . . . ,Xm, m ≤ n, two points can always be joined by a horizontal curve,

that is, a curve, all of whose tangents are linear combinations of the hor-

izontal vector fields X1, . . . ,Xm. This yields a geometry. Assume that

X1, . . . ,Xm are orthogonal and have length one. If m = n one obtains a

Riemannian metric, but if m < n one has a subRiemannian, not Rieman-

nian, metric. In particular, given a subRiemannian metric we can calculate

the lengths of horizontal curves, and by minimizing these lengths between

two given points we obtain a subRiemannian distance, often referred to as

the Carnot-Carathéodory distance. This yields a subRiemannian geometry.

The Hamiltonian attached to (3.1) is still

H =
1

2

m
∑

j=1

Xj(x, ξ)
2, (3.3)

which yields bicharacteristic curves whose projections ontoMn are geodesics.

The principal difference between Riemannian and subRiemannian geometry

which effects us is that in a Riemannian geometry sufficiently near points

are joined by a unique geodesic connection, while in a subRiemannian geom-

etry arbitrarily near points may have multiple geodesic connections. Con-

sequently, in subRiemannian geometry one cannot fix the bicharacteristic

curve by giving the endpoints of its projection onto the base, instead one

must make use of the dual variables. Since heat kernels should not contain

dual variables we shall sum over them. A few examples are in order.

3.1. The subLaplacian on the Heisenberg group

The (2n + 1)-dimensional Heisenberg group Hn is C
n × R = R

2n × R

equipped with the group law

(x, y) ◦ (x′, y′) =
(

x+ x′, y + y′ + 2

n
∑

j=1

aj(x2jx
′
2j−1 − x2j−1x

′
2j)
)

, (3.4)



12 PETER GREINER AND YUTIAN LI [March

with a = (a1, . . . , an) ordered as

0 < a1 ≤ a2 ≤ · · · ≤ ap ≤ · · · ≤ an, (3.5)

see [1]. The horizontal vector fields

X2j−1 =
∂

∂x2j−1
+ 2ajx2j

∂

∂y
, X2j =

∂

∂x2j
− 2ajx2j−1

∂

∂y
, (3.6)

j = 1, . . . , n, are left-invariant with respect to the above Heisenberg trans-

lation and are bracket generating, since

[X2j−1,X2j ] = X2j−1X2j −X2jX2j−1 = −4aj
∂

∂y
. (3.7)

As the first bracket suffices we refer to X1, . . . ,X2n as step 2. The subLapla-

cian is

∆H =
1

2

2n
∑

j=1

X2
j . (3.8)

We shall work with H1 only and set a1 = 1; the general Hn is similar. For

the Heisenberg subLaplacian

∆H =
1

2

(

∂

∂x1
+ 2x2

∂

∂y

)2

+
1

2

(

∂

∂x2
− 2x1

∂

∂y

)2

(3.9)

on H1 we again try for a heat kernel in the form

1

tα
e−f/t · · · (3.10)

where h = f/t is a solution of

∂h

∂t
+

1

2

(

∂h

∂x1
+ 2x2

∂h

∂y

)2

+
1

2

(

∂h

∂x2
− 2x1

∂h

∂y

)2

= 0. (3.11)

Thus we start with
∂z

∂t
+H(∇z) = 0, (3.12)

where ∇ is the gradient in the base variables only, and

H =
1

2
(ξ1 + 2x2η)

2 +
1

2
(ξ2 − 2x1η)

2 =
1

2
ζ21 +

1

2
ζ22 , (3.13)
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and η is dual to y. As usual, one reduces this question to finding a solution

of a system of ordinary differential equations as follows. Set

F (x, y, t, z, ξ, η, γ) = γ +H(x, y, ξ, η) = 0, (3.14)

where ξ = ∇xz, η = ∂z/∂y and γ = ∂z/∂t. We shall find the bicharacteristic

curves, solutions to

ẋ1 = Fξ1 = ξ1 + 2x2η = ζ1, ẋ1 =
dx1
ds

,

ẋ2 = Fξ2 = ξ2 − 2x1η = ζ2,

ẏ = Fη = 2x2ẋ1 − 2x1ẋ2,

ṫ = Fγ = 1,

ξ̇1 = −Fx1 − ξ1Fz = 2ηẋ2, (3.15)

ξ̇2 = −Fx2 − ξ2Fz = −2ηẋ1,

η̇ = −Fy − ηFz = 0,

γ̇ = −Ft − γFz = 0,

ż = ξ · ∇ξF + ηFη + γFγ = ξ · ẋ+ ηẏ −H,

since ṫ = 1 and γ = −H. With 0 ≤ s ≤ t,

γ(s) = γ = −H = constant,

η(s) = η = constant, (3.16)

t(s) = s,

constant meaning “constant along the bicharacteristic curve”. Another way

to see that H is constant along the bicharacteristic, note that

ẍ1 = ξ̇1 + 2ηẋ2 = 4ηẋ2,
(3.17)

ẍ2 = ξ̇2 − 2ηẋ1 = −4ηẋ1,

therefore

ẍ1ẋ1 + ẍ2ẋ2 = 0,

and

H =
1

2
ẋ21 +

1

2
ẋ22 = constant. (3.18)

A bit of calculation yields the classical action,
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S(t) =

∫ t

0
(ξ · ẋ+ ηẏ −H)ds

= η[y − y(0) + 2(x1(0)x2 − x1x2(0)) + |x− x(0)|2 cot(2ηt)], (3.19)

and then

h = η(0)y(0) + S(t)

= ηy + 2η(x1(0)x2 − x1x2(0)) + η|x− x(0)|2 cot(2ηt) (3.20)

is a solution of the Hamilton-Jacobi equation (3.12). Since x(0) = 0, one

has

h(x, y, η, t) = ηy + η|x|2 cot(2ηt). (3.21)

Recall that we may have multiple geodesic connections between (0, 0) and

(x, y), so one cannot choose y(0) = 0 and y(0) is replaced by the free param-

eter η. To recapitulate, the principal part of the heat kernel is

· · · e−h · · · , (3.22)

and h contains the dual variable η. Since the heat kernel is not supposed to

have dual variables we shall sum over η or, for the sake of convenience, over

−iτ = 2ηt. Setting

h =
f

t
, (3.23)

one has

f =
1

2
(2ηt)

(

y + |x|2 cot(2ηt)
)

= −1

2
iτy +

1

2
τ |x|2 coth τ, (3.24)

and we look for p in the form

p(t, x, y) =
1

(2πt)α

∫ ∞

−∞
e−

f(x,y,τ)
t V (τ) dτ. (3.25)

Applying the heat operator to p one has

0 =

(

∆H − ∂

∂t

)

1

(2πt)α

∫ ∞

−∞
e−

f
t V dτ

= − 2π

(2πt)α+1

∫ ∞

−∞
e−

f
t

{

τ
dV

dτ
+ (∆Hf − α+ 1)V

}

,
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so we set

τ
dV

dτ
+ (τ coth τ + 1− α)V = 0,

which gives

V (τ) =
(Cτ)α−1

sinh τ
, (3.26)

and with α = 2 we have

Theorem 6. The heat kernel of ∆H is

p(t, x, y) =
1

(2πt)2

∫ ∞

−∞
e−

f
t

τ

sinh τ
dτ. (3.27)

From f = f(x, y, γ), γ = 2ηt, and

∂(f/t)

∂t
+H

(

∇(f/t)
)

= 0,

one has

− f

t2
+

2η

t

∂f

∂γ
+

1

t2
H(∇f) = 0,

or,

γ
∂f

∂γ
+H(∇f) = f,

and with γ = −iτ , one has the modified eiconal equation,

τ
∂f

∂τ
+H(∇f) = f. (3.28)

(1.62) and (1.69) of [1] imply

∂f

∂(−iτ)
= y(0;x, y,−iτ), (3.29)

so at the critical points of f with respect to τ one has y(0) = 0. In particular,

the critical points of f are in 1-1 correspondence with the geodesics between

the origin and (x, y), and, in view of (3.28), at the critical point τ = τc one

has

f(x, y, τc) =
1

2
ℓτc(x, y; 0, 0)

2, (3.30)

where ℓτc is the length of the geodesic associated to τc. Note that all critical

points of f are on the imaginary τ -axis.
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3.2. Grushin operator

Consider the following vector fields on R
2

X =
∂

∂x
, Y = x

∂

∂y
. (3.31)

X and Y always yield two directions on R
2 except on the y-axis, where their

bracket [X,Y ] = ∂
∂y yields the missing direction. The step two Grushin

operator

∆G =
1

2
(X2 + Y 2) =

1

2

∂2

∂x2
+

1

2
x2

∂2

∂y2
(3.32)

is therefore subelliptic. Using the same approach as in 3.1, one can show

that the heat kernel of ∆G is given by

p(t, x0, y0, x, y) =
1

(2πt)3/2

∫ ∞

−∞
e−f(τ)/tV (τ) dτ, (3.33)

where (x0, y0) and (x, y) are two points on R
2, the modified complex action

function is

f(τ) = −i(y − y0) +
τ

2 sinh τ

[

(x2 + x20) cosh τ − 2xx0
]

, (3.34)

and the volume element is

V (τ) =
( τ

sinh τ

) 1
2
. (3.35)

3.3. On C
2 we introduce the vector fields Z,

Z =
z2
r

∂

∂z1
− z1

r

∂

∂z2
, ‖

√
2Z‖ = 1, (3.36)

which is tangent to S3 since Zr = 0. Setting r = 1,

∆C = 2ReZZ = ZZ + ZZ

=
1

2

∂2

∂θ2
+ (cot 2θ)

∂

∂θ
+

1

2

(

(tan θ)
∂

∂ϕ1
+ (cot θ)

∂

∂ϕ2

)2

(3.37)

is the subelliptic Laplacian on S3, i.e. the S3-subLaplacian. A Hamiltonian
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formalism shows that the heat kernel for the reduced operator LC ,

LC =
1

2

∂2

∂θ2
+ (cot 2θ)

∂

∂θ
+

1

2
(tan2 θ)

∂2

∂ϕ2
1

, (3.38)

is also the heat kernel for ∆C when normalized. LC is not elliptic since

tan θ = 0 at θ = 0, but

[

∂

∂θ
, (tan θ)

∂

∂ϕ1

]

=
1

cos2 θ

∂

∂ϕ1
6= 0 (3.39)

at θ = 0, hence LC is subelliptic.

Theorem 7. One has

p
C

=
e

1
2
t

(2πt)2

∑

k∈Z

∫ ∞

−∞
e−

f(σ−iϕ1 ,κ+i2kπ)

t
κ+ i2kπ

sinhκ
dσ, (3.40)

f(σ, κ) =
1

2
σ2 − 1

2
κ2, κ = cosh−1(cos θ coshσ). (3.41)

The heat kernel for ∆C on S2n+1 is analogous. Note the similarity of (3.40)

and (3.27). Everything we said about f and y(0) for ∆H holds for f and

ϕ1(0) for ∆C , except that equation (3.28) must be replaced by

σ

cos2 θ

∂f

∂σ
+H(∇f) = f +

ϕ1(0)

cos2 θ

[

ϕ1 −
1

2
ϕ1(0)

]

. (3.42)

In particular, f/t is not a solution of the Hamilton-Jacobi equation of ∆C .

We do not need this, so we do not get it. What we need is that

∂(f/t)

∂t
+H

(

∇
(f

t

)

)

=
d

dτ
g(τ) (3.43)

for some g, so its integral vanishes. This happens for f/t of ∆C .

One may try to understand this difference between (3.42) and (3.28) by

representing ∆C in terms of the Heisenberg vector fields and then compare

the associated heat kernels.
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4. On the Cayley transform of ∆C

To compare the subelliptic heat kernels on S2n+1 and on Hn we shall

send ∆C from S2n+1 to Hn via the Cayley transform. ∆C on Hn will be

represented by the Heisenberg vector fields, but with variable coefficients;

we shall continue to refer it as ∆C . Not to complicate matters we shall work

with ∆C on S3 ⊂ C
2.

Assuming our origin is (z1, z2) = (1, 0) ∈ S3, we shall leave out the

antipodal point (−1, 0). Then the Cayley transform ζ = (ζ1, ζ2) = C(z1, z2)

is given by

ζ = C(z1, z2) =

(

i
1− z1
1 + z1

,
z2

1 + z1

)

= (ζ1, ζ2). (4.1)

Note that (ζ1, ζ2) = (0, 0) if and only if (z1, z2) = (1, 0). In particular, one

has

ζ1 = u1 + iv1 =
2y1

(1 + x1)2 + y21
+ i

1− |z1|2
(1 + x1)2 + y21

, (4.2)

|ζ2|2 =
|z2|2

(1 + x1)2 + y21
,

hence

v1 − |ζ2|2 =
1− |z|2
|1 + z1|2

> 0 iff |z|2 < 1. (4.3)

We set

D2 =
{

Imζ1 > |ζ2|2
}

, bD2 =
{

Imζ1 = |ζ2|2
}

. (4.4)

Note that

(z1, z2) = C−1(ζ1, ζ2) =

(

1 + iζ1
1− iζ1

,
2ζ2

1− iζ1

)

. (4.5)

Recall the tangential holomorphic vector field Z,

Z =
z2
r

∂

∂z1
− z1

r

∂

∂z2
, (4.6)

Zr = 0 and ‖
√
2Z‖ = 1 in Euclidean metric. In (ζ1, ζ2) coordinates one has

∂

∂z1
= −1

2
(1− iζ1)

(

i(1 − iζ1)
∂

∂ζ1
+ ζ2

∂

∂ζ2

)

, (4.7)
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∂

∂z2
=

1

2
(1− iζ1)

∂

∂ζ2
, (4.8)

and then

rZ = −1

2

1− iζ1

1 + iζ1

{

2iζ2(1− iζ1)
∂

∂ζ1
+
(

2|ζ2|2 + 1− iζ1
) ∂

∂ζ2

}

(4.9)

on C
2 \ {ζ1 = −i}. Restricting Z to bD2 = C

{

S3 \ (−1, 0)
}

one obtains

Z = −1

2

(1 + |ζ2|2 − iu1)
2

1 + |ζ2|2 + iu1

(

∂

∂ζ2
+ 2iζ2

∂

∂ζ1

)

. (4.10)

The following formula

1− r2 = χ =
4

|1− iζ1|2
(

Imζ1 − |ζ2|2
)

> 0 (4.11)

defines D2 ; it is easy to see that Z(χ) = 0 on D2, so Z is tangent to

the surfaces σ = r2 = const. Next we find Z in tangential coordinates
(

u, σ, ζ ′2, ζ
′
2

)

on D2, where



























u = u1 =
1

2
(ζ1 + ζ1),

σ = r2 =
|1 + iζ1|2 + 4|ζ2|2

|1− iζ1|2
,

ζ ′2 = ζ2, ζ ′2 = ζ2.

(4.12)

Using formulas (5.30) and (5.31) a bit of work yields

Z = −1

2

(1− iζ1)
2

1 + iζ1





1− v1−|ζ2|2

1+|ζ2|2−iu

1 + v1−|ζ2|2

1+|ζ2|2−iu

∂

∂ζ ′2
+ iζ ′2

∂

∂u



 (4.13)

on D2; again note that Zσ = 0 hence Z is tangent to σ = const. Writing

ζ ′2 = ζ, one finally has Z on bD2,

Z = −1

2

(1 + |ζ|2 − iu)2

1 + |ζ|2 + iu

(

∂

∂ζ
+ iζ

∂

∂u

)

, (4.14)

which is the Heisenberg vector field on H1 modulo a nonconstant factor.
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Also,

Z = −1

2

(1 + |ζ|2 + iu)2

1 + |ζ|2 − iu

(

∂

∂ζ
− iζ

∂

∂u

)

, (4.15)

so,

ZZ =
1

4

∣

∣1 + |ζ|2 + iu
∣

∣

2
(

∂

∂ζ
+ iζ

∂

∂u

)(

∂

∂ζ
− iζ

∂

∂u

)

− 1

2
ζ
(

1 + |ζ|2 + iu
)

(

∂

∂ζ
− iζ

∂

∂u

)

,

(4.16)

which yields

∆C = ZZ + ZZ

=
1

2

∣

∣1 + |ζ|2 + iu
∣

∣

2
{(

∂

∂ζ
+ iζ

∂

∂u

)(

∂

∂ζ
− iζ

∂

∂u

)

+ i
∂

∂u

}

−1

2
ζ
(

1 + |ζ|2 + iu
)

(

∂

∂ζ
− iζ

∂

∂u

)

(4.17)

−1

2
ζ
(

1 + |ζ|2 − iu
)

(

∂

∂ζ
+ iζ

∂

∂u

)

.

Thus ∆C is given in terms of the Heisenberg vector fields with variable

coefficients. According to (3.42) the exponent in the Cayley transform of

(3.40) will not be a solution of the Hamilton-Jacobi equation and the question

is what are the geometric differences between ∆C and ∆H which produce

this state of affairs. To help us better understand what goes on in bD2, we

shall study the Cayley transform of ∆S more closely.

5. The Cayley transform of ∆S

We shall use both ∂x and ∂/∂x for the same derivative. Also,

∂z =
∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

. (5.1)

Not to complicate the notation we work with C
2 only, so z = (z1, z2), zj =

xj + iyj , j = 1, 2. Set

Z =
z2
r

∂

∂z1
− z1

r

∂

∂z2
, (5.2)
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N =
z1
r

∂

∂z1
+

z2
r

∂

∂z2
; (5.3)

again note that Zr = 0, so Z is tangent to spheres r2 = ‖z‖2 = |z1|2+|z2|2 =
const. In Euclidean metric both (

√
2∂z1 ,

√
2∂z2) and (

√
2Z,

√
2N) represent

an orthonormal basis of the holomorphic tangent space of C2. Consequently,

∆ = 2
∂2

∂z1∂z1
+ 2

∂2

∂z2∂z2
= −(Z∗Z + Z∗ Z)− (N∗N +N∗ N) (5.4)

with

−Z∗ = Z, and −N∗ = N +
3

2r
; (5.5)

Z∗ and N∗ represent the adjoint operators of Z and N with respect to

Euclidean metric. All these calculations can be found in §2 of [2], where

they are worked out in C
n+1. One sets

∆S = ∆
∣

∣

S3 . (5.6)

The following complex spherical coordinates are convenient:

z1 = r cos θeiϕ1 , z2 = r sin θeiϕ2 , (5.7)

0 ≤ θ ≤ π/2, −π < ϕj ≤ π, j = 1, 2; for Cn+1 see (2.15). Then

N =
1

2

∂

∂r
− i

2r

(

∂

∂ϕ1
+

∂

∂ϕ2

)

=
1

2
∂r −

i

2r
∂ϕ , (5.8)

see (2.28) of [2], where we set

∂ϕ = ∂ϕ1 + ∂ϕ2 , (5.9)

for convenience. Also,

−(N∗N +N∗N) = −2Re(N∗N) =
1

2

(

∂2
r +

3

r
∂r

)

+
1

2r2
∂2
ϕ , (5.10)

and one has

∆ = 2ReZZ +
1

2

(

∂2
r +

3

r
∂r

)

+
1

2r2
∂2
ϕ
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=
1

2

(

∂2
r +

3

r
∂r

)

+
1

r2
∆S , (5.11)

where
1

r2
∆S = 2ReZZ +

1

2r2
∂2
ϕ = ∆− 1

2

(

∂2
r +

3

r
∂r

)

. (5.12)

We also set

∆C = 2ReZZ =
1

2
(2X)2 +

1

2
(2Y )2; (5.13)

in particular, 2∆C is the sum of squares of unit vector fields which are

orthonormal to each other. We used Z = X + iY . Now (5.8) implies that

∂ϕ = −2rImN = ir
(

N −N
)

. (5.14)

Since N ⊥ Z, we have ∂ϕ ⊥ Z, and since ∂ϕ is real, ∂ϕ ⊥ X and ∂ϕ ⊥ Y .

An easy calculation yields ‖∂ϕ‖ = r, hence ‖∂ϕ‖ = 1 on S3. Consequently,

(5.12) gives

∆S = ∆C +
1

2
∂2
ϕ =

1

2
(2X)2 +

1

2
(2Y )2 +

1

2
∂2
ϕ (5.15)

on S3, i.e. ∆S is 1
2 times the sum of squares of three orthonormal vector

fields on S3, hence elliptic.

Let us recapitulate what we are trying to do. Our long term aim is to

find heat kernels for subelliptic operators. The formulas we are looking for

should be given in geometric terms and be as precise as are the well known

formulas for heat kernels of elliptic operators, which should be special cases

of subelliptic heat kernels, of course. To achieve this objective we work with

a Hamiltonian formalism. So far very few subelliptic heat kernels have been

found. Most of the work has gone into the study of the heat kernels of

∆H , the Heisenberg subLaplacian, and of ∆G, the step 2 Grushin operator;

lately the heat kernel of ∆C on S2n+1 has been worked out. They are all

given as integrals of exponentials, where the exponent is the solution of a

Hamilton-Jacobi equation, a kind of distance function, at least in the case of

∆H and ∆G; one may call these flat. The formula for the heat kernel for ∆C

on S2n+1 is very similar, but the exponent in the integrand is not a solution

of the associated Hamilton-Jacobi equation. It is a solution of a modified

Hamilton-Jacobi equation; this may be true in general. Consequently it is

essential to find this modification in geometrically invariant terms. The first

step is to compare the heat kernel of the Cayley transform of ∆C on bD2
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with the heat kernel of ∆H ; they both make sense on the Heisenberg group

if we look on the Cayley transform of ∆C as a Heisenberg subLaplacian with

variable coefficients.

So our first job is to understand how to work with the Cayley transform

of S2n+1. To this end, we shall devote the rest of §5 to the explicit derivation

of the heat kernel of ∆S on bD2. In particular we need to show that the heat

kernel is a function of one variable only. The calculations are elementary

but complicated, so we shall include enough detail, not all, to convince the

reader. To obtain ∆S on bD2 one uses (5.12) in the form

1

r2
∆S = ∆− 1

2

(

∂2
r +

3

r
∂r

)

, (5.16)

and note that (5.8) implies

∂r = N +N, (5.17)

so one has

1

r2
∆S = ∆− 1

2

[

(

N +N
)2

+
3

r

(

N +N
)

]

. (5.18)

We start with calculating the variable x = cos θ cosϕ1 in bD2 coordi-

nates. (4.5) yields

z1 = r cos θeiϕ1 =
1 + iζ1
1− iζ1

, so cos θ =
|1 + iζ1|
|1− iζ1|

(5.19)

on bD2, i.e. when r = 1. Also, on bD2, 1+ iζ1 = 1+ iu1− v1 = 1−|ζ2|2+ iu,

so

cos2 θ =

∣

∣1− |ζ|2 + iu
∣

∣

2

∣

∣1 + |ζ|2 − iu
∣

∣

2 =
(1− ρ)2 + u2

(1 + ρ)2 + u2
, (5.20)

where we set ρ = |ζ|2. Also

z1 =r cos θ cosϕ1 + ir cos θ sinϕ1 (5.21)

=
1 + iζ1
1− iζ1

=
1− |ζ1|2 + i(ζ1 + ζ1)

|1− iζ1|2
,
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and then

tanϕ1 =
ζ1 + ζ1
1− |ζ1|2

, (5.22)

so one has

cos2 ϕ1 =
1

1 + tan2 ϕ1
=

(

1− |ζ1|2
)2

1 + ζ21 + ζ1
2
+ |ζ1|4

. (5.23)

Now,

1 + ζ21 + ζ1
2
+ |ζ1|4 = 1 + 2(u21 − v21) + (u21 + v21)

2

= 1 + 2u2 − 2|v1|2 + u4 + 2u2|v1|2 + |v1|4

= (1 + |v1|2)2 − 4|v1|2 + u4 + 2u2(1 + |v1|2)
=
(

(1 + |v1|2) + u2
)2 − 4|v1|2

=
(

(1− |v1|)2 + u2
)(

(1 + |v1|)2 + u2
)

,

since v1 = |ζ2|2 ≥ 0 on bD2. Thus

cos2 ϕ1 =

(

1− |ζ1|2
)2

(

(1− |v1|)2 + u2
)(

(1 + |v1|)2 + u2
)

=

(

1− |ζ1|2
)2

|1 + iζ1|2|1− iζ1|2
, (5.24)

or

cosϕ1 =
1− |ζ1|2

|1 + iζ1| |1− iζ1|
, (5.25)

and in view of (5.19) we have derived

Lemma 8. The Cayley transform of x = cos θ cosϕ1 on S3 is

x =
1− |ζ1|2
|1− iζ1|2

=
1− ρ2 − u2

(1 + ρ)2 + u2
, (5.26)

where we let x also represent the Cayley transform of cos θ cosϕ1 on bD2.

Lemma 9. Let ∆S also denote the Cayley transform of ∆S acting on bD2.

With x given by (5.26) one has

∆Sf(x) =
1

2
(1− x2)

d2f

dx2
− 3

2
x
df

dx
. (5.27)
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Proof. We use (5.18); the calculation is elementary but somewhat lengthy.

Starting with

∆ = 2
∂

∂z1

∂

∂z1
+ 2

∂

∂z2

∂

∂z2
, (5.28)

(4.7) and (4.8) yield

∂

∂z1

∂

∂z1
=

1

4
|1− iζ1|2

(

i(1 − iζ1)
∂

∂ζ1
+ ζ2

∂

∂ζ2

)(

−i(1 + iζ1)
∂

∂ζ1
+ ζ2

∂

∂ζ2

)

,

∂

∂z2

∂

∂z2
=

1

4
|1− iζ1|2

∂

∂ζ2

∂

∂ζ2
,

so in (ζ1, ζ2)-coordinates one has

∆ =
1

2
|1− iζ1|2

{

|1− iζ1|2
∂

∂ζ1

∂

∂ζ1
+ i(1 − iζ1)ζ2

∂

∂ζ1

∂

∂ζ2

−i(1 + iζ1)ζ2
∂

∂ζ1

∂

∂ζ2
+ (1 + |ζ2|2)

∂

∂ζ2

∂

∂ζ2

}

. (5.29)

We need to write ∆ in tangential coordinates. In view of (4.12), one has

∂

∂ζ1
=

1

2

∂

∂u
+

2i
(

1− iζ1 + 2|ζ2|2
)

(1− iζ1)2(1 + iζ1)

∂

∂σ
, (5.30)

∂

∂ζ2
=

4ζ2
|1− iζ1|2

∂

∂σ
+

∂

∂ζ ′2
, (5.31)

and
∂

∂ζ1

∂

∂ζ1
=

∂

∂ζ1

{

1

2

∂

∂u
− 2i

(

1 + iζ1 + 2|ζ2|2
)

(1 + iζ1)2(1− iζ1)

∂

∂σ

}

=

(

1

2

∂

∂u
+

2i
(

1− iζ1 + 2|ζ2|2
)

(1− iζ1)2(1 + iζ1)

∂

∂σ

)

1

2

∂

∂u

− ∂

∂ζ1

(

2i
(

1 + iζ1 + 2|ζ2|2
)

(1 + iζ1)2(1− iζ1)

)

∂

∂σ

−2i
(

1 + iζ1 + 2|ζ2|2
)

(1 + iζ1)2(1− iζ1)

(

1

2

∂

∂u
+

2i
(

1− iζ1 + 2|ζ2|2
)

(1− iζ1)2(1 + iζ1)

∂

∂σ

)

∂

∂σ
.

Similarly,

∂

∂ζ1

∂

∂ζ2
=

(

∂

∂ζ1

4ζ2
|1− iζ1|2

+
4ζ2

|1− iζ1|2
∂

∂ζ1

)

∂

∂σ
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+

(

1

2

∂

∂u
+

2i
(

1− iζ1 + 2|ζ2|2
)

(1− iζ1)2(1 + iζ1)

∂

∂σ

)

∂

∂ζ ′2
,

∂

∂ζ2

∂

∂ζ2
=

(

∂

∂ζ2

4ζ2
|1− iζ1|2

+
4ζ2

|1− iζ1|2
{

4ζ2
|1− iζ1|2

+
∂

∂ζ ′2

})

∂

∂σ

+
4ζ2

|1− iζ1|2
∂

∂σ

∂

∂ζ ′2
+

∂

∂ζ ′2

∂

∂ζ ′2
.

Note that (5.15) is

∆S =
1

2
(2ReZ)2 +

1

2
(2ImZ)2 +

1

2
∂2
ϕ , (5.32)

and each vector field vanishes on σ = r2, hence none of them has ∂/∂σ terms

and neither does ∆S. Consequently, dropping the ∂/∂σ terms from (5.29)

when written in tangential coordinates, the above calculations yield

∆σ =
1

2
|1− iζ1|2

{

(

1 + |ζ|2
) ∂

∂ζ

∂

∂ζ

+
1

2
i

(

(

1 + |ζ|2 − iu
)

ζ
∂

∂ζ
−
(

1 + |ζ|2 + iu
)

ζ
∂

∂ζ

)

∂

∂u

+
1

4

∣

∣1 + |ζ|2 − iu
∣

∣

2 ∂2

∂u2

}

, (5.33)

where we set ζ ′2 = ζ, ζ ′2 = ζ. Note that ∆σ 6= ∆S, since the second term on

the right side of (5.18) does not vanish after dropping all σ-derivatives; see

(5.44) for 2nd derivatives when applied to f(ρ, u). We need the behavior of

∆σ on

f(ρ, u) = g(x) = g

(

1− ρ2 − u2

(1 + ρ)2 + u2

)

, (5.34)

so we look at ∆σf(ρ, u) = ∆f(ρ, u).

(i)
∂f

∂ζ
= ζ

∂f

∂ρ
,

∂

∂ζ

∂f

∂ζ
= ρ

∂2f

∂ρ2
+

∂f

∂ρ
,

(ii)

(

ζ
∂

∂ζ
− ζ

∂

∂ζ

)

∂f

∂u
=

∂

∂u

(

|ζ|2 − |ζ|2
)∂f

∂ρ
= 0,
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(iii)

(

ζ
∂

∂ζ
+ ζ

∂

∂ζ

)

∂f

∂u
= 2|ζ|2 ∂2f

∂ρ∂u
= 2ρ

∂2f

∂ρ∂u
,

so one has

∆f(|ζ|2, u) =
1

2

(

(1 + ρ)2 + u2
)

{

ρ(1 + ρ)
∂2f

∂ρ2
+ (1 + ρ)

∂f

∂ρ
+ ρu

∂2f

∂ρ∂u

+
1

4

(

(1 + ρ)2 + u2
)∂2f

∂u2

}

. (5.35)

Let f(|ζ|2, u) = g(x). With

x+ 1 =
2(1 + ρ)

(1 + ρ)2 + u2
, (5.36)

one has

∂x

∂ρ
=

2

(1 + ρ)2 + u2
− (x+ 1)2,

∂2x

∂ρ2
= 2(x+ 1)3 − 6(x+ 1)

(1 + ρ)2 + u2
,

∂x

∂u
= − 2(x+ 1)u

(1 + ρ)2 + u2
,

∂2x

∂u2
=

6(x+ 1)

(1 + ρ)2 + u2
− 2(x+ 1)3 = −∂2x

∂ρ2
,

∂2x

∂ρ∂u
=

4(x+ 1)2u

(1 + ρ)2 + u2
− 4u
(

(1 + ρ)2 + u2
)2 .

This leads to

∂g

∂ρ
=

(

2

(1+ρ)2+u2
−(x+1)2

)

dg

dx
,

∂2g

∂ρ2
=

(

2

(1 + ρ)2+u2
−(x+1)2

)2 d2g

dx2
+

(

2(x+ 1)3− 6(x+ 1)

(1+ρ)2 + u2

)

dg

dx
,

∂g

∂u
= − 2(x+ 1)u

(1 + ρ)2 + u2
dg

dx
,

∂2g

∂u2
=

4(x+ 1)2u2
(

(1 + ρ)2 + u2
)2

d2g

dx2
+

(

6(x+ 1)

(1 + ρ)2 + u2
− 2(x+ 1)3

)

dg

dx
,

∂2g

∂ρ∂u
= −

(

2

(1 + ρ)2 + u2
− (x+ 1)2

)

2(x+ 1)u

(1 + ρ)2 + u2
d2g

dx2
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+

(

4(x+ 1)2u

(1 + ρ)2 + u2
− 4u
(

(1 + ρ)2 + u2
)2

)

dg

dx
.

Substituting into (5.35) one finds

∆g =
1

2

(

(1 + ρ)2 + u2
)

·
{

ρ(1 + ρ)

(

2

(1 + ρ)2 + u2
− (x+ 1)2

)2 d2g

dx2

+ρ(1 + ρ)

(

2(x+ 1)3 − 6(x+ 1)

(1 + ρ)2 + u2

)

dg

dx

+(1 + ρ)

(

2

(1 + ρ)2 + u2
− (x+ 1)2

)

dg

dx

−ρ

(

2

(1 + ρ)2 + u2
− (x+ 1)2

)

2(x+ 1)u2

(1 + ρ)2 + u2
d2g

dx2

+ρ

(

4(x+ 1)2u2

(1 + ρ)2 + u2
− 4u2
(

(1 + ρ)2 + u2
)2

)

dg

dx

+
(x+ 1)2u2

(1 + ρ)2 + u2
d2g

dx2
+ (x+ 1)

(

3

2
− (x+ 1)(1 + ρ)

)

dg

dx

}

. (5.37)

First we collect the coefficients of d2g/dx2:

2ρ(1 + ρ)

(1 + ρ)2 + u2
(1− (x+ 1)(1 + ρ))2 − 2ρ(x+ 1)u2

(1 + ρ)2 + u2

+ρ(x+ 1)3u2 +
1

2
(x+ 1)2u2

= (x+ 1)

{

ρ− 2ρ(x+ 1)(1 + ρ) + ρ(x+ 1)2(1 + ρ)2 − 2ρu2

(1 + ρ)2 + u2

+ ρ(x+ 1)2u2 +
1

2
(x+ 1)u2

}

= (x+ 1)

{

ρ− 2ρu2

(1 + ρ)2 + u2
+

1

2
(x+ 1)u2

}

=
x+ 1

(1 + ρ)2 + u2
(

ρ(1 + ρ)2 − ρu2 + (1 + ρ)u2
)

=
2[ρ(1 + ρ)3 + (1 + ρ)u2]

(

(1 + ρ)2 + u2
)2 .
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Continuing, the coefficient of dg/dx is

2ρ(1 + ρ)2(x+ 1)2 − 3ρ(1 + ρ)(x+ 1) + 1 + ρ− (1 + ρ)2(x+ 1)

+2ρu2(x+ 1)2 − 2ρu2

(1 + ρ)2 + u2
+

3

2
(1 + ρ)− (1 + ρ)2(x+ 1)

= ρ(1 + ρ)(x+ 1) +
5

2
(1 + ρ)− 2(1 + ρ)2(x+ 1)− 2ρu2

(1 + ρ)2 + u2

=
1

(1 + ρ)2 + u2
{

2ρ(1 + ρ)2 − 4(1 + ρ)3 − 2ρu2
}

+
5

2
(1 + ρ)

=
1

(1 + ρ)2 + u2
{

−2ρ((1 + ρ)2 + u2)− 4(1 + ρ)2
}

+
5

2
(1 + ρ)

=
5

2
+

1

2
ρ− 4(1 + ρ)2

(1 + ρ)2 + u2
.

Consequently, one has

∆g =
2[ρ(1 + ρ)3 + (1 + ρ)u2]

(

(1 + ρ)2 + u2
)2

d2g

dx2
+

(

5

2
+

1

2
ρ− 4(1 + ρ)2

(1 + ρ)2 + u2

)

dg

dx
. (5.38)

We are using (5.18) to find ∆S g. So far we obtained ∆g and we still need

1
2 (N +N)2g + 3

2r (N +N)g. A simple calculation yields

N = − 1

2r
(1− iζ1)

{

i(1 + iζ1)
∂

∂ζ1
− ζ2

∂

∂ζ2

}

. (5.39)

1) We start by finding the coefficient of d2g/dx2 in

1

2
(N +N)2g = Re(N2 +NN)g. (5.40)

Let [N2],2 denote the second order (ζ1, ζ2)-derivatives in N2. Then on bD2,

i.e. when r = 1, one has

4
[

N2
]

,2
= (1− iζ1)ζ2(2N)

∂

∂ζ2
− i(1 + ζ21 )(2N)

∂

∂ζ1

= (1− iζ1)
2ζ22

∂2

∂ζ22
− i(1− iζ1)ζ2(1 + ζ21 )

∂

∂ζ1

∂

∂ζ2

−i(1− iζ1)ζ2(1 + ζ21 )
∂

∂ζ2

∂

∂ζ1
− (1 + ζ21)

2 ∂2

∂ζ21
. (5.41)
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We replace the derivatives by (5.30) and (5.31) and set ζ ′2 = ζ. Then,

4
[

N2
]

,2
f = (1−iζ1)

2|ζ|4∂
2f

∂ρ2

−i(1−iζ1)(1+ζ21 )|ζ|2
∂2f

∂ρ∂u
− 1

4
(1 + ζ21 )

2 ∂
2f

∂u2
. (5.42)

Similarly,

4
[

NN
]

,2
f = |1− iζ1|2|ζ|2

(

∂f

∂ρ
+ |ζ|2 ∂

2f

∂ρ2

)

−1

2
i|ζ|2

{

(1 + ζ21 )(1 + iζ1)− (1 + ζ1
2
)(1 − iζ1)

} ∂2f

∂ρ∂u

+
1

4
(1 + ζ21 )(1 + ζ1

2
)
∂2f

∂u2
, (5.43)

and then

4
[

N2 +NN
]

,2
f

=
{

(1− iζ1)
2 + |1− iζ1|2

}

|ζ|4∂
2f

∂ρ2

−1

2
i|ζ|2

{

(1+ζ21 )(1+iζ1)−(1+ζ1
2
)(1−iζ1)+2(1−iζ1)(1+ζ21 )

} ∂2f

∂ρ∂u

−1

4

{

(1 + ζ21 )
2 − (1 + ζ21 )(1 + ζ1

2
)
} ∂2f

∂u2
+ |1− iζ1|2|ζ|2

∂f

∂ρ
.

To this we add its complex conjugate which yields

8Re
[

N2+NN
]

,2
f =

[

(1− iζ1) + (1 + iζ1)
]2 |ζ|4 ∂

2f

∂ρ2

−i|ζ|2
[

(1 + ζ21 )− (1 + ζ1
2
)
]

[

1− iζ1 + 1 + iζ1
] ∂2f

∂ρ∂u

−1

4

[

(1 + ζ21 )− (1 + ζ1
2
)
]2 ∂2f

∂u2
+ 2|1− iζ1|2|ζ|2

∂f

∂ρ

= 4ρ2(1 + ρ)2
∂2f

∂ρ2
+ 8ρ2(1 + ρ)u

∂2f

∂ρ∂u
+ 4ρ2u2

∂2f

∂u2

+2ρ
(

(1 + ρ)2 + u2
) ∂f

∂ρ
. (5.44)
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From (5.40),

Re
(

N2 +NN
)

=
1

2

(

N +N
)2

, (5.45)

so
1

2

[

(

N +N
)2
]

,2
f =

1

2
ρ2(1 + ρ)2

∂2f

∂ρ2
+ ρ2(1 + ρ)u

∂2f

∂ρ∂u

+
1

2
ρ2u2

∂2f

∂u2
+

1

4
ρ
(

(1 + ρ)2 + u2
) ∂f

∂ρ
. (5.46)

We might as well find the coefficients of g′′(x) just to make sure that we are

on the right track. Set f(ρ, u) = g(x) and replace the (ρ, u)-derivatives with

the x-derivatives using the formulas between (5.36) and (5.37):

1

2

[

(

N +N
)2
]

,2
g = ρ2

{

2(1 + ρ)2
(

1− (x+ 1)(1 + ρ)

(1 + ρ)2 + u2

)2 d2g

dx2

+(1 + ρ)2
(

(x+ 1)3 − 3(x+ 1)

(1 + ρ)2 + u2

)

dg

dx

−2(1 + ρ)
1− (x+ 1)(1 + ρ)

(1 + ρ)2 + u2
2(x+ 1)u2

(1 + ρ)2 + u2
d2g

dx2

+4(1 + ρ)

(

(x+ 1)2u2

(1 + ρ)2 + u2
− u2
(

(1+ρ)2+u2
)2

)

dg

dx

+
2(x+ 1)2u4

(

(1 + ρ)2 + u2
)2

d2g

dx2

+u2
(

3(x+ 1)

(1 + ρ)2 + u2
− (x+ 1)3

)

dg

dx

}

+
1

2
ρ
(

1− (x+ 1)(1 + ρ)
)dg

dx
. (5.47)

We collect the coefficients of d2g/dx2:

1

2

[

(

N +N
)2
]

,2
g

=
2ρ2

(

(1 + ρ)2 + u2
)2

·
{

(1 + ρ)2
(

1− (x+ 1)(1 + ρ)
)2

−2(1 + ρ)
(

1− (x+ 1)(1 + ρ)
)

(x+ 1)u2 + (x+ 1)2u4
}d2g

dx2
+ · · ·
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=
2ρ2

(

(1 + ρ)2 + u2
)2

[

(1 + ρ)
(

1− (x+ 1)(1 + ρ)
)

− (x+ 1)u2
]2 d2g

dx2
+ · · ·

=
2ρ2

(

(1 + ρ)2 + u2
)2

[

(1 + ρ)− (x+ 1)
(

(1 + ρ)2 + u2
)]2 d2g

dx2
+ · · ·

=
2ρ2(1 + ρ)2

(

(1 + ρ)2 + u2
)2

d2g

dx2
+ · · · , (5.48)

where · · · denotes dg/dx terms. Consequently, (5.37), (5.48) and (5.18) yield

∆S g = ∆g − 1

2

(

N +N
)2

g − 3

2

(

N +N
)

g

=
2[ρ(1 + ρ)3 + (1 + ρ)u2]− 2ρ2(1 + ρ)2

(

(1 + ρ)2 + u2
)2

d2g

dx2
+ · · ·

=
2[ρ(1 + ρ)2 + (1 + ρ)u2]

(

(1 + ρ)2 + u2
)2

d2g

dx2
+ · · · , (5.49)

where we set r = 1. Now

4ρ(1 + ρ)2 + 4(1 + ρ)u2

=
[

(1 + ρ)4 − (1− ρ2)2
]

+ 2u2
[

(1 + ρ)2 + (1− ρ2)
]

=
[(

(1 + ρ)2 + u2
)

−
(

1− ρ2 − u2
)] [(

(1 + ρ)2 + u2
)

+
(

1− ρ2 − u2
)]

=
(

(1 + ρ)2 + u2
)2 −

(

1− ρ2 − u2
)2

, (5.50)

so,

∆S g =
1

2
(1− x2)

d2g

dx2
+ · · · , (5.51)

as expected.

2) To find the coefficient of dg/dx start with

1

2

[

(

N +N
)2
]

,1
= Re

[

N2 +NN
]

,1
. (5.52)

We use (5.39) in the form

N =
(1− iζ1)ζ2

2r

∂

∂ζ2
− i

1 + ζ21
2r

∂

∂ζ1
, (5.53)
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and note that Nr = Nr = 1/2. Then

[

N2
]

,1
= N

(

(1− iζ1)ζ2
2r

)

∂

∂ζ2
− iN

(

1 + ζ21
2r

)

∂

∂ζ1

= −(1− iζ1)(1 + 2iζ1)

4r2

{

ζ2
∂

∂ζ2
− i(1 + iζ1)

∂

∂ζ1

}

. (5.54)

Similarly,

[

NN
]

,1
= −1 + iζ1

4r2

{

ζ2
∂

∂ζ2
+ i(1− iζ1)

∂

∂ζ1

}

. (5.55)

In tangential coordinates, (5.30), (5.31), one has

4
[

N2
]

,1
= −(1− iζ1)(1 + 2iζ1)

{

ζ
∂

∂ζ
− i(1 + iζ1)

1

2

∂

∂u

}

; (5.56)

after dropping ∂/∂σ and setting r = 1. Also

4
[

NN
]

,1
= −(1 + iζ1)

{

ζ
∂

∂ζ
+ i
(

1− iζ1
) 1

2

∂

∂u

}

, (5.57)

and

4
[

N2+NN
]

,1

= −(1−iζ1)(1+2iζ1)ζ
∂

∂ζ
−(1+iζ1)ζ

∂

∂ζ

+
1

2
i{(1−iζ1)(1+iζ1)(1+2iζ1)−(1+iζ1)(1−iζ1)}

∂

∂u
. (5.58)

Working with (5.58),

{· · · } = (1 + ρ− iu)(1 − ρ+ iu)(1− 2ρ+ 2iu)− (1 + ρ+ iu)(1 − ρ− iu)

= 2ρ(ρ2 − 1− 3u2) + i2u(1 + 2ρ− 3ρ2 + u2), (5.59)

and the rest of (5.58) applied to f(|ζ|2, u) yields

−(1− iζ1)(1 + 2iζ1)ζ
∂f

∂ζ
−
(

1 + iζ1
)

ζ
∂f

∂ζ

= −ρ {(1 + ρ− iu)(1− 2ρ+ 2iu) + (1 + ρ+ iu)} ∂f

∂ρ

=
{

2ρ(ρ2 − 1− u2)− i2ρu(1 + 2ρ)
} ∂f

∂ρ
. (5.60)



34 PETER GREINER AND YUTIAN LI [March

Hence, (5.58), (5.59) and (5.60) give

1

2

[

(

N +N
)2
]

,1
f = Re

[

N2 +NN
]

,1
f

=
1

2
ρ(ρ2 − 1− u2)

∂f

∂ρ
+
1

4
u(3ρ2−2ρ−1−u2)

∂f

∂u
. (5.61)

To find
(

N +N
)

f we introduce tangential coordinates in (5.53), drop ∂/∂σ

and set r = 1. Then

(

N +N
)

f

=
1

2

{

(1− iζ1)ζ
∂f

∂ζ
+ (1 + iζ1)ζ

∂f

∂ζ
− i(1 + ζ21 )

1

2

∂f

∂u
+ i(1 + ζ1

2
)
1

2

∂f

∂u

}

= ρ(1 + ρ)
∂f

∂ρ
+ ρu

∂f

∂u
. (5.62)

Collecting all the first order (ρ, u)-derivatives, including the one in (5.46),

one has

c1 =
1

2

[

(

N +N
)2
]

,1
f +

3

2

(

N +N
)

f +
1

4
ρ
(

(1 + ρ)2 + u2
) ∂f

∂ρ

=
1

4
ρ
(

3(1 + ρ)2 + 2(1 + ρ)− u2
) ∂f

∂ρ
+

1

4
u(3ρ2 + 4ρ− 1− u2)

∂f

∂u
,(5.63)

and setting f(ρ, u) = g(x) one finds

c1 =
1

2 ((1 + ρ)2 + u2)

{(

3ρ(1 + ρ)2 + 2ρ(1 + ρ)− ρu2
) (

1− (1 + ρ)(x+ 1)
)

−(3ρ2 + 4ρ− 1− u2)(x+ 1)u2
} dg

dx
. (5.64)

We simplify this:

{· · · } = 3ρ(1 + ρ)2 − 2ρ(1 + ρ)− ρu2

+
(

−3ρ(1 + ρ)3 − 2ρ2u2 − ρu2 + u2 + u4
)

(x+ 1)

= 3ρ(1 + ρ)2 − 2ρ(1 + ρ)− ρu2 + (x+ 1)
[

− 2ρ(1 + ρ)2

−(ρ+ 2ρ2)
(

(1 + ρ)2 + u2
)

− ρ2(1 + ρ)2 + u2 + u4
]

= 3ρ(1 + ρ)2 − 4ρ(1 + ρ)− ρu2 − 4ρ2(1 + ρ)

+(x+ 1)
[

u2 + u4 − (2ρ+ ρ2)(1 + ρ)2
]

= −ρ
(

(1 + ρ)2 + u2
)

+ 2(1 + ρ)− (x+ 1)
(

(1 + ρ)4 − u4
)
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= −ρ
(

(1 + ρ)2 + u2
)

+ 2(1 + ρ)− 2(1 + ρ)
(

(1 + ρ)2 − u2
)

,

so,

c1 =

(

(1 + ρ)(1 + u2 − (1 + ρ)2)

(1 + ρ)2 + u2
− 1

2
ρ

)

dg

dx
. (5.65)

c1 does not include all the first order x-derivatives of g in

∆g − 1

r2
∆S g =

1

2

[

(N +N)2 +
3

r
(N +N)

]

g,

see (5.18). There are 3 more such terms which come from the second order

(ρ, u)-derivatives of g in (5.47). We collect these in

ρ2

(1 + ρ)2 + u2
{2(1+ρ)(x+1)2((1+ρ)2+u2)−3(x+1)(1+ρ)2+(x+1)u2}

=
2ρ2(1 + ρ)

(1 + ρ)2 + u2
.

Adding this to c1 yields

(

(1 + ρ)(ρ2 + u2 − 2ρ)

(1 + ρ)2 + u2
− 1

2
ρ

)

dg

dx
. (5.66)

To find the coefficient of dg/dx in ∆S we subtract the coefficient in (5.66)

from the coefficient of dg/dx in (5.38), as in (5.18), and find

5

2
+ ρ− (1 + ρ)(4 + 4ρ+ ρ2 + u2 − 2ρ)

(1 + ρ)2 + u2

=
5

2
+ ρ− (1 + ρ)

(

(1 + ρ)2 + u2 + 3
)

(1 + ρ)2 + u2

=
3

2

[

1− 2(1 + ρ)

(1 + ρ)2 + u2

]

= −3

2
x, (5.67)

and we have completed the derivation of Lemma 9. ���

Finally, the combination of Lemma 9 and the Cayley transform implies
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Theorem 10. The heat kernel p
S
of ∆S on bD2 is given by

p
S

=
e

1
2
t

(2πt)3/2
e−

γ2

2t
γ

sin γ
, (5.68)

where

γ = cos−1 x = cos−1 1− ρ2 − u2

(1 + ρ)2 + u2
, (5.69)

and

sin γ =
2
√

(1 + ρ) (ρ(1 + ρ) + u2)

(1 + ρ)2 + u2
. (5.70)

One notes that the higher dimensional heat kernels can be obtained by

differentiating (5.68). Also, (5.68) is the heat kernel from the origin. Given

two arbitrary points, p
S
has the form (5.68) after moving the origin to one

of the given points by the Cayley transform of the appropriate element of

the Euclidean rotation group.
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