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Abstract

This paper explores Exact Weak Laws and their almost sure counterparts. First we

show that the weighted sums of our infinite mean random variables can be balanced by a

carefully selected sequence, i.e., that the ratio converges to one in probability. Then it is

shown that the upper limit is almost surely infinity, while the lower limit is one.

1. Introduction

An exact limit theorem is where the numerator and denominator in some

sense approaches one. That means that the sum of the random variables in

the numerator are balanced appropriately by the constants in the denomina-

tor. The sum in the numerator can be considered the winnings of some game

while the denominator would be the cumulative entrance fee after those n

games have been played. The house and the gambler would only play this

game if it was fair in some sense.

In this paper we extend the work done in [2] and [5]. Here we generalize

the distribution used in both papers to P{Xj > x} = logα(x+j)
x+j

. We use

the classic slowly varying function logarithm and since we want our random

variables to have infinite expectations, we set α ≥ −1. Besides establishing

the Weak Laws (Section 2) we also obtain the precise almost sure bounds

(Section 3). As suggested in [2] and done in [5], it would be nice to extend

this work for a more general sequence than just j. We would like to do

both, we would like to obtain limit theorems when P{Xj > x} =
L(x+cj)
x+cj
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for any sequence cj and any slowly varying function L(x). But that is very

complicated, especially determining which random variables do not have a

finite mean. So we will stay with cj = j, but look at various powers of

logarithm.

Since the random variables have 1 − FXj
(x) = logα(x+j)

x+j
where x > 0

and α > −1, we set P{Xj = 0} = 1 − logα(j)
j

and by differentiating FXj
(x)

we obtain

fXj
(x) =

logα(x+ j)− α logα−1(x+ j)

(x+ j)2
.

In terms of notation we use lg x = log x with the base e, but whenever we

have log 1 in a denominator we will just set that equal to one, so we won’t be

dividing by zero. Hence lg x = lnx, except lg 1 = 1. We set lg2 x = lg(lg x),

lg3 x = lg(lg2 x) and lg4 x = lg(lg3 x), so the i in lgi x is not the base, it is

the iteration of the logarithm. Many times in the proofs we will pull the

logarithm out from an integral, since it is a slowly varying function, see [4],

pages 279-284. Finally, note that the constant C will be used as a generic

bound that is not necessarily the same in each appearance.

2. Exact Weak Laws

We first look at α > −1, then we explore what happens when α equals

minus one.

Theorem 1. If P{Xj > x} = lgα(x+j)
x+j

where α > −1, then

∑n
j=1

1
j
Xj

lgα+1(n) lg2(n)

P
→ 1.

Proof. We will establish all three parts of the Degenerate Convergence

Criterion, see [3], page 356. Let aj = 1/j and bn = lgα+1(n) lg2(n). Even

though all the terms are quite similar, we will see that all of them go to zero

except for one. And that one is only one of four in our truncated mean

n
∑

j=1

aj
bn

EXjI(ajXj ≤ bn)
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=
1

bn

n
∑

j=1

1

j

∫ bnj

0
x

[

lgα(x+ j)− α lgα−1(x+ j)

(x+ j)2

]

dx

=
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

(u− j)

[

lgα(u)− α lgα−1(u)

u2

]

du

=
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

[

lgα(u)

u
−

j lgα(u)

u2
−

α lgα−1(u)

u
+

αj lgα−1(u)

u2

]

du

=
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

lgα(u)du

u
−

1

bn

n
∑

j=1

∫ (bn+1)j

j

lgα(u)du

u2

−
α

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

lgα−1(u)du

u
+

α

bn

n
∑

j=1

∫ (bn+1)j

j

lgα−1(u)du

u2

= I1 + I2 + I3 + I4.

Letting w = lg u, the first term becomes

I1 =
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

lgα(u)du

u

=
1

bn

n
∑

j=1

1

j

∫ lg[(bn+1)j]

lg(j)
wαdw

=
1

(α+ 1)bn

n
∑

j=1

1

j
[lgα+1((bn + 1)j) − lgα+1(j)]

=
1

(α+ 1)bn

n
∑

j=1

lgα+1(j)

j

[(

lg(bn + 1) + lg(j)

lg(j)

)α+1

− 1

]

=
1

(α+ 1)bn

n
∑

j=1

lgα+1(j)

j

[(

1 +
lg(bn + 1)

lg(j)

)α+1

− 1

]

.

The Taylor Series for (1 + x)α+1 is

(1 + x)α+1 = 1 + (α+ 1)x+
(α+ 1)αx2

2
+

(α+ 1)α(α − 1)x3

6
+ · · ·

which is the usual Binomial Theorem if α + 1 is an integer, meaning it is

a finite sum. Otherwise, it becomes an alternating series and the error is

less than the ensuing term, which is just as good, since x = lg(bn +1)/ lg(j)
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is small as long as j exceeds some value say J0. Thus the main term is

essentially

1

(α+ 1)bn

n
∑

j=1

lgα+1(j)

j

[

(α+ 1) lg(bn + 1)

lg(j)

]

∼
lg(bn)

bn

n
∑

j=1

lgα(j)

j

∼

(

lg(bn)

bn

)(

lgα+1(n)

α+ 1

)

∼

(

(α+ 1) lg2(n)

lgα+1(n) lg2(n)

)(

lgα+1(n)

α+ 1

)

= 1.

As for any of the higher powers in this expansion, say p ≥ 2, they are

bounded above by

C

bn

n
∑

j=1

lgα+1(j)

j

(

lg(bn + 1)

lg(j)

)p

≤
C lgp(bn)

bn

n
∑

j=1

lgα−p+1(j)

j
.

And by examining the the three cases we get, if α− p+ 1 < −1

C lgp(bn)

bn

n
∑

j=1

lgα−p+1(j)

j
≤

C lgp(bn)

bn
→ 0

and if α− p+ 1 = −1, it is bounded above by

C lgp(bn)

bn

n
∑

j=1

lgα−p+1(j)

j
≤

C lgp(bn) lg2(n)

bn
≤

C lgp+1
2 (n)

lgα+1(n) lg2(n)

=
C lgp2(n)

lgp−1(n)
→ 0

and finally if α− p+ 1 > −1, then this term is bounded above by

C lgp(bn)

bn

n
∑

j=1

lgα−p+1(j)

j

≤
C lgp(bn) lg

α−p+2(n)

bn
≤

C lgp2(n) lg
α−p+2(n)

lgα+1(n) lg2(n)
=

C lgp−1
2 (n)

lgp−1(n)
→ 0.

This shows how delicate the selection of bn is. Now we need to examine the
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other three terms in our truncated mean. Those and the other two terms

in the Degenerate Convergence Theorem all go to zero. The second term in

the truncated mean, by using slow variation, is bounded above by

|I2| =

∣

∣

∣

∣

∣

−1

bn

n
∑

j=1

∫ (bn+1)j

j

lgα(u)du

u2

∣

∣

∣

∣

≤
1

bn

n
∑

j=1

∫

∞

j

lgα(u)du

u2

≤
C

bn

n
∑

j=1

lgα(j)

j
≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.

The third term is similar to the first, but with one less power of logarithm,

it is bounded above by

|I3| =

∣

∣

∣

∣

∣

−α

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

lgα−1(u)du

u

∣

∣

∣

∣

≤
C

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

lgα−1(u)du

u

≤
C

bn

n
∑

j=1

1

j

∫ lg[(bn+1)j]

lg(j)
wα−1dw

≤
C

bn

n
∑

j=1

1

j
[lgα((bn + 1)j) − lgα(j)]

=
C

bn

n
∑

j=1

lgα(j)

j

[(

lg(bn + 1) + lg(j)

lg(j)

)α

− 1

]

=
C

bn

n
∑

j=1

lgα(j)

j

[(

1 +
lg(bn + 1)

lg(j)

)α

− 1

]

.

Using the Binomial expansion once again, we have for the first term

C

bn

n
∑

j=1

(

lgα(j)

j

)(

α lg(bn + 1)

lg(j)

)

≤
C lg(bn)

bn

n
∑

j=1

lgα−1(j)

j

≤
C lg(bn) lg

α(n)

bn
≤

C

lg n
→ 0.

Likewise, the ensuing powers in the expansion make those terms go to zero
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as well. Finally, the fourth term in our mean is

I4 =
α

bn

n
∑

j=1

∫ (bn+1)j

j

lgα−1(u)du

u2
≤

C

bn

n
∑

j=1

∫

∞

j

lgα−1(u)du

u2

≤
C

bn

n
∑

j=1

lgα−1(j)

j
≤

C lgα(n)

bn
=

C

lg(n) lg2(n)
→ 0.

Note that, we just assumed that α > 0, but if −1 < α ≤ 0, these terms also

vanishes as n goes to infinity.

Next we look at the second moment term in the Degenerate Convergence

Theorem

1

b2n

n
∑

j=1

a2jEX2
j I(ajXj ≤ bn)

=
1

b2n

n
∑

j=1

1

j2

∫ bnj

0
x2

[

lgα(x+ j) − α lgα−1(x+ j)

(x+ j)2

]

dx

≤
C

b2n

n
∑

j=1

1

j2

∫ bnj

0

x2 lgα(x+ j)dx

(x+ j)2

≤
C

b2n

n
∑

j=1

1

j2

∫ bnj

0
lgα(x+ j)dx

=
C

b2n

n
∑

j=1

1

j2

∫ (bn+1)j

j

lgα(u)du.

If α = 0, which was already established in [2], then this term is

C

b2n

n
∑

j=1

1

j2
[(bn + 1)j − j] =

C

bn

n
∑

j=1

1

j
≤

C

lg2(n)
→ 0.

And if −1 < α < 0, then this term is

C

b2n

n
∑

j=1

1

j2

∫ (bn+1)j

j

lgα(u)du ≤
C

bn

n
∑

j=1

lgα(j)

j
≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.
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Finally, if α > 0, then this term is

C

b2n

n
∑

j=1

1

j2

∫ (bn+1)j

j

lgα(u)du ≤
C

b2n

n
∑

j=1

1

j2
lgα((bn + 1)j)

∫ (bn+1)j

j

du

=
C

b2n

n
∑

j=1

1

j2
lgα((bn + 1)j)[(bn + 1)j − j]

=
C

b2n

n
∑

j=1

1

j2
lgα((bn + 1)j)[bnj]

=
C

bn

n
∑

j=1

1

j
lgα((bn + 1)j)

=
C

bn

n
∑

j=1

1

j

(

lg(bn + 1) + lg j

)α

=
C

bn

n
∑

j=1

lgα(j)

j

(

lg(bn + 1)

lg(j)
+ 1

)α

.

Once again using the expansion (1+ x)α = 1+αx+α(α− 1)x2/2 · · · which

is either finite or eventually an alternating series, we see that this limit is

zero. The first term is

C

bn

n
∑

j=1

lgα(j)

j
(1) ≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.

The next term is αx, where x = lg(bn + 1)/ lg(j), which is small for most

values of j. We could split the sum into two parts, where one sum is
∑J0

j=1

and the second sum is
∑n

j=J0+1 where x < 1, when j exceeds J0. The first

sum would go to zero as n went to infinity since bn → ∞. Thus the second

term is in our series expansion of (1 + x)α is

C

bn

n
∑

j=1

lgα(j)

j

(

α lg(bn + 1)

lg(j)

)

≤
C lg(bn)

bn

n
∑

j=1

lgα−1(j)

j

≤
C lg2(n) lg

α(n)

lgα+1(n) lg2(n)
=

C

lg n
→ 0.

Now the rest of the binomial series has powers xp for p ≥ 2. Either this

series terminates or eventually alternates. In either case for the term xp, we
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have

C

bn

n
∑

j=1

lgα(j)

j

(

lg(bn + 1)

lg(j)

)p

≤
C lgp(bn)

bn

n
∑

j=1

lgα−p(j)

j

≤
C lgp2(n) lg

α−p+1(n)

lgα+1(n) lg2(n)
=

C lgp−1
2 (n)

lgp(n)
→ 0

where we are assuming that α − p + 1 > 0, but we easily show that all of

these terms go to zero in every setting. Thus the variance term does vanish

as n goes to infinity.

The last limit in the Degenerate Convergence Theorem are the tail prob-

abilities, but that limit is zero just like the last one, since for all ǫ > 0

n
∑

j=1

P{Xj > ǫbnj} =

n
∑

j=1

(lg(ǫbnj + j))α

ǫbnj + j

=
1

ǫbn + 1

n
∑

j=1

(lg(ǫbn + 1) + lg(j))α

j

≤
C

bn

n
∑

j=1

(lg(ǫbn + 1) + lg(j))α

j
.

If −1 < α ≤ 0, then this is bounded above by

C

bn

n
∑

j=1

lgα(j)

j
≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.

However, if α > 0, this term becomes

C

bn

n
∑

j=1

lgα(j)

j

(

lg(ǫbn + 1)

lg(j)
+ 1

)α

.

Again using (1 + x)α = 1 + αx + α(α − 1)x2/2 · · · , which is either a finite

sum or an alternating series, we have for the first term

C

bn

n
∑

j=1

lgα(j)

j
(1) ≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.
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Next, observing the αx term, which is

C

bn

n
∑

j=1

lgα(j)

j

(

α lg(ǫbn + 1)

lg(j)

)

≤
C lg(ǫbn + 1)

bn

n
∑

j=1

lgα−1(j)

j

≤
C lg2(n) lg

α(n)

lgα+1(n) lg2(n)
=

C

lg n
→ 0.

The value of x = lg(ǫbn + 1)/ lg(j), is small for most values of j in our

series expansion of (1 + x)α. We can make this rigorous by splitting the

sum into two parts, where one sum is
∑J0

j=1 and the second sum is
∑n

j=J0+1

where x < 1, when j exceeds J0, but that isn’t necessary. This series either

terminates, when α is an integer or it eventually alternates, so looking at

the xp term with p an integer greater than one, we have

C

bn

n
∑

j=1

lgα(j)

j

(

lg(ǫbn + 1)

lg(j)

)p

≤
C lgp(bn)

bn

n
∑

j=1

lgα−p(j)

j
.

If α− p < −1, this is bounded above by

C lgp(bn)

bn
≤

C lgp2(n)

lgα+1(n) lg2(n)
=

C lgp−1
2 (n)

lgα+1(n)
→ 0.

If α− p = −1, this is bounded above by

C lgp+1
2 (n)

lgα+1(n) lg2(n)
=

C lgp2(n)

lgp(n)
→ 0.

Finally, if α− p exceeds minus one, an upper bound is

C lgp2(n) lg
α−p+1(n)

lgα+1(n) lg2(n)
=

C lgp−1
2 (n)

lgp(n)
→ 0

completing this proof. ���

We set the parameter α larger than minus one, so that these random

variables have infinite expectation. If the expectation was finite, then the

classic Laws of Large Numbers would apply. Next, we examine what happens

when α = −1. In keeping with the spirit of non-integrable random variables,

we now assume P{Xj > x} = 1
(x+j) lg(x+j) . Thus P{Xj = 0} = 1 − 1

j lg(j)
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and by differentiating FXj
(x) = 1− P{Xj > x} we obtain

fXj
(x) =

lg(x+ j) + 1

(x+ j)2 lg2(x+ j)
.

Theorem 2. If P{Xj > x} = 1
(x+j) lg(x+j) , then

∑n
j=1

1
j
Xj

lg2(n) lg3(n)

P
→ 1.

Proof. We start once again by examining the truncated mean, which shows

that our selection of bn = lg2(n) lg3(n) is the correct choice

n
∑

j=1

aj
bn

EXjI(ajXj ≤ bn)

=
1

bn

n
∑

j=1

1

j

∫ bnj

0
x

[

lg(x+ j) + 1

(x+ j)2 lg2(x+ j)

]

dx

=
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

(u− j)

[

lg(u) + 1

u2 lg2(u)

]

du

=
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

du

u lg(u)
−

1

bn

n
∑

j=1

∫ (bn+1)j

j

du

u2 lg(u)

+
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

du

u lg2(u)
−

1

bn

n
∑

j=1

∫ (bn+1)j

j

du

u2 lg2(u)

= I1 + I2 + I3 + I4.

Letting w = lg(u), the first term becomes

I1 =
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

du

u lg u
=

1

bn

n
∑

j=1

1

j

∫ lg[(bn+1)j]

lg j

dw

w

=
1

bn

n
∑

j=1

1

j
[lg2((bn + 1)j) − lg2(j)] =

1

bn

n
∑

j=1

1

j
lg

[

lg(bn + 1) + lg(j)

lg(j)

]

=
1

bn

n
∑

j=1

1

j
lg

[

lg(bn + 1)

lg(j)
+ 1

]

.

We use the series expansion of lg(x + 1) = x − x2/2 + x3/3 + · · · with

x = lg(bn + 1)/ lg(j), which is small if j exceeds some value, say J0. This is
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an alternating series and the only significant term is the x term. Plugging

in x into I1 we have

1

bn

n
∑

j=1

lg(bn + 1)

j lg(j)
∼

lg(bn)

bn

n
∑

j=1

1

j lg(j)
∼

lg3(n) lg2(n)

bn
= 1.

Any other term, xp, with p ≥ 2 is

1

bn

n
∑

j=1

lgp(bn + 1)

j lgp(j)
≤

C lgp(bn)

bn
≤

lgp−1
3 (n)

lg2(n)
→ 0

since lg(bn) = lg3(n)+ lg4(n) ∼ lg3(n). That is the only nonzero limit, since

|I2| =

∣

∣

∣

∣

∣

−1

bn

n
∑

j=1

∫ (bn+1)j

j

du

u2 lg(u)

∣

∣

∣

∣

∣

≤
1

bn

n
∑

j=1

∫

∞

j

du

u2 lg(u)

≤
C

bn

n
∑

j=1

1

j lg(j)
≤

C lg2(n)

bn
=

C

lg3(n)
→ 0

and

I3 =
1

bn

n
∑

j=1

1

j

∫ (bn+1)j

j

du

u lg2(u)

≤
1

bn

n
∑

j=1

1

j

∫

∞

j

du

u lg2(u)

≤
C

bn

n
∑

j=1

1

j lg(j)
≤

C lg2(n)

bn
=

C

lg3(n)
→ 0

and finally

|I4| =

∣

∣

∣

∣

∣

−1

bn

n
∑

j=1

∫ (bn+1)j

j

du

u2 lg2(u)

∣

∣

∣

∣

∣

≤
1

bn

n
∑

j=1

∫

∞

j

du

u2 lg2(u)

≤
C

bn

n
∑

j=1

1

j lg2(j)
≤

C

bn
→ 0.

Next, we look at the second moment term in the Degenerate Convergence

Theorem

1

b2n

n
∑

j=1

a2jEX2
j I(ajXj ≤ bn) =

1

b2n

n
∑

j=1

1

j2

∫ bnj

0
x2

[

lg(x+ j) + 1

(x+ j)2 lg2(x+ j)

]

dx
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=
1

b2n

n
∑

j=1

1

j2

∫ (bn+1)j

j

(u− j)2[lg(u) + 1]du

u2 lg2(u)

≤
C

b2n

n
∑

j=1

1

j2

∫ (bn+1)j

j

du

lg(u)

≤
C

b2n

n
∑

j=1

1

j2 lg(j)

∫ (bn+1)j

j

du =
C

b2n

n
∑

j=1

bnj

j2 lg(j)

=
C

bn

n
∑

j=1

1

j lg(j)
≤

C lg2(n)

bn
=

C

lg3(n)
→ 0.

As for the tail probabilities, we have for all ǫ > 0

n
∑

j=1

P{Xj > ǫbnj} =
n
∑

j=1

1

(ǫbnj + j) lg(ǫbnj + j)

=

n
∑

j=1

1

(ǫbn + 1)j lg[(ǫbn + 1)j]

=
1

ǫbn + 1

n
∑

j=1

1

j[lg(ǫbn + 1) + lg(j)]

≤
C

bn

n
∑

j=1

1

j lg(j)

≤
C lg2(n)

bn
=

C

lg3(n)
→ 0.

3. Almost Sure Results

The Weak Laws established in the last section will be used to obtain one

sided Strong Laws. The easy part was done in both [2] and [5]. By using

the technique from [1] we can get an exact lower bound. But the problem is

in selecting the right sequence dn. Note that the in both proofs we need one

series to converge and the other series to diverge where both series differ by

just a power of lg2 n and lg3 n, respectively.

Theorem 3. If P{Xj > x} = lgα(x+j)
x+j

where α > −1, then

lim inf
n→∞

∑n
j=1

1
j
Xj

lgα+1(n) lg2(n)
= 1 almost surely
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and

lim sup
n→∞

∑n
j=1

1
j
Xj

lgα+1(n) lg2(n)
= ∞ almost surely.

Proof. Let aj = 1/j, bn = lgα+1(n) lg2(n), cn = bn/an = n lgα+1(n) lg2(n)

and dn = n lgα+1(n). The difference between cn and dn is subtle, but that is

exactly what helps us achieve our lower limit. The upper limit occurs since

for all M > 0

∞
∑

n=1

P{anXn/bn > M} =

∞
∑

n=1

P{Xn > Mcn}

=

∞
∑

n=1

lgα(Mcn + n)

Mcn + n

≥
∞
∑

n=1

lgα(n)

Mn lgα+1(n) lg2(n) + n

≥ C

∞
∑

n=1

lgα(n)

n lgα+1(n) lg2(n)

= C

∞
∑

n=1

1

n lg(n) lg2(n)
= ∞

when α ≥ 0. Similarly if −1 < α < 0, then

∞
∑

n=1

P{anXn/bn > M} =

∞
∑

n=1

P{Xn > Mcn}

=
∞
∑

n=1

lgα(Mcn + n)

Mcn + n

≥ C

∞
∑

n=1

lgα(cn)

cn

≥ C

∞
∑

n=1

lgα(n)

n lgα+1(n) lg2(n)

= C
∞
∑

n=1

1

n lg(n) lg2(n)
= ∞.

Thus

lim sup
n→∞

anXn

bn
= ∞ almost surely
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hence

lim sup
n→∞

∑n
j=1 ajXj

bn
≥ lim sup

n→∞

anXn

bn
= ∞ almost surely

which completes the easy half of the proof.

From Theorem 1, we obtain a lower bound on the lower limit, i.e.,

lim inf
n→∞

∑n
j=1

1
j
Xj

lgα+1(n) lg2(n)
≤ 1 almost surely.

In order to obtain equality here, we use the sequence dn and partition our

sum as

1

bn

n
∑

j=1

ajXj ≥
1

bn

n
∑

j=1

ajXjI(0 < Xj ≤ dj)

=
1

bn

n
∑

j=1

aj [XjI(0 < Xj ≤ dj)− EXjI(0 < Xj ≤ dj)]

+
1

bn

n
∑

j=1

ajEXjI(0 < Xj ≤ dj).

The first term converges to zero almost surely by the Khintchine-Kolmogorov

Convergence Theorem, see [3], page 113 and the Kronecker Lemma since

bn ↑ ∞ and

∞
∑

n=1

1

c2n
EX2

nI(0 < Xn ≤ dn)

=
∞
∑

n=1

1

c2n

∫ dn

0
x2

(

lgα(x+ n)− α lgα−1(x+ n)

(x+ n)2

)

dx

≤

∞
∑

n=1

1

c2n

∫ dn+n

n

(u− n)2 lgα(u)du

u2

≤

∞
∑

n=1

1

c2n

∫ dn+n

n

lgα(u)du

≤
∞
∑

n=1

lgα(dn + n)

c2n

∫ dn+n

n

du

≤ C

∞
∑

n=1

dn lg
α(dn)

c2n
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≤ C

∞
∑

n=1

n lg2α+1(n)

n2 lg2α+2(n) lg22(n)

= C

∞
∑

n=1

1

n lg(n) lg22(n)
< ∞

whenever α ≥ 0. If −1 < α < 0, then

∞
∑

n=1

1

c2n
EX2

nI(0 < Xn ≤ dn)

=
∞
∑

n=1

1

c2n

∫ dn

0
x2

(

lgα(x+ n)− α lgα−1(x+ n)

(x+ n)2

)

dx

≤ C

∞
∑

n=1

1

c2n

∫ dn+n

n

(u− n)2 lgα(u)du

u2

≤ C

∞
∑

n=1

1

c2n

∫ dn+n

n

lgα(u)du

≤ C
∞
∑

n=1

lgα(n)

c2n

∫ dn+n

n

du

= C

∞
∑

n=1

dn lg
α(n)

c2n

= C

∞
∑

n=1

n lg2α+1(n)

n2 lg2α+2(n) lg22(n)

= C
∞
∑

n=1

1

n lg(n) lg22(n)
< ∞.

Next, we need to show that the other term converges to one as in the proof

of Theorem 1. As with the expectation in Theorem 1, we have four terms.

The first term is the important one

1

bn

n
∑

j=1

ajEXjI(0 < Xj ≤ dj)

=
1

bn

n
∑

j=1

1

j

∫ dj

0
x

(

lgα(x+ j)− α lgα−1(x+ j)

(x+ j)2

)

dx

=
1

bn

n
∑

j=1

1

j

∫ dj+j

j

(u− j)(lgα(u)− α lgα−1(u))du

u2
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=
1

bn

n
∑

j=1

1

j

∫ dj+j

j

lgα(u)du

u
−

α

bn

n
∑

j=1

1

j

∫ dj+j

j

lgα−1(u)du

u

−
1

bn

n
∑

j=1

∫ dj+j

j

lgα(u)du

u2
+

α

bn

n
∑

j=1

∫ dj+j

j

lgα−1(u)du

u2

= I1 + I2 + I3 + I4.

The first term is

1

bn

n
∑

j=1

1

j

∫ dj+j

j

lgα(u)du

u
=

1

bn

n
∑

j=1

1

j

∫ lg(dj+j)

lg(j)
wαdw

=
1

(α+ 1)bn

n
∑

j=1

1

j

(

lgα+1(dj + j)− lgα+1(j)

)

=
1

(α+ 1)bn

n
∑

j=1

1

j

(

[lg(j) + lg(lgα+1(j) + 1)]α+1 − lgα+1(j)

)

=
1

(α+ 1)bn

n
∑

j=1

lgα+1(j)

j

([

1 +
lg(lgα+1(j) + 1)

lg(j)

]α+1

− 1

)

.

The only term of significance in (1 + x)α+1 is the (α + 1)x term, where

x = lg(lgα+1(j) + 1)/ lg(j), which is certainly smaller than one. Thus I1

becomes

1

(α+ 1)bn

n
∑

j=1

lgα+1(j)

j

(

(α+ 1) lg(lgα+1(j) + 1)

lg(j)

)

=
1

bn

n
∑

j=1

lgα+1(j)

j

(

lg(lgα+1(j) + 1)

lg(j)

)

∼
1

bn

n
∑

j=1

lgα+1(j)

j

(

(α+ 1) lg2(j)

lg(j)

)

=
α+ 1

bn

n
∑

j=1

lgα(j) lg2(j)

j

∼

(

α+ 1

bn

)(

lgα+1(n) lg2(n)

α+ 1

)

= 1.

As for any other powers of x, those vanish as n goes to infinity since they
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are smaller than

C

bn

n
∑

j=1

lgα+1(j)

j

(

lg(lgα+1(j) + 1)

lg(j)

)p

→ 0

for all p ≥ 2. As for I2 we have as an upper bound

∣

∣

∣

∣

−α

bn

n
∑

j=1

1

j

∫ dj+j

j

lgα−1(u)du

u

∣

∣

∣

∣

≤
C

bn

n
∑

j=1

1

j

∫ lg(dj+j)

lg(j)
wα−1dw.

If α < 0 then this is less than

C

bn

n
∑

j=1

1

j

∫

∞

lg(j)
wα−1dw ≤

C

bn

n
∑

j=1

lgα(j)

j
≤

C lgα+1(n)

bn
≤

C

lg2(n)
→ 0.

If α = 0 then this term doesn’t even exist and if α > 0, then this is bounded

above by

C

bn

n
∑

j=1

lgα(dj + j)

j
≤

C

bn

n
∑

j=1

lgα(j)

j
≤

C lgα+1(n)

bn
=

C

lg2(n)
→ 0.

As for I3 we have

∣

∣

∣

∣

−1

bn

n
∑

j=1

∫ dj+j

j

lgα(u)du

u2

∣

∣

∣

∣

≤
1

bn

n
∑

j=1

∫

∞

j

lgα(u)du

u2

≤
C

bn

n
∑

j=1

lgα(j)

j

≤
C lgα+1(n)

bn
=

C

lg2(n)
→ 0.

Finally, an upper bound for I4 is

∣

∣

∣

∣

α

bn

n
∑

j=1

∫ dj+j

j

lgα−1(u)du

u2

∣

∣

∣

∣

≤
C

bn

n
∑

j=1

∫

∞

j

lgα−1(u)du

u2
≤

C

bn

n
∑

j=1

lgα−1(j)

j
→ 0

for any α. Putting everything together we see that the lower limit is indeed

one, with probability one. ���

We can also obtain a one sided strong law when α is minus one.
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Theorem 4. If P{Xj > x} = 1
(x+j) lg(x+j) , then

lim inf
n→∞

∑n
j=1

1
j
Xj

lg2(n) lg3(n)
= 1 almost surely

and

lim sup
n→∞

∑n
j=1

1
j
Xj

lg2(n) lg3(n)
= ∞ almost surely.

Proof. Let aj = 1/j, bn = lg2(n) lg3(n), cn = bn/an = n lg2(n) lg3(n) and

dn = n lg2(n). Once again, the difference between cn and dn is subtle, but

that is exactly what helps us achieve our lower limit. The upper limit occurs

since for all M > 0

∞
∑

n=1

P{anXn/bn > M} =

∞
∑

n=1

P{Xn > Mcn}

=

∞
∑

n=1

1

(Mcn + n) lg(Mcn + n)

=
∞
∑

n=1

1

(Mn lg2(n) lg3(n) + n) lg(Mn lg2(n) lg3(n) + n)

≥ C

∞
∑

n=1

1

n lg(n) lg2(n) lg3(n)
= ∞.

Thus

lim sup
n→∞

anXn

bn
= ∞ almost surely

hence

lim sup
n→∞

∑n
j=1 ajXj

bn
≥ lim sup

n→∞

anXn

bn
= ∞ almost surely

which completes the easy half of the proof.

From Theorem 2, we obtain a lower bound on the lower limit, i.e.,

lim inf
n→∞

∑n
j=1

1
j
Xj

lg2(n) lg3(n)
≤ 1 almost surely.
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Using the same partition as in Theorem 3, but with a different dn we have

1

bn

n
∑

j=1

ajXj ≥
1

bn

n
∑

j=1

ajXjI(0 < Xj ≤ dj)

=
1

bn

n
∑

j=1

aj [XjI(0 < Xj ≤ dj)− EXjI(0 < Xj ≤ dj)]

+
1

bn

n
∑

j=1

ajEXjI(0 < Xj ≤ dj).

The first term converges to zero almost surely by the Khintchine-Kolmogorov

Convergence Theorem, see [3], page 113 and the Kronecker Lemma since

bn ↑ ∞ and

∞
∑

n=1

1

c2n
EX2

nI(0 < Xn ≤ dn) =

∞
∑

n=1

1

c2n

∫ dn

0
x2

(

lg(x+ n) + 1

(x+ n)2 lg2(x+ n)

)

dx

=
∞
∑

n=1

1

c2n

∫ dn+n

n

(u− n)2(lg(u) + 1)du

u2 lg2(u)

≤ C

∞
∑

n=1

1

c2n

∫ dn+n

n

du

lg(u)

≤ C

∞
∑

n=1

1

c2n

∫ dn+n

n

du

lg(n)

= C
∞
∑

n=1

dn
c2n lg(n)

= C

∞
∑

n=1

1

n lg(n) lg2(n) lg
2
3(n)

< ∞.

Note that this barely converges and the previous infinite sum diverges, by

the slimmest of margins, a factor of lg3(n). Next, we need to show that the

other term converges to one

1

bn

n
∑

j=1

ajEXjI(0 < Xj ≤ dj)

=
1

bn

n
∑

j=1

1

j

∫ dj

0
x

(

lg(x+ j) + 1

(x+ j)2 lg2(x+ j)

)

dx
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=
1

bn

n
∑

j=1

1

j

∫ dj+j

j

(u− j)(lg(u) + 1)du

u2 lg2(u)

=
1

bn

n
∑

j=1

1

j

∫ dj+j

j

du

u lg(u)
−

1

bn

n
∑

j=1

∫ dj+j

j

du

u2 lg(u)

+
1

bn

n
∑

j=1

1

j

∫ dj+j

j

du

u lg2(u)
−

1

bn

n
∑

j=1

∫ dj+j

j

du

u2 lg2(u)

= I1 + I2 + I3 + I4.

The first integral is

1

bn

n
∑

j=1

1

j

∫ dj+j

j

du

u lg(u)
=

1

bn

n
∑

j=1

1

j

∫ lg(dj+j)

lg(j)

dw

w

=
1

bn

n
∑

j=1

1

j
[lg2(dj + j)− lg2(j)]

=
1

bn

n
∑

j=1

1

j
lg

(

lg(dj + j)

lg(j)

)

=
1

bn

n
∑

j=1

1

j
lg

(

lg(j) + lg(lg2(j) + 1)

lg(j)

)

=
1

bn

n
∑

j=1

1

j
lg

(

1 +
lg(lg2(j) + 1)

lg(j)

)

.

The only term of significance in lg(1 + x) is x = lg(lg2(j) + 1)/ lg(j). Thus

I1 becomes

1

bn

n
∑

j=1

1

j

(

lg(lg2(j) + 1)

lg(j)

)

∼
1

bn

n
∑

j=1

1

j

(

lg3(j)

lg(j)

)

∼
lg2(n) lg3(n)

bn
= 1.

As for any other powers of x, those vanish as n goes to infinity since they

are smaller than

1

bn

n
∑

j=1

1

j

(

lg(lg2(j) + 1)

lg(j)

)p

≤
1

bn

n
∑

j=1

lgp3(j)

j lgp(j)
≤

C

bn
→ 0
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since p ≥ 2. As for I2 we have

1

bn

n
∑

j=1

∫ dj+j

j

du

u2 lg u
≤

1

bn

n
∑

j=1

∫

∞

j

du

u2 lg u
≤

C

bn

n
∑

j=1

1

j lg j

≤
C lg2(n)

bn
=

C

lg3(n)
→ 0.

As for I3 we have

1

bn

n
∑

j=1

1

j

∫ dj+j

j

du

u lg2 u
≤

1

bn

n
∑

j=1

1

j

∫

∞

j

du

u lg2 u
≤

C

bn

n
∑

j=1

1

j lg j

≤
C lg2 n

bn
=

C

lg3 n
→ 0.

Finally for I4 we have

1

bn

n
∑

j=1

∫ dj+j

j

du

u2 lg2 u
≤

1

bn

n
∑

j=1

∫

∞

j

du

u2 lg2 u
≤

C

bn

n
∑

j=1

1

j lg2 j
≤

C

bn
→ 0.

Putting everything together we see that the lower limit is once again one,

with probability one. ���

4. Discussion

It shouldn’t be too difficult to obtain similar Weak Laws and one-sided

Strong Laws when P{Xj > x} = lgαn(x+j)

(x+j)
∏n−1

i=1
lgi(x+j)

whenever α ≥ −1 for any

positive integer n. But to extend this to any sequence mj and any slowly

varying function, L(·), where P{Xj > x} =
L(x+mj)
x+mj

would be quite difficult.
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