
✐

“BN12N24” — 2017/6/12 — 18:05 — page 153 — #1
✐

✐

✐

✐

✐

Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 12 (2017), No. 2, pp. 153-203
DOI: 10.21915/BIMAS.2017204

THE ANOMALY FORMULA OF THE ANALYTIC

TORSION ON CR MANIFOLDS WITH S1
ACTION

RUNG-TZUNG HUANG

Department of Mathematics, National Central University, Chung-Li 320, Taiwan.

E-mail: rthuang@math.ncu.edu.tw

Abstract

Let X be a compact connected strongly pseudoconvex CR manifold of dimension

2n+1, n ≥ 1 with a transversal CR S1-action on X. In this paper we introduce the Quillen

metric on the determinant line of the Fourier components of the Kohn-Rossi cohomology

on X with respect to the S1-action. We study the behavior of the Quillen metric under

the change of the metrics on the manifold X and on the vector bundle over X. We obtain

an anomaly formula for the Quillen metric on X with respect to the S1-action.

1. Introduction

In [29], Ray and Singer introduced the holomorphic analytic torsion for

∂-complex on complex manifolds as the complex analogue of the analytic

torsion for flat vector bundles over Riemannian manfilds [28]. Let F be a

Hermitian vector bundle over a compact Hermitian complex manifold M .

Let λ(F ) = ⊗q (detH
q(M,F ))(−1)q+1

be the dual of the determinant line of

the Dolbeault cohomology groups of M with values on F . In [27], Quillen

defined a metric, the product of the L2-metric on λ(F ) by the holomorphic

analytic torsion, on λ(F ) when M is a Riemann surface. In [5], Bismut,

Gillet and Soulé extended it to complex manifolds. By using probability

method, they obtained the anomaly formulas for the Quillen metrics when

the holomorphic bundle is endowed with Hermitian metrics and the base
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manifold is assumed to be Kähler. Recall that the anomaly formulas tell

us the variation of the Quillen metrics with respect to the change of the

Hermitian metrics on TX and F . Note that, in [1], Berman considered

high powers of a holomorphic line bundle over a complex manifold, where

the metric of the base manifold is not necessarily Kähler, and obtained an

asymptotic anomaly formula for the Quillen metric by using the Bergman

type kernels.

In orbifold geometry, we have Kawasaki’s Hirzebruch-Riemann-Roch for-

mula [19] and also general index theorem [26]. Ma [21] first introduced an-

alytic torsion on orbifolds and obtained anomaly and immersion formulas

for Quillen metrics in the case of orbifolds, which is expressed explicitly in

the form of characteristic and secondary characteristic classes on orbifolds.

Ma’s results should play an important role toward establishing an arithmetic

version of the Kawasaki-Riemann-Roch theorem in Arakelov geometry.

CR geometry is an important subject in several complex variables and

is closely related to various research areas. To study further geometric prob-

lems for CR manifolds, it is important to know the corresponding heat kernel

asymptotics and to have (local) index formula and the concept of analytic

torsion. The difficulty comes from the fact that the Kohn Laplacian is not

hypoelliptic. Thus, we should consider such problems on some class of CR

manifolds. It turns out that Kohn’s �b operator on CR manifolds with S1

action including Sasakian manifolds of interest in String Theory (see [23])

is a natural one of geometric significance among those transversally elliptic

operators initiated by Atiyah and Singer (see [14], [16], [17] and [9]). In

[15], Hsiao and the author considered a compact connected strongly pseu-

doconvex CR manifold X and we introduced the Fourier components of the

Ray-Singer analytic torsion on X with respect to a transversal CR S1-action.

We established an asymptotic formula for the Fourier components of the an-

alytic torsion with respect to the S1-action. This generalizes the aymptotic

formula of Bismut and Vasserot, [7], on the holomorphic Ray-Singer torsion

associated with high powers of a positive line bundle to strongly pseudocon-

vex CR manifolds with a transversal CR S1-action.

In a recent preprint, [13], Finski studied the general formula of the

asymptotic expansion of Ray-Singer analytic torsion associated with increas-

ing powers of a given positive line bundle and then the general asymptotic
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expansion of Ray-Singer analytic torsion for an orbifold and described a con-

nection between the asymptotic formula of Ray-Singer analytic torsion for

an orbifold in [13] and our result in [15]. In another recent work, [24, 25], Pu-

chol gave an asymptotic formula for the holomorphic analytic torsion forms

of a fibration associated with increasing powers of a given positive line bun-

dle which is the family version of the results of Bimsut and Vasserot on the

asymptotic of the holomorphic torsion.

In [10], Cappell and Miller extended the holomorphic analytic torsion to

coupling with an arbitrary holomorphic bundle with a compatible connection

of type (1, 1). They used certain not necessarily self-adjoint Laplacian to

define the analytic torsion and, hence, the analytic torsion is complex-valued.

In [20], Liu and Yu established an explicit expression of the anomaly formula

for the Cappell-Miller holomorphic torsion for Kähler manifolds by using

heat kernel methods. In [32], Su proved an asymptotic formula for the

Cappell-Miller holomorphic torsion associated with a high tensor power of a

positive line bundle and a holomorphic vector bundle.

In [31], Su extended the holomorphic L2 torsion introduced by Carey,

Farber and Mathai in [8] to the case without determinant class condition. He

derived the anomaly formula for the holomorphic L2 torsion under the change

of the metrics. In the end, he studied the asymptotics of the holomorphic

L2 torsion associated with an increasing power of a positive line bundle.

In this paper we introduce the Quillen metric on the determinant line

of the Fourier components of the Kohn-Rossi cohomology on X with respect

to a transversal CR S1-action. We study the behavior of the Quillen metric

under the change of the metrics on the manifold X and on the vector bundles

over X. We obtain an anomaly formula for the Quillen metric on X with

respect to the S1-action, cf. Theorem 2.13, by using the heat kernel methods

of [9, 15, 20].

1.1. Motivation

To motivate our approach, let’s come back to complex geometry case.

Let M be a compact complex manifold of dimension n. Let 〈 · , · 〉 be a Her-

mitian metric on CTM and let (F, hF ) →M be a holomorpic vector bundle

overM , where hF denotes a Hermitian fiber metric on F . Denote by T ∗0,•M
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the vector bundle of (0, •) forms on M . Let �F be the Kodaira Laplacian

with values in T ∗0,•M⊗F and e−t�F be the associated heat operator. Denote

by θF (z) the ζ-function

θF (z) = −M
[
STr[Ne−t�FP⊥]

]
= − STr[N(�F )

−zP⊥].

Here N is the number operator on T ∗0,•M , STr denotes the super trace ,

P⊥ is the orthogonal projection onto (Ker�F )
⊥ and M denotes the Mellin

transformation, cf. Definition 2.6. It is well-known that the ζ-function has

meromorphic extension to the whole complex plane. In particular, it is

holomorphic at z = 0.

Definition 1.1. The analytic torsion associated to the holomorphic vector

bundle F over the complex manifold M is defined by exp(−1
2θ

′
F (0)).

For a finite dimensional vector space V , we set

detV := ∧maxV.

We then denote by

(detV )−1 := (detV )∗,

the dual line of detV . For q = 0, 1, . . . , n, let Hq(M,F ) be the q-th ∂-

Dolbeault cohomology group with value in F . Denote by

H•(M,F ) = ⊕n
q=0H

q(M,F ).

Then

detH•(M,F ) = ⊗n
q=0 (detH

q(M,F ))(−1)q

is the determinant line of the Dolbeault cohomology H•(M,F ). We define

λ(F ) = (detH•(M,F ))−1

be the dual of detH•(M,F ). By the Hodge theorem, the cohomology group

Hq(M,F ) is isomorphic to the kernel of the Dolbeault Laplacian

�
(q)
F := ∂

F
∂
F,∗

+ ∂
F,∗
∂
F

: Ω0,q(M,F ) → Ω0,q(M,F ),
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where ∂
F,∗

denotes the adjoint of ∂
F
with respect to the metrics 〈 · , · 〉 and

hF . The metrics 〈 · · 〉 and hF induce a canonical L2-metric hH
•(M,F ) on

H•(M,F ). Let | · |λ(F ) be the L2-metric on λ(F ) induced by hH
•(M,F ).

Definition 1.2. The Quillen metric ‖ · ‖λ(F ) on detH•(M,F ) is defined as

‖ · ‖λ(F ) := | · |λ(F ) · exp(−
1

2
θ′F (0)).

Now we recall the anomaly formula of Bismut, Gillet and Soulé for the

Quillen metric on λ(F ). Let 〈 · , · 〉′ and h′F be another couple of Hermtian

metrics on CTM and on F , respectively. Let ‖·‖λ(F ) be the Quillen metric on

λ(F ) associated to the metrics 〈 · , · 〉 and hF and let ‖ · ‖′λ(F ) be the Quillen

metric on λ(F ) associated to the metrics 〈 · , · 〉′ and h′F . Let∇TM and∇′TM

be the Levit-Civita connections on TM with respect to the metrics 〈 · , · 〉
and 〈 · , · 〉′ on CTM , respectively. Let PT 1,0M be the natural projection from

CTM onto T 1,0M . Then,

∇T 1,0M := PT 1,0M∇TM

and

∇′T 1,0M := PT 1,0M∇′TM

are connections on T 1,0M . Let ∇F and ∇′F be the connections on F induced

by the Hermitian metrics hF and h′F on F , respectively. We denote by

T̃d(∇T 1,0M ,∇′T 1,0M , T 1,0M) and c̃h(∇F ,∇′F , F )

the Bott-Chern classes, cf. [3]. We also denote by Td(∇′T 1,0M , T 1,0M) the

Todd class and ch(∇F , F ) the Chern character. We now assume that the

metrics 〈 · , · 〉 and 〈 · , · 〉′ are Kähler. The anomaly formula of Bismut, Gillet

and Soulé for Quillen metric on λ(F ), cf. [5, Theorem 1.23], is the following:

log

(
‖ · ‖′λ(F )

‖ · ‖λ(F )

)
=

∫

M
T̃d(∇T 1,0M ,∇′T 1,0M , T 1,0M) ∧ ch(∇F , F )

+

∫

M
Td(∇′T 1,0M , T 1,0M) ∧ c̃h(∇F ,∇′F , F ). (1.1)

Let (L, hL) →M be a holomorpic line bundle over M , where hL denotes

a Hermitian fiber metric of L. Let (L∗, hL
∗
) → M be the dual bundle of
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(L, hL) and put

X =
{
v ∈ L∗; |v|2hL∗ = 1

}
.

We call X the circle bundle of (L∗, hL
∗
). It is clear that X is a compact CR

manifold of dimension 2n+1. Given a local holomorphic frame s of L on an

open subset U ⊂M , we define the associated local weight of hL by

|s(z)|2hL = e−2φ(z), φ ∈ C∞(U,R).

The CR manifold X is equipped with a natural S1 action. Locally, X can

be represented in local holomorphic coordinates (z, λ) ∈ C
n+1, where λ is

the fiber coordinate, as the set of all (z, λ) such that

|λ|2 e2φ(z) = 1,

where φ is a local weight of hL. The S1 action on X is given by

eiθ ◦ (z, λ) = (z, eiθλ), eiθ ∈ S1, (z, λ) ∈ X.

Let T ∈ C∞(X,TX) be the real vector field induced by the S1 action, that

is,

Tu =
∂

∂θ
(u(eiθ ◦ x))|θ=0, u ∈ C∞(X).

We can check that

[T,C∞(X,T 1,0X)] ⊂ C∞(X,T 1,0X)

and

CT (x)⊕ T 1,0
x X ⊕ T 0,1

x X = CTxX

(we say that the S1 action is CR and transversal). For every m ∈ Z, put

Ω0,•
m (X) : =

{
u ∈ Ω0,•(X); Tu = imu

}

=
{
u ∈ Ω0,•(X); u(eiθ ◦ x) = eimθu(x),∀θ ∈ [0, 2π[

}
.

Since

∂bT = T∂b,
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we have

∂b : Ω
0,•
m (X) → Ω0,•

m (X),

where ∂b denotes the tangential Cauchy-Riemann operator. Let Ω0,•(M,Lm)

be the space of smooth sections of (0, •) forms ofM with values in Lm, where

Lm is the m-th power of L. It is known that (see Theorem 1.2 in [9]) there

is a bijection

Am : Ω0,•
m (X) → Ω0,•(M,Lm) (1.2)

such that

Am∂b = ∂Am

on Ω0,•
m (X). Let �m be the Kodaira Laplacian with values in T ∗0,•M ⊗ Lm

and let e−t�m be the associated heat operator. It is well-known that e−t�m

admits an asymptotic expansion as t→ 0+. Consider

Bm(t) := (Am)−1 ◦ e−t�m ◦ Am.

Let

�b,m : Ω0,•
m (X) → Ω0,•

m (X)

be the Kohn Laplacian for forms with values in the m-th S1 Fourier com-

ponent and let e−t�b,m be the associated heat operator. We can check that

e−t�b,m = Bm(t) ◦Qm = Qm ◦Bm(t) ◦Qm, (1.3)

where

Qm : Ω0,•(X) → Ω0,•
m (X)

is the orthogonal projection. From the asymptotic expansion of e−t�m and

(1.3), it is straightforward to see that

e−t�b,m(x, x) ∼ t−nan(x) + t−n+1an−1(x) + · · · . (1.4)

From (1.4), we can define exp(−1
2θ

′
b,m(0)) the m-th Fourier component of

the analytic torsion on the CR manifold X, where

θb,m(z) = −M
[
STr[Ne−t�b,mΠ⊥

m]
]
= − STr[N(�b,m)−zP⊥].
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Here N is the number operator on T ∗0,•X, STr denotes the super trace , Π⊥
m

is the orthogonal projection onto (Ker�b,m)⊥ and M denotes the Mellin

transformation, cf. Definition 2.6. It is easy to see that

θ′b,m(0) = θ′Lm(0).

For each m ∈ Z and q = 0, 1, . . . , n, we consider the cohomology group:

Hq
b,m(X) :=

Ker ∂b,m : Ω0,q
m (X) → Ω0,q+1

m (X)

Im∂b,m : Ω0,q−1
m (X) → Ω0,q

m (X)
,

and call it the m-th Fourier components of the Kohn-Rossi cohomology

group. Recall that by (1.2) (see also [9, Theorem 1.2]), for each m ∈ Z

and q = 0, 1, . . . , n, the cohomology group Hq
b,m(X) is isomorphic to the

Dolbeault cohomology group Hq(M,Lm). In particular, dimHq
b,m(X) <∞.

Denote by

H•
b,m(X) = ⊕n

q=0H
q
b,m(X).

Then

detH•
b,m(X) = ⊗n

q=0

(
detHq

b,m(X)
)(−1)q

is the determinant line of the cohomology H•
b,m(X). We define

λb,m =
(
detH•

b,m(X)
)−1

.

Let 〈 · | · 〉 be the rigid Hermitian metric (see Definition 2.5) on CTX

given by, in local holomorphic coordinates (z, λ),

〈 ∂

∂zj
+ i

∂ϕ

∂zj
(z)

∂

∂θ
| ∂

∂zk
+ i

∂ϕ

∂zk
(z)

∂

∂θ
〉 = 〈 ∂

∂zj
,
∂

∂zk
〉, j, k = 1, 2, . . . , n.

The metric 〈 · | · 〉 induces a canonical L2-metric hH
•
b,m

(X) on H•
b,m(X). Let

| · |λb,m
be the L2-metric on λb,m induced by hH

•
b,m

(X). Fix m ∈ Z. The

Quillen metric ‖ · ‖λb,m
on detH•

b,m(X) is defined as

‖ · ‖λb,m
:= | · |λb,m

· exp(−1

2
θ′b,m(0)).

We now fix the Hermitian fiber metric hL on L and, hence, the induced
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Hermitian metric hL
m

on Lm is also fixed. We assume that the metrics 〈 · , · 〉
and 〈 · , · 〉′ are Kähler. For the case of circle bundle over a compact complex

manifold, the anomaly formula of Bismut, Gillet and Soulé for Quillen metric

on λ(Lm) over M (see (1.1)) tells us:

log

(
‖ · ‖′λ(Lm)

‖ · ‖λ(Lm)

)
=

∫

M
T̃d(∇T 1,0M ,∇′T 1,0M , T 1,0M) ∧ ch(∇Lm

, Lm). (1.5)

Let ∇TX and ∇′TX be the Levit-Civita connections on TX with re-

spect to two different rigid Hermitian metrics 〈 · | · 〉 and 〈 · | · 〉′ on CTX,

respectively. Let PT 1,0X be the natural projection from CTX onto T 1,0X.

Then,

∇T 1,0X := PT 1,0X∇TX

and

∇′T 1,0X := PT 1,0X∇′TX

are connections on T 1,0X. We denote by T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) the

tangential Bott-Chern class, cf. Subsection 2.5. We denote by ‖ · ‖λb,m

and ‖ · ‖′λb,m
the Quillen metrics on detH•

b,m(X) with respect to the rigid

Hermitian metrics 〈 · | · 〉 and 〈 · | · 〉′, respectively. We can now reformulate

(1.5) in terms of geometric objects on X:

log

(
‖ · ‖′λb,m

‖ · ‖λb,m

)
=

1

2π

∫

X
T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) ∧ e−m

dω0
2π ∧ ω0,

where e−m
dω0
2π denotes the Chern polynomial of the Levi curvature, cf. (2.2),

and ω0 is the unique one form given by (2.1).

The purpose of this paper is to establish the anomaly formula on any

abstract strongly pseudoconvex CR manifolds with a transversal CR locally

free S1-action. Note that for the case of circle bundle, the S1 action is

globally free and X is strongly pseudoconvex if L is positve.
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1.2. Main result

We now formulate the main results. We refer to Section 2.1 for some

notations and terminology used here.

Let (X,T 1,0X) be a compact connected strongly pseudoconvex CR man-

ifold with a transversal CR locally free S1 action eiθ (see Definition 2.1),

where T 1,0X is a CR structure of X. Let T ∈ C∞(X,TX) be the real vector

field induced by the S1 action and let ω0 ∈ C∞(X,T ∗X) be the global real

one form determined by

〈ω0 , T 〉 = −1, 〈ω0 , u 〉 = 0, ∀u ∈ T 1,0X ⊕ T 0,1X.

For x ∈ X, we say that the period of x is 2π
ℓ , ℓ ∈ N, if eiθ ◦ x 6= x, for every

0 < θ < 2π
ℓ and ei

2π
ℓ ◦ x = x. For each ℓ ∈ N, put

Xℓ =
{
x ∈ X; the period of x is 2π

ℓ

}
(1.6)

and let

p = min {ℓ ∈ N; Xℓ 6= ∅}

It is well-known that if X is connected, then Xp is an open and dense subset

of X (see Duistermaat-Heckman [11]). In this work, we assume that p = 1

and we denote

Xreg := Xp = X1.

We call x ∈ Xreg a regular point of the S1 action. Let Xsing be the comple-

ment of Xreg .

Let E be a rigid CR vector bundle over X (see Definition 2.4) and we

take a rigid Hermitian metric 〈 · | · 〉E on E (see Definition 2.5). Take a rigid

Hermitian metric 〈 · | · 〉 on CTX such that

T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1

and let 〈 · | · 〉E be the Hermitian metric on T ∗0,•X ⊗E induced by the fixed

Hermitian metrics on E and CTX. We denote by dvX = dvX(x) the vol-

ume form on X induced by the Hermitian metric 〈 · | · 〉 on CTX. Then

we get natural global L2 inner product ( · | · )E on Ω0,•(X,E). We denote

by L2(X,T ∗0,•X ⊗E) the completion of Ω0,•(X,E) with respect to ( · | · )E .
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For every u ∈ Ω0,•(X,E), we can define Tu ∈ Ω0,•(X,E) and we have

T∂b = ∂bT . For m ∈ Z, put

Ω0,•
m (X,E) : =

{
u ∈ Ω0,•(X,E); Tu = imu

}

=
{
u ∈ Ω0,•(X,E); (eiθ)∗u = eimθu, ∀θ ∈ [0, 2π[

}
,

where (eiθ)∗ denotes the pull-back map by eiθ (see (2.4)). For each m ∈ Z,

we denote by L2
m(X,T ∗0,•X ⊗E) the completion of Ω0,•

m (X,E) with respect

to ( · | · )E .
Since

T∂b = ∂bT,

we have

∂b,m := ∂b : Ω
0,•
m (X,E) → Ω0,•

m (X,E).

We also write

∂
∗
b : Ω

0,•(X,E) → Ω0,•(X,E)

to denote the formal adjoint of ∂b with respect to ( · | · )E . Since 〈 · | · 〉E and

〈 · | · 〉 are rigid, we can check that

T∂
∗
b = ∂

∗
bT on Ω0,•(X,E),

∂
∗
b,m := ∂

∗
b : Ω

0,•
m (X,E) → Ω0,•

m (X,E), ∀m ∈ Z.
(1.7)

Let �b,m denote the m-th Kohn Laplacian given by

�b,m := (∂b + ∂
∗
b)

2 : Ω0,•
m (X,E) → Ω0,•

m (X,E). (1.8)

We extend �b,m to L2
m(X,T ∗0,•X ⊗ E) by

�b,m : Dom�b,m ⊂ L2
m(X,T ∗0,•X ⊗ E) → L2

m(X,T ∗0,•X ⊗ E) , (1.9)

where

Dom�b,m := {u ∈ L2
m(X,T ∗0,•X ⊗ E); �b,mu ∈ L2

m(X,T ∗0,•X ⊗ E)},

for which, for any u ∈ L2
m(X,T ∗0,•X ⊗ E), �b,mu is defined in the sense of

distribution. It is known that �b,m is self-adjoint, Spec�b,m is a discrete
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subset of [0,∞[ and for every ν ∈ Spec�b,m, ν is an eigenvalue of �b,m

(see Section 3 in [9]). Let e−t�b,m be associated heat operator. Let N be

the number operator on T ∗0,•X, i.e. N acts on T ∗0,qX by multiplication by

q, and STr denotes the super trace (see the discussion in the beginning of

Section 2.4. We denote by

Π⊥
m : L2

m(X,T 0,•X ⊗ E) → (Ker�b,m)⊥

the orthogonal projection. From (2.9), for Re(z) > n, we can define the ζ

function

θb,m(z) = −M
[
STr[Ne−t�b,mΠ⊥

m]
]
= − STr

[
N(�b,m)−zΠ⊥

m

]

and θb,m(z) extends to a meromorphic function on C with poles contained

in the set {
ℓ− j

2
; ℓ, j ∈ Z

}
,

its possible poles are simple, and θb,m(z) is holomorphic at 0 (see Lemma

2.8 or [15, Lemma 4.4]), where M denotes the Mellin transformation, cf.

Definition 2.6. The m-th Fourier component of the analytic torsion for the

vector bundle E over X is given by exp(−1
2θ

′
b,m(0)) (see Definition 2.9).

Denote by

H•
b,m(X,E) = ⊕n

q=0H
q
b,m(X,E),

where Hq
b,m(X,E), q = 0, 1, . . . , n, is the m-th Fourier components of the

Kohn-Rossi cohomology group (see Definition 2.10). Then

detH•
b,m(X,E) = ⊗n

q=0

(
detHq

b,m(X,E)
)(−1)q

is the determinant line of the cohomology H•
b,m(X,E). We define

λb,m(E) =
(
detH•

b,m(X,E)
)−1

.

By Theorem 3.7 of [9], the cohomology Hq
b,m(X,E) is isomorphic to the

kernel of �
(q)
b,m. The metrics 〈 · | · 〉 and 〈 · | · 〉E induce a canonical L2-metric

hH
•
b,m

(X,E) onH•
b,m(X,E). Let |·|λb,m(E) be the L

2-metric on λb,m(E) induced
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by hH
•
b,m

(X,E). Fix m ∈ Z. The Quillen metric ‖ · ‖λb,m(E) on detH•
b,m(X,E)

is defined as

‖ · ‖λb,m(E) := | · |λb,m(E) · exp(−
1

2
θ′b,m(0)).

Let ∇TX and ∇′TX be the Levit-Civita connections on TX with respect

to the rigid Hermitian metrics 〈 · | · 〉 and 〈 · | · 〉′ on CTX, respectively. Let

PT 1,0X be the natural projection from CTX onto T 1,0X. Then,

∇T 1,0X := PT 1,0X∇TX

and

∇′T 1,0X := PT 1,0X∇′TX

are connections on T 1,0X. Let ∇E and ∇′E be the connections on E induced

by the rigid Hermitian metrics hE and h′E on E, respectively. Denote by

T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) and c̃hb(∇E ,∇′E, E) the tangential Bott-Chern

classes, chb(∇E , E) the tangential Chern character and Tdb(∇′T 1,0X , T 1,0X)

the tangential Todd class, cf. Subsection 2.5.

Our main result is the following

Theorem 1.3. With the notations and assumptions above, the following

identity holds:

log

( ‖ · ‖′λb,m(E)

‖ · ‖λb,m(E)

)

=
1

2π

∫

X
T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) ∧ chb(∇E, E) ∧ e−m

dω0
2π ∧ ω0

+
1

2π

∫

X
Tdb(∇′T 1,0X , T 1,0X) ∧ c̃hb(∇E ,∇′E , E) ∧ e−m

dω0
2π ∧ ω0,

where e−m
dω0
2π denotes the Chern polynomial of the Levi curvature, cf. (2.2),

and ω0 is the unique one form given by (1.6), see also (2.1).

Note that the proof of Theorem 1.3 is based on Theorem 3.1, Theo-

rem 4.4, Theorem 4.5 and Theorem 4.6 which are the main technical results

of this paper.

This paper is organized as follows. In Section 2, we collect some no-

tations, definitions and terminology we use throughout and state our main
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result. In the end of this section, we deduce our anomaly formula on some

class of orbifold line bundle. In Section 3, we study the asymptotic behav-

ior of certain heat kernels when t → 0+. In Section 4, we establish the

anomaly formula for the m-th Fourier components of the Quillen metric on

CR manifolds with a transversal CR S1-action. In Section 5, we establish an

asymptotic anomaly formula for the m-th Fourier component of the Quillen

metric on CR manifolds with a transversal CR S1-action.

2. Preliminaries and Statement of Main Result

In Subsection 2.1, we collect some notations, definitions and terminology

we use throughout. In Subsection 2.2, we recall some background on heat

kernels of Kohn Laplacian. In Subsection 2.3, we recall the definition of

Melin transformation. In Subsection 2.4, we recall the definition of the

Fourier components of the analytic torsion and define the Quillen metric.

In Subsection 2.5, we define the tangential characteristic and Bott-Chern

classes. In Subsection 2.6, we state our main result. Finally, in Subsection

2.7, we deduce our anomaly formula on some class of orbifold line bundle.

2.1. Set up and terminology

Let (X,T 1,0X) be a compact CR manifold of dimension 2n + 1, n ≥ 1,

where T 1,0X is a CR structure of X, that is, T 1,0X is a subbundle of the

complexified tangent bundle CTX of rank n satisfying

T 1,0X ∩ T 0,1X = {0},

where

T 0,1X = T 1,0X and [V,V] ⊂ V,

where V = C∞(X,T 1,0X). There is a unique subbundle HX of TX such

that

CHX = T 1,0X ⊕ T 0,1X,
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i.e. HX is the real part of T 1,0X ⊕ T 0,1X. Let J : HX → HX be the

complex structure map given by

J(u+ ū) = iu− iū,

for every u ∈ T 1,0X. By complex linear extension J to CTX, the i-

eigenspace of J is given by

T 1,0X =
{
V ∈ CHX : JV =

√
−1V

}
.

We shall also write (X,HX, J) to denote a compact CR manifold. Let E be

a smooth vector bundle over X. We use Γ(E) to denote the space of smooth

sections of E on X.

Let (X,HX, J) be a compact CR manifold. From now on, we assume

that (X,HX, J) admits a S1 action:

S1 ×X → X, (eiθ , x) 7→ eiθ ◦ x.

We write eiθ to denote the S1 action. Let T ∈ C∞(X,TX) be the global

real vector field induced by the S1 action given by

(Tu)(x) =
∂

∂θ

(
u(eiθ ◦ x)

)
|θ=0, u ∈ C∞(X).

Definition 2.1. We say that the S1 action eiθ is CR if

[T,C∞(X,T 1,0X)] ⊂ C∞(X,T 1,0X)

and the S1 action is transversal if, for each x ∈ X,

CTxX = T 1,0
x X ⊕ T 0,1

x X ⊕ CT (x).

Moreover, we say that the S1 action is locally free if T 6= 0 everywhere. It

should be mentioned that transversality implies locally free.

We assume throughout that (X,T 1,0X) is a compact connected CR man-

ifold with a transversal CR locally free S1 action eiθ and we let T be the

global vector field induced by the S1 action. Then LTJ = 0 on HX, where

LT denotes the Lie derivative along the direction T , cf. [18, Lemma 2.3].
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Since

[Γ(T 1,0X),Γ(T 1,0X)] ⊂ Γ(T 1,0X),

we have

[JU, JV ]− [U, V ] ∈ C∞(X,HX),

for all U, V ∈ C∞(X,HX). Let ω0 ∈ C∞(X,T ∗X) be the global real one

form dual to T , that is,

〈ω0 , T 〉 = −1, 〈ω0 , HX 〉 = 0. (2.1)

Then, for each x ∈ X, we define a quadratic form on HX by

Lx(U, V ) =
1

2
dω0(JU, V ), ∀U, V ∈ HxX.

We extend L to CHX by complex linear extension. Then, for U, V ∈ T 1,0
x X,

Lx(U, V ) =
1

2
dω0(JU, V ) = − 1

2i
dω0(U, V ). (2.2)

The Hermitian quadratic form Lx on T 1,0
x X is called the Levi form at x.

Definition 2.2. We say that T 1,0X is a strongly pseudoconvex structure

and X is a strongly pseudoconvex CR manifold if the Levi form Lx is a

positive definite quadratic form on HxX, for each x ∈ X.

We further assume throughout that (X,T 1,0X) is a compact connected

strongly pseudoconvex CR manifold with a transversally CR locally free S1-

action. It should be noted that a strongly pseudoconvex CR manifold is

always a contact manifold. From (2.1), we see that ω0 is a contact form,

HX is the contact plane and T is the Reeb vector field.

Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X,

respectively. Define the vector bundle of (p, q) forms by

T ∗p,qX := Λp(T ∗1,0X) ∧ Λq(T ∗0,1X).

Put

T ∗0,•X := ⊕j∈{0,1,...,n}T
∗0,jX.
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Let D ⊂ X be an open subset. Let Ωp,q(D) denote the space of smooth

sections of T ∗p,qX over D and let Ωp,q
0 (D) be the subspace of Ωp,q(D) whose

elements have compact support in D. Put

Ω0,•(D) := ⊕j∈{0,1,...,n}Ω
0,j(D),

Ω0,•
0 (D) := ⊕j∈{0,1,...,n}Ω

0,j
0 (D).

Similarly, if E is a vector bundle over D, then we let Ωp,q(D,E) denote the

space of smooth sections of T ∗p,qX ⊗ E over D and let Ωp,q
0 (D,E) be the

subspace of Ωp,q(D,E) whose elements have compact support in D. Put

Ω0,•(D,E) := ⊕j∈{0,1,...,n}Ω
0,j(D,E),

Ω0,•
0 (D,E) := ⊕j∈{0,1,...,n}Ω

0,j
0 (D,E).

Fix θ0 ∈]− π, π[, θ0 small. Let

deiθ0 : CTxX → CTeiθ0xX

denote the differential map of eiθ0 : X → X. By the CR property of the S1

action, we can check that

deiθ0 : T 1,0
x X → T 1,0

eiθ0x
X,

deiθ0 : T 0,1
x X → T 0,1

eiθ0x
X,

deiθ0(T (x)) = T (eiθ0x).

(2.3)

Let

(deiθ0)∗ : Λr(CT ∗X) → Λr(CT ∗X)

be the pull-back map by eiθ0 , r = 0, 1, . . . , 2n + 1. From (2.3), it is easy to

see that, for every q = 0, 1, . . . , n,

(deiθ0)∗ : T ∗0,q

eiθ0◦x
X → T ∗0,q

x X. (2.4)

For u ∈ Ω0,q(X), we define Tu as follows:

(Tu)(X1, . . . ,Xq) :=
∂

∂θ

(
(deiθ)∗u(X1, . . . ,Xq)

)∣∣∣
θ=0

, X1, . . . ,Xq ∈ T 0,1
x X.

(2.5)
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From (2.4) and (2.5), we have

Tu ∈ Ω0,q(X),

for all u ∈ Ω0,q(X). From the definition of Tu, it is easy to check that

Tu = LTu,

for u ∈ Ω0,q(X), where LTu is the Lie derivative of u along the direction T .

For every θ ∈ R and every u ∈ C∞(X,Λr(CT ∗X)), we write

u(eiθ ◦ x) := (deiθ)∗u(x).

It is clear that, for every u ∈ C∞(X,Λr(CT ∗X)), we have

u(x) =
∑

m∈Z

1

2π

∫ π

−π
u(eiθ ◦ x)e−imθdθ.

Let

∂b : Ω
0,q(X) → Ω0,q+1(X)

be the Cauchy-Riemann operator. From the CR property of the S1 action,

it is straightforward from (2.4) and (2.5) to see that

T∂b = ∂bT on Ω0,•(X).

Definition 2.3. Let D ⊂ U be an open set. We say that a function u ∈
C∞(D) is rigid if Tu = 0. We say that a function u ∈ C∞(X) is Cauchy-

Riemann (CR for short) if ∂bu = 0. We call u a rigid CR function if ∂bu = 0

and Tu = 0.

Definition 2.4. Let F be a complex vector bundle over X. We say that

F is rigid (CR) if X can be covered with open sets Uj with trivializing

frames
{
f1j , f

2
j , . . . , f

r
j

}
, j = 1, 2, . . ., such that the corresponding transition

matrices are rigid (CR). The frames
{
f1j , f

2
j , . . . , f

r
j

}
, j = 1, 2, . . ., are called

rigid (CR) frames.

Definition 2.5. Let F be a complex rigid vector bundle over X and let

〈 · | · 〉F be a Hermitian metric on F . We say that 〈 · | · 〉F is a rigid Hermitian
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metric if, for every rigid local frames f1, . . . , fr of F , we have T 〈 fj | fk 〉F = 0,

for every j, k = 1, 2, . . . , r.

It is known that there is a rigid Hermitian metric on any rigid vector

bundle F (see Theorem 2.10 in [9] and Theorem 10.5 in [14]). Note that

Baouendi-Rothschild-Treves [6] proved that T 1,0X is a rigid complex vector

bundle over X.

From now on, let E be a rigid CR vector bundle over X and we take a

rigid Hermitian metric 〈 · | · 〉E on E and take a rigid Hermitian metric 〈 · | · 〉
on CTX such that

T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1.

The Hermitian metrics on E and CTX induce Hermitian metrics 〈 · | · 〉 and
〈 · | · 〉E on T ∗0,•X and T ∗0,•X ⊗ E, respectively. Let

A(x, y) ∈ (T ∗,•
y X ⊗ Ey)

∗
⊠ (T ∗,•

x X ⊗ Ex).

We write |A(x, y)| to denote the natural matrix norm of A(x, y) induced by

〈 · | · 〉E . We denote by dvX = dvX(x) the volume form on X induced by the

fixed Hermitian metric 〈 · | · 〉 on CTX. Then we get natural global L2 inner

products ( · | · )E and ( · | · ) on Ω0,•(X,E) and Ω0,•(X), respectively. We de-

note by L2(X,T ∗0,qX⊗E) and L2(X,T ∗0,qX) the completions of Ω0,q(X,E)

and Ω0,q(X) with respect to ( · | · )E and ( · | · ), respectively. Similarly, we de-

note by L2(X,T ∗0,•X⊗E) and L2(X,T ∗0,•X) the completions of Ω0,•(X,E)

and Ω0,•(X) with respect to ( · | · )E and ( · | · ), respectively. We extend

( · | · )E and ( · | · ) to L2(X,T ∗0,•X ⊗ E) and L2(X,T ∗0,•X) in the standard

way, respectively. For f ∈ L2(X,T ∗0,•X ⊗ E), we denote ‖f‖2E := ( f | f )E .
Similarly, for f ∈ L2(X,T ∗0,•X), we denote ‖f‖2 := ( f | f ).

We write ∂b to denote the tangential Cauchy-Riemann operator acting

on forms with values in E:

∂b : Ω
0,•(X,E) → Ω0,•(X,E).

Since E is rigid, we can also define Tu for every u ∈ Ω0,q(X,E) and we have

T∂b = ∂bT on Ω0,•(X,E). (2.6)
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For every m ∈ Z, let

Ω0,q
m (X,E) :=

{
u ∈ Ω0,q(X,E); Tu = imu

}
, q = 0, 1, 2, . . . , n,

Ω0,•
m (X,E) :=

{
u ∈ Ω0,•(X,E); Tu = imu

}
.

For each m ∈ Z, we denote by L2
m(X,T ∗0,qX ⊗ E) and L2

m(X,T ∗0,qX) the

completions of Ω0,q
m (X,E) and Ω0,q

m (X) with respect to ( · | · )E and ( · | · ),
respectively. Similarly, we denote by L2

m(X,T ∗0,•X⊗E) and L2
m(X,T ∗0,•X)

the completions of Ω0,•
m (X,E) and Ω0,•

m (X) with respect to ( · | · )E and ( · | · ),
respectively.

2.2. Heat kernels of the Kohn Laplacians

Since T∂b = ∂bT , we have

∂b,m := ∂b : Ω
0,•
m (X,E) → Ω0,•

m (X,E), ∀m ∈ Z.

We also write

∂
∗
b : Ω

0,•(X,E) → Ω0,•(X,E)

to denote the formal adjoint of ∂b with respect to ( · | · )E .

Since 〈 · | · 〉E and 〈 · | · 〉 are rigid, we can check that

T∂
∗
b = ∂

∗
bT on Ω0,•(X,E),

∂
∗
b,m := ∂

∗
b : Ω

0,•
m (X,E) → Ω0,•

m (X,E), ∀m ∈ Z.

Now, we fixm ∈ Z. Them-th Fourier component of Kohn Laplacian is given

by

�b,m := (∂b,m + ∂
∗
b,m)2 : Ω0,•

m (X,E) → Ω0,•
m (X,E).

We extend �b,m to L2
m(X,T ∗0,•X ⊗ E) by

�b,m : Dom�b,m ⊂ L2
m(X,T ∗0,•X ⊗ E) → L2

m(X,T ∗0,•X ⊗ E) ,

where

Dom�b,m := {u ∈ L2
m(X,T ∗0,•X ⊗ E); �b,mu ∈ L2

m(X,T ∗0,•X ⊗ E)}
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for which, for any u ∈ L2
m(X,T ∗0,•X ⊗ E), �b,mu is defined in the sense of

distribution. It is known that �b,m is self-adjoint, Spec�b,m is a discrete

subset of [0,∞[ and, for every ν ∈ Spec�b,m, ν is an eigenvalue of �b,m

(see Section 3 in [9]). For every ν ∈ Spec�b,m, let
{
f ν1 , . . . , f

ν
dν

}
be an

orthonormal frame for the eigenspace of �b,m with eigenvalue ν. The heat

kernel e−t�b,m(x, y) is given by

e−t�b,m(x, y) =
∑

ν∈Spec�b,m

dν∑

j=1

e−νtf νj (x)⊗ (f νj (y))
†,

where f νj (x)⊗ (f νj (y))
† denotes the linear map:

f νj (x)⊗ (f νj (y))
† : T ∗0,•

y X ⊗ Ey → T ∗0,•
x X ⊗ Ex,

u(y) ∈ T ∗0,•
y X ⊗ Ey → f νj (x)〈u(y) | f νj (y) 〉E ∈ T ∗0,•

x X ⊗ Ex.

Let

e−t�b,m : L2(X,T ∗0,•X ⊗ E) → L2
m(X,T ∗0,•X ⊗ E)

be the continuous operator with distribution kernel e−t�b,m(x, y).

2.3. Mellin transformation

Let Γ(z) be the Gamma function on C. Then, for Re z > 0, we have

Γ(z) =

∫ ∞

0
e−ttz−1dt.

Γ(z)−1 is an entire function on C and

Γ(z)−1 = z +O(z2) near z = 0.

We suppose that f(t) ∈ C∞(R+) verifies the following two conditions:

I.

f(t) ∼
∞∑

j=0

f−k+ j
2
t−k+ j

2 as t→ 0+,

where k ∈ N0, f−k+ j

2
∈ C, j = 0, 1, 2, . . ..
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II. For every δ > 0, there exist c > 0, C > 0 such that

|f(t)| ≤ Ce−ct, ∀t ≥ δ.

Definition 2.6. The Mellin transformation of f is the function defined by,

for Re z > k,

M [f ](z) =
1

Γ(z)

∫ ∞

0
f(t)tz−1dt.

We can repeat the proof of Lemma 5.5.2 in [22] and deduce the following,

see [15, Theorem 4.2] for the proof,

Theorem 2.7. M [f ] extends to a meromorphic function on C with poles

contained in {
ℓ− j

2
; ℓ, j ∈ Z

}
,

and its possible poles are simple. Moreover, M [f ] is holomorphic at 0.

2.4. Definition of the Quillen metric

In this subsection we recall the construction of the Fourier components

of the analytic torsion for the rigid CR vector bundle E over the CR manifold

X with a transversal CR S1-action from [15, §4].
Let N be the number operator on T ∗0,•X, i.e. N acts on T ∗0,qX by

multiplication by q. Fix q = 0, 1, . . . , n, and take a point x ∈ X. Let

e1(x), . . . , ed(x) be an orthonormal frame of T ∗0,q
x X ⊗ Ex. Let

A ∈ (T ∗0,•
x X ⊗ Ex)

∗
⊠ (T ∗0,•

x X ⊗ Ex).

Put

Tr(q)A :=
d∑

j=1

〈Aej |ej〉E

and set

TrA :=

n∑

j=0

Tr(j)A,
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STrA :=

n∑

j=0

(−1)j Tr(j)A. (2.7)

Let

A : C∞(X,T ∗0,•X ⊗ E) → C∞(X,T ∗0,•X ⊗E)

be a continuous operator with distribution kernel

A(x, y) ∈ C∞(X ×X, (T ∗0,•
y X ⊗ Ey)

∗
⊠ (T ∗0,•

x X ⊗ Ex)).

We set

Tr(q)[A] :=

∫

X
Tr(q)A(x, x)dvX (x)

and put

Tr[A] :=
n∑

j=0

Tr(j)[A],

STr[A] :=

n∑

j=0

(−1)j Tr(j)[A]. (2.8)

Let

Πm : L2
m(X,T ∗0,•X ⊗ E) → Ker�b,m

be the orthogonal projection and let

Π⊥
m : L2

m(X,T ∗0,•X ⊗ E) → (Ker�b,m)⊥

be the orthogonal projection, where

(Ker�b,m)⊥ =
{
u ∈ L2

m(X,T ∗0,•X ⊗ E); (u | v )E = 0, ∀v ∈ Ker�E
b,m

}
.

By [9, Theorem 1.7], we have the following asymptotic expansion:

STr[Ne−t�b,m ] :=

∫
STr(Ne−t�b,m)(x, x)dvX (x) ∼

∞∑

j=0

B̂m,−n+ j

2
t−n+ j

2

as t→ 0+,(2.9)

where B̂m,−n+ j

2
∈ C independent of t, for each j. By using (2.9) and The-
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orem 2.7, cf. also [15, §4], we can show that, for Re(z) > n, the following

ζ-function is well defined,

θb,m(z) = −M
[
STr[Ne−t�b,mΠ⊥

m]
]
= − STr

[
N(�b,m)−zΠ⊥

m

]
, (2.10)

where M denotes the Mellin transformation, cf. Definition 2.6. Moreover,

we can show that, cf. [15, Lemma 4.4],

Lemma 2.8. θb,m(z) extends to a meromorphic function on C with poles

contained in the set {
ℓ− j

2
; ℓ, j ∈ Z

}
,

its possible poles are simple, and θb,m(z) is holomorphic at 0.

We can now introduce the definition of the m-th Fourier component of

the analytic torsion for X with S1 action, cf. [15, Definition 4.5].

Definition 2.9. Fix m ∈ Z. We define exp(−1
2θ

′
b,m(0)) the m-th Fourier

component of the analytic torsion for the rigid vector bundle E over the CR

manifold X with transversal CR S1-action.

Put

∂b,m := ∂b : Ω
0,q(X) → Ω0,q+1(X)

with a ∂b,m-complex:

∂b,m : · · · → Ω0,q−1
m (X) → Ω0,q

m (X) → Ω0,q+1
m (X) → · · · .

Definition 2.10. For each m ∈ Z and q = 0, 1, . . . , n, the cohomology

group:

Hq
b,m(X) :=

Ker ∂b,m : Ω0,q
m (X) → Ω0,q+1

m (X)

Im ∂b,m : Ω0,q−1
m (X) → Ω0,q

m (X)

is called the m-th S1 Fourier component of the q-th ∂b Kohn-Rossi cohomol-

ogy group.

By Theorem 3.7 of [9], for eachm ∈ Z and q=0, 1, . . . , n, the cohomology

group Hq
b,m(X,E) is isomorphic to the kernel of �

(q)
b,m and dimHq

b,m(X,E)

<∞. Denote by

H•
b,m(X,E) = ⊕n

q=0H
q
b,m(X,E).
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For a finite dimensional vector space V , we set

detV := ∧maxV.

We then denote by

(detV )−1 := (detV )∗,

the dual line of detV . Then

detH•
b,m(X,E) = ⊗n

q=0

(
detHq

b,m(X,E)
)(−1)q

is the determinant line of the cohomology H•
b,m(X,E). We define

λb,m(E) =
(
detH•

b,m(X,E)
)−1

.

The rigid Hermitian metrics 〈 · | · 〉 and 〈 · | · 〉E on CTX and E, respectively,

induce a canonical L2-metric hH
•
b,m

(X,E) on H•
b,m(X,E). Let | · |λb,m(E) be

the L2-metric on λb,m(E) induced by hH
•
b,m

(X,E).

Now we can define the Quillen metric on detH•
b,m(X,E).

Definition 2.11. Fix m ∈ Z. The Quillen metric ‖·‖λb,m(E) on detH•
b,m(X,

E) is defined as

‖ · ‖λb,m(E) := | · |λb,m(E) · exp(−
1

2
θ′b,m,E(0)).

2.5. Tangential de Rham cohomology group and tangential char-

acteristic classes

For every r = 0, 1, 2, . . . , 2n, put

Ωr
0(X) = {u ∈ ⊕p+q=rΩ

p,q(X); Tu = 0 }

and set

Ω•
0(X) = ⊕2n

r=0Ω
r
0(X).
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Since Td = dT (see (2.6)), we have d-complex:

d : · → Ωr−1
0 (X) → Ωr

0(X) → Ωr+1
0 (X) → · · ·

and we define the r-th tangential de Rham cohomology group:

Hr
b,0(X) :=

Ker d : Ωr
0(X) → Ωr+1

0 (X)

Im d : Ωr−1
0 (X) → Ωr

0(X)
.

Put

H•
b,0(X) = ⊕2n

r=0Hr
b,0(X).

Let F be a rigid complex vector bundle over X of rank r. It was shown in [9,

Theorem 2.11] that there is a rigid connection ∇ on F , that is, for any rigid

local frame f = (f1, f2, . . . , fr) of F on an open set D ⊂ X, the connection

matrix θ(∇, f) = (θj,k)
r
j,k=1 satisfies θj,k ∈ Ω1

0(D), for every j, k = 1, . . . , r.

Let

Θ(∇, F ) ∈ C∞(X,∧2(CT ∗X)⊗ End(F ))

be the associated curvature. Let

h(z) =

∞∑

j=0

ajz
j, aj ∈ R,

for every j, be a real power series on z ∈ C. Set

H(Θ(∇, F )) = Tr

(
h(

i

2π
Θ(∇, F ))

)
.

It is clear that

H(Θ(∇, F )) ∈ Ω•
0(X)

and is known thatH(Θ(∇, F )) is a closed differential form and the tangential

de Rham cohomology class

[H(Θ(∇, F ))] ∈ H•
b,0(X)

does not depend on the choice of rigid connection ∇, cf. [9, Theorem 2.5,
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Theorem 2.6]. Put

chb(∇, F ) = chb(Θ(∇, F )) := H(Θ(∇, F )) ∈ Ω•
0(X),

where h(z) = ez and set

Tdb(∇, F ) = Tdb(Θ(∇, F )) := eH(Θ(∇,F )) ∈ Ω•
0(X),

where h(z) = log( z
1−e−z ). We now introduce tangential Todd class and

tangential Chern character.

Definition 2.12. Tangential Chern character of F is given by

chb(F ) := [chb(∇, F )] ∈ H•
b,0(X),

and tangential Todd class of F is given by

Tdb(F ) := [Tdb(∇, F )] ∈ H•
b,0(X).

Let

P =
{
u ∈ ⊕n

p=0Ω
p,p(X); Tu = 0

}
.

Let P ′ ⊂ P be the set of smooth forms α ∈ P such that there exist smooth

forms β, γ ∈ Ω•
0(X) for which

α = ∂bβ + ∂bγ.

When α,α′ ∈ P , we write α ≡ α′ if α− α′ ∈ P ′. We can check that if η ∈ P

is closed and has compact support and α ≡ α′, then

∫

X
α ∧ η ∧ ω0 =

∫

X
α′ ∧ η ∧ ω0.

Hence the pairing of elements of P/P ′ with such η is well-defined. Let ∇′ be

a rigid connection induced by another rigid Hermitian metric 〈 · | · 〉′F on F .

By [3, §(f)], we have the unique secondary tangential characteristic (Bott-

Chern) classes T̃db(∇,∇′, F ) and c̃hb(∇,∇′, F ) in P/P ′ such that

∂b∂b

2π
√
−1

T̃db(∇,∇′, F ) = Tdb(∇′, F )−Tdb(∇, F ),
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∂b∂b

2π
√
−1

c̃hb(∇,∇′, F ) = chb(∇′, F )− chb(∇, F ).

Baouendi-Rothschild-Treves [6] proved that T 1,0X is a rigid complex

vector bundle over X. Thus, we can define tangential Todd class of T 1,0X,

tangential Chern character of T 1,0X and tangential Bott-Chern classes of

T 1,0X.

2.6. Main Theorem

In this subsection we state the main result of this paper. Let E be a rigid

complex vector bundle over a compact connected strongly pseudoconvex CR

manifold X of dimension 2n + 1, n ≥ 1 with a transversal CR S1 action on

X. Let ∇TX and ∇′TX be the Levit-Civita connections on TX with respect

to the metrics 〈 · | · 〉 and 〈 · | · 〉′ on CTX, respectively. Let PT 1,0X be the

natural projection from CTX onto T 1,0X. Then,

∇T 1,0X := PT 1,0X∇TX and ∇′T 1,0X := PT 1,0X∇′TX

are connections on T 1,0X. Let ∇E and ∇′E be the connections on E in-

duced by the rigid Hermitian metrics 〈 · | · 〉E and 〈 · | · 〉′E on E, respectively.

We can check that ∇T 1,0X ,∇′T 1,0X ,∇E and ∇′E are rigid. We denote by

‖ ·‖′λb,m(E) the Quillen metric induced by the metrics 〈 · | · 〉′ and 〈 · | · 〉′E . De-

note by T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) the secondary tangential Todd class for

the vector bundle T 1,0X, c̃hb(∇E ,∇′E , E) the secondary tangential Chern

character for the vector bundle E, Tdb(∇′T 1,0X , T 1,0X) the Todd class for

the vector bundle T 1,0X and chb(∇E , E) the Chern character for the vector

bundle E.

The following theorem is the main result of this paper.

Theorem 2.13. The following identity holds:

log

( ‖ · ‖′λb,m(E)

‖ · ‖λb,m(E)

)

=
1

2π

∫

X
T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) ∧ chb(∇E , E) ∧ e−m

dω0
2π ∧ ω0
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+
1

2π

∫

X
Tdb(∇′T 1,0X , T 1,0X) ∧ c̃hb(∇E ,∇′E , E) ∧ e−m

dω0
2π ∧ ω0.

2.7. Anomaly formula for some class of orbifold line bundles

In [21], Ma first introduced analytic torsion on orbifolds and anomaly

formula for Quillen metrics in the case of orbifolds, which is expressed ex-

plicitly in the form of characteristic and Bott-chern characteristic classes.

Comparing with Ma’s formula, we get a simpler anomaly formula for some

class of orbifold line bundles from our main result, Theorem 2.13. We first re-

call some backgrounds on orbifold geometry. We will follow the presentation

of [9, Subsection 1.4] closely.

Let M be a manifold and let G be a compact Lie group. Assume that

M admits a G-action:

G×M →M,

(g, x) → g ◦ x.

We assume that the action of G on M is locally free, that is, for every point

x ∈M , the stabilizer group

Gx := {g ∈ G; g ◦ x = x}

of x is a finite subgroup of G. It is well known that, in such a case, the

quotient space

X :=M/G (2.11)

is an orbifold. A theorem of Satake [30] says that the converse is also true:

every orbifold has a presentation of the form (2.11). We assume that M is a

compact connected complex manifold with complex structure T 1,0M . Then

the group G induces an action on CTM :

G× CTM → CTM, (g, u) → g∗u,

where g∗ = (g−1)∗ denotes the push-forward by g−1 on CTM . We assume
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that G acts holomorphically, that is,

g∗(T 1,0M) ⊂ T 1,0M,

for every g ∈ G. Let T 0,1M := T 1,0M . Put

CT (M/G) := CTM/G, T 1,0(M/G) := T 1,0M/G, T 0,1(M/G) := T 0,1M/G.

Assume that

T 1,0(M/G) ∩ T 0,1(M/G) = {0} .

Then, T 1,0(M/G) is a complex structure on M/G and M/G is a complex

obifold. Suppose that

dimC T
1,0(M/G) = n.

Let L be a G-invariant holomorphic line bundle over M , that is, for every

transition function h of L on an open set U ⊂ M , we have h(g ◦ x) = h(x),

for every g ∈ G, x ∈ G with g ◦ x ∈ U. Suppose that L admits a locally

free-G action:

G× L → L,

(g, x) → g ◦ x,
where

π(g ◦ x) = g ◦ (π(x)),

for every g ∈ G, where π : L → M denotes the natural projection, and

where the action of G on L is linear on the fibers of L, that is, for every

g ∈ G, every z ∈M , we have

g ◦ (s(z)⊗ λ) = s1(g ◦ z)⊗ ρ(g, z)λ,

for every λ ∈ C, where s and s1 are local sections of L defined near z and

g ◦z, respectively, and ρ(g, z) ∈ C depends on z and g smoothly. Then, L/G

is an orbifold holomorphic line bundle over M/G. For every m ∈ N, let Lm

be the m-th tensor power of L. Then, the G-action on L induces a locally

free G-action on Lm:

G× Lm → Lm,
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(g, x) → g ◦ x,
where

πm(g ◦ x) = g ◦ (πm(x)),

for every g ∈ G, where πm : Lm → M denotes the natural projection, and

the action of G on Lm is linear on the fibers of Lm. Then, Lm/G is again an

orbifold holomorphic line bundle overM/G. Now, we fixm ∈ Z. Let T ∗0,qM

denote the bundle of (0, q) forms on M . Since G action is holomorphic, G

induces a natural action on T ∗0,qM ⊗ Lm:

G× (T ∗0,qM ⊗ Lm) → T ∗0,qM ⊗ Lm,

(g, u) → g∗u.

For every q = 0, 1, 2, . . . , n, put

Ω0,q(M/G,Lm/G) :=
{
u ∈ Ω0,q(M,Lm); g∗u = u, ∀g ∈ G

}
,

where Ω0,q(M,Lm) denotes the space of smooth sections with values in

T ∗0,qM ⊗ Lm. The Cauchy-Riemann operator

∂ : Ω0,q(M/G,Lm/G) → Ω0,q+1(M/G,Lm/G)

is G-invariant and we have the following ∂-complex:

∂ : · · · → Ω0,q−1(M/G,Lm/G) → Ω0,q(M/G,Lm/G)

→ Ω0,q+1(M/G,Lm/G) → · · ·

and, hence, we can consider the q-th Dolbeault cohomology group:

Hq(M/G,Lm/G) :=
Ker∂ : Ω0,q(M/G,Lm/G) → Ω0,q+1(M/G,Lm/G)

Im ∂ : Ω0,q−1(M/G,Lm/G) → Ω0,q(M/G,Lm/G)

Let L∗ be the dual bundle of L. Then, L∗ is also a G-invariant holomor-

phic line bundle and L∗ admits a locally free G-action:

G⊗ L∗ → L∗,

(g, x) → g ◦ x
where

π∗(g ◦ x) = g ◦ (π∗(x)),
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for every g ∈ G, where π∗ : L∗ → M denotes a natural projection, and

the action of G on L∗ is linear on the fibers of L∗. Then, L∗/G is also an

orbifold holomorphic line bundle over M/G. Let Tot(L∗) be the space of all

non-zero vectors of L∗. Assume that Tot(L∗)/G is a smooth manifold. Take

any G-invariant Hermitian fiber metric hL
∗
on L∗, set

X̃ = {v ∈ L∗; |v|hL∗ = 1}
and put

X = X̃/G.

Since Tot(L∗) is a smooth manifol, X = X̃/G is a smooth manifold. The

natural S1 action on X̃ induces a locally free action S1 action eiθ on X.

Moreover, we can check that X is a CR manifold and the S1 action on X

is CR and transversal. We will use the same notations as before. We can

repeat the proof of [9, Theorem 1.2] with minor changes and show that, for

every q = 0, 1, 2, . . . , n, and every m ∈ Z, we have

Hq(M/G,Lm/G) ∼= Hq
b,m(X),

dimHq(M/G,Lm/G) = dimHq
b,m(X).

(2.12)

We pause and introduce some notations. For every x ∈ Tot(L∗) and

g ∈ G, put

N(g, x) =

{
1, if g 6∈ Gx

inf
{
l ∈ N; gl = Id

}
, if g ∈ Gx.

Set

p = inf {N(g, x); x ∈ Tot(L∗), g ∈ G, g 6= Id} ,

where Id denotes the identity element of G. It is known that Xp is open

and dense subset of X. Recall that in this work we work with p = 1. From

Theorem 2.13 and (2.12), we deduce

Theorem 2.14. With the notations used above, recall that we work with the

assumptions that M is connected and Tot(L∗) is smooth. Fix a Hermitian
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metric on Lm/G. Then, for every m ∈ Z, we have

log

(
‖ · ‖′λ(Lm/G)

‖ · ‖λ(Lm/G)

)
=

1

2π

∫

X
T̃db(∇T 1,0X ,∇′T 1,0X , T 1,0X) ∧ e−m

dω0
2π ∧ ω0.

(2.13)

3. Asymptotic Expansion of Heat Kernels

In this section we introduce the complex tangential ∗-operator and a

certain asymptotic expansion of heat kernels. The main result is Theorem

3.1 which can be viewed as a CR analogue of [3, Theorem 1.18] (cf. also [22,

Theorem 5.5.6]).

3.1. Asymptotic expansion for heat kernels of the Kohn Laplacians

We now define the complex tangential Hodge ∗-operator, see also [12,

Proposition 8.8], as a complex conjugate linear map

∗b : Ωp,q(X) → Ωn−p,n−q(X)

such that

〈φ |ψ 〉(dω0)
n

n!
= φ ∧ ∗bψ, ∗b ∗b φ = (−1)p+qφ,

for any φ,ψ ∈ Ωp,q(X).

We denote by H∗X the dual bundle of HX and conj the natural con-

jugate map induced by the bundle automorphism

H∗X ⊗R C → H∗X ⊗R C, u⊗ λ 7→ u⊗ λ, (3.1)

for any u ∈ H∗X,λ ∈ C. Then

∗̂b := conj∗b

is a complex linear map. Clearly,

∂b = conj ∂b conj : Ωp,q(X) → Ωp+1,q(X)

and
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∗̂b = conj ∗b = ∗b conj : Ωp,q(X) → Ωn−q,n−p(X).

Let ( · | · ) be the L2 inner product on Ωp,q(X) induced by 〈 · | · 〉. Then,

for all φ,ψ ∈ Ωp,q(X),

(φ |ψ ) =

∫

X
〈φ |ψ 〉dvX =

∫

X
φ ∧ ∗bψ ∧ ω0,

where

dvX =
(dω0)

n

n!
∧ ω0 (3.2)

is the volume form.

We can easily check that

∂∗bφ = − ∗b ∂b ∗b φ = −∗̂b ∂b ∗̂b φ,
and

∂bψ = − ∗b ∂b ∗b ψ = −∗̂b ∂b ∗̂b ψ.

Denote by µ : E → E∗ the induced conjugate linear bundle isomorphism

from the vector bundle E to its dual vector bundle E∗. Let ( · | · )E be the

L2 inner product on Ωp,q(X,E) induced by 〈 · | · 〉 and 〈 · | · 〉E . Then, for all
α, β ∈ Ωp,q(X,E),

(α |β )E =

∫

X
〈α |β 〉EdvX =

∫

X
α ∧ (∗b ⊗ µ)β ∧ ω0,

where dvX is the volume form defined in (3.2). We write ∂
′
b to denote the

tangential Cauchy-Riemann operator acting on forms with values in E∗:

∂
′
b : Ω

0,•(X,E∗) → Ω0,•(X,E∗).

We can check that the adjoint of ∂b is

∂
∗
b = −

(
∗−1
b ⊗ µ

)−1
∂
′
b (∗b ⊗ µ) .

Let 〈 · | · 〉s and 〈 · | · 〉E,s, s ∈ [0, 1] be smooth families of rigid Hermitian

metrics on TX and E, respectively, such that

〈 · | · 〉0 :=〈 · | · 〉, 〈 · | · 〉1 :=〈 · | · 〉′ and 〈 · | · 〉E,0 :=〈 · | · 〉E , 〈 · | · 〉E,1 :=〈 · | · 〉′E .
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Let ( · | · )E,s be the L2 inner products on Ωp,q(X,E) induced by 〈 · | · 〉s and

〈 · | · 〉E,s. Let ∗b,s be the tangential Hodge ∗-operators associated to the

metrics 〈 · | · 〉s and µs be the induced conjugate linear bundle isomorphisms

of E and E∗ associated to the metric 〈 · | · 〉E,s. Let

�b,s := ∂b∂
∗
b,s + ∂

∗
b,s∂b,

where ∂
∗
b,s denote the formal adjoint of ∂b with respect to the L2 scalar

product ( · | · )E,s. We denote by

�b,m,s := �b,s|Ω0,•
m (X,E)

.

Let ‖·‖λb,m(E),s be the corresponding Quillen metrics on detH•
b,m(X,E). Set

Qb,s = − (∗b,s ⊗ µs)
−1 ∂ (∗b,s ⊗ µs)

∂s
= −

(
∗−1
b,s

∂∗b,s
∂s

+ (µs)
−1∂µs

∂s

)
. (3.3)

The following theorem is an analogue of [3, Theorem 1.18] (cf. also [22,

Theorem 5.5.6]).

Theorem 3.1. As t→ 0+, for any k ∈ N, there is an asymptotic expansion

STr [Qb,s exp (−t�b,m,s)] =
k+2n∑

j=0

M−n+ j

2
,st

−n+ j

2 +O(t
k+1
2 ),

where

M0,s =
∂

∂s
log
(
‖ · ‖2λb,m(E),s

)
. (3.4)

Proof. By the small time asymptotic expansion for the heat kernel of the

Kohn Laplacians in [9, Theorem 1.7] and proceeding formally as in the proof

of [3, Theorem 1.18], we get (3.4). ���

4. Anomaly Formula of Analytic Torsion on CR Manifolds

with S1-action

In this section we study the dependence of the analytic torsion under

a change of the metrics. In Subsection 4.1, we recall the BRT trivializa-

tions from [6]. In Subsection 4.2, we review the local heat kernels on the

BRT trivializations. In Subsection 4.3, we discuss certain local heat kernels

depending on some parameters. In Subsection 4.4, we derive the constant
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term of heat kernel asymptotics of the modified Kohn Laplacians on BRT

trivializations. Finally, in Subsection 4.5, we give the proof of our main

theorem.

4.1. BRT trivializations

To prove Theorem 2.13, we need some preparations. We first need the

following result due to Baouendi-Rothschild-Treves [6].

Theorem 4.1. For every point x0 ∈ X, we can find local coordinates x=

(x1, . . . , x2n+1)= (z, θ)= (z1, . . . , zn, θ), zj =x2j−1 + ix2j , j=1, . . . , n, x2n+1

= θ, defined in some small neighborhood D = {(z, θ) : |z| < δ,−ε0 < θ < ε0}
of x0, δ > 0, 0 < ε0 < π, such that (z(x0), θ(x0)) = (0, 0) and

T =
∂

∂θ

Zj =
∂

∂zj
+ i

∂ϕ

∂zj
(z)

∂

∂θ
, j = 1, . . . , n

where Zj(x), j = 1, . . . , n, form a basis of T 1,0
x X, for each x ∈ D and ϕ(z) ∈

C∞(D,R) independent of θ. We call (D, (z, θ), ϕ) BRT trivialization.

By using BRT trivialization, we get another way to define Tu,∀u ∈
Ω0,q(X). Let (D, (z, θ), ϕ) be a BRT trivialization. It is clear that

{dzj1 ∧ · · · ∧ dzjq , 1 ≤ j1 < · · · < jq ≤ n}

is a basis for T ∗0,q
x X, for every x ∈ D. Let u ∈ Ω0,q(X). On D, we write

u =
∑

1≤j1<···<jq≤n

uj1···jqdzj1 ∧ · · · ∧ dzjq .

Then, on D, we can check that

Tu =
∑

1≤j1<···<jq≤n

(Tuj1···jq)dzj1 ∧ · · · ∧ dzjq

and Tu is independent of the choice of BRT trivializations. Note that, on
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BRT trivialization (D, (z, θ), ϕ), we have

∂b =

n∑

j=1

dzj ∧ (
∂

∂zj
− i

∂ϕ

∂zj
(z)

∂

∂θ
).

4.2. Local heat kernels on BRT trivializations

Until further notice, we fix m ∈ Z. Let B := (D, (z, θ), ϕ) be a BRT

trivialization. We may assume that D = U×]−ε, ε[, where ε > 0 and U is an

open set of Cn. Since E is rigid, we can consider E as a holomorphic vector

bundle over U . We may assume that E is trivial on U . Consider L→ U be a

trivial line bundle with non-trivial Hermitian fiber metric |1|2hL = e−2ϕ. Let

(Lm, hL
m

) → U be the m-th power of (L, hL). For every q = 0, 1, 2, . . . , n,

let Ω0,q(U,E ⊗ Lm) and Ω0,q(U,E) be the spaces of (0, q) forms on U with

values in E ⊗ Lm and E, respectively. Put

Ω0,•(U,E ⊗ Lm) := ⊕j∈{0,1,...,n}Ω
0,j(U,E ⊗ Lm),

Ω0,•(U,E) := ⊕j∈{0,1,...,n}Ω
0,j(U,E).

Since L is trivial, from now on, we identify Ω0,•(U,E) with Ω0,•(U,E⊗Lm).

Since the Hermitian fiber metric 〈 · | · 〉E is rigid, we can consider 〈 · | · 〉E as

a Hermitian fiber metric on the holomorphic vector bundle E over U . Let

〈 · , · 〉 be the Hermitian metric on CTU given by

〈 ∂

∂zj
,
∂

∂zk
〉 = 〈 ∂

∂zj
+ i

∂ϕ

∂zj
(z)

∂

∂θ
| ∂

∂zk
+ i

∂ϕ

∂zk
(z)

∂

∂θ
〉, j, k = 1, 2, . . . , n.

Then 〈 · , · 〉 induces a Hermitian metric on T ∗0,•U := ⊕n
j=0T

∗0,jU , where

T ∗0,jU is the bundle of (0, j) forms on U , j = 0, 1, . . . , n. We shall also

denote the Hermitian metric by 〈 · , · 〉. The Hermitian metrics on T ∗0,•U

and E induce a Hermitian metric on T ∗0,•U ⊗ E. We shall also denote this

induced metric by 〈 · | · 〉E . Let ( · , · ) be the L2 inner product on Ω0,•(U,E)

induced by 〈 · , · 〉 and 〈 · | · 〉E . Similarly, let ( · , · )m be the L2 inner product

on Ω0,•(U,E ⊗ Lm) induced by 〈 · , · 〉, 〈 · | · 〉E and hL
m
.

Let

∂ : Ω0,•(U,E ⊗ Lm) → Ω0,•(U,E ⊗ Lm)
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be the Cauchy-Riemann operator and let

∂
∗,m

: Ω0,•(U,E ⊗ Lm) → Ω0,•(U,E ⊗ Lm)

be the formal adjoint of ∂ with respect to ( · , · )m. Put

DB,m := ∂ + ∂
∗,m

: Ω0,•(U,E ⊗ Lm) → Ω0,•(U,E ⊗ Lm).

Let

D∗
B,m : Ω0,•(U,E ⊗ Lm) → Ω0,•(U,E ⊗ Lm)

be the formal adjoint of DB,m with respect to ( · , · )m. Then we denote by

�B,m = DB,mD
∗
B,m : Ω0,•(U,E ⊗ Lm) → Ω0,•(U,E ⊗ Lm).

Put

Db,m := ∂b,m + ∂
∗
b,m : Ω0,•

m (X,E) → Ω0,•
m (X,E).

Let

D∗
b,m : Ω0,•

m (X,E) → Ω0,•
m (X,E).

be the formal adjoint of Db,m with respect to ( · | · )E . Denote by

∗ : Ωp,q(U) → Ωn−p,n−q(U)

the Hodge ∗-operator associated to the Riemannian metric 〈 · , · 〉 and ∗s the
Hodge ∗-operators associated to the Riemannian metrics 〈 · , · 〉s, s ∈ [0, 1].

Let µEs be the induced conjugate linear bundle isomorphism of E and E∗

associated to the metrics 〈 · | · 〉E,s and µL
m

be the induced conjugate linear

bundle isomorphism of Lm and (Lm)∗ associated to the metric hL
m
. Set

Qs = −
(
∗s ⊗ µEs ⊗ µL

m)−1 ∂
(
∗s ⊗ µEs ⊗ µL

m)

∂s
(4.1)

4.3. Local heat kernels depending on parameters

Let F be a vector bundle over a compact manifold Z. Let ϑ1, . . . , ϑi be

auxiliary Grassmann variables. We assume that the multiplication of any

q + 1 variables of the above given Grassmann variables vanishes, where q is
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some fixed integer. Let R(ϑ1, . . . , ϑi) be the Grassmann algebra generated

by 1, ϑ1, . . . , ϑi, cf. [2] or [20, Subsection 3.1]. If ω ∈ R(ϑ1, . . . , ϑi), then ω is

a linear combination of ϑi1 , . . . , ϑik , where 1 ≤ i1 < · · · < ik ≤ i. We say that

the monomial ϑi1 · · ·ϑik is of degree k. Clearly, k ≤ q. We define elements

of Ω•(Z) ⊗ F to be of degree zero and give every monomial of Ω•(Z) ⊗
End(F )⊗̂R(ϑ1, . . . , ϑi), say φi1···ikϑi1 · · ·ϑik , where φi1···ik ∈ Ω•(Z)⊗End(F ),

a natural degree. Let (B, ‖ · ‖) be a normed space. We now introduce a norm

on ‖ · ‖B⊗R on B ⊗R(ϑ1, . . . , ϑi) as follows. For 1 ≤ i1 < · · · < ik ≤ i,

φ =
∑

1≤k≤q

φi1···ikϑi1 · · ·ϑik ∈ B ⊗R(ϑ1, . . . , ϑi),

we define

‖φ‖B⊗R = max
1≤k≤q

‖φi1···ik‖. (4.2)

Now let da, dā be two odd Grassmann variables. Let

η ∈ ∧•
CT ∗U⊗̂C(da, dā), then η can be written in the form

η = η0 + daη1 + dāη2 + dadāη3, where ηi ∈ ∧•
CT ∗U, 0≤ i≤3

and we set

(η)dadā = η3.

We will also identify η as an element in ∧•
CT ∗D⊗̂C(da, dā) naturally. We

denote by

Lb,m,t = t�b,m +

√
t

2
daDb,m +

√
t

2
dā[Db,m, Qb]− dadāQb,

where Qb := Qb,0 as defined in (3.3). Proceeding formally as in [5, Theorem

1.20], we obtain

Proposition 4.2. The following identity holds:

∂

∂t
( t STr [Q exp (−t�b,m ) ] ) = STr [ exp (−Lb,m,t ) ]

dadā .

We then set

LB,m,t = t�B,m +

√
t

2
daDB,m +

√
t

2
dā[DB,m, Q]− dadāQ,



✐

“BN12N24” — 2017/6/12 — 18:05 — page 192 — #40
✐

✐

✐

✐

✐

192 RUNG-TZUNG HUANG [June

where Q := Q0 as defined in (4.1).

We have the following result (see also Lemma 5.1 in [9]).

Lemma 4.3. Let u ∈ Ω0,•
m (X,E). On D, we write u(z, θ) = eimθũ(z),

ũ(z) ∈ Ω0,•(U,E). Then,

e−mϕLB,m,t(e
mϕũ) = e−imθLb,m,t(u).

Let z, w ∈ U and let

T (z, w) ∈
(
(T ∗0,•

w U ⊗ Ew)
∗
⊠ (T ∗0,•

z U ⊗ Ez)
)
⊗̂C(da, dā).

We write |T (z, w)| to denote the standard pointwise matrix norm of T (z, w)

induced by 〈 · | · 〉E as in (4.2). Let Ω0,•
0 (U,E) be the subspace of Ω0,•(U,E)

whose elements have compact support in U . Let dvU be the volume form on

U induced by 〈 · , · 〉. Assume

T (z, w) ∈ C∞(U × U, (T ∗0,•
w U ⊗ Ew)

∗
⊠ (T ∗0,•

z U ⊗ Ez))⊗̂C(da, dā).

Let u ∈ Ω0,•
0 (U,E). We define the integral

∫
T (z, w)u(w)dvU (w)

in the standard way. For any t > 0, let

G(t̂, t, z, w) ∈ C∞(R+ ×U ×U, (T ∗0,•
w U ⊗Ew)

∗
⊠ (T ∗0,•

z U ⊗Ez))⊗̂C(da, dā).

For any t > 0, we write G( t̂ ) to denote the continuous operator

G( t̂ ) : Ω0,•
0 (U,E)⊗̂C(da, dā) → Ω0,•(U,E)⊗̂C(da, dā),

u→
∫
G(t̂, t, z, w)u(w)dvU (w)

and we write G′( t̂ ) to denote the continuous operator

G′( t̂ ) : Ω0,•
0 (U,E)⊗̂C(da, dā) → Ω0,•(U,E)⊗̂C(da, dā),

u→
∫
∂G(t̂, t, z, w)

∂t̂
u(w)dvU (w).
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We have the following theorem, cf. [20, Section 3],

Theorem 4.4. For any t > 0, there is

AB,m(t̂, t, z, w) ∈ C∞(R+×U×U, (T ∗0,•
w U⊗Ew)

∗
⊠(T ∗0,•

z U⊗Ez))⊗̂C(da, dā)

such that

lim
t̂→0+

AB,m(t̂) = I in D′(U, T ∗0,•U ⊗ E)⊗̂C(da, dā),

A′
B,m(t̂)u+AB,m(t̂)(LB,m,tu) = 0, ∀u ∈ Ω0,•

0 (U,E), ∀t̂ > 0,

and AB,m(t̂, t, z, w) satisfies the following:

(I) For every small t > 0, every compact set K ⋐ U and every α1, α2, β1, β2
∈ N

n
0 , every γ ∈ N0, there are constants Cγ,α1,α2,β1,β2,K > 0, ε0 > 0,

P ∈ N independent of tsuch that

|∂γ
t̂
∂α1
z ∂α2

z ∂β1
w ∂β2

w AB,m(1, t, z, w)|

≤ Cα1,α2,β1,β2,Kt
−P e−ε0

|z−w|2

t , ∀(t, z, w) ∈ R+ ×K ×K.
(4.3)

(II) AB,m(1, t, z, w) admits an asymptotic expansion:

AB,m(1, t, z, w) = e−
h(z,w)

t KB,m(1, t, z, w), (4.4)

KB,m(1, t, z, w) ∼ t−1a−1(z, w) + a0(z, w) + ta1(z, w) + · · · as t→ 0+,

aj(z, w) ∈ C∞
(
U × U, (T ∗0,•

w U ⊗ Ew)
∗ ⊗ (T ∗0,•

z U ⊗ Ez)
)
⊗̂C(da, dā),

j = −1, 0, 1, . . . ,

where h(z, w) ∈ C∞(U ×U) and for every compact set K ⋐ U , there is

a constant C > 1 such that 1
C |z − w|2 ≤ h(z, w) ≤ C |z − w|2, for all

(z, w) ∈ K ×K.

Assume that X = D1
⋃
D2
⋃ · · ·⋃DN , where Bj := (Dj , (z, θ), ϕj) is a

BRT trivialization, for each j. We may assume that for each j,

Dj = Uj×]− 2δj , 2δ̃j [⊂ C
n × R, δj > 0, δ̃j > 0, Uj = {z ∈ C

n; |z| < γj} .

For each j, put

D̂j = Ûj×]− δj
2
,
δ̃j
2
[,
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where Ûj =
{
z ∈ C

n; |z| < γj
2

}
. We may suppose that

X = D̂1

⋃
D̂2

⋃
· · ·
⋃
D̂N .

Let χj ∈ C∞
0 (D̂j), j = 1, 2, . . . , N , with

∑N
j=1 χj = 1 on X. Fix j =

1, 2, . . . , N . Put

Kj =
{
z ∈ Ûj ; there is a θ ∈]− δj

2 ,
δ̃j
2 [ such that χj(z, θ) 6= 0

}
.

Let τj(z) ∈ C∞
0 (Ûj) with τj ≡ 1 on some neighborhood Wj of Kj . Let

σj ∈ C∞
0 (]− δj

2 ,
δ̃j
2 [) with

∫
σj(θ)dθ = 1. For any t > 0, let

ABj ,m(t̂, t, z, w) ∈ C∞(R+ × Uj × Uj , (T
∗0,•
w Uj ⊗ Ew)

∗
⊠ (T ∗0,•

z Uj ⊗ Ez))

be as in Theorem 4.4. For any t > 0, put

Hj,m(t̂, t, x, y) = χj(x)e
−mϕj(z)+imθABj ,m(t̂, t, z, w)emϕj (w)−imητj(w)σj(η),

(4.5)

where x = (z, θ), y = (w, η) ∈ C
n × R. Let

Γm(t̂, t, x, y) :=
1

2π

N∑

j=1

∫ π

−π
Hj,m(t̂, t, x, e

iu ◦ y)eimudu. (4.6)

From Lemma 4.3, off-diagonal estimates of ABj ,m(t̂, t, x, y) (see (4.3) and

(4.4)), we can repeat the proof of Theorem 5.11 in [9] with minor change

and deduce that

Theorem 4.5. For every ℓ ∈ N, ℓ ≥ 2, and every ǫ > 0, there are ǫ0 > 0

independent of t such that

∥∥e−Lb,m,t(x, y)− Γm(1, t, x, y)
∥∥
Cℓ(X×X)

≤ e−
ǫ0
t , ∀t ∈ (0, ǫ).

4.4. Constant term of the heat kernel asymptotics of the modified

Kohn Laplacians on BRT trivializations

To state the result precisely, we introduce some notations. Let ∇TU and

∇′TUbe the Levi-Civita connections on CTU with respect to the metrics 〈·, ·〉
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and 〈·, ·〉′, repsectively. Let PT 1,0U be the natural projection from CTU onto

T 1,0U. Then,

∇T 1,0U := PT 1,0U∇TU and ∇′T 1,0U := PT 1,0U∇′TU

are connections on T 1,0U . Let ∇E⊗Lm
be the Chern connection on E ⊗

Lm → U induced by the metrics 〈·, ·〉E and hL
m

and ∇′E⊗Lm
be the Chern

connection on E ⊗ Lm → U induced by the metrics 〈·, ·〉′E and hL
m

. Let

ΘT 1,0U := Θ(∇T 1,0U , T 1,0U) ∈ C∞(U,∧2(CT ∗U)⊗ End(T 1,0U))

and

ΘE⊗Lm

:= Θ(∇E⊗Lm

, E ⊗ Lm) ∈ C∞(U,∧2(CT ∗U)⊗ End(E ⊗ Lm))

be the curvatures induced by ∇T 1,0U and ∇E⊗Lm

, respectively. Similarly, let

Θ′T 1,0U ∈ C∞(U,∧2(CT ∗U)⊗ End(T 1,0U))

and

Θ′E⊗Lm ∈ C∞(U,∧2(CT ∗U)⊗ End(E ⊗ Lm))

be the curvatures induced by ∇′T 1,0U and ∇′E⊗Lm
, respectively. As in com-

plex geometry, put

Td
(
ΘT 1,0U

)
:= Td

(
∇T 1,0U , T 1,0U

)
= e

Tr
(
h
(

i
2π

Θ
(
∇T1,0U ,T 1,0U

)))

,

where

h (z) = log

(
z

1− e−z

)
,

and

ch
(
ΘE⊗Lm)

:= ch
(
∇E⊗Lm

, E ⊗ Lm
)

= Tr

(
h̃

(
i

2π
Θ
(
∇E⊗Lm

, E ⊗ Lm
)))

,

where

h̃ (z) = ez.

We also define Td
(
Θ′T 1,0U

)
and ch

(
Θ′E⊗Lm)

in similar ways.

Let gU , g′U be two Hermitian metrics on T 1,0U and hE , h′E be two Her-

mitian metrics on E. Consider a smooth family of metrics s ∈ [0, 1] →
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(gUs , h
E
s ) on T

1,0U and E such that

(gU0 , h
E
0 ) = (gU , hE) and (gU1 , h

E
1 ) = (g′U , h′E).

Let ∇T 1,0U
s and ∇E⊗Lm

s be the connections on T 1,0U and on E ⊗ Lm → U

induced metrics gUs and (hEs , h
Lm

), respectively, such that

(∇T 1,0U
0 ,∇T 1,0U

1 ) = (∇T 1,0U ,∇′T 1,0U )

and

(∇E⊗Lm

0 ,∇E⊗Lm

1 ) = (∇E⊗Lm

,∇′E⊗Lm

).

Let

ΘT 1,0U
s := Θ(∇T 1,0U

s , T 1,0U) ∈ C∞(U,∧2(CT ∗U)⊗ End(T 1,0U))

and

ΘE⊗Lm

s := Θ(∇E⊗Lm

s , E ⊗ Lm) ∈ C∞(U,∧2(CT ∗U)⊗ End(E ⊗ Lm))

be the curvatures induced by ∇T 1,0U
s and ∇E⊗Lm

s , respectively, such that

(ΘT 1,0U
0 ,ΘT 1,0U

1 ) = (ΘT 1,0U ,Θ′T 1,0U )

and

(ΘE⊗Lm

0 ,ΘE⊗Lm

1 ) = (ΘE⊗Lm

,Θ′E⊗Lm

).

Let

PU = ⊕n
p=0Ω

p,p(U).

Let P ′U ⊂ PU be the set of smooth forms α ∈ PU such that there exist

smooth forms β, γ on X for which

α = ∂β + ∂γ.

By the results of [3, §(e)], the form

α := (2π
√
−1)−n

∫ 1

0

∂

∂v

∣∣∣
v=0

{
Td
(
−ΘT 1,0U

s − v(gUs )
−1 ∂g

U
s

∂s

)

∧Tr

(
exp

(
−ΘE⊗Lm

s − v(hE⊗Lm

s )−1∂h
E⊗Lm

s

∂s

)) }
dv

defines an element in PU/P ′U which depends only on (gU , hE⊗Lm
) and

(g′U , h′E⊗Lm
). Since the Hermitian metric hL does not depend on the pa-
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rameter s, we can easily see that

α = (2π
√
−1)−n

∫ 1

0

∂

∂v

∣∣∣
v=0

{
Td
(
−ΘT 1,0U

s − v(gUs )
−1∂g

U
s

∂s

)

∧Tr

(
exp

(
−ΘE

s − v(hEs )
−1∂h

E
s

∂s

)) }
dv ∧ Tr

(
exp

(
−ΘLm))

. (4.7)

Recall that, cf. [5, (1.103), (1.136), (1.138)],

lim
t→0

STrAB,m(1, t, z, w)dadā = α = STr a0(z, z).

By [3, §(f)], there is uniquely defined secondary characteristic (Bott-

Chern) classes

T̃d(∇T 1,0U ,∇′T 1,0U , T 1,0U)

and

c̃h(∇E⊗Lm

,∇′E⊗Lm

, E ⊗ Lm)

in PU/P ′U such that

∂∂

2π
√
−1

T̃d(∇T 1,0U ,∇′T 1,0U , T 1,0U)

= Td(∇′T 1,0U , T 1,0U)− Td(∇T 1,0U , T 1,0U),

∂∂

2π
√
−1

c̃h(∇E⊗Lm

,∇′E⊗Lm

, E ⊗ Lm)

= ch(∇′E⊗Lm

, E ⊗ Lm)− ch(∇E⊗Lm

, E ⊗ Lm). (4.8)

Hence, we have

STr a0(z, z)dvU (z) = [αn,n](z), ∀z ∈ U.

According to [3, Theorem 1.27, 1.29 and Corollary 1.30], the component

of degree (n, n) of α represents in PU/P ′U the corresponding component of

the Bott-Chern class

αn,n := T̃d(∇T 1,0U ,∇′T 1,0U , T 1,0U) ∧ ch(∇E⊗Lm

)

+Td(∇T 1,0U ) ∧ c̃h(∇E ⊗ Lm,∇′E⊗Lm

, E ⊗ Lm). (4.9)
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By (4.7), (4.8) and (4.9), we have

αn,n =
(
T̃d(∇T 1,0U ,∇′T 1,0U , T 1,0U) ∧ ch(∇E)

+Td(∇T 1,0U ) ∧ c̃h(∇,∇′E , E)
)
∧ ch(∇Lm

, Lm).

Let ∇TX and ∇′TX be the Levit-Civita connections on TX with respect

to 〈 · , · 〉 and 〈 · , · 〉′, respectively. Let PT 1,0X be the natural projection from

CTX onto T 1,0X. Then,

∇T 1,0X := PT 1,0X∇TX

and

∇′T 1,0X := PT 1,0X∇′TX

are connections on T 1,0X. Let ∇E and ∇′E be the connections on E induced

by 〈 · | · 〉E and 〈 · | · 〉′E , respectively. We can check that ∇T 1,0X ,∇′T 1,0X ,∇′E

and ∇′E are rigid. Moreover, it is straightforward to check that

Td
(
∇T 1,0U , T 1,0U

)
(z) = Tdb

(
∇T 1,0X , T 1,0X

)
(z, θ), ∀(z, θ) ∈ D,

ch
(
∇E⊗Lm

, E ⊗ Lm
)
(z) =

(
chb(∇E, E) ∧ e−m

dω0
2π

)
(z, θ), ∀(z, θ) ∈ D.

We can check that

T̃d
(
∇T 1,0U ,∇′T 1,0U , T 1,0U

)
(z) = T̃db

(
∇T 1,0X ,∇′T 1,0X , T 1,0X

)
(z, θ),

∀(z, θ) ∈ D,
c̃h
(
∇E⊗Lm

,∇′E⊗Lm

, E ⊗ Lm
)
(z) =

(
c̃hb(∇E ,∇′E , E) ∧ e−m

dω0
2π

)
(z, θ),

∀(z, θ) ∈ D.
and[
T̃d
(
∇T 1,0U ,∇′T 1,0U , T 1,0U

)
∧ ch

(
∇E⊗Lm

, E ⊗ Lm
)]

2n
(z) ∧ dθ

=
[
T̃db

(
∇T 1,0X ,∇′T 1,0X , T 1,0X

)
∧ chb

(
∇E , E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

(z, θ),

∀(z, θ) ∈ D,[
Td
(
∇T 1,0U , T 1,0U

)
∧ c̃h

(
∇E⊗Lm

,∇′E⊗Lm

, E ⊗ Lm
)]

2n
(z) ∧ dθ

=
[
Tdb

(
∇T 1,0X , T 1,0X

)
∧ c̃hb

(
∇E,∇′E , E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

(z, θ),

∀(z, θ) ∈ D,
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where
[
T̃db

(
∇T 1,0X ,∇′T 1,0X , T 1,0X

)
∧ chb

(
∇E, E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

de-

notes the 2n+ 1 forms part of

T̃db

(
∇T 1,0X ,∇′T 1,0X , T 1,0X

)
∧ chb

(
∇E, E

)
∧ e−m

dω0
2π ∧ ω0

and
[
Tdb

(
∇T 1,0X , T 1,0X

)
∧ c̃hb

(
∇E,∇′E , E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

denotes

the 2n+ 1 parts of

Tdb

(
∇T 1,0X , T 1,0X

)
∧ c̃hb

(
∇E,∇′E , E

)
∧ e−m

dω0
2π ∧ ω0.

From the above equations and note that

dvU ∧ dθ = dvX

on D, we get

Theorem 4.6. With the notations above, we have, for all (z, θ) ∈ D,

STr a0(z, z)dvX (z, θ)

=
[
T̃db

(
∇T 1,0X ,∇′T 1,0X , T 1,0X

)
∧ chb

(
∇E, E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

(z, θ)

+
[
Tdb

(
∇T 1,0X , T 1,0X

)
∧ c̃hb

(
∇E,∇′E , E

)
∧ e−m

dω0
2π ∧ ω0

]
2n+1

(z, θ).

4.5. Proof of Theorem 2.13

The theorem follows by combining Theorem 3.1, Proposition 4.2, Lemma

4.3, Theorem 4.4, (4.5), (4.6), Theorem 4.5, (4.8) and Theorem 4.6.

5. The Asymptotic Anomaly Formula of the Analytic Torsion

In this section we will deduce an asymptotic anomaly formula for the

L2-metric on λb,m(E). The formula is an CR analogue of Theorem 5.5.12 of

[22].

5.1. Asymptotic anomaly formula for the L2-metric

We now define the canonical line bundle KX of (X,T 1,0X) by

KX = ∧nT ∗1,0X.



✐

“BN12N24” — 2017/6/12 — 18:05 — page 200 — #48
✐

✐

✐

✐

✐

200 RUNG-TZUNG HUANG [June

We denote by K∗
X the dual of the canonical line bundle KX on X. Let

〈 · | · 〉0 and 〈 · | · 〉1 be two rigid Hermitian metrics on CTX. We keep the

rigid Hermtitian metric hE on E fixed. Let | · |K∗
X
,0 and | · |K∗

X
,1 be the

metrics on K∗
X induced by the metrics 〈 · | · 〉0 and 〈 · | · 〉1, respectively. Let

‖·‖m,0 and ‖·‖m,1 be the Quillen metrics on λb,m(E) induced by the metrics

〈 · | · 〉0 and 〈 · | · 〉1, respectively, and the given rigid Hermitian metric hE on

E. Let | · |m,0 and | · |m,1 be the L
2 metrics on λb,m(E) induced by the metrics

〈 · | · 〉0 and 〈 · | · 〉1, respectively, and the given rigid Hermitian metric hE on

E.

Theorem 5.1. As m→ ∞, we have

log

(
| · |2b,m,1

| · |2b,m,0

)
= − rk(E)

∫

X
log

( | · |2K∗
X
,1

| · |2K∗
X
,0

)
e−m

dω0
2π ∧ ω0 + o(mn). (5.1)

Proof. Let θb,m,0(z), θb,m,1(z) be the ζ-functions, defined as in (2.10), asso-

ciated with the rigid Hermitian metrics 〈 · | · 〉0 and 〈 · | · 〉1, respectively, and
with the given rigid Hermitian metric hE on E. By Theorem 1.1 of [15] and

|σ|2KX∗,i
= |Θn

i (σ, σ)|/n!, i = 0, 1,

we have

θ′b,m,1(0)−θ′b,m,0(0) = −rk(E)

2

∫

X
log

( | · |2K∗
X
,1

| · |2K∗
X
,0

)
e−m

dω0
2π ∧ω0+o(m

n). (5.2)

We next choose a path of metrics gs := 〈 · | · 〉s, s ∈ [0, 1], connecting 〈 · | · 〉0
and 〈 · | · 〉1. We denote the objects associated to 〈 · | · 〉s with a subscript s.

Then, by Theorem 3.1 and Theorem 3.6 of [15], we have

∂

∂s
log
(
‖ · ‖2λb,m,s(E)

)
= mn

∫

X
STr

[
QsA0,s ⊗ IdE

]
dvX,s +O(mn−1/2),

(5.3)

where A0 is defined in (3.34) of [15]. By proceeding as in [22, P. 261], we get

(cf. [22, (5.5.68)])

∫

X
STr

[
QsA0,s

]
dvX,s = −1

2

∫

X
Tr
∣∣
T 1,0X

[∂gs
∂s

]
e−

dω0
2π ∧ ω0 (5.4)
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By (5.3) and (5.4), we have

log

(
‖ · ‖2b,m,1

‖ · ‖2b,m,0

)
= −rk(E)

2

∫

X
log

( | · |2K∗
X
,1

| · |2K∗
X
,0

)
e−m

dω0
2π ∧ ω0 +O(mn−1/2).

(5.5)

Finally, by the definition of the Quillen metric (see Definition 2.11), we have

log

(
‖ · ‖2b,m,1

‖ · ‖2b,m,0

)
= θ′b,m,1(0)− θ′b,m,0 + log

(
| · |2b,m,1

| · |2b,m,0

)
. (5.6)

By (5.2), (5.5) and (5.6), we get (5.1). ���
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