# NON-UNIPOTENT REPRESENTATIONS AND CATEGORICAL CENTRES 

G. LUSZTIG

Department of Mathematics, M.I.T., Cambridge, MA 02139.
E-mail: gyuri@math.mit.edu
IIIII


#### Abstract

Let $G$ be a connected reductive group defined over a finite field $F_{q}$. We give a parametrization of the irreducible representations of $G\left(F_{q}\right)$ in terms of (twisted) categorical centres of various monoidal categories associated to G. Results of this type were known earlier for unipotent representations and also for character sheaves.


## 0. Introduction

0.1. Let $\mathbf{k}$ be an algebraic closure of the finite field with $p$ elements. Let $G$ be a connected reductive group over $\mathbf{k}$. We denote by $F_{q}$ the subfield of $\mathbf{k}$ with exactly $q$ elements; here $q$ is a power of $p$. Let $F: G \rightarrow G$ be the Frobenius map for an $F_{q}$-rational structure on $G$. We fix a prime number $l$ different from $p$. Let $\operatorname{Irr}\left(G^{F}\right)$ be the set of isomorphism classes of irreducible representations (over $\overline{\mathbf{Q}}_{l}$ ) of the finite group $G^{F}=\{g \in G ; F(g)=g\}=G\left(F_{q}\right)$. In [7] I gave a parametrization of $\operatorname{Irr}\left(G^{F}\right)$ in terms of the group of type dual to that of $G$. (For "most" representations in $\operatorname{Irr}\left(G^{F}\right)$ this has been already done in [3].) For the part of $\operatorname{Irr}\left(G^{F}\right)$ consisting of unipotent representations in a fixed two-sided cell of $W$ (with $G$ assumed to be $F_{q}$-split) the parametrization was in terms of a set $M(\Gamma)$ where $\Gamma$ is a certain finite group associated to the two-sided cell and $M(\Gamma)$ is the set of simple objects (up to isomorphism) of the category $\operatorname{Vec} \Gamma(\Gamma)$ of $\Gamma$-equivariant vector bundles on $\Gamma$

[^0](here $\Gamma$ acts on $\Gamma$ by conjugation). In the early 1990's, Drinfeld pointed out to me that the category $V e c_{\Gamma}(\Gamma)$ can be interpreted as the categorical centre of the monoidal category of finite dimensional representations of $\Gamma$. (The notion of categorical centre of a monoidal category is due to Joyal, Street, Majid and Drinfeld.) This suggested that one should be able to reformulate the parametrization of $\operatorname{Irr}\left(G^{F}\right)$ in terms of categorical centres of suitable monoidal categories associated with $G$. This is achieved in the present paper, except that we must allow certain twisted categorical centres instead of usual categorical centres. Note that in our approach the representation theory of $G\left(F_{q}\right)$ cannot be separated from the theory of character sheaves on $G$ which appears as the limit of the first theory when $q$ tends to 1 ; in particular we also obtain the parametrization of character sheaves on $G$ in terms of categorical centres (no twisting needed in this case).

Earlier results of this type were known in the following cases:
(i) the case [2] of character sheaves on $G$ (with centre assumed to be connected and with $\mathbf{k}$ replaced by $\mathbf{C}$ );
(ii) the case 19] of unipotent character sheaves on $G$;
(iii) the case 20] of unipotent representations of $G^{F}$;
(iv) the case [21] of not necessarily unipotent character sheaves on $G$.

The papers [20], 21] were generalizations of 19] in different directions; the present paper is a common generalization of 20], 21]; the methods used in (ii), (iii), (iv) and the present paper are quite different from those used in (i) which relied on techniques not available in positive characteristic.

Let $\mathbf{B}$ be a Borel subgroup of $G$ and let $\mathbf{T}$ be a maximal torus of $\mathbf{B}$. In this subsection we assume that $F(\mathbf{B})=\mathbf{B}, F(\mathbf{T})=\mathbf{T}$. Let $W$ be the Weyl group of $G$ with respect to $\mathbf{T}$. Let $\mathfrak{s}$ be an indexing set for the isomorphism classes of Kummer local systems (over $\overline{\mathbf{Q}}_{l}$ ); note that $W$ acts naturally on $\mathfrak{s}$.

Let $\mathcal{A}=\mathbf{Z}\left[v, v^{-1}\right]$ where $v$ is an indeterminate. A key role in this paper is played by an $\mathcal{A}$-algebra $\mathbf{H}$ (without 1 in general) which has $\mathcal{A}$ basis $\left\{T_{w} 1_{\lambda} ; w \in W, \lambda \in \mathfrak{s}\right\}$ and multiplication defined in 1.5 (see also 14, 31.2]). This is a monodromic version of the usual Hecke algebra of $W$, closely related to an algebra defined in [23]; it contains the usual Hecke algebra as a subalgebra. Now $\mathbf{H}$ has a canonical basis, two-sided cells and an asymptotic version $H^{\infty}$ (introduced in [15], [21]) which generalize the analogous notions
for the usual Hecke algebra, see [5], [8]; the two-sided cells form a partition of $W \times \mathfrak{s}$ and we have $H^{\infty}=\oplus_{\mathbf{c}} H_{\mathbf{c}}^{\infty}$ as rings (c runs over the two-sided cells and each $H_{\mathbf{c}}^{\infty}$ is a ring with 1). For any $\mathbf{c}, H_{\mathbf{c}}^{\infty}$ admits a category version (for which $H^{\infty}$ is the Grothendieck group) which is a semisimple monoidal category $\mathcal{C}^{\mathbf{c}}$ with finitely many simple objects (up to isomorphism) indexed by the elements of $\mathbf{c}$, see $\S 5$. (In the case where $\mathbf{c} \subset W \times\{1\}$, this reduces to the monoidal category defined is [12].) Now $\mathcal{C}^{\mathbf{c}}$ has a well defined categorical centre which is again a semisimple abelian category. Note that $F$ acts naturally on $\mathfrak{s}$ and on $W$ hence on $W \times \mathfrak{s}$; this induces an action of $F$ on the set of two-sided cells. If $\mathbf{c}$ is a two-sided cell such that $F(\mathbf{c})=\mathbf{c}$ then $F$ defines an equivalence of categories $\mathcal{C}^{\mathbf{c}} \rightarrow \mathcal{C}^{\mathbf{c}}$ and one can define the notion of $F$-centre of $\mathcal{C}^{\mathbf{c}}$ (see 5.5 ) which is a twisted version of the usual centre; it is a semisimple abelian category. We denote by [c] the set of isomorphism classes of simple objects of this category (a finite set).

Our main result is that $\operatorname{Irr}\left(G^{F}\right)$ is in natural bijection with $\sqcup_{\mathbf{c}}[\mathbf{c}]$ (disjoint union over all $F$-stable two-sided cells c). (See Theorem 7.3.) In the case where $\mathbf{c} \subset W \times\{1\}$, this reduces to the main result in [20].

The fact that the asymptotic Hecke algebra $\mathbf{H}^{\infty}$ plays a role in the classification is perhaps not surprising since its non-monodromic versions appeared implicitly in the arguments of [6], through the traces of their canonical basis elements in their various simple modules (the algebras themselves were not defined at the time where [6] was written).

Many arguments in this paper follow very closely the arguments in 21]; we generalize them by taking into account also the arguments in 20]. We have written the proofs in such a way that they apply at the same time in the case of character sheaves on a connected component of a possibly disconnected algebraic group with identity component $G$. In this case, the classification involves twisted categorical centers, unlike that for the character sheaves on $G$.

We plan to show elsewhere that the parametrization of $\operatorname{Irr}\left(G^{F}\right)$ given in [7] can be deduced from the main result of this paper.
0.2. Notation. Let $\mathbf{N}^{*}=\{n \in \mathbf{Z}-p \mathbf{Z} ; n \geq 1\}$. Let $T$ be a torus over $\mathbf{k}$. For $n \in \mathbf{N}^{*}$ let $T_{n}=\left\{t \in T ; t^{n}=1\right\}$; we have $\sharp\left(T_{n}\right)=n^{\operatorname{dim} T}$. For $n, n^{\prime}$ in $\mathbf{N}^{*}$ such that $n^{\prime} / n \in \mathbf{Z}$ we have a surjective homomorphism $N_{n}^{n^{\prime}}: T_{n^{\prime}} \rightarrow T_{n}$, $t \mapsto t^{n^{\prime} / n}$. Hence we can form the projective limit $T^{\infty}$ of the groups $T_{n}$ with
$n \in \mathbf{N}^{*}$ (a profinite abelian group). Then for any $n \in \mathbf{N}^{*}, T_{n}$ is naturally a quotient of $T^{\infty}$.

All algebraic varieties are over $\mathbf{k}$. We denote by $\mathbf{p}$ the algebraic variety consisting of a single point. For an algebraic variety $X$ we write $\mathcal{D}(X)$ for the bounded derived category of constructible $\overline{\mathbf{Q}}_{l}$-sheaves on $X$. Let $\mathcal{M}(X)$ be the subcategory of $\mathcal{D}(X)$ consisting of perverse sheaves on $X$. For $K \in \mathcal{D}(X)$ and $i \in \mathbf{Z}$ let $\mathcal{H}^{i} K$ be the $i$-th cohomology sheaf of $K$ and let $K^{i}$ be the $i$-th perverse cohomology sheaf of $K$. Let $\mathfrak{D}(K)$ be the Verdier dual of $K$. For any constructible sheaf $\mathcal{E}$ on $X$ let $\mathcal{E}_{x}$ be the stalk of $\mathcal{E}$ at $x \in X$. If $X$ has a fixed $F_{q}$-structure $X_{0}$, we denote by $\mathcal{D}_{m}(X)$ what in [1, 5.1.5] is denoted by $\mathcal{D}_{m}^{b}\left(X_{0}, \overline{\mathbf{Q}}_{l}\right)$; let $\mathcal{M}_{m}(X)$ be the corresponding category of mixed perverse sheaves. In this paper we often encounter maps of algebraic varieties which are not morphisms but only quasi-morphisms (as in [20, 0.3]). For such maps the usual operations with derived categories are defined as in [20, 0.3].

Note that if $K \in \mathcal{D}_{m}(X)$ then $K$ can be viewed as an object of $\mathcal{D}(X)$ denoted again by $K$. If $K \in \mathcal{M}_{m}(X)$ and $h \in \mathbf{Z}$, we denote by $g r_{h}(K)$ the subquotient of pure weight $h$ of the weight filtration of $K$. If $K \in \mathcal{D}_{m}(X)$ and $i \in \mathbf{Z}$ we write $K\langle i\rangle=K[i](i / 2)$ where $[i]$ is a shift and $(i / 2)$ is a Tate twist; we write $K^{\{i\}}=g r_{i}\left(K^{i}\right)(i / 2)$. If $K$ is a perverse sheaf on $X$ and $A$ is a simple perverse sheaf on $X$ we write $(A: K)$ for the multiplicity of $A$ in a Jordan-Hölder series of $K$. If $C \in \mathcal{D}_{m}(X)$ and $\left\{C_{i} ; i \in I\right\}$ is a family of objects of $\mathcal{D}_{m}(X)$ then the relation $C \approx\left\{C_{i} ; i \in I\right\}$ is as in 21, 0.2].

Let ${ }^{-}: \mathcal{A} \rightarrow \mathcal{A}$ be the ring homomorphism such that $\overline{v^{m}}=v^{-m}$ for any $m \in \mathbf{Z}$. If $f \in \mathbf{Q}\left[v, v^{-1}\right]$ and $j \in \mathbf{Z}$ we write $(j ; f)$ for the coefficient of $v^{j}$ in $f$.

Let $\mathcal{B}$ be the variety of Borel subgroups of $G$. For any $B \in \mathcal{B}$ let $U_{B}$ be the unipotent radical of $B$. In this paper we fix a Borel subgroup $\mathbf{B}$ of $G$ and a maximal torus $\mathbf{T}$ of $\mathbf{B}$. Let $\mathbf{U}=U_{\mathbf{B}}$. Let $\nu=\operatorname{dim} \mathbf{U}=\operatorname{dim} \mathcal{B}$, $\rho=\operatorname{dim} \mathbf{T}, \Delta=\operatorname{dim} G=2 \nu+\rho$.

For any algebraic variety $X$ let $\mathfrak{L}=\mathfrak{L}_{X}=\alpha_{!} \overline{\mathbf{Q}}_{l} \in \mathcal{D}(X)$ where $\alpha$ : $X \times \mathbf{T} \rightarrow X$ is the obvious projection. When $X$ and $T$ are defined over $\mathbf{F}_{q}$, $\mathfrak{L}$ is naturally an object of $\mathcal{D}_{m}(X)$.

Unless otherwise specified, all vector spaces are over $\overline{\mathbf{Q}}_{l}$; in particular, all representations of finite groups are assumed to be in (finite dimensional) $\overline{\mathbf{Q}}_{l}$-vector spaces.

## 1. The Monodromic Hecke Algebra and Its Asymptotic Version

1.1. Let $N \mathbf{T}$ be the normalizer of $\mathbf{T}$ in $G$, let $W=N \mathbf{T} / \mathbf{T}$ be the Weyl group and let $\kappa: N \mathbf{T} \rightarrow W$ be the obvious homomorphism. For $w \in W$ we set $G_{w}=\mathbf{U} \kappa^{-1}(w) \mathbf{U}$ so that $G=\sqcup_{w \in W} G_{w} ;$ let $\mathcal{O}_{w}=\left\{\left(x \mathbf{B} x^{-1}, y \mathbf{B} y^{-1}\right) ; x \in\right.$ $\left.G, y \in G, x^{-1} y \in G_{w}\right\}$ so that $\mathcal{B} \times \mathcal{B}=\sqcup_{w \in W} \mathcal{O}_{w}$. For $w \in W$ let $\bar{G}_{w}$ be the closure of $G_{w}$ in $G$; we have $\bar{G}_{w}=\cup_{y \leq w} G_{y}$ for a well defined partial order $\leq$ on $W$. Let $\overline{\mathcal{O}}_{w}$ be the closure of $\mathcal{O}_{w}$ in $\mathcal{B} \times \mathcal{B}$. Now $W$ is a (finite) Coxeter group with length function $w \mapsto|w|=\operatorname{dim} \mathcal{O}_{w}-\nu$ and with set of generators $S=\{\sigma \in W ;|\sigma|=1\}$; it acts on $\mathbf{T}$ by $w: t \mapsto w(t)=\omega t \omega^{-1}$ where $\omega \in \kappa^{-1}(w)$.
1.2. Let $R \subset \operatorname{Hom}\left(\mathbf{T}, \mathbf{k}^{*}\right)$ be the set of roots of $G$ with respect to $\mathbf{T}$. Now $W$ acts on $R$ by $w: \alpha \mapsto w(\alpha)$ where $(w(\alpha))(t)=\alpha\left(w^{-1}(t)\right)$ for $t \in \mathbf{T}$. Let $R^{+}$ be the set of $\alpha \in R$ such that the corresponding root subgroup is contained in $\mathbf{U}$. For $\alpha: \mathbf{T} \rightarrow \mathbf{k}^{*}$ we denote by $\check{\alpha}: \mathbf{k}^{*} \rightarrow \mathbf{T}$ the corresponding coroot and by $\sigma_{\alpha}$ the corresponding reflection in $W$. For any $\sigma \in S$ let $\mathbf{U}_{\sigma}$ be the unique root subgroup of $\mathbf{U}$ with respect to $\mathbf{T}$ such that $\mathbf{U}_{\sigma}^{-}:=\omega \mathbf{U}_{\sigma} \omega^{-1} \not \subset \mathbf{U}$ for some/any $\omega \in \kappa^{-1}(\sigma)$. Let $\alpha_{\sigma}: \mathbf{T} \rightarrow \mathbf{k}^{*}$ be the root corresponding to $\mathbf{U}_{\sigma}$; then the coroot $\check{\alpha}_{\sigma}: \mathbf{k}^{*} \rightarrow \mathbf{T}$ is well defined.

For any $\sigma \in S$ we fix an element $\xi_{\sigma} \in \mathbf{U}_{\sigma}-\{1\}$; there is a unique $\xi_{\sigma}^{\prime} \in \mathbf{U}_{\sigma}^{-}-\{1\}$ such that $\xi_{\sigma} \xi_{\sigma}^{\prime} \xi_{\sigma}=\xi_{\sigma}^{\prime} \xi_{\sigma} \xi_{\sigma}^{\prime} \in \kappa^{-1}(\sigma) \subset N \mathbf{T}$; the two sides of the last equality are denoted by $\dot{\sigma}$. We have $\kappa(\dot{\sigma})=\sigma$ and $\dot{\sigma}^{2}=\check{\alpha}_{\sigma}(-1)$. For any $w \in W$ we define $\dot{w} \in N \mathbf{T}$ by $\dot{w}=\dot{\sigma}_{1} \dot{\sigma}_{2} \ldots \dot{\sigma}_{r}$ where $w=\sigma_{1} \sigma_{2} \ldots \sigma_{r}$ with $r=|w|, \sigma_{j} \in S$; note that, by a result of Tits, $\dot{w}$ is well defined. Let $N_{0} \mathbf{T}$ be the subgroup of NT generated by $\{\dot{\sigma} ; \sigma \in S\}$. This is a finite subgroup of $N \mathbf{T}$ containing $\dot{w}$ for any $w \in W$. Let $\kappa_{0}: N_{0} \mathbf{T} \rightarrow W$ be the restriction of $\kappa: N \mathbf{T} \rightarrow W$.
1.3. For $n \in \mathbf{N}^{*}$ let $\mathfrak{s}_{n}=\operatorname{Hom}\left(\mathbf{T}_{n}, \overline{\mathbf{Q}}_{l}^{*}\right)$; we have $\sharp\left(\mathfrak{s}_{n}\right)=n^{\rho}$. For $n, n^{\prime}$ in $\mathbf{N}^{*}$ such that $n^{\prime} / n \in \mathbf{Z}$, the surjective homomorphism $N_{n}^{n^{\prime}}: \mathbf{T}_{n^{\prime}} \rightarrow \mathbf{T}_{n}$, $t \mapsto t^{n^{\prime} / n}$ induces an imbedding $\mathfrak{s}_{n} \subset \mathfrak{s}_{n^{\prime}}, \lambda \mapsto \lambda N_{n}^{n^{\prime}}$. Hence we can form the union $\mathfrak{s}_{\infty}=\cup_{n \in \mathbf{N}^{*} \mathfrak{s}_{n}}$ (a countable abelian group). Then for any $n \in \mathbf{N}^{*}$,
$\mathfrak{s}_{n}$ is a subgroup of $\mathfrak{s}_{\infty}$. Note also that $\mathfrak{s}_{\infty}$ is the group of homomorphisms $\mathbf{T}^{\infty} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ which factor through $\mathbf{T}_{n}$ for some $n \in \mathbf{N}^{*}$. For any $\lambda \in \mathfrak{s}_{\infty}$ there is a well defined local system $L_{\lambda}$ on $\mathbf{T}$ such that for some/any $n \in \mathbf{N}^{*}$ for which $\lambda \in \mathfrak{s}_{n}, L_{\lambda}$ is equivariant for the $\mathbf{T}$-action $t_{1}: t \mapsto t_{1}^{n} t$ on $\mathbf{T}$ and the natural $\mathbf{T}_{n}$ action on the stalk of $L_{\lambda}$ at 1 is through the character $\lambda$. For $\lambda, \lambda^{\prime} \in \mathfrak{s}_{\infty}$ we have canonically $L_{\lambda} \otimes L_{\lambda^{\prime}}=L_{\lambda \lambda^{\prime}}$; for $\lambda \in \mathfrak{s}_{\infty}$ we have canonically $L_{\lambda}^{*}=L_{\lambda^{-1}}$; here ( $)^{*}$ denotes the dual local system.

The $W$-action on $\mathbf{T}$ restricts to a $W$-action on $\mathbf{T}_{n}$ for any $n \in \mathbf{N}^{*}$. This induces a $W$-action on $\mathbf{T}^{\infty}$, a $W$-action on $\mathfrak{s}_{n}$ for any $n \in \mathbf{N}^{*}$; for $\lambda \in \mathfrak{s}_{n}$, $w \in W$ and $t \in \mathbf{T}_{n}$ we have $(w(\lambda))(t)=\lambda\left(w^{-1}(t)\right)$. There is a unique $W$-action of $\mathfrak{s}_{\infty}$ which for any $n \in \mathbf{N}^{*}$ restricts to the $W$-action on $\mathfrak{s}_{n}$ just described. We set $I=W \times \mathfrak{s}_{\infty}$; for $w \in W, \lambda \in \mathfrak{s}_{\infty}$ we write $w \cdot \lambda$ instead of $(w, \lambda)$.
1.4. If $\alpha \in R$, the coroot $\check{\alpha}: \mathbf{k}^{*} \rightarrow \mathbf{T}$ restricts to a homomorphism $\mathbf{k}_{n}^{*} \rightarrow$ $\mathbf{T}_{n}$ for any $n \in \mathbf{N}^{*}$ and by passage to projective limits, this induces a homomorphism $\check{\alpha}^{\infty}: \mathbf{k}^{\infty} \rightarrow \mathbf{T}^{\infty}$ (notation of 0.2 ). Let $\lambda \in \mathfrak{s}_{\infty}$. We say that $\alpha \in R_{\lambda}$ if the composition $\mathbf{k}^{\infty} \xrightarrow{\check{\alpha}^{\infty}} \mathbf{T}^{\infty} \xrightarrow{\lambda} \overline{\mathbf{Q}}_{l}^{*}$ is identically 1 or equivalently if $\check{\alpha}^{*} L_{\lambda} \cong \overline{\mathbf{Q}}_{l}$ as local systems on $\mathbf{k}^{*}$. Note that for $w \in W$ we have $w\left(R_{\lambda}\right)=$ $R_{w(\lambda)}$. Let $R_{\lambda}^{+}=R_{\lambda} \cap R^{+}, R_{\lambda}^{-}=R_{\lambda}-R_{\lambda}^{+}$. Let $W_{\lambda}$ be the subgroup of $W$ generated by $\left\{\sigma_{\alpha} ; \alpha \in R_{\lambda}\right\}$. We have $W_{\lambda}=W_{\lambda^{-1}}$. Let $W_{\lambda}^{\prime}=\{w \in$ $W ; w(\lambda)=\lambda\}$. We have $W_{\lambda} \subset W_{\lambda}^{\prime}$. As in [9, 5.3], there is a unique Coxeter group structure on $W_{\lambda}$ with length function $W_{\lambda} \rightarrow \mathbf{N}, w \mapsto|w|_{\lambda}=\sharp\{\alpha \in$ $\left.R_{\lambda}^{+} ; w(\alpha) \in R_{\lambda}^{-}\right\}$; note that, if $w \in W_{\lambda}$ and $w=\sigma_{1} \sigma_{2} \ldots \sigma_{r}$ is any reduced expression of $w$ in $W$, then

$$
|w|_{\lambda}=\operatorname{card}\left\{i \in[1, r] ; \sigma_{r} \ldots \sigma_{i+1} \sigma_{i} \sigma_{i+1} \ldots \sigma_{r} \in W_{\lambda}\right\}
$$

1.5. For $n \in \mathbf{N}^{*}$ we set $I_{n}=\left\{w \cdot \lambda \in I ; \lambda \in \mathfrak{s}_{n}\right\}$. As in 14, 31.2], let $\mathbf{H}_{n}$ be the associative $\mathcal{A}$-algebra with generators $T_{w}(w \in W), 1_{\lambda}\left(\lambda \in \mathfrak{s}_{n}\right)$ and relations:

$$
\begin{aligned}
& 1_{\lambda} 1_{\lambda^{\prime}}=\delta_{\lambda, \lambda^{\prime}} 1_{\lambda} \text { for } \lambda, \lambda^{\prime} \in \mathfrak{s}_{n} ; \\
& T_{w} T_{w^{\prime}}=T_{w w^{\prime}} \text { if } w, w^{\prime} \in W \text { and }\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right| \\
& T_{w} 1_{\lambda}=1_{w(\lambda)} T_{w} \text { for } w \in W, \lambda \in \mathfrak{s}_{n} ; \\
& T_{\sigma}^{2}=v^{2} T_{1}+\left(v^{2}-1\right) \sum_{\lambda \in \mathfrak{s}_{n} ; \sigma \in W_{\lambda}} T_{\sigma} 1_{\lambda} \text { for } \sigma \in S
\end{aligned}
$$

$$
T_{1}=\sum_{\lambda \in \mathfrak{s}_{n}} 1_{\lambda} .
$$

The algebra $\mathbf{H}_{n}$ is closely related to the algebra introduced by Yokonuma [23]. (It specializes to it under $v=\sqrt{q}, n=q-1$ where $q$ is a power of a prime; this is shown in [15, Sec.35].) Note that $T_{1}$ is the unit element of $\mathbf{H}_{n}$. In [15, 31.2] it is shown that $\left\{T_{w} 1_{\lambda} ; w \cdot \lambda \in I_{n}\right\}$ is an $\mathcal{A}$-basis of $\mathbf{H}_{n}$. (In 21, 1.7] we write $\mathbf{H}$ instead of $\mathbf{H}_{n}$, but here we shall not do so.)

Now, for $\sigma \in S, T_{\sigma}$ is invertible in $\mathbf{H}_{n}$; indeed, we have

$$
T_{\sigma}^{-1}=v^{-2} T_{\sigma}+\left(1-v^{-2}\right)\left(\sum_{\lambda \in \mathfrak{s}_{n} ; \sigma \in W_{\lambda}} 1_{\lambda}\right) .
$$

It follows that $T_{w}$ is invertible in $\mathbf{H}_{n}$ for any $w \in W$. As shown in 14, 31.3], there is a unique ring homomorphism $\mathbf{H}_{n} \rightarrow \mathbf{H}_{n}, h \mapsto \bar{h}$ such that $\overline{T_{w}}=T_{w^{-1}}^{-1}$ for any $w \in W$ and $\overline{f 1_{\lambda}}=\bar{f} 1_{\lambda}$ for any $f \in \mathcal{A}, \lambda \in \mathfrak{s}_{n}$. It is an involution called the bar involution.

If $n, n^{\prime} \in \mathbf{N}^{*}$ and $n^{\prime} / n \in \mathbf{Z}$, then $I_{n} \subset I_{n^{\prime}}$ and the $\mathcal{A}$-linear map $j_{n, n^{\prime}}$ : $\mathbf{H}_{n} \rightarrow \mathbf{H}_{n^{\prime}}$ given by $T_{w} 1_{\lambda} \mapsto T_{w} 1_{\lambda}$ for $w \cdot \lambda \in I_{n}$ is an $\mathcal{A}$-algebra imbedding which does not necessarily preserve the unit element. Let $\mathbf{H}$ be the union of all $\mathbf{H}_{n}$ for various $n \in \mathbf{N}^{*}$ according to the imbeddings $j_{n, n^{\prime}}$ above. Then $\mathbf{H}$ is an $\mathcal{A}$-algebra without 1 in general; it has an $\mathcal{A}$-basis $\left\{T_{w} 1_{\lambda}=1_{w(\lambda)} T_{w} ; w \cdot \lambda \in\right.$ $I\}$. If $n \in \mathbf{N}^{*}$, then $\mathbf{H}_{n}$ is the $\mathcal{A}$-submodule of $\mathbf{H}$ with basis $\left\{T_{w} 1_{\lambda} ; w \cdot \lambda \in\right.$ $\left.I_{n}\right\}$; it is an $\mathcal{A}$-subalgebra of $\mathbf{H}$. The algebra $\mathbf{H}_{n}$ has been studied in [15] and [21, 1.7]. We shall often refer to loc.cit. for properties of $\mathbf{H}$ which in loc.cit. are stated for $\mathbf{H}_{n}$ with $n$ fixed and which imply immediately the corresponding properties of $\mathbf{H}$.

We show that, if $n, n^{\prime} \in \mathbf{N}^{*}$ and $n^{\prime} / n \in \mathbf{Z}$, then $j_{n, n^{\prime}}: \mathbf{H}_{n} \rightarrow \mathbf{H}_{n^{\prime}}$ is compatible with the bar-involution on $\mathbf{H}_{n}$ and $\mathbf{H}_{n^{\prime}}$. It is enough to show that $j_{n, n^{\prime}}(\bar{\xi})=\overline{j_{n, n^{\prime}}(\xi)}$ for $\xi=1_{\lambda}, \lambda \in \mathfrak{s}_{n}$ or $\xi=T_{\sigma}, \sigma \in S$. The case where $\xi=1_{\lambda}, \lambda \in \mathfrak{s}_{n}$ is immediate. For $\sigma \in S$ we have $j_{n, n^{\prime}}\left(T_{\sigma}\right)=T_{\sigma} \sum_{\lambda \in \mathfrak{s}_{n}} 1_{\lambda}$, hence

$$
\begin{aligned}
j_{n, n^{\prime}}\left(\overline{T_{\sigma}}\right) & =j_{n, n^{\prime}}\left(v^{-2} T_{\sigma}+\left(1-v^{-2}\right)\left(\sum_{\lambda \in \mathfrak{s}_{n} ; \sigma \in W_{\lambda}} 1_{\lambda}\right)\right) \\
& =v^{-2} T_{\sigma} \sum_{\lambda \in \mathfrak{s}_{n}} 1_{\lambda}+\left(1-v^{-2}\right)\left(\sum_{\lambda \in \mathfrak{s}_{n} ; \sigma \in W_{\lambda}} 1_{\lambda}\right)=T_{\sigma}^{-1} \sum_{\lambda \in \mathfrak{s}_{n}} 1_{\lambda}=\overline{j_{n, n^{\prime}}\left(T_{\sigma}\right)},
\end{aligned}
$$

as desired. It follows that there is a unique ring homomorphism $\mathbf{H} \rightarrow \mathbf{H}$, $h \mapsto \bar{h}$, whose restriction to $\mathbf{H}_{n}$ (for any $n \in \mathbf{N}^{*}$ ) is the bar involution. This has square 1 and is again called the bar involution.

The $\mathcal{A}$-linear map $\mathbf{H} \rightarrow \mathbf{H}, h \mapsto \tilde{h}$ given by $T_{w} 1_{\lambda} \mapsto T_{w} 1_{\lambda^{-1}}$ for $w \cdot \lambda \in I$ is an algebra involution. The $\mathcal{A}$-linear map $\mathbf{H} \rightarrow \mathbf{H}, h \mapsto h^{b}$, given by $T_{w} 1_{\lambda} \mapsto 1_{\lambda} T_{w^{-1}}$ is an involutive algebra antiautomorphism. (See [15, 32.19].)
1.6. As in [15, 34.4], for any $w \cdot \lambda \in I$ there is a unique element $c_{w \cdot \lambda} \in \mathbf{H}$ such that

$$
c_{w \cdot \lambda}=\sum_{y \in W} p_{y \cdot \lambda, w \cdot \lambda} v^{-|y|} T_{y} 1_{\lambda}
$$

where $p_{y \cdot \lambda, w \cdot \lambda} \in v^{-1} \mathbf{Z}\left[v^{-1}\right]$ if $y \neq w, p_{w \cdot \lambda, w \cdot \lambda}=1$ and $\overline{c_{w \cdot \lambda}}=c_{w \cdot \lambda}$. For $\lambda \in \mathfrak{s}_{\infty}, y^{\prime}, w^{\prime}$ in $W_{\lambda}$ let $P_{y^{\prime}, w^{\prime}}^{\lambda}$ be the polynomial defined in [5] in terms of the Coxeter group $W_{\lambda}$; let

$$
p_{y^{\prime}, w^{\prime}}^{\lambda}=v^{-\left|w^{\prime}\right|_{\lambda}+\left|y^{\prime}\right|_{\lambda}} P_{y^{\prime}, w^{\prime}}^{\lambda}\left(v^{2}\right) \in \mathbf{Z}\left[v^{-1}\right] .
$$

Let $w \cdot \lambda \in I$. From [6, 1.9(i)] we see that $w W_{\lambda}$ contains a unique element $z$ such that $|z|$ is minimum; we write $z=\min \left(w W_{\lambda}\right)$; we have $w=z w^{\prime}$ with $w^{\prime} \in W_{\lambda}$. We have

$$
\begin{equation*}
c_{w \cdot \lambda}=\sum_{y^{\prime} \in W_{\lambda}} p_{y^{\prime}, w^{\prime}}^{\lambda} v^{-\left|z y^{\prime}\right|} T_{z y^{\prime}} 1_{\lambda} . \tag{a}
\end{equation*}
$$

See [21, 1.8(a)]. From (a) we see that

$$
\begin{gathered}
p_{y \cdot \lambda, z w^{\prime} \cdot \lambda}=p_{y^{\prime}, w^{\prime}}^{\lambda}\left(v^{2}\right) \text { if } y=z y^{\prime}, y^{\prime} \in W_{\lambda}, \\
p_{y \cdot \lambda, z w^{\prime} \cdot \lambda}=0 \text { if } y \notin z W_{\lambda} .
\end{gathered}
$$

In particular we have $p_{y \cdot \lambda, w \cdot \lambda} \in \mathbf{N}\left[v^{-1}\right]$. From [21, 1.8] for $w \cdot \lambda \in I$ we have

$$
\widetilde{c_{w \cdot \lambda}}=c_{w \cdot \lambda^{-1}}, c_{w \cdot \lambda}^{b}=c_{w^{-1} \cdot w(\lambda)} .
$$

1.7. Now $\mathbf{H}$ can be regarded as a two-sided ideal in an $\mathcal{A}$-algebra $\mathbf{H}^{\prime}$ with 1 as follows.

Let $\left[\mathfrak{s}_{\infty}\right]$ be the set of formal $\mathcal{A}$-linear combinations $\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{\lambda} 1_{\lambda}$ with $c_{\lambda} \in \mathcal{A}$; this is an $\mathcal{A}$-module in an obvious way. We regard $\left[\mathfrak{s}_{\infty}\right]$ as a (commutative) $\mathcal{A}$-algebra with multiplication

$$
\left(\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{\lambda} 1_{\lambda}\right)\left(\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{\lambda}^{\prime} 1_{\lambda}\right)=\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{\lambda} c_{\lambda}^{\prime} 1_{\lambda} .
$$

This algebra has a unit element $1=\sum_{\lambda \in \mathfrak{s}_{\infty}} 1_{\lambda}$.
Let $\mathbf{H}^{\prime}$ be the $\mathcal{A}$-algebra with generators $T_{w}(w \in W)$ and $\phi \in\left[\mathfrak{s}_{\infty}\right]$ and relations:

$$
\begin{aligned}
& T_{w} T_{w^{\prime}}=T_{w w^{\prime}} \text { if } w, w^{\prime} \in W \text { and }\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right| \\
& T_{\sigma}^{2}=v^{2} T_{1}+\left(v^{2}-1\right) T_{\sigma}\left(\sum_{\lambda \in \mathfrak{s}_{\infty} ; \sigma \in W_{\lambda}} 1_{\lambda}\right) \text { for } \sigma \in S ; \\
& T_{w} \phi=\phi^{\prime} T_{w} \text { for } \phi=\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{\lambda} 1_{\lambda}, \phi^{\prime}=\sum_{\lambda \in \mathfrak{s}_{\infty}} c_{w^{-1}(\lambda)} 1_{\lambda} \text { in }\left[\mathfrak{s}_{\infty}\right], w \in W ;
\end{aligned}
$$

the map $\left[\mathfrak{s}_{\infty}\right] \rightarrow \mathbf{H}^{\prime}, \xi \mapsto \xi$ respects the algebra structures.
It follows that $\mathbf{H}^{\prime}$ is a free left $\left[\mathfrak{s}_{\infty}\right]$-module with basis $\left\{T_{w} ; w \in W\right\}$ and a right free $\left[\mathfrak{s}_{\infty}\right]$-module with basis $\left\{T_{w} ; w \in W\right\}$. Note that the algebra $\mathbf{H}^{\prime}$ has a unit element $\sum_{\lambda \in \mathfrak{s}_{\infty}} 1_{\lambda}$. Now $\mathbf{H}$ can be identified with the two-sided ideal of $\mathbf{H}^{\prime}$ which as an $\mathcal{A}$-submodule is free with basis $\left\{T_{w} 1_{\lambda}=1_{w(\lambda)} T_{w} ; w \cdot \lambda \in I\right\}$.
1.8. Let $W \backslash \mathfrak{s}_{\infty}$ be the set of $W$-orbits on $\mathfrak{s}_{\infty}$. For any $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ we set $I_{\mathfrak{o}}=\{w \cdot \lambda \in I ; \lambda \in \mathfrak{o}\}$. This is a finite set. We have $I=\sqcup_{\mathfrak{o}} I_{\mathfrak{o}}, \mathbf{H}=\oplus_{\mathfrak{0}} \mathbf{H}_{\mathfrak{o}}$ where $\mathbf{H}_{\mathfrak{o}}$ is the $\mathcal{A}$-submodule of $\mathbf{H}$ spanned by $\left\{T_{w} 1_{\lambda}=1_{w(\lambda)} T_{w} ; w \cdot \lambda \in I_{\mathfrak{o}}\right\}$ (thus, $H_{\mathfrak{o}}$ is a free $\mathcal{A}$-module of finite rank). If $\mathfrak{o}, \mathfrak{o}^{\prime}$ are distinct in $W \backslash \mathfrak{s}_{\infty}$, then clearly $\mathbf{H}_{0} \mathbf{H}_{0^{\prime}}=0$. Thus, each $\mathbf{H}_{0}$ is a subalgebra of $\mathbf{H}$; unlike $\mathbf{H}$, it has a unit element $\sum_{\lambda \in \mathfrak{o}} 1_{\lambda}$. It is stable under $h \mapsto \bar{h}$ and under $h \mapsto h^{b}$. Moreover, $h \mapsto \tilde{h}$ is an isomorphism of $\mathbf{H}_{0}$ onto $\mathbf{H}_{\mathfrak{o}^{-1}}$. For any $w \cdot \lambda \in I_{\mathfrak{o}}$ we have $c_{w \cdot \lambda} \in \mathbf{H}_{\mathfrak{0}}$; moreover, $\left\{c_{w \cdot \lambda} ; w \cdot \lambda \in I_{\mathfrak{0}}\right\}$ is an $\mathcal{A}$-basis of $\mathbf{H}_{0}$.
1.9. For $i, i^{\prime}$ in $I$ we write $c_{i} c_{i^{\prime}}=\sum_{j \in I} h_{i, i^{\prime}, j} c_{j}$ (product in $\mathbf{H}$ ) where $h_{i, i^{\prime}, j} \in$ $\mathcal{A}$. Let $j \underset{\text { left }}{\preceq} i$ (resp. $j \preceq i$ ) be the preorder on $I$ generated by the relations $h_{i^{\prime}, i, j} \neq 0$ for some $i^{\prime} \in I$, resp. by the relations

$$
h_{i, i^{\prime}, j} \neq 0 \text { or } h_{i^{\prime}, i, j} \neq 0 \text { for some } i^{\prime} \in I
$$

We say that $i \underset{\text { left }}{\sim} j($ resp. $i \sim j)$ if $i \underset{\text { left }}{\preceq} j$ and $j \underset{\text { left }}{\preceq} i($ resp. $i \preceq j$ and $j \preceq i)$. This is an equivalence relation on $I$; the equivalence classes are called left
cells (resp. two-sided cells). Note that any two-sided cell is a union of left cells. Since for $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}, \mathbf{H}_{\mathfrak{o}}$ is closed under left and right multiplication by elements in $\mathbf{H}$, we see that

$$
h_{i, i^{\prime}, j} \neq 0, i \in I_{\mathfrak{o}} \text { implies } i^{\prime}, j \in I_{\mathfrak{o}} ; h_{i, i^{\prime}, j} \neq 0, i^{\prime} \in I_{\mathfrak{o}} \text { implies } i, j \in I_{\mathfrak{o}} .
$$

It follows that $j \preceq i, i \in I_{\mathfrak{o}}$ implies $j \in I_{\mathfrak{o}}$. In particular, $j \sim i, i \in I_{\mathfrak{o}}$ implies $j \in I_{0}$. Thus any two-sided cell is contained in $I_{\mathfrak{0}}$ for a unique $\mathfrak{o}$.

For $i=w \cdot \lambda \in I$ we set

$$
i^{!}=w^{-1} \cdot w(\lambda) \in I
$$

Note that $i \mapsto i$ is an involution of $I$ preserving $I_{\mathfrak{0}}$ for any $\mathfrak{o}$.
If $\mathbf{c}$ is a two-sided cell and $i \in I$, we write $i \preceq \mathbf{c}($ resp. $\mathbf{c} \preceq i)$ if $i \preceq i^{\prime}$ (resp. $i^{\prime} \preceq i$ ) for some $i^{\prime} \in \mathbf{c}$; we write $i \prec \mathbf{c}$ (resp. $\mathbf{c} \prec i$ ) if $i \preceq \mathbf{c}$ (resp. $\mathbf{c} \preceq i)$ and $i \notin \mathbf{c}$. If $\mathbf{c}, \mathbf{c}^{\prime}$ are two-sided cells, we write $\mathbf{c} \preceq \mathbf{c}^{\prime}\left(\right.$ resp. $\left.\mathbf{c} \prec \mathbf{c}^{\prime}\right)$ if $i \preceq i^{\prime}\left(\right.$ resp. $i \preceq i^{\prime}$ and $\left.i \nsim i^{\prime}\right)$ for some $i \in \mathbf{c}, i^{\prime} \in \mathbf{c}^{\prime}$.

Let $j \in I$. We can find an integer $m \geq 0$ such that $h_{i, i^{\prime}, j} \in v^{-m} \mathbf{Z}[v]$ for all $i, i^{\prime}$; let $a(j)$ be the smallest such $m$. For $i, i^{\prime}, j$ in $I$ there is a well defined integer $h_{i, i^{\prime}, j}^{*}$ such that

$$
h_{i, i^{\prime}, j^{!}}=h_{i, i^{\prime}, j}^{*} v^{-a\left(j^{!}\right)}+\text {higher powers of } v
$$

Note that

$$
h_{i, i^{\prime}, j}^{*} \neq 0, i \in I_{\mathfrak{o}} \text { implies } i^{\prime}, j \in I_{\mathfrak{o}} ; h_{i, i^{\prime}, j}^{*} \neq 0, i^{\prime} \in I_{\mathfrak{o}} \text { implies } i, j \in I_{\mathfrak{o}} .
$$

Let $\mathbf{D}$ be the set of all $w \cdot \lambda \in I$ where $w$ is a distinguished involution of the Coxeter group $W_{\lambda}$, see [8]. We have $\mathbf{D}=\sqcup_{\mathfrak{o}}(\mathbf{D} \cap \mathfrak{o})$.

By [21, 1.11], the following properties hold:
Q1. If $j \in \mathbf{D}$ and $i, i^{\prime} \in I$ satisfy $h_{i, i^{\prime}, j}^{*} \neq 0$ then $i^{\prime}=i^{*}$.
Q2. If $i \in I$, there exists a unique $j \in \mathbf{D}$ such that $h_{i^{!}, i, j}^{*} \neq 0$.
Q3. If $i^{\prime} \preceq i$ then $a\left(i^{\prime}\right) \geq a(i)$. Hence if $i^{\prime} \sim i$ then $a\left(i^{\prime}\right)=a(i)$.
Q4. If $j \in \mathbf{D}, i \in I$ and $h_{i^{!}, i, j}^{*} \neq 0$ then $h_{i^{\prime}, i, j}^{*}=1$.
Q5. For any $i, j, k$ in $I$ we have $h_{i, j, k}^{*}=h_{j, k, i}^{*}$.
Q6. Let $i, j, k$ in $I$ be such that $h_{i, j, k}^{*} \neq 0$. Then $i \underset{\text { left }}{\sim} j^{!}, j \underset{\text { left }}{\sim} k^{!}, k \underset{\text { left }}{\sim} i^{!}$.
Q7. If $i^{\prime} \underset{\text { left }}{\preceq} i$ and $a\left(i^{\prime}\right)=a(i)$ then $i^{\prime} \underset{\text { left }}{\sim} i$.

Q8. If $i^{\prime} \preceq i$ and $a\left(i^{\prime}\right)=a(i)$ then $i^{\prime} \sim i$.
Q9. Any left cell $\Gamma$ of $I$ contains a unique element of $j \in \mathbf{D}$. We have $h_{i^{!}, i, j}^{*}=1$ for all $i \in \Gamma$.
Q10. For any $i \in I$ we have $i \sim i^{!}$.

Note that $h_{i, j, k}^{*} \in \mathbf{N}$ for all $i, j, k$ in $I$, see [21, 1.11].
Let $\mathbf{H}^{\infty}$ be the free abelian group with basis $\left\{t_{i} ; i \in I\right\}$. We define a Z-bilinear multiplication $\mathfrak{A}^{\infty} \times \mathfrak{A}^{\infty} \rightarrow \mathfrak{A}^{\infty}$ by

$$
t_{i} t_{i^{\prime}}=\sum_{j \in I} h_{i, i^{\prime}, j^{\prime}}^{*} t t_{j}
$$

For any $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ let $\mathbf{H}_{\mathfrak{0}}^{\infty}$ be the free abelian subgroup of $\mathbf{H}^{\infty}$ with basis $\left\{t_{i} ; i \in I_{\mathfrak{o}}\right\}$. We have $\mathbf{H}^{\infty}=\oplus_{\mathfrak{0}} \mathbf{H}_{\mathfrak{0}}^{\infty}$; moreover, if $\mathfrak{o}, \mathfrak{o}^{\prime}$ are distinct in $W \backslash \mathfrak{s}_{\infty}$, then $\mathbf{H}_{0}^{\infty} \mathbf{H}_{\mathfrak{o}^{\prime}}^{\infty}=0$. Thus each $\mathbf{H}_{0}^{\infty}$ is a subalgebra of $\mathbf{H}$; unlike $\mathbf{H}^{\infty}, \mathbf{H}_{0}^{\infty}$ has a unit element $\sum_{i \in \mathbf{D} \cap 0} t_{i}$. The Z-linear map $\mathbf{H}^{\infty} \rightarrow \mathbf{H}^{\infty}, h \mapsto h^{b}$ defined by $t_{i}^{b}=t_{i}$ ! for all $i \in I$ is a ring antiautomorphism preserving each $\mathbf{H}_{0}^{\infty}$. We define an $\mathcal{A}$-linear map $\psi: \mathbf{H} \rightarrow \mathcal{A} \otimes \mathbf{H}^{\infty}$ by

$$
\psi\left(c_{i}\right)=\sum_{i^{\prime} \in I, j \in \mathbf{D} ; i^{\prime} \sim j} h_{i, j, i^{\prime}} t_{i^{\prime}} \text { for all } i \in I
$$

(This last sum is finite. We have $i \in I_{\mathfrak{0}}$ for some $\mathfrak{o}$. If $h_{i, j, i^{\prime}} \neq 0$ then we have $i^{\prime} \in \mathfrak{o}, j \in \mathfrak{o}$. Thus $i^{\prime}, j$ run through a finite set.) By [21, 1.9, 1.11(vi)], $\psi$ is a homomorphism of $\mathcal{A}$-algebras. For any $\mathfrak{o}, \psi$ restricts to a homomorphism of $\mathcal{A}$-algebras $\psi_{0}: \mathbf{H}_{0} \rightarrow \mathcal{A} \otimes \mathbf{H}_{0}^{\infty}$ which takes 1 to 1 .

We set $\mathbf{H}^{v}=\mathbf{Q}(v) \otimes_{\mathcal{A}} \mathbf{H}, \mathbf{J}=\mathbf{Q} \otimes \mathbf{H}^{\infty}$; for any $\mathfrak{o}$ we set $\mathbf{H}_{\mathfrak{o}}^{v}=$ $\mathbf{Q}(v) \otimes_{\mathcal{A}} \mathbf{H}_{\mathfrak{o}}, \mathbf{J}_{\mathfrak{o}}=\mathbf{Q} \otimes_{\mathcal{A}} \mathbf{H}_{\mathfrak{o}}^{\infty}$. For any $\mathfrak{o}, \psi$ induces an algebra isomorphism $\psi_{0}^{v}: \mathbf{H}_{\mathfrak{0}}^{v} \xrightarrow{\sim} \overline{\mathbf{Q}}_{l}(v) \otimes \mathbf{J}_{\mathfrak{o}}$; hence $\psi$ induces an algebra isomorphism $\psi^{v}: \mathbf{H}^{v} \xrightarrow{\sim} \overline{\mathbf{Q}}_{l}(v) \otimes \mathbf{J}$.

We define a group homomorphism $\mathbf{t}: \mathbf{H}^{\infty} \rightarrow \mathbf{Z}$ by $\mathbf{t}\left(t_{i}\right)=1$ if $i \in \mathbf{D}$, $\mathbf{t}\left(t_{i}\right)=0$ if $i \in I-\mathbf{D}$. As in [21, 1.9(a)], the following can be deduced from Q1,Q2,Q4.
(a) For $i, j \in I$ we have $\mathbf{t}\left(t_{i} t_{j}\right)=1$ if $j=i^{!}$and $\mathbf{t}\left(t_{i} t_{j}\right)=0$ if $j \neq i^{!}$.
1.10. For $n \in \mathbf{N}^{*}$ we set $\mathbf{H}_{n}^{1}=\overline{\mathbf{Q}}_{l} \otimes_{\mathcal{A}} \mathbf{H}_{n}$; this is a $\overline{\mathbf{Q}}_{l}$-algebra with 1. It is the algebra with generators $T_{w}(w \in W), 1_{\lambda}\left(\lambda \in \mathfrak{s}_{n}\right)$ and relations:

$$
\begin{aligned}
& 1_{\lambda} 1_{\lambda^{\prime}}=\delta_{\lambda, \lambda^{\prime}} 1_{\lambda} \text { for } \lambda, \lambda^{\prime} \in \mathfrak{s}_{n} ; \\
& T_{w} T_{w^{\prime}}=T_{w w^{\prime}} \text { for } w, w^{\prime} \in W \\
& T_{w} 1_{\lambda}=1_{w(\lambda)} T_{w} \text { for } w \in W, \lambda \in \mathfrak{s}_{n} \\
& T_{1}=\sum_{\lambda \in \mathfrak{s}_{n}} 1_{\lambda}
\end{aligned}
$$

It has a basis $\left\{T_{w} 1_{\lambda} ; w \cdot \lambda \in I_{n}\right\}$. Let $\mathbf{H}^{1}=\overline{\mathbf{Q}}_{l} \otimes_{\mathcal{A}} \mathbf{H}$. This is a $\overline{\mathbf{Q}}_{l}$-algebra without 1 in general. As a vector space it has basis $\left\{T_{w} 1_{\lambda}, w \cdot \lambda \in I\right\}$. It contains naturally $\mathbf{H}_{n}^{1}$ as a subalgebra for any $n \in \mathbf{N}^{*}$. For any $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ we set $\mathbf{H}_{\mathfrak{o}}^{1}=\overline{\mathbf{Q}}_{l} \otimes_{\mathcal{A}} \mathbf{H}_{\mathfrak{o}}$; this is a $\overline{\mathbf{Q}}_{l}$-algebra with 1 . It has a basis $\left\{T_{w} 1_{\lambda} ; w \cdot \lambda \in\right.$ $\left.I_{\mathfrak{o}}\right\}$. We have $\mathbf{H}^{1}=\oplus_{0} \mathbf{H}_{\mathfrak{0}}^{1}$. Now $\psi$ in 1.9 induces an algebra isomorphism $\psi^{1}: \mathbf{H}^{1} \xrightarrow{\sim} \mathbf{J}$; for any $\mathfrak{o}, \psi_{\mathfrak{o}}$ in 1.9 induces an algebra isomorphism $\psi_{\mathfrak{o}}^{1}:$ $\mathbf{H}_{\mathfrak{o}}^{1} \xrightarrow{\sim} \mathbf{J}_{\mathfrak{o}}$ taking 1 to 1 .
1.11. Let $n \in \mathbf{N}^{*}$. Consider the group algebra $\overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right]$ where $W \mathbf{T}_{n}$ is the semidirect product of $W$ and $\mathbf{T}_{n}$ with $\mathbf{T}_{n}$ normal and $W$ acting on $\mathbf{T}_{n}$ by $w: t \mapsto w(t)$. Now $w(t) \mapsto \sum_{\lambda \in \mathfrak{s}_{n}} \lambda(t) T_{w} 1_{\lambda}$ defines a $\overline{\mathbf{Q}}_{l}$-linear isomorphism $u_{n}: \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right] \xrightarrow{\sim} \mathbf{H}_{n}^{1}$ which is in fact an algebra isomorphism taking 1 to 1.

Now let $n, n^{\prime} \in \mathbf{N}^{*}$ be such that $n^{\prime} / n \in \mathbf{Z}$. We define a $\overline{\mathbf{Q}}_{l}$-linear imbedding $h_{n, n^{\prime}}: \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right] \rightarrow \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n^{\prime}}\right]$ by

$$
h_{n, n^{\prime}}(w t)=\left(n / n^{\prime}\right)^{\rho} \sum_{t^{\prime} \in \mathbf{T}_{n^{\prime} ;} ; t^{\prime} n^{\prime} / n=t} w t^{\prime}
$$

We show that $h_{n, n^{\prime}}$ is compatible with multiplication, that is, for $w, w^{\prime}$ in $W$ and $t, t^{\prime}$ in $\mathbf{T}_{n}$ we have

$$
\begin{aligned}
& \left(\left(n / n^{\prime}\right)^{\rho} \sum_{\tilde{t} \in \mathbf{T}_{n^{\prime}} ; \tilde{z}^{\prime \prime} / n=t} w \tilde{t}\right)\left(\left(n / n^{\prime}\right)^{\rho} \sum_{\tilde{t^{\prime} \in \mathbf{T}_{n^{\prime}} ; \tilde{t}^{\prime \prime} / n=t^{\prime}}} w^{\prime} \tilde{t}^{\prime}\right) \\
& =\left(n / n^{\prime}\right)^{\rho} \sum_{\tilde{t}^{\prime \prime} \in \mathbf{T}_{n^{\prime}} ; ;^{\prime \prime \prime} n^{\prime} / n=w^{\prime-1}(t) t^{\prime}} w w^{\prime} \tilde{t}^{\prime \prime},
\end{aligned}
$$

or equivalently

$$
\left(\left(n / n^{\prime}\right)^{\rho} \sum_{\tilde{t}, \tilde{t}^{\prime} \in \mathbf{T}_{n^{\prime}} ; \tilde{t}^{n^{\prime} / n}=t, \tilde{t}^{\prime n^{\prime} / n}=t^{\prime}} w^{\prime-1}(\tilde{t}) \tilde{t}^{\prime} \sum_{\tilde{t^{\prime \prime} \in \mathbf{T}_{n^{\prime}} ; \tilde{t}^{\prime \prime \prime} n^{\prime} / n}=w^{\prime-1}(t) t^{\prime}} \tilde{t}^{\prime \prime}\right),
$$

which is easily verified.
Let $j_{n, n^{\prime}}^{1}: \mathbf{H}_{n}^{1} \xrightarrow{\sim} \mathbf{H}_{n^{\prime}}^{1}$ be the specialization of $j_{n, n^{\prime}}($ see 1.5) at $v=1$. We have $u_{n^{\prime}} h_{n, n^{\prime}}=j_{n, n^{\prime}} u_{n}$; equivalently for $w \in W, t \in \mathbf{T}_{n}$, we have

$$
\left(n / n^{\prime}\right)^{\rho} \sum_{t^{\prime} \in \mathbf{T}_{n^{\prime}} ; t^{t^{\prime} / n}=t} \sum_{\lambda \in \mathfrak{s}_{n^{\prime}}} \lambda\left(t^{\prime}\right) T_{w} 1_{\lambda}=\sum_{\lambda \in \mathfrak{s}_{n}} \lambda(t) T_{w} 1_{\lambda} .
$$

(It is enough to show that for any $\lambda \in \mathfrak{s}_{n^{\prime}}$,

$$
\left(n / n^{\prime}\right)^{\rho} \sum_{t^{\prime} \in \mathbf{T}_{n^{\prime}} ; ;^{\prime n^{\prime} / n}=t} \lambda\left(t^{\prime}\right)=\lambda(t) .
$$

is equal to $\lambda(t)$ if $\lambda \in \mathfrak{s}_{n}$ and to 0 if $\lambda \notin \mathfrak{s}_{n}$. This is immediate: we use that the kernel of the surjective homomorphism $\mathbf{T}_{n^{\prime}} \rightarrow \mathbf{T}_{n}, t^{\prime} \mapsto t^{\prime n^{\prime} / n}$ has exactly $\left(n^{\prime} / n\right)^{\rho}$ elements.)

We can form the union $\cup_{n \in \mathbf{N}^{*}} \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right]$ over all imbeddings $h_{n, n^{\prime}}$ as above. This union has an algebra structure whose restriction to $\overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right]$ (for any $n \in \mathbf{N}^{*}$ ) is the algebra structure of $\overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right]$. Moreover, there is a unique isomorphism of algebras $\cup_{n \in \mathbf{N}^{*}} \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right] \xrightarrow{\sim} \mathbf{H}^{1}$ whose restriction to $\overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right]$ (for any $n \in \mathbf{N}^{*}$ ) is $u_{n}: \overline{\mathbf{Q}}_{l}\left[W \mathbf{T}_{n}\right] \xrightarrow{\sim} \mathbf{H}_{n}^{1}$.
1.12. For $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}, \mathbf{H}_{\mathfrak{o}}^{1}$ is a semisimple $\overline{\mathbf{Q}}_{l}$-algebra. Let $\operatorname{Irr}\left(H_{\mathfrak{o}}^{1}\right)$ be a set of representatives for the isomorphism classes of simple $\mathbf{H}_{0}^{1}$-modules.
1.13. We have $\mathbf{H}^{\infty}=\oplus_{\mathbf{c}} \mathbf{H}_{\mathbf{c}}^{\infty}, \mathbf{J}=\oplus_{\mathbf{c}} \mathbf{J}_{\mathbf{c}}$, where $\mathbf{c}$ runs over the two-sided cells in $I, \mathbf{H}_{\mathbf{c}}^{\infty}$ is the $\mathcal{A}$-submodule of $\mathbf{H}^{\infty}$ with basis $\left\{t_{i} ; i \in \mathbf{c}\right\}$ and $\mathbf{J}_{\mathbf{c}}$ is the $\overline{\mathbf{Q}}_{l}$-subspace of $\mathbf{J}$ with basis $\left\{t_{i} ; i \in \mathbf{c}\right\}$. Each $\mathbf{H}_{\mathbf{c}}^{\infty}$ is an $\mathcal{A}$-subalgebra of $\mathbf{H}^{\infty}$ with unit $\sum_{i \in \mathbf{D}_{\mathbf{c}}} t_{i}$ where $\mathbf{D}_{\mathbf{c}}=\mathbf{D} \cap \mathbf{c}$. Each $\mathbf{J}_{\mathbf{c}}$ is a $\overline{\mathbf{Q}}_{l}$-subalgebra of $\mathbf{J}$ with the same unit as $\mathbf{H}_{\mathbf{c}}^{\infty}$. Moreover if $\mathbf{c}, \mathbf{c}^{\prime}$ are distinct two-sided cells in $I$ we have $\mathbf{J}_{\mathbf{c}} \mathbf{J}_{\mathbf{c}^{\prime}}=0$. Recall from 1.9 that any two-sided cell in $I$ is contained in $I_{\mathfrak{o}}$ for a unique $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$. It follows that for any $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ we have $\mathbf{J}_{0}=\oplus_{\mathbf{c} \subset I_{0}} \mathbf{J}_{\mathbf{c}}$. Hence, if $E \in \operatorname{Irr}\left(H_{\mathfrak{o}}^{1}\right)$ then there is a unique two-sided cell $\mathbf{c}_{E}$ such that $\mathbf{J}_{\mathbf{c}}$ acts as zero on $E^{\infty}$ for any $\mathbf{c} \subset I_{0}$ with $\mathbf{c} \neq \mathbf{c}_{E}$. Thus $E^{\infty}$ can be viewed as a simple $\mathbf{J}_{\mathbf{c}_{E}}$-module. We define $a_{E} \in \mathbf{N}$ to be the constant value of the restriction of $a: I \rightarrow \mathbf{N}$ to $\mathbf{c}_{E}$.
1.14. If $\mathbf{c}$ is a two-sided cell of $I$ then its image $\widetilde{\mathbf{c}}$ under $I \rightarrow I, w \cdot \lambda \mapsto w \cdot \lambda^{-1}$ is a two-sided cell of $I$. (See [21, 1.14]) As noted in 1.9, we have $\mathbf{c} \subset I_{0}$ for a
unique $\mathfrak{o}$; from the definitions we have $\widetilde{\mathbf{c}} \subset I_{\mathfrak{o}^{-1}}$. Moreover, the value of the $a$-function on $\widetilde{\mathbf{c}}$ is equal to the value of the $a$-function on $\mathbf{c}$. From Q3,Q10 in 1.9 , we see that $a\left(i^{!}\right)=a(i)$ for $i \in I$.
1.15. For $i, i^{\prime}$ in $I$ we show:
(a) If $i \underset{\text { left }}{\sim} i^{\prime}$, then for some $u \in I, t_{i^{\prime}}$ appears with $\neq 0$ coefficient in $t_{u} t_{i}$.
(b) If $i^{!} \underset{\text { left }}{\sim} i^{\prime!}$, then for some $u \in I, t_{i^{\prime}}$ appears with $\neq 0$ coefficient in $t_{i} t_{u}$.
(c) If $i \sim i^{\prime}$, then for some $u, u^{\prime}$ in $I, t_{i^{\prime}}$ appears with nonzero coefficient in $t_{u} t_{i} t_{u}^{\prime}$.
(d) If $i \sim i^{\prime}$, then $t_{i} t_{j} t_{i^{\prime}} \neq 0$ for some $j \in I$.

The proof is along the lines of that of [13, 18.4]. Let $J^{+}=\sum_{k \in I} \mathbf{N} t_{k}$. We will use repeatedly that $J^{+} J^{+} \subset J^{+}$.

Let $i, i^{\prime}$ be as in (a). Let $d, d^{\prime} \in \mathbf{D}$ be such that $h_{i^{\prime}, i, d}^{*} \neq 0$ and $h_{i^{\prime}, i^{\prime}, d^{\prime}}^{*} \neq 0$. Then $i \underset{\text { left }}{\sim} d, i^{\prime} \underset{\text { left }}{\sim} d^{\prime}$. Hence $d \underset{\text { left }}{\sim} d^{\prime}$. By Q9 in 1.9 we have $d \xlongequal{=} d^{\prime}$ and $h_{i^{\prime}, i, d}^{*}=1, h_{i^{\prime}, i^{\prime}, d}^{*}=1$. Hence $t_{i^{\prime}} t_{i}=t_{d}+J^{+}, t_{i^{\prime}!} t_{i^{\prime}}=t_{d}+J^{+}, t_{d} t_{d}=t_{d}$; it follows that $t_{i^{\prime}} t_{i} t_{i^{\prime}} t_{i^{\prime}} \in t_{d} t_{d}+J^{+}=t_{d}+J^{+}$. In particular, $t_{i} t_{i^{\prime!}} \neq 0$. Thus, $h_{i, i^{\prime}, u}^{*} \neq 0$ for some $u \in I$. Using Q5 in 1.9 we deduce that $h_{u, i, i^{\prime *}}^{*} \neq 0$ hence $t_{i^{\prime}}$ appears with $\neq 0$ coefficient in $t_{u} t_{i}$. This proves (a). Now (b) follows from (a) using the antiautomorphism of $\mathbf{H}^{\infty}$ such that $t_{u} \mapsto t_{u}$ ! for all $u \in I$.

Let $i_{1}, i_{2}, i_{3}$ in $I$ be such that $i_{1} \sim i_{2} \sim i_{3}$. If the conclusion of (c) holds for $\left(i, i^{\prime}\right)=\left(i_{1}, i_{2}\right)$ and for $\left(i, i^{\prime}\right)=\left(i_{2}, i_{3}\right)$ then clearly it holds for $\left(i, i^{\prime}\right)=\left(i_{1}, i_{3}\right)$. Applying this repeatedly, we see that it is enough to prove (c) in the case where $i, i^{\prime}$ satisfy either $i \underset{\text { left }}{\sim} i^{\prime}$ or $i^{!} \underset{\text { left }}{\sim} i^{\prime!}$. In these cases the desired result follows from (a),(b).

Let $i, i^{\prime}$ be as in (d). Then $i \sim i^{\prime!}$. By (c), we have $t_{u^{\prime}} t_{i} t_{u} \in a t_{i^{\prime}!}+J^{+}$ for some $u, u^{\prime} \in I$ and some $a \in \mathbf{Z}_{>0}$. Hence $t_{u^{\prime}} t_{i} t_{u} t_{i^{\prime}} \in a t_{i^{\prime}} t_{i^{\prime}}+J^{+}$. Since $t_{i^{\prime}} t_{i^{\prime}}$ has some coefficient 1 and the other coefficients are $\geq 0$, it follows that $t_{u^{\prime}} t_{i} t_{u} t_{i^{\prime}} \neq 0$. Thus, $t_{i} t_{u} t_{i^{\prime}} \neq 0$. This proves (d).

## 2. The Group $\tilde{G}$

2.1. In this paper (except in 2.2) we fix a group $\tilde{G}$ containing $G$ as a subgroup, such that $\tilde{G} / G$ is cyclic of order $\mathbf{m} \leq \infty$ with a fixed generator.

For $s \in \mathbf{Z}$ let $\tilde{G}_{s}$ be the inverse image of the $s$-th power of this generator under the obvious map $\tilde{G} \rightarrow \tilde{G} / G$. For $\gamma \in \tilde{G}$, the map $G \rightarrow G, g \mapsto \gamma g \gamma^{-1}$ is denoted by $\operatorname{Ad}(\gamma)$.

We shall always assume that we are in one of the two cases below (later referred to as case A and case B).
(A) We have $\mathbf{m}=\infty$ and one of the following two equivalent conditions are satisfied ( $q$ denotes a fixed power of $p$ ):
(i) for some $\gamma \in \tilde{G}_{1}, \operatorname{Ad}(\gamma): G \rightarrow G$ is the Frobenius map for an $F_{q}$-rational rational structure on $G$;
(ii) for any $s>0$ and any $\gamma \in \tilde{G}_{s}, \operatorname{Ad}(\gamma): G \rightarrow G$ is the Frobenius map for an $F_{q^{s}}$-rational rational structure on $G$.
(B) $\mathbf{m}<\infty$ and $\tilde{G}$ is an algebraic group with identity component $G$.

We show the equivalence of (i), (ii) in case A. Clearly, if (ii) holds then (i) holds. Conversely, assume that (i) holds for $\gamma \in \tilde{G}_{1}$. If $\gamma^{\prime} \in \tilde{G}_{s}$ with $s>0$, then we have $\gamma^{\prime}=g_{1} \gamma^{s}$ where $g_{1} \in G$. By Lang's theorem applied to $\operatorname{Ad}\left(\gamma^{s}\right)$ : $G \rightarrow G$, which is the Frobenius map for an $F_{q^{s}}$-rational structure on $G$, we have $g_{1}=g_{2}^{-1} \operatorname{Ad}\left(\gamma^{s}\right)\left(g_{2}\right)$ for some $g_{2} \in G$ hence $\gamma^{\prime}=g_{2}^{-1} \operatorname{Ad}\left(\gamma^{s}\right)\left(g_{2}\right) \gamma^{s}=$ $g_{2}^{-1} \gamma^{s} g_{2}$ and $\operatorname{Ad}\left(\gamma^{\prime}\right)=\operatorname{Ad}\left(g_{2}\right)^{-1} \operatorname{Ad}\left(\gamma^{s}\right) \operatorname{Ad}\left(g_{2}\right)$. Since $\operatorname{Ad}\left(g_{2}\right): G \rightarrow G$ is an isomorphism of algebraic varieties, it follows that $\operatorname{Ad}\left(\gamma^{\prime}\right): G \rightarrow G$ is the Frobenius map for an $F_{q^{s}}$-rational structure on $G$. Thus (ii) holds.

Let $s \in \mathbf{Z}$. In case $\mathrm{B}, \tilde{G}_{s}$ is naturally an algebraic variety. In case A , we view $\tilde{G}_{s}$ as an algebraic variety using the bijection $g \mapsto g \gamma$ where $\gamma$ is fixed in $\tilde{G}_{s}$; this algebraic structure on $\tilde{G}_{s}$ is independent of the choice of $\gamma$. For $s=0$ this gives the usual structure of algebraic variety of $G$. For $s \in \mathbf{Z}, s^{\prime} \in \mathbf{Z}$, the multiplication $\tilde{G}_{s} \times \tilde{G}_{s^{\prime}} \rightarrow \tilde{G}_{s+s^{\prime}}$ is obviously a morphism of algebraic varieties in case B , but is only a quasi-morphism in the sense of [20, 0.3] in case A. Similarly, for $s \in \mathbf{Z}, \tilde{G}_{s} \rightarrow \tilde{G}_{-s}, \gamma \mapsto \gamma^{-1}$ is a morphism of algebraic varieties in case B, but is only a quasi-morphism in case A.

Note that in case A with $s \neq 0$, the conjugation action of $G$ on $\tilde{G}_{s}$ is transitive. (If $s>0$, this follows from as above using Lang's theorem, while if $s<0$ this follows using the bijection $\tilde{G}_{s} \rightarrow \tilde{G}_{-s}, \gamma \mapsto \gamma^{-1}$, which commutes with the $G$-actions.) Moreover in this case for any $\gamma \in \tilde{G}_{s}$, the stabilizer of $\gamma$ for this $G$-action is finite. (This stabilizer is the fixed point
set of $\operatorname{Ad}(\gamma): G \rightarrow G$ which is a Frobenius map relative to an $F_{q^{s}}$-structure if $s>0$ or the inverse of a Frobenius map if $s<0$.)

We show:
(a) If $\gamma \in \tilde{G}_{s}$ and $B \in \mathcal{B}$ then $\operatorname{Ad}(\gamma)(B) \in \mathcal{B}, \operatorname{Ad}(\gamma)\left(U_{B}\right)=U_{\operatorname{Ad}(\gamma) B}$ and $\operatorname{Ad}(\gamma): \mathcal{B} \rightarrow \mathcal{B}$ is a bijection.

In case A with $s=0$ and in case $\mathrm{B},(\mathrm{a})$ is obvious. In case A with $s>0$, (a) follows from (ii); in case A with $s<0$, (a) follows from (ii) applied to $\gamma^{-1}$.
2.2. Here are some examples in case A.
(i) Let $F: G \rightarrow G$ be the Frobenius map for an $F_{q}$-rational structure on $G$. Let $\tilde{G}=G \times \mathbf{Z}$ regarded as a group with multiplication $(g, s)\left(g^{\prime}, s^{\prime}\right)=$ $\left(g F^{s}\left(g^{\prime}\right), s+s^{\prime}\right)$. Define a homomorphism $\tilde{G} \rightarrow \mathbf{Z}$ by $(g, s) \mapsto s$. Its kernel $\{(g, s) \in \tilde{G} ; s=0\}$ can be identified with $G$. Note that $\tilde{G}$ and $\tilde{G} \rightarrow \mathbf{Z}$ are as in case A; we have $(1,1) \in \tilde{G}_{1}$ and $\operatorname{Ad}(1,1): G \rightarrow G$ is just $F: G \rightarrow G$. Moreover, any $\tilde{G}$ and $\tilde{G} \rightarrow \mathbf{Z}$ as in case A is obtained by the procedure above.
(ii) In the case where $G$ is adjoint we define $\tilde{G}_{s}$ for $s \in \mathbf{Z}_{<0}$ to be the set of Frobenius maps $G \rightarrow G$ with respect to various split $F_{q^{s}}$-rational structures on $G$; we define $\tilde{G}_{s}$ for $s \in \mathbf{Z}_{<0}$ to be the set of maps $G \rightarrow G$ whose inverse is in $\tilde{G}_{-s}$ and we set $\tilde{G}_{0}=G$. Then $\tilde{G}=\sqcup_{s \in \mathbf{Z}} \tilde{G}_{s}$ is as in case A. (This case has been considered in 20].)
(iii) Let $V$ be a finite dimensional $\mathbf{k}$-vector space. For any $s \in \mathbf{Z}$ let $\widetilde{G L(V)_{s}}$ be the set of all group isomorphisms $T: V \rightarrow V$ such that $T(z x)=$ $z^{q^{s}} T(x)$ for all $z \in \mathbf{k}, x \in V$; in particular we have $\widetilde{G L(V)}{ }_{0}=G L(V)$. Then $\widetilde{G L(V)}:=\sqcup_{s \in \mathbf{Z}} \widetilde{G L(V)_{s}}$ is a group under composition of maps; it is of the form $\tilde{G}$ (as in case A) where $G=G L(V)$.
(iv) Let $V$ be a finite dimensional $\mathbf{k}$-vector space with a nondegenerate symplectic form $():, V \times V \rightarrow \mathbf{k}$. For any $s \in \mathbf{Z}$ let $\widetilde{S p(V)}$ se the set of all $T \in \widetilde{G L(V)})_{s}$ such that $\left(T(x), T\left(x^{\prime}\right)\right)=\left(x, x^{\prime}\right)^{q^{s}}$ for all $x, x^{\prime}$ in $V$; in particular we have $\widetilde{S p(V)_{0}}=S p(V)$. Then $\widetilde{S p(V)}:=\sqcup_{s \in \mathbf{Z}} \widetilde{S p(V)_{s}}$ is a group under composition of maps; it is of the form $\tilde{G}$ (as in case A) where $G=S p(V)$.
2.3. In the rest of this paper we fix $\tau \in \tilde{G}_{1}$ such that $\tau \mathbf{B} \tau^{-1}=\mathbf{B}, \tau \mathbf{T} \tau^{-1}=$ T. and such that for any $\sigma \in S, \operatorname{Ad}(\tau)$ carries $\xi_{\sigma} \in \mathbf{U}_{\sigma}-\{1\}$ to $\xi_{\sigma^{\prime}} \in$ $\mathbf{U}_{\sigma^{\prime}}-\{1\}$ for some $\sigma^{\prime} \in S$.

Note that such $\tau$ exists.
We define a group homomorphism e: $\tilde{G} \rightarrow \tilde{G}$ by $\mathbf{e}(\gamma)=\tau \gamma \tau^{-1}$. We have $\mathbf{e}\left(\tilde{G}_{s}\right)=\tilde{G}_{s}$ for all $s \in \mathbf{Z}, \mathbf{e}(\mathbf{T})=\mathbf{T}, \mathbf{e}(\mathbf{B})=\mathbf{B}$ (hence $\left.\mathbf{e}(\mathbf{U})=\mathbf{U}\right)$, $\mathbf{e}(N \mathbf{T})=N \mathbf{T}$; thus e induces an automorphism of $W$ denoted again by $\mathbf{e}$ which preserves the Coxeter group structure. If $B \in \mathcal{B}$ then $\mathbf{e}(B) \in \mathcal{B}$ and $B \mapsto \mathbf{e}(B), \mathcal{B} \rightarrow \mathcal{B}$ is an automorphism in case B and is the Frobenius map for an $\mathbf{F}_{q}$-rational structure on $\mathcal{B}$ in case A . We define $\mathbf{e}: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B} \times \mathcal{B}$ by $\mathbf{e}\left(B, B^{\prime}\right)=\left(\mathbf{e}(B), \mathbf{e}\left(B^{\prime}\right)\right)$. For $w \in W$ we have $\mathbf{e}\left(G_{w}\right)=G_{\mathbf{e}(w)}$ and $\mathbf{e}\left(\mathcal{O}_{w}\right)=\mathcal{O}_{\mathbf{e}(w)}$.

The set $\{\dot{\sigma} ; \sigma \in S\}$ of $N \mathbf{T}$ is stable under $\mathbf{e}: N \mathbf{T} \rightarrow N \mathbf{T}$. For $w \in W$ we have $(\mathbf{e}(w))^{\cdot}=\mathbf{e}(\dot{w})$. Hence $N_{0} \mathbf{T}$ is stable under $\mathbf{e}: N \mathbf{T} \rightarrow N \mathbf{T}$.

Now for $n \in \mathbf{N}^{*}, \mathbf{e}: \mathbf{T} \rightarrow \mathbf{T}$ restricts to an isomorphism $\mathbf{e}: \mathbf{T}_{n} \rightarrow \mathbf{T}_{n}$ and this induces an isomorphism $\mathbf{e}: \mathfrak{s}_{n} \rightarrow \mathfrak{s}_{n}$ by $\lambda \mapsto \mathbf{e}(\lambda)$ where $(\mathbf{e}(\lambda))(t)=$ $\lambda\left(\mathbf{e}^{-1}(t)\right)$ for $t \in \mathbf{T}_{n}$. Let $\mathbf{e}: \mathfrak{s}_{\infty} \rightarrow \mathfrak{s}_{\infty}$ be the isomorphism whose restriction to $\mathfrak{s}_{n}$ is $\mathbf{e}: \mathfrak{s}_{n} \rightarrow \mathfrak{s}_{n}$ as above for any $n \in \mathbf{N}^{*}$.

We shall fix a Frobenius map $\Psi: G \rightarrow G$ relative to some sufficiently large finite subfield $F_{q^{\prime}}$ of $\mathbf{k}$ such that $\mathbf{B}, \mathbf{T}$ are $\Psi$-stable, $\Psi$ acts on $t$ by $t \mapsto t^{q^{\prime}}$ (hence it acts as the identity on $W$ ) and such that $\Psi \mathbf{e}=\mathbf{e} \Psi: G \rightarrow G$ and $\Psi(\omega)=\omega$ for any $\omega \in N_{0} \mathbf{T}$; in case B we also require that $\Psi\left(\tau^{\mathbf{m}}\right)=\tau^{\mathbf{m}}$.

For any $s \in \mathbf{Z}$ we define an $F_{q^{\prime}}$-rational structure on $\tilde{G}_{s}$ with Frobenius $\operatorname{map} \Psi: \tilde{G}_{s} \rightarrow \tilde{G}_{s}$ by the requirement that $\Psi\left(g \tau^{s}\right)=\Psi(g) \tau^{s}$ for any $g \in G$; in case B , this rational structure depends only on $\tilde{G}_{s}$ not on $s$.

Now for any $n \in \mathbf{N}^{*}$ we have $\Psi\left(\mathbf{T}_{n}\right)=\mathbf{T}_{n}$; hence we can define $\Psi$ : $\mathfrak{s}_{n} \xrightarrow{\sim} \mathfrak{s}_{n}$ by $(\Psi \lambda)(t)=\lambda\left(\Psi^{-1}(t)\right)$ for $t \in \mathbf{T}_{n}, \lambda \in \mathfrak{s}_{n}$. There is a unique bijection $\Psi: \mathfrak{s}_{\infty} \rightarrow \mathfrak{s}_{\infty}$ whose restriction to $\mathfrak{s}_{n}$ is as above for any $n \in \mathbf{N}^{*}$. Now $\Psi$ induces $F_{q^{\prime}}$-rational structures on various varieties that will appear in the sequel. When we consider $\mathcal{D}_{m}()$ or $\mathcal{M}_{m}()$ for such varieties, we will refer to these specific $F_{q^{\prime}}$-structures.
2.4. We define a bijection $\mathbf{e}: I \rightarrow I$ by $\mathbf{e}(w \cdot \lambda)=\mathbf{e}(w) \cdot \mathbf{e}(\lambda)$. The $\mathcal{A}$-linear map $\mathbf{e}: \mathbf{H} \rightarrow \mathbf{H}$ defined by $\mathbf{e}\left(T_{w} 1_{\lambda}\right)=T_{\mathbf{e}(w)} 1_{\mathbf{e}(\lambda)}$ for $w \cdot \lambda \in I$ is an algebra
isomorphism commuting with ${ }^{-}: \mathbf{H} \rightarrow \mathbf{H}$. It follows that $\mathbf{e}\left(c_{i}\right)=c_{\mathbf{e}(i)}$ for all $i \in I$ and that $\mathbf{e}: I \rightarrow I$ maps any left (resp. two-sided) cell of $I$ onto a left (resp. two-sided) cell of $I$. It also maps any $W$-orbit in $\mathfrak{s}_{\infty}$ onto a $W$-orbit in $\mathfrak{s}_{\infty}$.

Let $\mathfrak{o} \in \mathfrak{s}_{\infty}$ and $s \in \mathbf{Z}$ be such that $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$. The $\mathcal{A}$-linear map $\mathbf{e}^{s}: \mathbf{H} \rightarrow \mathbf{H}$ restricts to an $\mathcal{A}$-algebra isomorphism $\mathbf{e}^{s}: \mathbf{H}_{0} \rightarrow \mathbf{H}_{0}$; this gives rise by extension of scalars to a $\overline{\mathbf{Q}}_{l}$-algebra isomorphism $\mathbf{e}^{s}: \mathbf{H}_{\mathfrak{o}}^{1} \rightarrow \mathbf{H}_{\mathfrak{o}}^{1}$ and to a $\overline{\mathbf{Q}}_{l}(v)$-algebra isomorphism $\mathbf{e}: \mathbf{H}_{0}^{v} \rightarrow \mathbf{H}_{\mathbf{0}}^{v}$; moreover the $\overline{\mathbf{Q}}_{l}$-linear map $\mathbf{e}^{s}: \mathbf{J}_{\mathfrak{0}} \rightarrow \mathbf{J}_{\mathfrak{0}}$ given by $t_{i} \mapsto t_{\mathbf{e}^{s}(i)}$ for $i \in I_{\mathfrak{o}}$ is an algebra isomorphism and $\psi_{\mathfrak{o}}^{v}: \mathbf{H}_{\mathfrak{o}}^{v} \xrightarrow{\sim} \overline{\mathbf{Q}}_{l}(v) \otimes \mathbf{J}_{\mathfrak{0}}, \psi_{\mathfrak{0}}^{1}: \mathbf{H}_{\mathfrak{0}}^{1} \xrightarrow{\sim} \mathbf{J}_{\mathfrak{0}}$ are compatible with the action of $\mathbf{e}^{s}$.

Let $\operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ be the set of all $E \in \operatorname{Irr}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ with the following property: there exists a linear isomorphism $\mathbf{e}_{s}: E \rightarrow E$ such that for any $w \cdot \lambda \in I_{0}$ and any $e \in E$ we have

$$
\left.\mathbf{e}_{s}\left(\left(T_{w} 1_{\lambda}\right)(e)\right)\right)=\left(T_{\mathbf{e}^{s}(w)} 1_{\mathbf{e}^{s}(\lambda)}\right)\left(\mathbf{e}_{s}(e)\right) .
$$

(Such $\mathbf{e}_{s}$ is clearly unique up to a nonzero scalar, if it exists.) We assume that for any $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{0}^{1}\right)$, an $\mathbf{e}_{s}$ as above has been chosen; we can assume that $\mathbf{e}_{s}$ has finite order (since $\mathbf{e}^{s}: I_{0} \rightarrow I_{0}$ has finite order); moreover, when $s=0$ we have $\operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{0}}^{1}\right)=\operatorname{Irr}\left(\mathbf{H}_{\mathfrak{0}}^{1}\right)$ and for any $E$ in this set we can take $\mathbf{e}_{s}=1$. If $E \in \operatorname{Irr}\left(H_{\mathfrak{0}}^{1}\right)$ we can view $E$ as a simple $\mathbf{J}_{\mathfrak{0}}$-module via $\psi_{\mathfrak{0}}^{1}$; we denote this $\mathbf{J}_{0}$-module by $E^{\infty}$. Moreover we can view $\overline{\mathbf{Q}}_{l}(v) \otimes E^{\infty}$ as a simple $\mathbf{H}_{\mathfrak{0}}^{v}$-module via $\psi_{\mathbf{0}}^{v}$; we denote this $\mathbf{H}_{\mathfrak{0}}^{v}$-module by $E^{v}$. If in addition we have $E \in \operatorname{Irr}_{s}\left(H_{\mathfrak{o}}^{1}\right)$, then $\mathbf{e}_{s}$ can be viewed as a $\overline{\mathbf{Q}}_{l}$-linear isomorphism $E^{\infty} \rightarrow E^{\infty}$ (denoted again by $\mathbf{e}_{s}$ ) and as a $\overline{\mathbf{Q}}_{l}(v)$-linear isomorphism $E^{v} \rightarrow E^{v}$ (denoted again by $\mathbf{e}_{s}$ ).

Note that for any $\xi \in \mathbf{J}_{0}, e \in E^{\infty}$ we have $\mathbf{e}_{s}(\xi(e))=\mathbf{e}^{s}(\xi)\left(\mathbf{e}_{s}(e)\right)$; for any $\xi^{\prime} \in \mathbf{H}_{0}, e^{\prime} \in E^{v}$ we have $\mathbf{e}_{s}\left(\xi^{\prime}\left(e^{\prime}\right)\right)=\mathbf{e}^{s}\left(\xi^{\prime}\right)\left(\mathbf{e}_{s}\left(e^{\prime}\right)\right)$.
2.5. For $s \in \mathbf{Z}$ let

$$
I^{s}=\left\{w \cdot \lambda \in I ; w(\lambda)=\mathbf{e}^{-s}(\lambda)\right\}
$$

For any two-sided cell $\mathbf{c}$ of $I$ we set

$$
\mathbf{c}^{s}=I^{s} \cap \mathbf{c}
$$

We show:
(a) If $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$ and $i \in \mathbf{c}, j \in I$ satisfy $t_{i^{\prime}} t_{j} t_{\mathbf{e}^{s}(i)} \neq 0$, then $j \in \mathbf{c}^{s}$.
(b) If $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$, then $\mathbf{c}^{s} \neq \emptyset$.

We prove (a). Let $i=w \cdot \lambda, j=z \cdot \lambda^{\prime}$. From our assumption we have $t_{z \cdot \lambda^{\prime}} t_{\mathbf{e}^{s}(w) \cdot \mathbf{e}^{s}(\lambda)} \neq 0$ (which implies $\lambda^{\prime}=\mathbf{e}^{s}(w(\lambda))$ ) and $t_{w^{-1} \cdot w(\lambda)} t_{z \cdot \lambda^{\prime}} \neq 0$ (which implies $w(\lambda)=z\left(\lambda^{\prime}\right)$ ). We deduce that $z\left(\lambda^{\prime}\right)=\mathbf{e}^{-s}\left(\lambda^{\prime}\right)$ so that $j \in I^{s}$. Since $t_{i^{\prime}} t_{j} \neq 0$ and $i^{!} \in \mathbf{c}$ we must have $j \in \mathbf{c}$. Thus we have $j \in I^{s} \cap \mathbf{c}$ and (a) is proved.

We prove (b). Let $i \in \mathbf{c}$. By assumption we have $\mathbf{e}^{s}(i) \in \mathbf{c}$; by Q10 in 1.9 we have $i^{!} \in \mathbf{c}$. Using $1.15(\mathrm{~d})$ with $i, i^{\prime}$ replaced by $i^{!}, \mathbf{e}^{s}(i)$ we see that for some $j=z \cdot \lambda^{\prime} \in I$ we have $t_{i} \cdot t_{j} t_{\mathbf{e}^{s}(i)} \neq 0$. Using (a) we deduce that $j \in \mathbf{c}^{s}$ and (b) is proved.

## 3. Sheaves on $\tilde{\mathcal{B}}^{2}$

3.1. Let $\tilde{\mathcal{B}}=G / \mathbf{U}$. We have $\tilde{\mathcal{B}}^{2}=\sqcup_{w \in W} \tilde{\mathcal{O}}_{w}$ where

$$
\tilde{\mathcal{O}}_{w}=\left\{(x \mathbf{U}, y \mathbf{U}) \in \tilde{\mathcal{B}}^{2} ; x^{-1} y \in G_{w}\right\} .
$$

The closure of $\tilde{\mathcal{O}}_{w}$ in $\tilde{\mathcal{B}}^{2}$ is $\overline{\tilde{\mathcal{O}}}_{w}=\cup_{y \in W ; y \leq w} \tilde{\mathcal{O}}_{y}$. For $w \in W$ and $\omega \in \kappa_{0}^{-1}(w)$ we define $G_{w} \rightarrow \mathbf{T}$ by $g \mapsto g_{\omega}$ where $g \in \mathbf{U} \omega g_{\omega} \mathbf{U}, g_{\omega} \in \mathbf{T}$. We define $j^{\omega}: \tilde{\mathcal{O}}_{w} \rightarrow \mathbf{T}$ by $j^{\omega}(x \mathbf{U}, y \mathbf{U})=\left(x^{-1} y\right)_{\omega}$. For $\lambda \in \mathfrak{s}_{\infty}$ we set $L_{\lambda}^{\omega}=\left(j^{\omega}\right)^{*} L_{\lambda}$, a local system on $\tilde{\mathcal{O}}_{w}$. Let $L_{\lambda}^{\omega \sharp}$ be its extension to an intersection cohomology complex on $\overline{\tilde{\mathcal{O}}}_{w}$ viewed as a complex on $\tilde{\mathcal{B}}^{2}$, equal to 0 on $\tilde{\mathcal{B}}^{2}-\overline{\tilde{\mathcal{O}}}_{w}$. We shall view $L_{\lambda}^{\omega}$ as a constructible sheaf on $\tilde{\mathcal{B}}^{2}$ which is 0 on $\tilde{\mathcal{B}}^{2}-\tilde{\mathcal{O}}_{w}$. Let $\mathbf{L}_{\lambda}^{\omega}=L_{\lambda}^{\omega \sharp}\langle | w|+\nu+2 \rho\rangle$, a simple perverse sheaf on $\tilde{\mathcal{B}}^{2}$.
(a) In the remainder of this section we fix a two-sided cell $\mathbf{c}$ of $I$ and we set $a=a(i)$ for some/any $i \in \mathbf{c}$. We define $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ by $\mathbf{c} \subset I_{0}$. We denote by $n$ the smallest integer in $\mathbf{N}^{*}$ such that $\mathfrak{o} \subset \mathfrak{s}_{n}$. We shall assume that $\Psi$ in 2.3 acts as 1 on the finite subset $\left\{t \in \mathbf{T} ; t^{n} \in \mathbf{T} \cap N_{0} \mathbf{T}\right\}$ of $\mathbf{T}$.

In particular, $\Psi(t)=t$ for any $t \in \mathbf{T}_{n}$ (hence $\Psi(\lambda)=\lambda$ for any $\left.\lambda \in \mathfrak{s}_{n}\right)$.
Now, if $w \in W, \omega \in \kappa_{0}^{-1}(w), \lambda \in \mathfrak{s}_{n}$, then $\left.L_{\lambda}^{\omega}\right|_{\tilde{\mathcal{O}}_{w}}, L_{\lambda}^{\omega \sharp}$ and $\mathbf{L}_{\lambda}^{\omega}$ can be regarded naturally as objects in the mixed derived category of pure weight zero. Moreover, $\left.L_{\lambda}^{\omega}\right|_{\tilde{\mathcal{O}}_{w}}$ (resp. $\left.L_{\lambda}^{\omega \sharp}, \mathbf{L}_{\lambda}^{\omega}\right)$ is (noncanonically) isomorphic to
$\left.L_{\lambda}^{\dot{w}}\right|_{\tilde{\mathcal{O}}_{w}}$ (resp. $L_{\lambda}^{\dot{w} \sharp}, \mathbf{L}_{\lambda}^{\dot{w}}$ ) in the mixed derived category. (It is enough to show that if $t, t^{\prime} \in \mathbf{T}, t^{n}=t^{\prime}=\dot{w} \omega^{-1}$ and $h_{t^{\prime}}: \mathbf{T} \rightarrow \mathbf{T}$ is translation by $t^{\prime}$, then $t$ defines an isomorphism $h_{t^{\prime}}^{*} L_{\lambda} \rightarrow L_{\lambda}$; see [21, 1.15])

We define $\tilde{\mathfrak{h}}: \tilde{\mathcal{B}}^{2} \rightarrow \tilde{\mathcal{B}}^{2}$ by $(x \mathbf{U}, y \mathbf{U}) \mapsto(y \mathbf{U}, x \mathbf{U})$.
We define an action of $G \times \mathbf{T}^{2}$ on $\tilde{\mathcal{B}}^{2}$ (resp. on $\mathbf{T}$ ) by

$$
\left(g, t_{1}, t_{2}\right):(x \mathbf{U}, y \mathbf{U}) \mapsto\left(g x t_{1}^{n} \mathbf{U}, g y t_{2}^{n} \mathbf{U}\right)
$$

(resp. by $\left.\left(g, t_{1}, t_{2}\right): t \mapsto w^{-1}\left(t_{1}\right)^{-n} t t_{2}^{n}\right)$. For any $w \in W$, the $G \times \mathbf{T}^{2}$ action leaves stable $\tilde{\mathcal{O}}_{w}$ and its restriction to $\tilde{\mathcal{O}}_{w}$ is transitive; moreover, $j^{\omega}$ is compatible with actions of $G \times \mathbf{T}^{2}$ on $\tilde{\mathcal{O}}_{w}$ and $\mathbf{T}$.

If $\lambda \in \mathfrak{s}_{n}$ then $L_{\lambda}$ is a $G \times \mathbf{T}^{2}$-equivariant local system on $\mathbf{T}$ hence $L_{w}^{\lambda}$ is a $G \times \mathbf{T}^{2}$-equivariant local system on $\tilde{\mathcal{O}}_{w}$. By [21, 2.1], the following holds.
(c) For fixed $w \in W, \omega \in \kappa_{0}^{-1}(w)$, the local systems $L_{\lambda}^{\omega}$ with $\lambda \in \mathfrak{s}_{n}$ form a set of representatives for the isomorphism classes of irreducible $G \times \mathbf{T}^{2}$ equivariant local systems on $\tilde{\mathcal{O}}_{w}$.
3.2. We define $p_{01}: \tilde{\mathcal{B}}^{3} \rightarrow \tilde{\mathcal{B}}^{2}, p_{12}: \tilde{\mathcal{B}}^{3} \rightarrow \tilde{\mathcal{B}}^{2}, p_{02}: \tilde{\mathcal{B}}^{3} \rightarrow \tilde{\mathcal{B}}^{2}$ by

$$
\begin{aligned}
p_{01}(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) & =(x \mathbf{U}, y \mathbf{U}), p_{12}(x \mathbf{U}, y \mathbf{U}, z \mathbf{U})=(y \mathbf{U}, z \mathbf{U}), \\
p_{02}(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) & =(x \mathbf{U}, z \mathbf{U})
\end{aligned}
$$

For any $L \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right), L^{\prime} \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$, we set

$$
L \circ L^{\prime}=p_{02!}\left(p_{01}^{*} L \otimes p_{12}^{*} L^{\prime}\right) \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)
$$

This defines a monoidal structure on $\mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$. Thus, if ${ }^{i} L \in \mathcal{D}(\tilde{\mathcal{B}})$ for $i=$ $1, \ldots, k$, then ${ }^{1} L \circ{ }^{2} L \circ \ldots \circ{ }^{k} L \in \mathcal{D}(\tilde{\mathcal{B}})$ is well defined. Note that, if $L \in$ $\mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right), L^{\prime} \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ then $L \circ L^{\prime}$ is naturally in $\mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$.
3.3. Now assume that $w, w^{\prime} \in W, \omega \in \kappa_{0}^{-1}(w), \omega^{\prime} \in \kappa_{0}^{-1}\left(w^{\prime}\right), \lambda, \lambda^{\prime} \in \mathfrak{s}_{\infty}$. From [21, 2.3] we see that:
(a) if $w^{\prime}\left(\lambda^{\prime}\right) \neq \lambda$, then $L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}}=0$.
3.4. Now assume that $w, w^{\prime} \in W, \omega \in \kappa_{0}^{-1}(w), \omega^{\prime} \in \kappa_{0}^{-1}\left(w^{\prime}\right), \lambda, \lambda^{\prime} \in$ $\mathfrak{s}_{\infty}$. Let $\Xi$ be the set of all $(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{B}}^{3}$ such that $x^{-1} y \in \mathbf{U} \omega t \mathbf{U}$,
$y^{-1} z \in \mathbf{U} \omega^{\prime} t^{\prime} \mathbf{U}$ for some $t, t^{\prime}$ in $\mathbf{T}$ (which are in fact uniquely determined). Define $c: \Xi \rightarrow \mathbf{T} \times \mathbf{T}$ by $c(x \mathbf{U}, y \mathbf{U}, z \mathbf{U})=\left(t, t^{\prime}\right)$ where $x^{-1} y \in \mathbf{U} \omega t \mathbf{U}$, $y^{-1} z \in \mathbf{U} \omega^{\prime} t^{\prime} \mathbf{U}$. Define $p_{02}^{\prime}: \Xi \rightarrow \tilde{\mathcal{B}}^{2}$ by $(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \mapsto(x \mathbf{U}, z \mathbf{U})$. From the definitions we see that
(a)

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}}=p_{02!}^{\prime}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right)
$$

We show:
(b) If $w^{\prime}\left(\lambda^{\prime}\right)=\lambda$ and $\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right|$, then we have canonically $L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}}=$ $L_{\lambda^{\prime}}^{\omega \omega^{\prime}} \otimes \mathfrak{L}$, with $\mathfrak{L}$ as in 0.2.
Let $Y=\left\{\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \in \tilde{\mathcal{B}} \times \tilde{\mathcal{B}} \times \mathbf{T} \times \mathbf{T} ; x^{-1} z \in \mathbf{U} \omega t \mathbf{U} \omega^{\prime} t^{\prime} \mathbf{U}\right\}$. We define $\Xi \rightarrow Y$ by $(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \mapsto\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right)$ where $t, t^{\prime}$ in $\mathbf{T}$ are given by $x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} z \in \mathbf{U} \omega^{\prime} t^{\prime} \mathbf{U}$. This is an isomorphism since $\left|w w^{\prime}\right|=$ $|w|+\left|w^{\prime}\right|$. We identify $\Xi=Y$ through this isomorphism. Then $c: \Xi \rightarrow \mathbf{T} \times \mathbf{T}$ becomes $c: Y \rightarrow \mathbf{T} \times \mathbf{T},\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \mapsto\left(t, t^{\prime}\right)$. We define $h: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{T}$ by $h\left(t, t^{\prime}\right)=w^{\prime-1}(t) t^{\prime}$. We have

$$
Y=\left\{\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \in \tilde{\mathcal{B}} \times \tilde{\mathcal{B}} \times \mathbf{T} \times \mathbf{T} ; x^{-1} z \in \mathbf{U} \omega \omega^{\prime} h\left(t, t^{\prime}\right) \mathbf{U}\right\}
$$

Define $j: Y \rightarrow \tilde{\mathcal{O}}_{w w^{\prime}}$ by $\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \mapsto(x \mathbf{U}, z \mathbf{U})$. Let $j^{\prime}=j^{\omega \omega^{\prime}}: \tilde{\mathcal{O}}_{w w^{\prime}} \rightarrow$ T. Using (a) and the cartesian diagram

we see that

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}}=j!c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=j^{\prime *} h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right) .
$$

Since $L_{\lambda^{\prime}}^{\omega \omega^{\prime}} \otimes \mathfrak{L}=j^{\prime *}\left(L_{\lambda^{\prime}} \otimes \mathfrak{L}\right)$, we see that to prove (b) it is enough to show that $h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=L_{\lambda^{\prime}} \otimes \mathfrak{L}$ (assuming that $w^{\prime}\left(\lambda^{\prime}\right)=\lambda$ ). This is proved as in the last paragraph of [21, 2.4].
3.5. Let $\sigma \in S$ and let $\omega \in \kappa_{0}^{-1}(\sigma), \lambda^{\prime} \in \mathfrak{s}_{\infty}$. Define $\delta_{\omega}: \mathbf{U}_{\sigma}-\{1\} \rightarrow \mathbf{T}$ by $\xi \mapsto t_{\xi}^{-1}$ where $t_{\xi} \in \mathbf{T}$ is given by $\omega^{-1} \xi^{-1} \omega \in \mathbf{U} \omega^{-1} t_{\xi} \mathbf{U}$; let $\mathcal{E}=\delta_{\omega}^{*} L_{\lambda^{\prime}}^{*}$. Let $\delta^{\prime}: \mathbf{U}_{\sigma}-\{1\} \rightarrow \mathbf{p}$ be the obvious map. From the definitions we see that:
(a) $\delta_{!}^{\prime} \mathcal{E}=0$ if $\sigma \notin W_{\lambda^{\prime}} ; \delta_{!}^{\prime} \mathcal{E} \approx\left\{\overline{\mathbf{Q}}_{l}\langle-2\rangle, \overline{\mathbf{Q}}_{l}[-1]\right\}$ if $\sigma \in W_{\lambda^{\prime}}$.

Consider the diagram $\mathbf{T} \stackrel{\tilde{\kappa}}{\leftarrow} \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right) \xrightarrow{\tilde{h}} \mathbf{T}$ where $\tilde{k}:(t, \xi) \mapsto t_{\xi}^{-1}$ and $\tilde{h}:(t, \xi) \mapsto t t_{\xi}^{-1}$. We show:
(b) Let $\lambda^{\prime} \in \mathfrak{s}_{\infty}$. If $\sigma \notin W_{\lambda^{\prime}}$, then $\tilde{h}_{!} \tilde{k}^{*} L_{\lambda^{\prime}}=0$. If $\sigma \in W_{\lambda^{\prime}}$ then $\tilde{h}_{!} \tilde{k}^{*} L_{\lambda^{\prime}}^{*} \approx$ $\left\{\overline{\mathbf{Q}}_{l}\langle-2\rangle, \overline{\mathbf{Q}}_{l}[-1]\right\}$.

We have $\tilde{k}^{*} L_{\lambda^{\prime}}^{*}=\overline{\mathbf{Q}}_{l} \boxtimes \mathcal{E}$. Now $\tilde{h}=\tilde{h}^{\prime} y$ where $y: \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right) \rightarrow$ $\mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right)$ is $(t, \xi) \mapsto\left(t t_{\xi}^{-1}, \xi\right)$ and $\tilde{h}^{\prime}: \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right) \rightarrow \mathbf{T}$ is $(t, \xi) \mapsto t$. Clearly, $y_{!}\left(\overline{\mathbf{Q}}_{l} \boxtimes \mathcal{E}\right)=\overline{\mathbf{Q}}_{l} \boxtimes \mathcal{E}$. It remains to note that $\tilde{h}_{!}\left(\overline{\mathbf{Q}}_{l} \boxtimes \mathcal{E}\right)$ is 0 if $\sigma \notin W_{\lambda^{\prime}}$ and is $\approx\left\{\overline{\mathbf{Q}}_{l}\langle-2\rangle, \overline{\mathbf{Q}}_{l}[-1]\right\}$ if $\sigma \in W_{\lambda}$. (This follows from (a).)

We show:
(c) Assume that $\lambda \in \mathfrak{s}_{\infty}$ satisfies $\sigma \in W_{\lambda}$ and that $\omega \in\left\{\dot{\sigma}, \dot{\sigma}^{-1}\right\}$. Then we have canonically $L_{\lambda}^{\omega}=L_{\lambda}^{\omega^{-1}}$.

Define $\zeta: \mathbf{T} \rightarrow \mathbf{T}$ by $t \mapsto \omega^{2} t$. It is enough to show that $\zeta^{*} L_{\lambda}=L_{\lambda}$ canonically. For $t \in \mathbf{T}$ we have $\left(\zeta^{*} L_{\lambda}\right)_{t}=\left(L_{\lambda}\right)_{\omega^{2} t}=\left(L_{\lambda}\right)_{\check{\alpha}_{\sigma}(-1)} \otimes\left(L_{\lambda}\right)_{t}$. Hence it is enough to show that we have canonically $\left(L_{\lambda}\right)_{\check{\alpha}_{\sigma}(-1)}=\overline{\mathbf{Q}}_{l}$. It is also enough to show that $\check{\alpha}_{\sigma}^{*} L_{\lambda}=\overline{\mathbf{Q}}_{l}$. This follows from $\alpha_{\sigma} \in R_{\lambda}$.
3.6. Now assume that $w=w^{\prime}=\sigma \in S, \omega \in \kappa_{0}^{-1}(\sigma), \lambda, \lambda^{\prime} \in \mathfrak{s}_{\infty}$ are such that $\sigma\left(\lambda^{\prime}\right)=\lambda$. In this subsection we show:
(a) If $\sigma \notin W_{\lambda}$, then $L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{-1}}=L_{\lambda^{\prime}}^{1}\langle-2\rangle \otimes \mathfrak{L}$.
(b) If $\sigma \in W_{\lambda}$, then

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega-1} \approx\left\{L_{\lambda^{\prime}}^{1}\langle-2\rangle \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega}\langle-2\rangle \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega}[-1] \otimes \mathfrak{L}\right\}
$$

(Note that the conditions $\sigma \in W_{\lambda}$ and $\sigma \in W_{\lambda^{\prime}}$ are equivalent.) With the notation of 3.4, we have
$\Xi=\left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{B}}^{3} ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} z \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right.$ for some $t, t^{\prime}$ in $\left.\mathbf{T}\right\}$.
If $(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \Xi$ then $x^{-1} z \in \mathbf{U} \omega \mathbf{U} \omega^{-1} w^{\prime-1}(t) t^{\prime} \mathbf{U}$; in particular we have $x^{-1} z \in \mathbf{B} \cup \mathbf{B} \omega \mathbf{B}$. Thus, $\Xi$ can be partitioned as $\tilde{\mathcal{B}}^{I} \cup \tilde{\mathcal{B}}^{I I}$ where

$$
\tilde{\mathcal{B}}^{I}=\left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \Xi ; x^{-1} z \in \mathbf{B}\right\}
$$

is a closed subset and

$$
\tilde{\mathcal{B}}^{I I}=\left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \Xi ; x^{-1} z \in \mathbf{B} \omega \mathbf{B}\right\}
$$

is an open subset. The map $p_{02}^{\prime}: \Xi \rightarrow \tilde{\mathcal{B}}^{2}$ (see 3.4) restricts to maps

$$
p_{02}^{I}: \tilde{\mathcal{B}}^{I} \rightarrow \tilde{\mathcal{O}}_{1}, p_{02}^{I I}: \tilde{\mathcal{B}}^{I I} \rightarrow \tilde{\mathcal{O}}_{\sigma}
$$

using 3.4(a) we deduce

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{-1}} \approx\left\{p_{02!}^{I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right), \quad p_{02!}^{I I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right)\right\} .
$$

We show:
(c)

$$
p_{02!}^{I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right)=L_{\lambda^{\prime}}^{1} \otimes \mathfrak{L}\langle-2\rangle .
$$

We have

$$
\begin{aligned}
\tilde{\mathcal{B}}^{I}= & \left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{B}}^{3} ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} z \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right. \\
& \text { for some } \left.t, t^{\prime} \text { in } \mathbf{T}, x^{-1} z \in \mathbf{B}\right\}
\end{aligned}
$$

or equivalently
$\tilde{\mathcal{B}}^{I}=\left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{B}}^{3} ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, x^{-1} z \in \mathbf{U} \sigma(t) t^{\prime} \mathbf{U}\right.$ for some $t, t^{\prime}$ in $\left.\mathbf{T}\right\}$.
Let $Y=\left\{\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \in \tilde{\mathcal{B}} \times \tilde{\mathcal{B}} \times \mathbf{T} \times \mathbf{T} ; x^{-1} z \in \mathbf{U} \sigma(t) t^{\prime} \mathbf{U}\right\}$. We define $d: \tilde{\mathcal{B}}^{I} \rightarrow Y$ by $(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \mapsto\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right)$ where $t, t^{\prime}$ in $\mathbf{T}$ are as in the last formula for $\tilde{\mathcal{B}}^{I}$. The fibre of $d$ at $\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \in Y$ can be identified with $\{y \mathbf{U} ; y \in x \mathbf{U} \omega t \mathbf{U}\}$, an affine line. Thus, $d$ is an affine line bundle. We have a cartesian diagram

where $c^{I}: Y \rightarrow \mathbf{T} \times \mathbf{T}$ is $\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right) \mapsto\left(t, t^{\prime}\right), j^{I}: Y \rightarrow \tilde{\mathcal{O}}_{1}$ is $\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}\right)$
$\mapsto(x \mathbf{U}, z \mathbf{U}), \tilde{j}^{I}=j^{1}: \tilde{\mathcal{O}}_{1} \rightarrow \mathbf{T}, h: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{T}$ is $\left(t, t^{\prime}\right) \mapsto \sigma(t) t^{\prime}$. As in 3.4
we have $h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=L_{\lambda^{\prime}} \otimes \mathfrak{L}\left(\right.$ since $\left.\sigma\left(\lambda^{\prime}\right)=\lambda\right)$. It follows that

$$
\left(j^{I}\right)!\left(c^{I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=\left(\tilde{j}^{I}\right)^{*} h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=\left(\tilde{j}^{I}\right)^{*} L_{\lambda^{\prime}} \otimes \mathfrak{L} .
$$

Hence

$$
\begin{aligned}
p_{02!}^{I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right) & =\left(j^{I}\right)!d_{!} d^{*}\left(c^{I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=\left(j^{I}\right)!\left(c^{I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\langle-2\rangle \\
& =\left(\tilde{j}^{I}\right)^{*} L_{\lambda^{\prime}} \otimes \mathfrak{L}\langle-2\rangle=L_{\lambda^{\prime}}^{1} \otimes \mathfrak{L}\langle-2\rangle .
\end{aligned}
$$

This proves (c). Next we show that
(d) $p_{02!}^{I I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right)$ is 0 if $\sigma \notin W_{\lambda^{\prime}}$ and is $\approx\left\{L_{\lambda^{\prime}}^{\omega}\langle-2\rangle, L_{\lambda^{\prime}}^{\omega}[-1]\right\}$ if $\sigma \in W_{\lambda^{\prime}}$.

We have

$$
\begin{aligned}
\tilde{\mathcal{B}}^{I I}= & \left\{(x \mathbf{U}, y \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{B}}^{3} ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} z \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right. \\
& \text { for some } \left.t, t^{\prime} \text { in } \mathbf{T}, x^{-1} z \in \mathbf{U} \omega t_{1} \mathbf{U} \text { for some } t_{1} \in \mathbf{T}\right\}
\end{aligned}
$$

Let $(x \mathbf{U}, z \mathbf{U}) \in \tilde{\mathcal{O}}_{\sigma}$. We can write uniquely $z=x \xi_{0} \omega t_{1} u_{1}$ where $\xi_{0} \in \mathbf{U}_{\sigma}$, $t_{1} \in \mathbf{T}, u_{1} \in \mathbf{U}$. The fibre $\Phi$ of $p_{02}^{I I}$ at $(x \mathbf{U}, z \mathbf{U})$ can be identified with

$$
\begin{aligned}
& \left\{y \mathbf{U} \in G / U U ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} z \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right\} \\
& \quad=\left\{y \mathbf{U} \in G / U U ; x^{-1} y \in \mathbf{U} \omega t \mathbf{U}, y^{-1} x \xi_{0} \omega t_{1} u_{1} \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right\}
\end{aligned}
$$

Setting $x^{-1} y=\xi \omega t u^{\prime}$ where $\xi \in \mathbf{U}_{\sigma}$, we can identify

$$
\begin{aligned}
\Phi & =\left\{\left(t, t^{\prime}, \xi\right) \in \mathbf{T} \times \mathbf{T} \times \mathbf{U}_{\sigma} ; u^{\prime-1} t^{-1} \omega^{-1} \xi^{-1} \xi_{0} \omega t_{1} \in \mathbf{U} \omega^{-1} t^{\prime} \mathbf{U}\right\} \\
& =\left\{\left(t, t^{\prime}, \xi\right) \in \mathbf{T} \times \mathbf{T} \times \mathbf{U}_{\sigma} ; \omega^{-1} \xi^{-1} \xi_{0} \omega \in \mathbf{U} \omega^{-1} \sigma(t) t^{\prime} t_{1}^{-1} \mathbf{U}\right\} \\
& =\left\{\left(t, t^{\prime}, \xi\right) \in \mathbf{T} \times \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\left\{\xi_{0}\right\}\right) ; t_{\xi^{-1}} \xi_{0}=\sigma(t) t^{\prime} t_{1}^{-1}\right\}
\end{aligned}
$$

where for $\xi_{1} \in \mathbf{U}_{s}-\{1\}$ we define $t_{\xi_{1}} \in \mathbf{T}$ by $\omega^{-1} \xi_{1}^{-1} \omega \in \mathbf{U} \omega^{-1} t_{\xi_{1}} \mathbf{U}$. Let

$$
\begin{aligned}
Y^{\prime}= & \left\{\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}, \xi_{1}\right) \in \tilde{\mathcal{B}} \times \tilde{\mathcal{B}} \times \mathbf{T} \times \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right)\right. \\
& \left.x^{-1} z \in \mathbf{U}_{\sigma} \omega \sigma(t) t^{\prime} t_{\xi_{1}}^{-1} \mathbf{U}\right\} \\
Y_{1}^{\prime}= & \left\{\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \in \tilde{\mathcal{B}} \times \tilde{\mathcal{B}} \times \mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right) ; x^{-1} z \in \mathbf{U}_{\sigma} \omega t_{1}^{\prime} t_{\xi_{1}}^{-1} \mathbf{U}\right\}
\end{aligned}
$$

We see that $\tilde{\mathcal{B}}^{I I}$ may be identified with $Y^{\prime}$. (The identification is via

$$
\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}, \xi_{1}\right) \mapsto\left(x \mathbf{U}, x \xi_{0} \xi_{1}^{-1} \omega t \mathbf{U}, z \mathbf{U}\right)
$$

where $\xi_{0} \in \mathbf{U}_{\sigma}$ is given by $x^{-1} z \in \xi_{0} \omega \mathbf{T} \mathbf{U}$.) Under this identification, $p_{02}^{I I}$ becomes the composition $f j^{I I}$ where $j^{I I}: Y^{\prime} \rightarrow Y_{1}^{\prime}$ is

$$
\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}, \xi_{1}\right) \mapsto\left(x \mathbf{U}, z \mathbf{U}, s(t) t^{\prime}, \xi_{1}\right)
$$

and $f: Y_{1}^{\prime} \rightarrow \tilde{\mathcal{O}}_{\sigma}$ is

$$
\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \mapsto(x \mathbf{U}, z \mathbf{U})
$$

moreover, the local system $c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)$ on $\tilde{\mathcal{B}}^{I I}$ becomes the local system $\left(c^{I I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)$ on $Y^{\prime}$ where $c^{I I}: Y^{\prime} \rightarrow \mathbf{T} \times \mathbf{T}$ is $\left(x \mathbf{U}, z \mathbf{U}, t, t^{\prime}, \xi_{1}\right) \mapsto\left(t, t^{\prime}\right)$. We have a diagram with cartesian squares

where $\tilde{j}^{I I}: Y_{1}^{\prime} \rightarrow \mathbf{T}$ is $\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \mapsto t_{1}^{\prime}, j^{\prime}: \tilde{\mathcal{O}}_{\sigma} \rightarrow \mathbf{T}$ is $j^{\omega}, \tilde{j}^{\prime}: Y_{1}^{\prime} \rightarrow$ $\mathbf{T} \times\left(\mathbf{U}_{\sigma}-\{1\}\right)$ is $\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \mapsto\left(t_{1}^{\prime}, \xi_{1}\right), h: \mathbf{T} \times \mathbf{T} \rightarrow \mathbf{T}$ is $\left(t, t^{\prime}\right) \mapsto \sigma(t) t^{\prime}$ and $\tilde{h}^{\prime}$ is as in 3.5.

Let $L^{\prime}=\left(\tilde{j}^{I I}\right)^{*} L_{\lambda^{\prime}}$ (a local system on $\left.Y_{1}^{\prime}\right)$. Let $L^{\prime \prime}=j^{\prime *} L_{\lambda^{\prime}}=L_{\lambda^{\prime}}^{\omega}$ (a local system on $\left.\tilde{\mathcal{O}}_{\sigma}\right)$. Define $\tilde{f}: Y_{1}^{\prime} \rightarrow \mathbf{T}$ by $\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \mapsto t_{\xi_{1}}^{-1}$. Let $\tilde{L}=\tilde{f}^{*} L_{\lambda^{\prime}}$ (a local system on $\left.Y_{1}^{\prime}\right)$. The stalk of $L^{\prime}$ at $\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \in Y_{1}^{\prime}$ is $\left(L_{\lambda^{\prime}}\right)_{t_{1}^{\prime}}$. The stalk of $f^{*} L^{\prime \prime}$ at $\left(x \mathbf{U}, z \mathbf{U}, t_{1}^{\prime}, \xi_{1}\right) \in Y_{1}^{\prime}$ is $\left(L_{\lambda^{\prime}}\right)_{t_{1}^{\prime} t_{\xi_{1}}^{-1}}=\left(L_{\lambda^{\prime}}\right)_{t_{1}^{\prime}} \otimes\left(L_{\lambda^{\prime}}\right)_{t_{\xi_{1}}^{-1}}$. Thus we have $L^{\prime}=f^{*} L^{\prime \prime} \otimes \tilde{L}^{*}$.

As in 3.4 we have $h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=L_{\lambda^{\prime}} \otimes \mathfrak{L}\left(\right.$ since $\left.\sigma\left(\lambda^{\prime}\right)=\lambda\right)$. Using the cartesian diagrams above, we see that

$$
\begin{aligned}
p_{02!}^{I I}\left(c^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)\right) & =f_{!} j_{!}^{I I}\left(c^{I I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=f_{!} j_{!}^{I I}\left(c^{I I}\right)^{*}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right) \\
& =f_{!}\left(\tilde{j}^{I I}\right)^{*} h_{!}\left(L_{\lambda} \boxtimes L_{\lambda^{\prime}}\right)=f_{!}\left(\tilde{j}^{I I}\right)^{*}\left(L_{\lambda^{\prime}} \otimes \mathfrak{L}\right) \\
& =f_{!}\left(L^{\prime}\right) \otimes \mathfrak{L}=f_{!}\left(f^{*} L^{\prime \prime} \otimes \tilde{L}^{*}\right) \otimes \mathfrak{L}=L^{\prime \prime} \otimes f_{!}\left(\tilde{L}^{*}\right) \otimes \mathfrak{L} \\
& =L^{\prime \prime} \otimes f_{!} \tilde{j}^{*} \tilde{k}^{*}\left(L_{\lambda^{\prime}}^{*}\right)=L^{\prime \prime} \otimes \tilde{f}_{!} \tilde{j}^{\prime *} \tilde{k}^{*}\left(L_{\lambda^{\prime}}^{*}\right) \\
& =L^{\prime \prime} \otimes j^{\prime *} \tilde{h}_{!} \tilde{k}^{*}\left(L_{\lambda^{\prime}}^{*}\right)=L^{\prime \prime} \otimes j^{\prime *} \tilde{h}_{!} \tilde{k}^{*}\left(L_{\lambda^{\prime}}^{*}\right) .
\end{aligned}
$$

Here $\tilde{k}$ is as in 3.5. Using 3.5(b) we see that this is 0 if $\sigma \notin W_{\lambda^{\prime}}$ and is $\approx\left\{L^{\prime \prime}\langle-2\rangle, L^{\prime \prime}[-1]\right\}$ if $\sigma \in W_{\lambda^{\prime}}$. This proves (d). Now (a),(b) follow from (c), (d).
3.7. Now assume that $w \in W, \sigma \in S, \omega \in\left\{\dot{\sigma}, \dot{\sigma}^{-1}\right\}, \omega^{\prime} \in \kappa_{0}^{-1}(w), \lambda, \lambda^{\prime} \in \mathfrak{s}_{\infty}$ are such that $w\left(\lambda^{\prime}\right)=\lambda,|\sigma w|<|w|$. We show:
(a) If $\sigma \notin W_{\lambda}$, then $L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L}=L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L} \otimes \mathfrak{L}$.
(b) If $\sigma \in W_{\lambda}$, then

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L} \approx\left\{L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L} \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L} \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega^{\prime}}[-1] \otimes \mathfrak{L} \otimes \mathfrak{L}\right\}
$$

Using 3.4(b), we have $L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L}=L_{(\sigma w)\left(\lambda^{\prime}\right)}^{\omega^{-1}} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}$. Hence $L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L}=$ $L_{\lambda}^{\omega} \circ L_{(\sigma w)\left(\lambda^{\prime}\right)}^{\omega^{-1}} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}$. We now apply 3.6(a),(b) to describe $L_{\lambda}^{\omega} \circ L_{(\sigma w)\left(\lambda^{\prime}\right)}^{\omega^{-1}}$. If $\sigma \notin W_{\lambda}$, we obtain

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L}=L_{(\sigma w)\left(\lambda^{\prime}\right)}^{1} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L}
$$

By 3.4(b) this equals $L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{l}^{\otimes 2}$, proving (a). If $\sigma \in W_{\lambda}$, we obtain

$$
\begin{aligned}
& L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L} \approx\left\{L_{(\sigma w) \lambda^{\prime}}^{1} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L}\right. \\
& \left.L_{(\sigma w) \lambda^{\prime}}^{\omega^{-1}} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L}, L_{(\sigma w) \lambda^{\prime}}^{\omega^{-1}} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}[-1] \otimes \mathfrak{L}\right\}
\end{aligned}
$$

(We have used that $L_{(\sigma w) \lambda^{\prime}}^{\omega}=L_{(\sigma w) \lambda^{\prime}}^{\omega^{-1}}$, see 3.5(c).) We now substitute

$$
L_{(\sigma w) \lambda^{\prime}}^{1} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}=L_{\lambda^{\prime}}^{\omega \omega^{\prime}} \otimes \mathfrak{L}, L_{(\sigma w) \lambda^{\prime}}^{\omega^{-1}} \circ L_{\lambda^{\prime}}^{\omega \omega^{\prime}}=L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L}
$$

see 3.4(b); we obtain

$$
L_{\lambda}^{\omega} \circ L_{\lambda^{\prime}}^{\omega^{\prime}} \otimes \mathfrak{L} \approx\left\{L_{\lambda^{\prime}}^{\omega \omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L} \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega^{\prime}}\langle-2\rangle \otimes \mathfrak{L} \otimes \mathfrak{L}, L_{\lambda^{\prime}}^{\omega^{\prime}}[-1] \otimes \mathfrak{L} \otimes \mathfrak{L}\right\}
$$

This proves (b).
3.8. Let $\mathcal{D}^{\wedge} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$ consisting of objects which are restrictions of objects in the $G \times \mathbf{T}^{2}$-equivariant derived category. Let $\mathcal{M}^{\top} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{D}^{\wedge} \tilde{\mathcal{B}}^{2}$ consisting of objects which are perverse sheaves. Let $\mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$ (resp. $\mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$ ) be the subcategory of $\mathcal{M}^{\boldsymbol{\sim}} \tilde{\mathcal{B}}^{2}$ whose objects are perverse sheaves $L$ such that any composition factor of $L$ is of the form $\mathbf{L}_{\lambda}^{\dot{w}}$ for some $w \cdot \lambda \preceq \mathbf{c}($ resp. $w \cdot \lambda \prec \mathbf{c})$. Let $\mathcal{D} \preceq \tilde{\mathcal{B}}^{2}\left(\right.$ resp. $\left.\mathcal{D} \prec \tilde{\mathcal{B}}^{2}\right)$ be the subcategory of $\mathcal{D}^{\wedge} \tilde{\mathcal{B}}^{2}$ whose objects are complexes $L$ such that $L^{j}$ is in $\mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$ (resp.
$\left.\mathcal{M} \prec \tilde{\mathcal{B}}^{2}\right)$ for any $j$. We write $\mathcal{D}_{m}()$ or $\mathcal{M}_{m}()$ for the mixed version of any of the categories above. Let $\mathcal{C} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{M} \tilde{\mathcal{B}}^{2}$ consisting of semisimple objects. Let $\mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{M}_{m}^{\boldsymbol{\wedge}} \tilde{\mathcal{B}}^{2}$ consisting of objects of pure of weight zero. Let $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{M}^{\boldsymbol{1}} \tilde{\mathcal{B}}^{2}$ consisting of objects which are direct sums of objects of the form $\mathbf{L}_{\lambda}^{\dot{w}}$ with $w \cdot \lambda \in \mathbf{c}$. Let $\mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ be the subcategory of $\mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{\mathcal{B}}^{2}$ consisting of those $L \in \mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{\mathcal{B}}^{2}$ such that, as an object of $\mathcal{C} \tilde{\mathcal{B}}^{2}, L$ belongs to $\mathcal{C}^{\text {c }} \tilde{\mathcal{B}}^{2}$. For $L \in \mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{\mathcal{B}}^{2}$ let $\underline{L}$ be the largest subobject of $L$ such that as an object of $\mathcal{C} \tilde{\mathcal{B}}^{2}$, we have $\underline{L} \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$.
3.9. Let $r \geq 1$. Let $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right) \in W^{r}, \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right)$ be such that $\omega_{i} \in \kappa_{0}^{-1}\left(w_{i}\right)$ for $i=1, \ldots, r$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \in \mathfrak{s}_{n}^{r}$. We set

$$
|\mathbf{w}|=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{r}\right| .
$$

For $J \subset[1, r]$, let

$$
\begin{aligned}
\tilde{\mathcal{O}}_{\mathbf{w}}^{J}= & \left\{\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right) \in \tilde{\mathcal{B}}^{r+1} ;\right. \\
& \left.x_{i-1}^{-1} x_{i} \mathbf{U} \in \bar{G}_{w_{i}} \forall i \in J, x_{i-1}^{-1} x_{i} \in G_{w_{i}} \forall i \in[1, r]-J\right\} .
\end{aligned}
$$

Define $c: \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset} \rightarrow \mathbf{T}^{r}$ by

$$
c\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right)=\left(\left(x_{0}^{-1} x_{1}\right)_{\omega_{1}},\left(x_{1}^{-1} x_{2}\right)_{\omega_{2}}, \ldots,\left(x_{r-1}^{-1} x_{r}\right)_{\omega_{r}}\right)
$$

Let $M_{\lambda}^{\omega} \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right)$ be the local system $c^{*}\left(L_{\lambda_{1}} \boxtimes \ldots \boxtimes L_{\lambda_{r}}\right)$ on $\tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset}$ extended by 0 on $\tilde{\mathcal{B}}^{r+1}-\tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset}$. For $J \subset[1, r]$ we set

$$
\begin{aligned}
M_{\lambda}^{\omega, J} & =p_{01}^{*} L \otimes p_{12}^{*} L \otimes \ldots \otimes p_{r-1, r}^{*} L \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right), \\
L_{\lambda}^{\omega, J} & =p_{0 r!} M_{\lambda}^{\omega, J}\langle | \mathbf{w}| \rangle={ }^{1} L \circ{ }^{2} L \circ \ldots \circ{ }^{r} L\langle | \mathbf{w}| \rangle \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right),
\end{aligned}
$$

where ${ }^{i} L$ is $L_{\lambda_{i}}^{\omega_{i} \#}$ for $i \in J$ and $L_{\lambda_{i}}^{\omega_{i}}$ for $i \notin J$. Note that $M_{\lambda}^{\omega, \emptyset}=M_{\lambda}^{\omega}$. Moreover, from [21, 2.15] we have:
(a) $M_{\lambda}^{\omega, J}$ is the intersection cohomology complex of $\tilde{\mathcal{O}}_{\mathbf{w}}^{J}$ with coefficients in $M_{\lambda}^{\omega}$.

Consider the free $\mathbf{T}^{r-1}$-action on $\tilde{\mathcal{B}}^{r+1}$ given by

$$
\begin{aligned}
& \left(\tau_{1}, \tau_{2}, \ldots, \tau_{r-1}\right):\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r-1} \mathbf{U}, x_{r} \mathbf{U}\right) \mapsto \\
& \left(x_{0} \mathbf{U}, x_{1} \tau_{1} \mathbf{U}, \ldots, x_{r-1} \tau_{r-1} \mathbf{U}, x_{r} \mathbf{U}\right) .
\end{aligned}
$$

Note that $\tilde{\mathcal{O}}_{\mathrm{w}}^{J}$ is stable under this $\mathbf{T}^{r-1}$-action. We also have a free $\mathbf{T}^{r-1}$ action on $\mathbf{T}^{r}$ given by

$$
\begin{aligned}
& \left(\tau_{1}, \tau_{2}, \ldots, \tau_{r-1}\right):\left(t_{1}, t_{2}, \ldots, t_{r}\right) \mapsto \\
& \left(t_{1} \tau_{1}, w_{2}^{-1}\left(\tau_{1}^{-1}\right) t_{2} \tau_{2}, w_{3}^{-1}\left(\tau_{2}^{-1}\right) t_{3} \tau_{3}, \ldots, w_{r-1}^{-1}\left(\tau_{r-2}^{-1}\right) t_{r-1} \tau_{r-1}, w_{r}^{-1}\left(\tau_{r-1}^{-1}\right) t_{r}\right)
\end{aligned}
$$

Let ${ }^{\prime} \tilde{\mathcal{B}}^{r+1}=\mathbf{T}^{r-1} \backslash \tilde{\mathcal{B}}^{r+1}$. Let ${ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{J}=\mathbf{T}^{r-1} \backslash \tilde{\mathcal{O}}_{\mathbf{w}}^{J}$ (a locally closed subvariety of $\left.{ }^{\prime} \tilde{\mathcal{B}}^{r+1}\right)$. Let ${ }^{\prime} \mathbf{T}^{r}=\mathbf{T}^{r-1} \backslash \mathbf{T}^{r}$. Note that ${ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset}=\mathbf{T}^{r-1} \backslash \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset}$ is an open dense smooth irreducible subvariety of ${ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{J}$. Now $c: \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset} \rightarrow \mathbf{T}^{r}$ is compatible with the $\mathbf{T}^{r-1}$-actions on $\tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset}, \mathbf{T}^{r}$ hence it induces a map ${ }^{\prime} c:{ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset} \rightarrow{ }^{\prime} \mathbf{T}^{r}$. The homomorphism $c^{\prime}: \mathbf{T}^{r} \rightarrow \mathbf{T}$ given by

$$
\left(t_{1}, t_{2}, \ldots, t_{r}\right) \mapsto t_{1} w_{2}\left(t_{2}\right) w_{2} w_{3}\left(t_{3}\right) \ldots w_{2} w_{3} \ldots w_{r}\left(t_{r}\right)
$$

is constant on each orbit of the $\mathbf{T}^{r-1}$-action on $\mathbf{T}^{r}$ hence it induces a morphism ${ }^{\prime} \mathbf{T}^{r} \rightarrow \mathbf{T}$ whose composition with ${ }^{\prime} c$ is denoted by $\bar{c}:{ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{\emptyset} \rightarrow \mathbf{T}$. Let ${ }^{\prime} M_{\lambda}^{\omega, \emptyset}$ be the local system $\bar{c}^{*} L_{\lambda_{1}}$ on ${ }^{\prime} \tilde{\mathcal{O}}_{\mathrm{w}}^{\emptyset}$ extended by 0 on ${ }^{\prime} \tilde{\mathcal{B}}^{r+1}-{ }^{\prime} \tilde{\mathcal{O}}_{\mathrm{w}}^{\emptyset}$. Let ${ }^{\prime} M_{\lambda}^{\hat{\omega}, J} \in \mathcal{D}_{m}\left({ }^{\prime} \tilde{\mathcal{B}}^{r+1}\right)$ be the intersection cohomology complex of ${ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{J}$ with coefficients in ' $M_{\lambda}^{\omega, \emptyset}$ extended by 0 on ' $\tilde{\mathcal{B}}^{r+1}-{ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{J}$. Let $\bar{p}_{0 r}:{ }^{\prime} \tilde{\mathcal{O}}_{\mathbf{w}}^{J} \rightarrow \tilde{\mathcal{B}}^{2}$ be the map induced by $p_{0 r}: \tilde{\mathcal{O}}_{\mathbf{w}}^{J} \rightarrow \tilde{\mathcal{B}}^{2}$. We define ${ }^{\prime} L_{\boldsymbol{\lambda}}^{\omega, J} \in \mathcal{D}_{m}^{\boldsymbol{\oplus}} \tilde{\mathcal{B}}^{2}$ as follows:

$$
\text { if } \lambda_{k}=w_{k+1}\left(\lambda_{k+1}\right) \text { for } k=1,2, \ldots, r-1, \text { we set }{ }^{\prime} L_{\lambda}^{\omega, J}=\bar{p}_{0 r!}!^{\prime} M_{\lambda}^{\omega, J}\langle | \mathbf{w}| \rangle ;
$$ otherwise, we set ${ }^{\prime} L_{\lambda}^{\omega, J}=0$.

3.10. For $L, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ we set

$$
L \underline{\circ} L^{\prime}=\left(L \circ L^{\prime}\right)^{\{a-\nu\}} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2} .
$$

(For the notation ${ }^{\{i\}}$ see 0.2.) By [21, 2.24], $L, L^{\prime} \mapsto \tilde{\mathcal{B}}^{2} L^{\prime}$ defines a monoidal structure on $\mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. Hence if $L,{ }^{2} L, \ldots,{ }^{r} L$ are in $\mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ then ${ }^{1} L \underline{\circ}^{2} L \underline{\circ} \ldots \underline{\circ}^{r} L \in$ $\mathcal{C}_{0}^{c} \tilde{\mathcal{B}}^{2}$ is well defined.
3.11. Let $w \cdot \lambda \in I_{n}$ and let $\omega \in \kappa^{-1}(w), s \in \mathbf{Z}$. We show that we have canonically:
(a) $\quad\left(\mathbf{e}^{s}\right)^{*} L_{\lambda}^{\omega}=L_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\omega)},\left(\mathbf{e}^{s}\right)^{*} \mathbf{L}_{\lambda}^{\omega}=\mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\omega)}$.

It is enough to prove the first of these equalities. Let $\xi=(x \mathbf{U}, y \mathbf{U}) \in \tilde{\mathcal{B}}^{2}$. We have $x^{-1} y \in \mathbf{U e}^{-s}(\omega) t \mathbf{U}$ with $t \in \mathbf{T}$ hence $\mathbf{e}^{s}(x)^{-1} \mathbf{e}^{s}(y) \in \mathbf{U} \omega \mathbf{e}^{s}(t) \mathbf{U}$.

The stalk of $\left(\mathbf{e}^{s}\right)^{*} L_{\lambda}^{\omega}$ at $\xi$ is equal to the stalk of $L_{\lambda}$ at $\mathbf{e}^{s}(t)$ hence to the stalk of $\left(\mathbf{e}^{s}\right)^{*} L_{\lambda}$ at $t$. The stalk of $L_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\lambda)}$ at $\xi$ is equal to the stalk of $L_{\mathbf{e}^{-s}(\lambda)}$ at $t$. It remains to show that $\left(\mathbf{e}^{s}\right)^{*} L_{\lambda}=L_{\mathbf{e}^{-s}(\lambda)}$. This follows from the definitions.

## 4. Sheaves on $Z_{s}$

### 4.1. In this section we fix $s \in \mathbf{Z}$.

Now $\mathbf{T}$ acts on $\tilde{\mathcal{B}}^{2}$ by $t:(x \mathbf{U}, y \mathbf{U}) \mapsto\left(x t \mathbf{U}, y \mathbf{e}^{s}(t) \mathbf{U}\right)$. Let $\mathbf{T} \backslash{ }_{s} \tilde{\mathcal{B}}^{2}$ be the set of orbits. Let

$$
Z_{s}=\left\{\left(B, B^{\prime}, \gamma U_{B}\right) ; B \in \mathcal{B}, B^{\prime} \in \mathcal{B}, \gamma U_{B} \in \tilde{G}_{s} / U_{B} ; \gamma B \gamma^{-1}=B^{\prime}\right\}
$$

We define $\epsilon_{s}: \tilde{\mathcal{B}}^{2} \rightarrow Z_{s}$ by $\epsilon_{s}:(x \mathbf{U}, y \mathbf{U}) \mapsto\left(x \mathbf{B} x^{-1}, y \mathbf{B} y^{-1}, y \tau^{s} \mathbf{U} x^{-1}\right)$. Clearly, $\epsilon_{s}$ induces a map $\mathbf{T} \backslash_{s} \tilde{\mathcal{B}}^{2} \rightarrow Z_{s}$. We show:
(a) $\epsilon_{s}$ induces an isomorphism $\mathbf{T} \backslash_{s} \tilde{\mathcal{B}}^{2} \rightarrow Z_{s}$.

We show only that our map is bijective. Let $\left(B, B^{\prime}, \gamma\right) \in \mathcal{B} \times \mathcal{B} \times \tilde{G}_{s}$ be such that $\gamma B \gamma^{-1}=B^{\prime}$. We can find $x \in G$ such that $B=x \mathbf{B} x^{-1}$. We set $y=\gamma x \tau^{-s} \in G$. Then $\epsilon_{s}$ carries the T-orbit of $(x \mathbf{U}, y \mathbf{U})$ to $\left(B, \gamma B \gamma^{-1}, \gamma x \mathbf{U} x^{-1}\right)=\left(B, B^{\prime}, \gamma U_{B}\right)$; thus our map is surjective. Now assume that $x, x^{\prime}, y, y^{\prime}$ in $G$ are such that

$$
\left(x \mathbf{B} x^{-1}, y \mathbf{B} y^{-1}, y \tau^{s} \mathbf{U} x^{-1}\right)=\left(x^{\prime} \mathbf{B} x^{\prime-1}, y^{\prime} \mathbf{B} y^{\prime-1}, y^{\prime} \tau^{s} \mathbf{U} x^{\prime-1}\right) .
$$

To complete the proof of (a) it is enough to show that $x^{\prime}=x t u, y^{\prime}=y \mathbf{e}^{s}(t) u^{\prime}$ for some $u, u^{\prime}$ in $\mathbf{U}$ and some $t \in \mathbf{T}$. Since $x^{-1} x^{\prime} \in \mathbf{B}$ we have $x^{\prime}=x t u$ for some $u \in \mathbf{U}$ and some $t \in \mathbf{T}$. We have $y^{\prime} \tau^{s} \mathbf{U} u^{-1} t^{-1} x^{-1}=y \tau^{s} \mathbf{U} x^{-1}$ hence $y^{\prime}=y \mathbf{e}^{s}(t) u^{\prime}$ for some $u^{\prime} \in \mathbf{U}$. This completes the proof of (a).

For $w \in W$ let $Z_{s}^{w}=\left\{\left(B, B^{\prime}, \gamma U_{B}\right) \in Z_{s} ;\left(B, B^{\prime}\right) \in \mathcal{O}_{w}\right\}$. The closure of $Z_{s}^{w}$ in $Z_{s}$ is $\bar{Z}_{s}^{w}=\left\{\left(B, B^{\prime}, g U_{B}\right) ;\left(B, B^{\prime}\right) \in \overline{\mathcal{O}}_{w}, g \in G, g B g^{-1}=B^{\prime}\right\}$. We have $\epsilon_{s}^{-1}\left(Z_{s}^{w}\right)=\tilde{\mathcal{O}}_{w}, \epsilon_{s}^{-1}\left(\bar{Z}_{s}^{w}\right)=\tilde{\mathcal{O}}_{w}$.

Let $\omega \in \kappa_{0}^{-1}(w)$ and let $\lambda \in \mathfrak{s}_{\infty}$ be such that $w \cdot \lambda \in I^{s}$. We have a diagram $\mathbf{T} \xrightarrow{j^{\omega}} \tilde{\mathcal{B}}_{w}^{2} \xrightarrow{\epsilon_{w}^{w}} Z_{s}^{w}$ where $\epsilon_{s}^{w}$ is the restriction of $\epsilon_{s}$ and $j^{\omega}$ is as in 3.1. The T-action on $\tilde{\mathcal{B}}^{2}$ described above is compatible under $j^{\omega}$ with the $\mathbf{T}$ action on $\mathbf{T}$ given by $t: t^{\prime} \mapsto w^{-1}\left(t^{-1}\right) t^{\prime} \mathbf{e}^{s}(t)$. From [14, 28.2] we see that $L_{\lambda}$
is equivariant for the $\mathbf{T}$-action on $\mathbf{T}$ given by $t: t^{\prime} \mapsto w^{-1}\left(\mathbf{e}^{-s}\left(t_{1}\right)\right) t^{\prime} t_{1}^{-1}$. (We use that $w \cdot \lambda \in I^{s}$.) Using the change of variable $t_{1}=\mathbf{e}^{s}(t)^{-1}$, we deduce that $L_{\lambda}$ is also equivariant for the $\mathbf{T}$-action on $\mathbf{T}$ given by $t: t^{\prime} \mapsto w^{-1}\left(t^{-1}\right) t^{\prime} \mathbf{e}^{s}(t)$. It follows that $\left(j^{\omega}\right)^{*} L_{\lambda}$ is $\mathbf{T}$-equivariant, so that there is a well defined local system $\mathcal{L}_{\lambda, s}^{\omega}$ of rank 1 on $Z_{s}^{w}$ such that $\left(\epsilon_{s}^{w}\right)^{*} \mathcal{L}_{\lambda, s}^{\omega}=\left(j^{\omega}\right)^{*} L_{\lambda}=L_{\lambda}^{\omega}$. Let $\mathcal{L}_{\lambda, s}^{\omega \sharp}$ be its extension to an intersection cohomology complex of $\bar{Z}_{s}^{w}$, viewed as a complex on $Z_{s}$, equal to 0 on $Z_{s}-\bar{Z}_{s}^{w}$. We shall view $\mathcal{L}_{\lambda, s}^{\omega}$ as a constructible sheaf on $Z_{s}$ which is 0 on $Z_{s}-Z_{s}^{w}$. Let

$$
\mathbb{L}_{\lambda, s}^{\omega}=\mathcal{L}_{\lambda, s}^{\omega \sharp}\langle | w|+\nu+\rho\rangle,
$$

a simple perverse sheaf on $Z_{s}$.
In the remainder of this subsection we assume that $s \neq 0$ and that we are in case $A$.

Let $w \in W$ and let $X_{s}^{w}=\left\{B \in \mathcal{B} ;\left(B, \mathbf{e}^{s}(B)\right) \in \mathcal{O}_{w}\right\}$. When $s>0, X_{s}^{w}$ coincides with the variety $X_{w}$ defined in [3] in terms of the Frobenius map $\mathbf{e}^{s}: G \rightarrow G$; when $s<0, X_{s}^{w}$ can be identified with the variety $X_{\mathbf{e}^{-s}\left(w^{-1}\right)}$ defined in [3] in terms of the Frobenius map $\mathbf{e}^{-s}: G \rightarrow G$. Note that the finite group $G \mathbf{e}^{s}=\left\{g \in G ; \mathbf{e}^{s}(g)=g\right\}$ acts by conjugation on $X_{s}^{w}$.

Let $\tilde{X}_{s}^{w}=\left\{x \mathbf{U} \in G / \mathbf{U} ; x^{-1} \mathbf{e}^{s}(x) \in G_{w}\right\}$. We define $\phi: \tilde{X}_{s}^{w} \rightarrow X_{s}^{w}$ by $x \mathbf{U} \mapsto x \mathbf{B} x^{-1}$. This is a principal $\mathbf{T}$-bundle with $\mathbf{T}$ acting on $\tilde{X}_{s}^{w}$ by $t: x \mathbf{U} \mapsto x t \mathbf{U}$. We define $j_{\dot{w}}^{\prime}: \tilde{X}_{s}^{w} \rightarrow \mathbf{T}$ by $j_{\dot{w}}^{\prime}(x \mathbf{U})=\left(x^{-1} \mathbf{e}^{s}(x)\right)_{\dot{w}}$. Now let $\lambda \in \mathfrak{s}_{\infty}$ be such that $w \cdot \lambda \in I^{s}$. Then there is a well defined local system $\mathcal{F}_{\lambda, s}^{\dot{w}}$ on $X_{s}^{w}$ such that $\phi^{*} \mathcal{F}_{\lambda, s}^{\dot{w}}=\left(j_{\dot{w}}^{\prime}\right)^{*} L_{\lambda}$. (This is in fact the restriction of $\mathcal{L}_{\lambda, s}^{\dot{w}}$ to $X_{s}^{w}$ under the imbedding $X_{s}^{w} \rightarrow Z_{s}^{w}, x \mathbf{B} x^{-1} \mapsto$ $\left(x \mathbf{B} x^{-1}, \mathbf{e}^{s}(x) \mathbf{B} \mathbf{e}^{s}\left(x^{-1}\right), \tau^{s} x \mathbf{U} x^{-1}\right)$.) The local system $\mathcal{F}_{\lambda, s}^{\dot{w}}$ on $X_{s}^{w}$ is of the type considered in [3]. Note also that $\mathcal{F}_{\lambda, s}^{\dot{w}}$ has a natural $G^{\mathbf{e}^{s}}$-equivariant structure. (It is the restriction of the $G$-equivariant structure of $\mathcal{L}_{\lambda, s}^{\dot{w}}$.) It follows that for $j \in \mathbf{Z}, H_{c}^{j}\left(X_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)$ is naturally a $G^{\mathbf{e}^{s}}$-module. (This representation of $G^{\mathbf{e}^{s}}$ is one of the main themes of [3].) Let $\bar{X}_{s}^{w}=\{B \in$ $\left.\mathcal{B} ;\left(B, \mathbf{e}^{s}(B)\right) \in \overline{\mathcal{O}}_{w}\right\}$. Then $X_{s}^{w}$ is open dense smooth in $\bar{X}_{s}^{w}$ and $G^{\mathbf{e}^{s}}$ acts by conjugation on $\bar{X}_{s}^{w}$. Hence for $j \in \mathbf{Z}$, the intersection cohomology space $I H^{j}\left(\bar{X}_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)$ is naturally a $G^{\mathrm{e}^{s}}{ }^{\text {-module. }}$

If $\mathbf{r}, \mathbf{r}^{\prime}$ are $G^{\mathbf{e}^{s}}$-modules and $\mathbf{r}$ is irreducible we denote by ( $\mathbf{r}: \mathbf{r}^{\prime}$ ) the multiplicity of $\mathbf{r}$ in $\mathbf{r}^{\prime}$. Let $\operatorname{Irr}\left(G^{\mathbf{e}^{s}}\right)$ be the set of isomorphism classes of
irreducible representations of $G^{\mathbf{e}^{s}}$. From [3, 7.7] it is known that for any $\mathbf{r} \in \operatorname{Irr}\left(G^{\mathbf{e}^{s}}\right)$
(i) there exists $w \cdot \lambda \in I^{s}$ such that $\left(\mathbf{r}: \oplus_{j} H_{c}^{j}\left(X_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)\right) \neq 0$.

From [6, 2.8] we see using (i) that for any $\mathbf{r} \in \operatorname{Irr}\left(G^{\mathbf{e}^{s}}\right)$
(ii) there exists $w \cdot \lambda \in I^{s}$ such that $\left(\mathbf{r}: \oplus_{j} I H^{j}\left(X_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)\right) \neq 0$.

By [3, 6.3], any $\mathbf{r} \in \operatorname{Irr}\left(G^{\mathbf{e}^{s}}\right)$ determines a $W$-orbit $\mathfrak{o}$ on $\mathfrak{s}_{\infty}$ : the set of all $\lambda \in \mathfrak{s}_{\infty}$ such that $\left(\mathbf{r}: \oplus_{j} H_{c}^{j}\left(X_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)\right) \neq 0$ for some $w \in W$ with $w \cdot \lambda \in I^{s}$ or equivalently (see [6, 2.8]) such that $\left(r: \oplus_{j} I H^{j}\left(\bar{X}_{s}^{w}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)\right) \neq 0$ for some $w \in W$ with $w \cdot \lambda \in I^{s}$; we have necessarily $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$. For any $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ such that $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$, let $\operatorname{Irr}_{\mathfrak{o}}\left(G^{\mathbf{e}^{s}}\right)$ be the set of all $\mathbf{r} \in \operatorname{Irr}\left(G^{\mathbf{e}^{s}}\right)$ such that the $W$-orbit on $\mathfrak{s}_{\infty}$ determined by $\mathbf{r}$ is $\mathfrak{o}$. With notation in 1.14 we have the following result:
(b) There exists a pairing $\operatorname{Irr}_{\mathfrak{0}}\left(G^{\mathbf{e}^{s}}\right) \times \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right) \rightarrow \overline{\mathbf{Q}}_{l},(\mathbf{r}, E) \mapsto b_{\mathbf{r}, E}$ such that for any $\mathbf{r} \in \operatorname{Irr}_{\mathfrak{0}}\left(G^{\mathbf{e}^{s}}\right)$, any $z \cdot \lambda \in I^{s} \cap I_{0}$ and any $j \in \mathbf{Z}$ we have

$$
\left(\mathbf{r}: I H^{j}\left(\bar{X}_{s}^{z}, \mathcal{F}_{\lambda, s}^{\dot{z}}\right)\right)=(-1)^{j}\left(j-|z|: \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right.} b_{\mathbf{r}, E} \operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)\right.
$$

In the case where $G$ has connected centre, (b) is just a reformulation on 6, 3.8(ii)]. A proof similar to that in loc.cit. applies without the hypothesis on the centre.
4.2. In the remainder of this section let $\mathbf{c}, a, \mathfrak{o}, n, \Psi$ be as in 3.1(a).

The $G \times \mathbf{T}^{2}$-action on $\tilde{\mathcal{B}}^{2}$ defined in 3.1 commutes with the $\mathbf{T}$-action on $\tilde{\mathcal{B}}^{2}$ in 4.1; hence it induces a $G \times \mathbf{T}^{2}$-action on $\mathbf{T} \backslash{ }_{s} \tilde{\mathcal{B}}^{2}$. We define a $G \times \mathbf{T}^{2}$-action on $Z_{s}$ by

$$
\left(g, t_{1}, t_{2}\right):\left(B, B^{\prime}, \gamma U_{B}\right) \mapsto\left(g B g^{-1}, g B^{\prime} g^{-1}, g \gamma x_{0} \mathbf{e}^{s}\left(t_{2}^{-n}\right) t_{1}^{n} x_{0}^{-1} g^{-1} U_{g B g^{-1}}\right)
$$

where $x_{0}$ is any element of $G$ such that $x_{0} \mathbf{B} x_{0}^{-1}=B$. (The choice of $x_{0}$ does not matter; to see this, it is enough to show that for $b \in B$ we have

$$
\gamma x_{0} \mathbf{e}^{s}\left(t_{2}^{-n}\right) t_{1}^{n} x_{0}^{-1} U_{B}=\gamma x_{0} b \mathbf{e}^{s}\left(t_{2}^{-n}\right) t_{1}^{n} b^{-1} x_{0}^{-1} U_{B}
$$

which is immediate.) In this $G \times \mathbf{T}^{2}$ action, the subgroup $\left\{\left(1, t_{1}, t_{2}\right) \in\right.$ $\left.G \times \mathbf{T}^{2} ; t_{1}=\mathbf{e}^{s}\left(t_{2}\right)\right\}$ acts trivially. Note that the bijection $\mathbf{T} \backslash{ }_{s} \tilde{\mathcal{B}}^{2} \rightarrow Z_{s}$ in 4.1 (a) is compatible with the $G \times \mathbf{T}^{2}$-actions.

Let $w \in W, \omega \in \kappa_{0}^{-1}(w)$. Since the $G \times \mathbf{T}^{2}$-action on $\tilde{\mathcal{O}}_{w}$ is transitive, it follows that the $G \times \mathbf{T}^{2}$-action on $Z_{s}^{w}$ is transitive. We show :
(a) Let $\mathcal{L}$ be an irreducible $G \times \mathbf{T}^{2}$-equivariant local system on $Z_{s}^{w}$. Then $\mathcal{L}$ is isomorphic to $\mathcal{L}_{\lambda, s}^{\omega}$ for a unique $\lambda \in \mathfrak{s}_{n}$ such that $w \cdot \lambda \in I^{s}$.
The local system $\left(\epsilon_{s}^{w}\right)^{*} \mathcal{L}$ on $\tilde{\mathcal{O}}_{w}$ is irreducible and $G \times \mathbf{T}^{2}$-equivariant hence, by 3.1 (c), is isomorphic to $L_{\lambda}^{\omega}$ for a well defined $\lambda \in \mathfrak{s}_{n}$. Now the restriction of $\left(\epsilon_{s}^{w}\right)^{*} \mathcal{L}$ to any fibre of $\epsilon_{s}^{w}$ is $\overline{\mathbf{Q}}_{l}$. On the other hand, the restriction of $L_{\lambda}^{\omega}$ to the fibre of $\epsilon_{s}^{w}$ passing through $(\mathbf{U}, \omega \mathbf{U})$ is (under an obvious identification with $\mathbf{T}$ ) the inverse image of $L_{\lambda}$ under the map $\mathbf{T} \rightarrow \mathbf{T}, t \mapsto w^{-1}\left(t^{-1}\right) \mathbf{e}^{s}(t)$, hence it is $L_{w\left(\lambda^{-1}\right) \mathbf{e}^{-s}(\lambda)}$ which is $\overline{\mathbf{Q}}_{l}$ if and only if $w(\lambda)=\mathbf{e}^{-s} \lambda$. We see that we must have $w(\lambda)=\mathbf{e}^{-s}(\lambda)$. We have $\left(\epsilon_{s}^{w}\right)^{*} \mathcal{L} \cong\left(\epsilon_{s}^{w}\right)^{*} \mathcal{L}_{\lambda, s}^{\omega}$ (both are $L_{\lambda}^{\omega}$ ) hence $\mathcal{L} \cong \mathcal{L}_{\lambda, s}^{\omega}$. This proves (a).

We define $\mathfrak{h}: Z_{s} \rightarrow Z_{-s}$ by $\left(B, B^{\prime}, g U_{B}\right) \mapsto\left(B^{\prime}, B, g^{-1} U_{B^{\prime}}\right)$. Note that $\mathfrak{h} \epsilon_{s}=\epsilon_{-s} \tilde{\mathfrak{h}}: \tilde{\mathcal{B}}^{2} \rightarrow Z_{-s}$ with $\tilde{\mathfrak{h}}$ as in 3.1. For $L \in \mathcal{D}_{m}\left(Z_{-s}\right)$ we set $L^{\dagger}=\mathfrak{h}^{*} L$.
4.3. Let

$$
I_{n}^{s}=I_{n} \cap I^{s}
$$

Note that if $w \cdot \lambda \in I_{n}^{s}$ and $\omega \in \kappa_{0}^{-1}(w)$, then $\mathcal{L}_{\lambda, s}^{\omega} \mid Z_{s}^{w}, \mathbb{L}_{\lambda, s}^{\omega}$ can be regarded naturally as objects in the mixed derived category of pure weight zero. Moreover, $\left.\mathcal{L}_{\lambda, s}^{\omega}\right|_{Z_{s}^{w}} ^{w}$ (resp. $\mathbb{L}_{\lambda, s}^{\omega}$ ) is (noncanonically) isomorphic to $\left.\mathcal{L}_{\lambda, s}^{\dot{w}}\right|_{Z_{s}^{w}}$ (resp. $\left.\mathbb{L}_{\lambda, s}^{\dot{w}}\right)$ in the mixed derived category.

We define $\tilde{\epsilon}_{s}: \mathcal{D}\left(Z_{s}\right) \rightarrow \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right), \tilde{\epsilon}_{s}: \mathcal{D}_{m}\left(Z_{s}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ by

$$
\tilde{\epsilon}_{s}(L)=\epsilon_{s}^{*}(L)\langle\rho\rangle .
$$

From the definition we have

$$
\epsilon_{s}^{*} \mathcal{L}_{\lambda, s}^{\omega \sharp}=L_{\lambda}^{\omega \sharp}, \quad \tilde{\epsilon}_{s} \mathbb{L}_{\lambda, s}^{\omega}=\mathbf{L}_{\lambda}^{\omega} .
$$

Let $\mathcal{D}^{\boldsymbol{\omega}} Z_{s}$ be the subcategory of $\mathcal{D}\left(Z_{s}\right)$ consisting of objects which are restrictions of objects in the $G \times \mathbf{T}^{2}$-equivariant derived category. Let $\mathcal{M}{ }^{\top} Z_{s}$ be the subcategory of $\mathcal{D}^{\boldsymbol{\wedge}} Z_{s}$ consisting of objects which are perverse sheaves.

Let $\mathcal{M}^{\preceq} Z_{s}$ (resp. $\mathcal{M}^{\prec} Z_{s}$ ) be the subcategory of $\mathcal{D}^{\wedge} Z_{s}$ whose objects are perverse sheaves $L$ such that any composition factor of $L$ is of the form $\mathbb{L}_{\lambda, s}^{\dot{w}}$ for some $w \cdot \lambda \in I_{n}^{s}$ such that $w \cdot \lambda \preceq \mathbf{c}$ (resp. $w \cdot \lambda \prec \mathbf{c}$ ). Let $\mathcal{D}^{\preceq} Z_{s}$ (resp. $\mathcal{D}^{\prec} Z_{s}$ ) be the subcategory of $\mathcal{D}^{\wedge} Z_{s}$ whose objects are complexes $L$ such that $L^{j}$ is in $\mathcal{M} \preceq Z_{s}$ (resp. $\left.\mathcal{M}^{\prec} Z_{s}\right)$ for any $j$. We write $\mathcal{D}_{m}()$ or $\mathcal{M}_{m}()$ for the mixed version of any of the categories above.

Let $\mathcal{C}^{\boldsymbol{N}} Z_{s}$ be the subcategory of $\mathcal{M}^{\boldsymbol{N}} Z_{s}$ consisting of semisimple objects. Let $\mathcal{C}_{0}^{\boldsymbol{\omega}} Z_{s}$ be the subcategory of $\mathcal{M}_{m}^{\boldsymbol{\omega}} Z_{s}$ consisting of objects of pure of weight zero. Let $\mathcal{C}^{\mathbf{c}} Z_{s}$ be the subcategory of $\mathcal{M}^{\boldsymbol{\omega}} Z_{s}$ consisting of objects which are direct sums of objects of the form $\mathbb{L}_{\lambda, s}^{\dot{w}}$ with $w \cdot \lambda \in \mathbf{c}^{s}$. Let $\mathcal{C}_{0}^{\mathbf{c}} Z_{s}$ be the subcategory of $\mathcal{C}_{0}^{\boldsymbol{\omega}} Z_{s}$ consisting of those $L \in \mathcal{C}_{0}^{\omega_{0}} Z_{s}$ such that, as an object of $\mathcal{C}^{\top} Z_{s}, L$ belongs to $\mathcal{C}^{c} Z_{s}$. For $L \in \mathcal{C}_{0}^{\top} Z_{s}$ let $\underline{L}$ be the largest subobject of $L$ such that as an object of $\mathcal{C} Z_{s}$, we have $\underline{L} \in \mathcal{C}^{\mathrm{c}} Z_{s}$.

From 4.2(a) we see that, if $M \in \mathcal{M}^{\top} Z_{s}$, then any composition factor of $M$ is of the form $\mathbb{L}_{\lambda, s}^{\dot{w}}$ for some $w \cdot \lambda \in I_{n}^{s}$. From the definitions we see that $M \mapsto \tilde{\epsilon}_{s} M$ is a functor $\mathcal{D}^{\circledR} Z_{s} \rightarrow \mathcal{D}^{\wedge} \tilde{\mathcal{B}}^{2}$ and also $\mathcal{D}_{m}^{\star} Z_{s} \rightarrow \mathcal{D}_{m}^{\oplus} \tilde{\mathcal{B}}^{2}$; moreover, it is a functor $\mathcal{M}^{\boldsymbol{\omega}} Z_{s} \rightarrow \mathcal{M}^{\boldsymbol{\wedge}} \tilde{\mathcal{B}}^{2}$ and also $\mathcal{M}_{m}^{\boldsymbol{\omega}} Z_{s} \rightarrow \mathcal{M}_{m}^{\oplus} \tilde{\mathcal{B}}^{2}$. From the definitions we see that for $M \in \mathcal{M}^{\boldsymbol{\omega}} Z_{s}$
(a) we have $M \in \mathcal{M} \preceq Z_{s}$ if and only if $\tilde{\epsilon}_{s} M \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$; we have $M \in \mathcal{M}^{\prec} Z_{s}$ if and only if $\tilde{\epsilon}_{s} M \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

Note that if $X \in \mathcal{D}\left(Z_{s}\right)$ and $j \in \mathbf{Z}$, then

$$
\begin{equation*}
\left(\epsilon_{s}^{*} X\right)^{j+\rho}=\epsilon_{s}^{*}\left(X^{j}\right)[\rho] . \tag{b}
\end{equation*}
$$

Moreover, if $Y \in \mathcal{M}_{m}\left(Z_{s}\right)$ and $j^{\prime} \in \mathbf{Z}$ then
(c)

$$
g r_{j^{\prime}}\left(\tilde{\epsilon}_{s} Y\right)=\tilde{\epsilon}_{s}\left(g r_{j^{\prime}} Y\right)
$$

For $w \cdot \lambda \in I_{n}$ we show:
(d) We have $w \cdot \lambda \in I_{n}^{s}$ if and only if $w^{-1} \cdot w\left(\lambda^{-1}\right) \in I_{n}^{-s}$.

We must show that we have $w(\lambda)=\mathbf{e}^{-s}(\lambda)$ if and only if $\lambda^{-1}=\mathbf{e}^{s}\left(w\left(\lambda^{-1}\right)\right)$. In other words, we must show that $\lambda\left(w^{-1}(t)\right)=\lambda\left(\tau^{s} t \tau^{-s}\right)$ for all $t \in \mathbf{T}_{n}$ if and only if $\lambda\left(t^{\prime}\right)=\lambda\left(w^{-1}\left(\tau^{-s} t^{\prime} \tau^{s}\right)\right)$ for all $t^{\prime} \in \mathbf{T}_{n}$. Setting $t^{\prime}=\tau^{s} t \tau^{-s}$,
we have $w^{-1}(t)=w^{-1}\left(\tau^{-s} t^{\prime} \tau^{s}\right)$ and it remains to use that $t \mapsto \tau^{s} t \tau^{-s}$ is a bijection $\mathbf{T}_{n} \rightarrow \mathbf{T}_{n}$.

For $w \cdot \lambda \in I_{n}^{s}$ we show:
(e) Let $\omega \in \kappa_{0}^{-1}(w)$. We have canonically $\left(\mathbb{L}_{\lambda, s}^{\omega}\right)^{\dagger}=\mathbb{L}_{w\left(\lambda^{-1}\right),-s}^{\omega^{-1}}$.
(The equality in (e) makes sense in view of (d).) By [21, 2.2(a)] and with notation of 3.1 we have canonically $\tilde{\mathfrak{h}}^{*} \mathbf{L}_{\lambda}^{\omega}=\mathbf{L}_{w\left(\lambda^{-1}\right)}^{\omega^{-1}}$. Hence $\epsilon_{-s}^{*} \mathbf{L}_{w\left(\lambda^{-1}\right)}^{\omega^{-1}}=$ $\epsilon_{-s}^{*} \tilde{\mathfrak{h}}^{*} \mathbf{L}_{\lambda}^{\omega}=\mathfrak{h}^{*} \epsilon_{s}^{*} \mathbf{L}_{\lambda}^{\omega}$ so that $\tilde{\epsilon}_{-s} \mathbf{L}_{w\left(\lambda^{-1}\right)}^{\omega^{-1}}=\mathfrak{h}^{*} \tilde{\epsilon}_{s} \mathbf{L}_{\lambda}^{\omega}$ and (e) follows.
4.4. Let $r, f$ be integers such that $0 \leq f \leq r-3$. Let

$$
\begin{array}{r}
\mathcal{Y}=\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{r+1} \times \tilde{G}_{s} ; \gamma \in x_{f+3} \mathbf{U} \tau^{s} x_{f}^{-1}\right. \\
\left.\gamma \in x_{f+2} \mathbf{B} \tau^{s} x_{f+1}^{-1}\right\}
\end{array}
$$

Define $\vartheta: \mathcal{Y} \rightarrow \tilde{\mathcal{B}}^{r+1}$ by $\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right)$. For $y^{\prime}, y^{\prime \prime} \in W$ let

$$
\tilde{\mathcal{B}}_{\left[y^{\prime}, y^{\prime \prime}\right]}^{r+1}=\left\{\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right) \in \tilde{\mathcal{B}}^{r+1} ; x_{f}^{-1} x_{f+1} \in G_{y^{\prime}}, x_{f+2}^{-1} x_{f+3} \in G_{y^{\prime \prime}-1}\right\} .
$$

We show:
(a) Let $\xi \in \tilde{\mathcal{B}}_{\left[y^{\prime}, y^{\prime \prime}\right]}^{r+1}$. If $\mathbf{e}^{s}\left(y^{\prime}\right) \neq y^{\prime \prime}$ then $\vartheta^{-1}(\xi)=\emptyset$. If $\mathbf{e}^{s}\left(y^{\prime}\right)=y^{\prime \prime}$ then $\vartheta^{-1}(\xi) \cong \mathbf{k}^{\nu-\left|y^{\prime}\right|}$.

We set $\xi=\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right)$. If $\vartheta^{-1}(\xi) \neq \emptyset$ then $x_{f}^{-1} x_{f+1} \in G_{y^{\prime}}$, $x_{f+2}^{-1} x_{f+3} \in G_{y^{\prime \prime-1}}$ and $\left(x_{f+3} \mathbf{U} \tau^{s} x_{f}^{-1}\right) \cap\left(x_{f+2} \mathbf{B} \tau^{s} x_{f+1}^{-1}\right) \neq \emptyset$. Hence for some $u \in \mathbf{U}, b \in \mathbf{B}$ we have

$$
u \tau^{s} x_{f}^{-1} x_{f+1}=x_{f+3}^{-1} x_{f+2} b \tau^{s} \in \tau^{s} G_{y^{\prime}} \cap G_{y^{\prime \prime}} \tau^{s}
$$

so that $\mathbf{e}^{s}\left(y^{\prime}\right)=y^{\prime \prime}$. If we assume that $\mathbf{e}^{s}\left(y^{\prime}\right)=y^{\prime \prime}$, then $\vartheta^{-1}(\xi)$ can be identified with

$$
\left\{\gamma \in \tilde{G}_{s} ; \gamma \in x_{f+3} \mathbf{U} \tau^{s} x_{f}^{-1}, \gamma \in x_{f+2} \mathbf{B} \tau^{s} x_{f+1}^{-1}\right\}
$$

hence with

$$
\left\{(u, b) \in \mathbf{U} \times \mathbf{B} ; u \tau^{s} x_{f}^{-1} x_{f+1}=x_{f+3}^{-1} x_{f+2} b \tau^{s}\right\}
$$

We substitute $x_{f+3}^{-1} x_{f+2}=u_{0} \mathbf{e}^{s}\left(\dot{y}^{\prime}\right) t_{0} u_{0}^{\prime}, x_{f}^{-1} x_{f+1}=u_{1} \dot{y}^{\prime} t_{1} u_{1}^{\prime}$, where $t_{0} \in \mathbf{T}$, $u_{0}, u_{0}^{\prime}, u_{1}, u_{1}^{\prime} \in \mathbf{U}$. Then $\vartheta^{-1}(\xi)$ is identified with $\left\{(u, b) \in \mathbf{U} \times \mathbf{B} ; u \tau^{s} u_{1} \dot{y}^{\prime} t_{1} u_{1}^{\prime}\right.$ $\left.=u_{0} \mathbf{e}^{s}\left(\dot{y}^{\prime}\right) t_{0} u_{0}^{\prime} b \tau^{s}\right\}$. The map $(u, b) \mapsto u_{0}^{-1} u \mathbf{e}^{s}\left(u_{1}\right)$ identifies this variety with $\mathbf{U} \cap \mathbf{e}^{s}\left(\dot{y}^{\prime}\right) \mathbf{B e}^{s}\left(\dot{y}^{\prime}\right)^{-1} \cong \mathbf{k}^{\nu-\left|y^{\prime}\right|}$. This proves (a).

Now $\mathbf{T}^{2}$ acts freely on $\mathcal{Y}$ by

$$
\begin{aligned}
\left(t_{1}, t_{2}\right): & \left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \mapsto \\
& \left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{f} \mathbf{U}, x_{f+1} t_{1} \mathbf{U}, x_{f+2} t_{2} \mathbf{U}, x_{f+3} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) .
\end{aligned}
$$

Let

$$
\begin{array}{r}
!\mathcal{Y}=\mathbf{T} \backslash\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{r+1} \times \tilde{G}_{s} ; \gamma \in x_{f+3} \mathbf{U} \tau^{s} x_{f}^{-1},\right. \\
\left.\gamma \in x_{f+2} \mathbf{U} \tau^{s} x_{f+1}^{-1}\right\}
\end{array}
$$

where $\mathbf{T}$ acts freely by

$$
\begin{aligned}
t: & \left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \mapsto \\
& \left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{f} \mathbf{U}, x_{f+1} \mathbf{e}^{-s}(t) \mathbf{U}, x_{f+2} t \mathbf{U}, x_{f+3} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right)
\end{aligned}
$$

Note that the obvious map $\beta:{ }^{\prime} \mathcal{Y} \rightarrow \mathbf{T}^{2} \backslash \mathcal{Y}$ is an isomorphism. We define $!\eta:!\mathcal{Y} \rightarrow Z_{s}$ by

$$
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right) \mapsto \epsilon_{s}\left(x_{f+1} \mathbf{U}, x_{f+2} \mathbf{U}\right)
$$

We define $\boldsymbol{\tau}: \mathcal{Y} \rightarrow!\mathcal{Y}$ as the composition of the obvious map $\mathcal{Y} \rightarrow \mathbf{T}^{2} \backslash \mathcal{Y}$ with $\beta^{-1}$. Let $\eta=!\eta \boldsymbol{\tau}: \mathcal{Y} \rightarrow Z_{s}$. We have

$$
\eta\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right), \gamma\right)=\epsilon_{s}\left(x_{f+1} t^{-1} \mathbf{U}, x_{f+2} t^{\prime-1} \mathbf{U}\right)
$$

where $t, t^{\prime}$ in $\mathbf{T}$ are such that $\gamma \in x_{f+2} t^{\prime-1} \mathbf{U} \tau^{s} t x_{f+1}^{-1}$.
4.5. Let $z \cdot \lambda \in I_{n}^{s}$. Let $P=\eta^{*} \mathcal{L}_{\lambda, s^{*}}^{i \not \ddagger}$. Let $p_{i j}: \tilde{\mathcal{B}}^{r+1} \rightarrow \tilde{\mathcal{B}}^{2}$ be the projection to the $i j$ coordinates. We have the following result:
(a) $\vartheta_{!} P \approx\left\{p_{f, f+1}^{*} L_{\mathbf{e}^{-s}(\lambda)}^{\mathrm{e}^{-s}(\dot{y})} \otimes p_{f+1, f+2}^{*} L_{\lambda}^{\dot{z} \sharp} \otimes p_{f+2, f+3}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\langle 2| y|-2 \nu\rangle ; y \in W\right\}$.

Define $e: \tilde{\mathcal{B}}^{r+1} \rightarrow \tilde{\mathcal{B}}^{4}$ by

$$
\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right) \mapsto\left(x_{f} \mathbf{U}, x_{f+1} \mathbf{U}, x_{f+2} \mathbf{U}, x_{f+3} \mathbf{U}\right)
$$

Then (a) is obtained by applying $e^{*}$ to the statement similar to (a) in which $\{0,1, \ldots, r\}$ is replaced by $\{f, f+1, f+2, f+3\}$. Thus it is enough to prove (a) in the special case where $r=3, f=0$. In the remainder of the proof we assume that $r=3, f=0$.

For any $y^{\prime}, y^{\prime \prime}$ in $W$ let $\vartheta_{y^{\prime}, y^{\prime \prime}}: \vartheta^{-1}\left(\tilde{\mathcal{B}}_{\left[y^{\prime}, y^{\prime \prime}\right]}^{4}\right) \rightarrow \tilde{\mathcal{B}}^{4}$ be the restriction of $\vartheta$. Let $P^{y^{\prime}, y^{\prime \prime}}$ be the restriction of $P$ to $\vartheta^{-1}\left(\tilde{\mathcal{B}}^{4}\right)_{\left[y^{\prime}, y^{\prime \prime}\right]}$. Clearly, we have

$$
\vartheta_{!} P \approx\left\{\left(\vartheta_{y^{\prime}, y^{\prime \prime}}\right)!P^{y^{\prime}, y^{\prime \prime}} ;\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}\right\} .
$$

Since $\vartheta^{-1}\left(\tilde{\mathcal{B}}_{\left[y^{\prime}, y^{\prime \prime}\right]}^{r+1}\right)=\emptyset$ when $\mathbf{e}^{s}\left(y^{\prime}\right) \neq y^{\prime \prime}$, see 4.4(a), we deduce that

$$
\vartheta_{!} P \approx\left\{\left(\vartheta_{\left.\mathbf{e}^{-s}(y), y^{-1}\right)!} P^{\mathrm{e}^{-s}(y), y^{-1}} ; y \in W\right\}\right.
$$

Hence to prove (a) it is enough to show for any $y \in W$ that

$$
\vartheta_{y!} P_{y}=p_{01}^{*} L_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{i \sharp} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\langle 2| y|-2 \nu\rangle,
$$

where we write $\vartheta_{y}, P_{y}$ instead of $\vartheta_{\mathbf{e}^{-s}(y), y^{-1}}, P^{\mathrm{e}^{-s}(y), y^{-1}}$. Using $z(\lambda)=\mathbf{e}^{-s}(\lambda)$ we can replace $p_{01}^{*} L_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\dot{y})}$ by $p_{01}^{*} L_{z(\lambda)}^{\mathrm{e}^{-s}(\dot{y})}$. Thus it is enough to show for any $y \in W$ that

$$
\begin{equation*}
\vartheta_{y!} P_{y}=p_{01}^{*} L_{z(\lambda)}^{\mathbf{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{\dot{z} \sharp} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\langle 2| y|-2 \nu\rangle . \tag{b}
\end{equation*}
$$

We have a cartesian diagram

where

$$
\begin{aligned}
V_{y}= & \left\{\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \in \tilde{\mathcal{B}}^{4} ; x_{0}^{-1} x_{1} \in G_{\mathbf{e}^{-s}(y)}, x_{1}^{-1} x_{2} \in G_{z},\right. \\
& \left.x_{2}^{-1} x_{3} \in G_{y^{-1}}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{V}_{y}= & \mathbf{T} \backslash\left\{\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \in \tilde{\mathcal{B}}^{4} ; x_{0}^{-1} x_{1} \in G_{\mathbf{e}^{-s}(y)}, x_{1}^{-1} x_{2} \in G_{z}\right. \\
& \left.x_{2}^{-1} x_{3} \in G_{y^{-1}}, \mathbf{e}^{s}\left(\left(x_{0}^{-1} x_{1}\right)_{\mathbf{e}^{-s}(\dot{y})}\right)=\left(x_{3}^{-1} x_{2}\right)_{\dot{y}}\right\}
\end{aligned}
$$

with $\mathbf{T}$ acting (freely) by

$$
t:\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{e}^{-s}(t) \mathbf{U}, x_{2} t \mathbf{U}, x_{3} \mathbf{U}\right)
$$

$\tilde{V}_{y}=\vartheta^{-1}\left(V_{y}\right)$ and

$$
\begin{aligned}
\tilde{\mathcal{V}}_{y}= & \mathbf{T} \backslash\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{4} \times \tilde{G}_{s} ; x_{0}^{-1} x_{1} \in G_{\mathbf{e}^{-s}(y)}, x_{1}^{-1} x_{2} \in G_{z}\right. \\
& \left.x_{2}^{-1} x_{3} \in G_{y^{-1}}, \gamma \in x_{3} \mathbf{U} \tau^{s} x_{0}^{-1}, \gamma \in x_{2} \mathbf{U} \tau^{s} x_{1}^{-1}\right\}
\end{aligned}
$$

with $\mathbf{T}$ acting (freely) by

$$
t:\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \cdot \gamma\right) \mapsto\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{e}^{-s}(t) \mathbf{U}, x_{2} t \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right)
$$

we have

$$
b\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right)=\mathbf{T}-\text { orbit of }\left(x_{0} \mathbf{U}, x_{1} t \mathbf{U}, x_{2} t^{\prime} \mathbf{U}, x_{3} \mathbf{U}\right)
$$

where $t, t^{\prime}$ in $\mathbf{T}$ are such that $\mathbf{e}^{s}\left(\left(x_{0}^{-1} x_{1} t\right)_{\mathbf{e}^{-s}(\dot{y})}\right)=\left(x_{3}^{-1} x_{2} t^{\prime}\right)_{\dot{y}}$,

$$
\tilde{b}\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right)=\mathbf{T}-\text { orbit of }\left(\left(x_{0} \mathbf{U}, x_{1} t \mathbf{U}, x_{2} t^{\prime} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right)
$$

where $t, t^{\prime}$ in $\mathbf{T}$ are such that $\gamma \in x_{2} t^{\prime} \mathbf{U} \tau^{s} t^{-1} x_{1}^{-1}$; the vertical maps are the obvious ones. We also have a cartesian diagram

where $\tilde{V}_{y}^{\prime}, \tilde{\mathcal{V}}_{y}^{\prime}, V_{y}^{\prime}, \mathcal{V}_{y}^{\prime}$ are defined in the same way as $\tilde{V}_{y}, \tilde{\mathcal{V}}_{y}, V_{y}, \mathcal{V}_{y}$ but the condition $x_{1}^{-1} x_{2} \in G_{z}$ is replaced by the condition $x_{1}^{-1} x_{2} \in \bar{G}_{z}$; the maps $\tilde{b}^{\prime}, b^{\prime}$ are given by the same formulas as $\tilde{b}, b$; the vertical maps are the obvious ones.

Let $j: V_{y}^{\prime} \rightarrow \tilde{\mathcal{B}}^{4}$ be the inclusion. It is enough to show that

$$
j^{*} \vartheta_{y!} P_{y}=j^{*}\left(p_{01}^{*} L_{z(\lambda)}^{\mathrm{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{\dot{i} \sharp} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\right)\langle 2| y|-2 \nu\rangle
$$

By definition, $\left.P\right|_{\tilde{V}_{y}^{\prime}}$ is the inverse image of $\mathcal{L}_{\lambda, s}^{i \nexists}$, under the composition of $\tilde{b}^{\prime}$ with $\tilde{\mathcal{V}}_{y}^{\prime} \rightarrow \mathcal{V}_{y}^{\prime} \xrightarrow{!\eta_{y}} Z_{s}$ where the first map is the obvious one and

$$
!\eta_{y}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right)=\epsilon_{s}\left(x_{1} \mathbf{U}, x_{2} \mathbf{U}\right)
$$

Hence $\left.P\right|_{\tilde{V}_{y}^{\prime}}$ is the inverse image of $\mathcal{L}_{\lambda, s}^{i \#}$ under the composition of $\eta_{y}:={ }^{i} \eta_{y} b^{\prime}$ with the obvious map $\vartheta_{y}^{\prime}: \tilde{V}_{y}^{\prime} \rightarrow V_{y}^{\prime}$. Since $\vartheta_{y}$ is an affine space bundle with fibres of dimension $\nu-|y|$, it follows that $j^{*} \vartheta_{y!} P_{y}=\eta_{y}^{*} \mathcal{L}_{\lambda, S}^{i \sharp}\langle 2| y|-2 \nu\rangle$. Thus it is enough to show that

$$
\eta_{y}^{*} \mathcal{L}_{\lambda, s}^{\dot{i} \sharp}=j^{*}\left(p_{01}^{*} L_{z(\lambda)}^{\mathbf{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{\dot{i} \sharp} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\right) .
$$

Since $\eta_{y}$ is smooth as a map to $\bar{Z}_{s}^{z}$, we see that $\eta_{y}^{*} \mathcal{L}_{\lambda, s}^{i \#}$ is the intersection cohomology complex of $V_{y}^{\prime}$ with coefficients in the local system $\left(\eta_{y}^{0}\right)^{*} \mathcal{L}_{\lambda, s}^{\dot{z}}$ on $V_{y}$; here $\eta_{y}^{0}: V_{y} \rightarrow Z_{s}^{z}$ is the restriction of $\eta_{y}: V_{y}^{\prime} \rightarrow \bar{Z}_{s}^{z}$. By 3.9(a),

$$
j^{*}\left(p_{01}^{*} L_{z(\lambda)}^{\mathrm{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{i \hbar} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\right)
$$

is the intersection cohomology complex of $V_{y}^{\prime}$ with coefficients in the local system

$$
\tilde{L}=j^{*}\left(p_{01}^{*} L_{z(\lambda)}^{\mathrm{e}^{-s}(\dot{y})} \otimes p_{12}^{*} L_{\lambda}^{\dot{\tilde{z}}} \otimes p_{23}^{*} L_{y(\lambda)}^{\dot{y}^{-1}}\right)
$$

on $V_{y}$. It is then enough to show that $\tilde{L}=\left(\eta_{y}^{0}\right)^{*} \mathcal{L}_{\lambda, s}^{\dot{\tilde{}}}$.
Let $\xi=\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \in V_{y}$. From the definition of $\eta_{y}^{0}$ we see that the stalk $\left(\left(\eta_{y}^{0}\right)^{*} \mathcal{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)_{\xi}$ is equal to

$$
\left(\mathcal{L}_{\lambda, s}^{\dot{\tilde{}}}\right)_{\epsilon_{s}\left(x_{1} t_{1}^{-1}, x_{2} t_{2}^{-1}\right)}=\left(L_{\lambda}\right)_{t_{0}}
$$

where $t_{0} \in \mathbf{T}, t_{1} \in \mathbf{T}, t_{2} \in \mathbf{T}$ are such that $t_{0}=\left(t_{1} x_{1}^{-1} x_{2} t_{2}^{-1}\right)_{\dot{z}}$,

$$
\mathbf{e}^{s}\left(\left(x_{0}^{-1} x_{1} t_{1}^{-1}\right)_{\mathbf{e}^{-s}(\dot{y})}\right)=\left(x_{3}^{-1} x_{2} t_{2}^{-1}\right)_{\dot{y}}
$$

We can choose $t_{1}, t_{2}$ so that

$$
\left(x_{0}^{-1} x_{1} t_{1}^{-1}\right)_{\mathbf{e}^{-s}(\dot{y})}=1,\left(x_{3}^{-1} x_{2} t_{2}^{-1}\right)_{\dot{y}}=1
$$

thus we can assume that $t_{1}=\left(x_{0}^{-1} x_{1}\right)_{\mathbf{e}^{-s}(\dot{y})}, t_{2}=\left(x_{3}^{-1} x_{2}\right)_{\dot{y}}=1$.

The stalk $\tilde{L}_{\xi}$ is $\left(L_{z(\lambda)}\right)_{t_{1}^{\prime}} \otimes\left(L_{\lambda}\right)_{t_{2}^{\prime}} \otimes\left(L_{y(\lambda)}\right)_{t_{3}^{\prime}}$ where

$$
t_{1}^{\prime}=\left(x_{0}^{-1} x_{1}\right)_{\mathbf{e}^{-s}(\dot{y})} \in \mathbf{T}, t_{2}^{\prime}=\left(x_{1}^{-1} x_{2}\right)_{\dot{z}} \in \mathbf{T}, t_{3}^{\prime}=\left(x_{2}^{-1} x_{3}\right)_{\dot{y}^{-1}} \in \mathbf{T}
$$

It is enough to show that $\left(\eta_{y}^{*} \mathcal{L}_{\lambda, s}^{\dot{\tilde{}}}\right)_{\xi}=\tilde{L}_{\xi}$, or that

$$
\left(t_{1} x_{1}^{-1} x_{2} t_{2}^{-1}\right)_{\dot{z}}=z^{-1}\left(t_{1}^{\prime}\right) t_{2}^{\prime} y^{-1}\left(t_{3}^{\prime}\right)
$$

where $t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$ are as above. We have $t_{1}=t_{1}^{\prime}$ and $x_{3}^{-1} x_{2} \in \mathbf{U} \dot{y} t_{2} \mathbf{U}$, hence

$$
x_{2}^{-1} x_{3} \in \mathbf{U} t_{2}^{-1} \dot{y}^{-1} \mathbf{U}=\mathbf{U} \dot{y}^{-1} y\left(t_{2}^{-1}\right) \mathbf{U}
$$

so that $t_{3}^{\prime}=y\left(t_{2}^{-1}\right)$ and $t_{2}^{-1}=y^{-1}\left(t_{3}^{\prime}\right)$. We have

$$
t_{1} x_{1}^{-1} x_{2} t_{2}^{-1} \in t_{1} \mathbf{U} \dot{z} t_{2}^{\prime} \mathbf{U} t_{2}^{-1}=\mathbf{U} \dot{z} z^{-1}\left(t_{1}\right) t_{2}^{\prime} t_{2}^{-1} \mathbf{U}
$$

so that

$$
\left(t_{1} x_{1}^{-1} x_{2} t_{2}^{-1}\right)_{\dot{z}}=z^{-1}\left(t_{1}\right) t_{2}^{\prime} t_{2}^{-1}=z^{-1}\left(t_{1}^{\prime}\right) t_{2}^{\prime} y^{-1}\left(t_{3}^{\prime}\right)
$$

as required. This completes the proof of (b) hence that of (a).
4.6. Let

$$
\begin{gathered}
\left(w_{1}, w_{2}, \ldots, w_{f}, w_{f+2}, w_{f+4}, \ldots, w_{r}\right) \in W^{r-2} \\
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{f}, \lambda_{f+2}, \lambda_{f+4}, \ldots, \lambda_{r}\right) \in \mathfrak{s}_{n}^{r-2}
\end{gathered}
$$

We set $z=w_{f+2}, \lambda=\lambda_{f+2}$. We assume that $z(\lambda)=\mathbf{e}^{-s}(\lambda)$. Let $P$ be as in 4.5. Let

$$
P^{\prime}=\otimes_{i \in[1, r]-\{f+1, f+2, f+3\}} p_{i-1, i}^{*} L_{\lambda_{i}}^{\dot{w}_{i} \sharp} \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right),
$$

$\tilde{P}=P \otimes \vartheta^{*} P^{\prime} \in \mathcal{D}_{m}(\mathcal{Y})$. For any $y \in W$ we set

$$
\begin{gathered}
\mathbf{w}_{y}=\left(w_{1}, w_{2}, \ldots, w_{f}, \mathbf{e}^{-s}(y), w_{f+2}, y^{-1}, w_{f+4}, \ldots, w_{r}\right) \in W^{r} \\
\boldsymbol{\omega}_{y}=\left(\dot{w}_{1}, \dot{w}_{2}, \ldots, \dot{w}_{f}, \mathbf{e}^{-s}(\dot{y}), \dot{w}_{f+2}, \dot{y}^{-1}, \dot{w}_{f+4}, \ldots, \dot{w}_{r}\right) \\
\lambda_{y}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{f}, \mathbf{e}^{-s}\left(\lambda_{f+2}\right), \lambda_{f+2}, y\left(\lambda_{f+2}\right), \lambda_{f+4}, \ldots, \lambda_{r}\right) \in \mathfrak{s}_{n}^{r} .
\end{gathered}
$$

We set $\Xi=\vartheta_{!} \tilde{P}$. We have:

$$
\begin{equation*}
\Xi \approx\left\{M_{\lambda_{y}}^{\boldsymbol{\omega}_{y},[1, r]-\{f+1, f+3\}}\langle 2| y|-2 \nu\rangle ; y \in W\right\} \tag{a}
\end{equation*}
$$

in $\mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right)$. This follows immediately from $4.5\left(\right.$ a) since $\Xi=P^{\prime} \otimes \vartheta_{!}(P)$.
4.7. We preserve the setup of 4.6. Let $\mathcal{S}=\sqcup_{\mathbf{w}^{\prime}} \tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}^{\emptyset}$ where the union is over all $\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}$ such that $w_{i}^{\prime}=w_{i}$ for $i \notin\{f+1, f+3\}$. This is a locally closed subvariety of $\tilde{\mathcal{B}}^{r+1}$. For $y \in W$ let $R_{y}$ be the restriction of $M_{\lambda_{y}}^{\omega_{y}, \emptyset}$ to $\tilde{\mathcal{O}}_{\mathbf{w}_{y}}^{\emptyset}$ extended by 0 on $\mathcal{S}-\tilde{\mathcal{O}}_{\mathbf{w}_{y}}^{\emptyset}$ (a constructible sheaf on $\mathcal{S}$ ). From the definitions we have

$$
\left.M_{\lambda_{y}}^{\omega_{y},[1, r]-\{f+1, f+3\}}\right|_{\mathcal{S}}=R_{y}
$$

From 4.6(a) we deduce $\left.\Xi\right|_{\mathcal{S}} \approx\left\{R_{y}\langle 2| y|-2 \nu\rangle ; y \in W\right\}$. We now restrict further to $\tilde{\mathcal{O}}_{\mathbf{w}_{y}}^{\emptyset}($ for $y \in W)$; we obtain

$$
\left.\Xi\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}} ^{\varphi} \approx\left\{\left.R_{y^{\prime}}\langle 2| y^{\prime}|-2 \nu\rangle\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}^{0}} ; y^{\prime} \in W\right\} .
$$

In the right hand side we have $\left.R_{y^{\prime}}\langle 2| y^{\prime}|-2 \nu\rangle\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}^{0}}=0$ if $y^{\prime} \neq y$. It follows that $\left.\Xi\right|_{\tilde{\mathcal{O}}_{w_{\lambda}}^{\varphi}}=\left.R_{y}\langle 2| y|-2 \nu\rangle\right|_{\tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}^{0}}$. Since $\left.R_{y}\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}^{0}} ^{\varphi}$ is a local system we deduce for $y \in W$ the following result.
(a) Let $h \in \mathbf{Z}$. If $h=2 \nu-2|y|$ then $\left.\mathcal{H}^{h} \Xi\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}} ^{0}=\left.R_{y}\right|_{\tilde{\mathcal{O}}_{\mathbf{w} y}} ^{0}(|y|-\nu)$. If $h \neq 2 \nu-2|y|$, then $\left.\mathcal{H}^{h} \Xi\right|_{\tilde{\mathcal{O}}_{\mathbf{w}_{y}}}=0$.
4.8. We preserve the setup of 4.6 . We set

$$
\begin{equation*}
k=3 \nu+(r+1) \rho+\sum_{i \in[1, r]-\{f+1, f+3\}}\left|w_{i}\right| . \tag{a}
\end{equation*}
$$

For $y \in W$ we set

$$
\begin{gathered}
K_{y}=M_{\lambda_{y}}^{\boldsymbol{\omega}_{y},[1, r]-\{f+1, f+3\}}\langle | \mathbf{w}_{y}|+\nu+(r+1) \rho\rangle \\
\tilde{K}_{y}=M_{\lambda_{y}}^{\boldsymbol{\omega}_{y},[1, r]}\langle | \mathbf{w}_{y}|+\nu+(r+1) \rho\rangle
\end{gathered}
$$

From 4.6(a) we deduce:

$$
\begin{equation*}
\Xi\langle k\rangle \approx\left\{K_{y} ; y \in W\right\} . \tag{b}
\end{equation*}
$$

We show:
(c) For any $j>0$ we have $(\Xi\langle k\rangle)^{j}=0$. Equivalently, $\Xi^{j}=0$ for any $j>k$.

Using (b) we see that it is enough to show that for any $y \in W$ we have $\left(K_{y}\right)^{j}=0$ for any $j>0$. Now $\tilde{K}_{y}$ is a (simple) perverse sheaf hence for any $j$ we have dimsupp $\mathcal{H}^{j} \tilde{K}_{y} \leq-j$. Moreover $K_{y}$ is obtained by restricting $\tilde{K}_{y}$ to an open subset of its support and then extending the result (by zero) on the complement of this subset in $\tilde{\mathcal{B}}^{r+1}$. Hence $\operatorname{supp} \mathcal{H}^{j} K_{y} \subset \operatorname{supp} \mathcal{H}^{i} \tilde{K}_{y}$ so that $\operatorname{dim} \operatorname{supp} \mathcal{H}^{i} K_{y} \leq-j$. Since this holds for any $j$ we see that $\left(K_{y}\right)^{j}=0$ for any $j>0$.
4.9. We preserve the notation of 4.6 . We show:
(a) Let $j \in \mathbf{Z}$ and let $X$ be a composition factor of $\Xi^{j}$. Then $X \cong M_{\lambda^{\prime}}^{\omega^{\prime}}{ }^{[1, r]}\langle | \mathbf{w}^{\prime}|+\nu+(r+1) \rho\rangle$ for some

$$
\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}, \boldsymbol{\lambda}^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{r}^{\prime}\right) \in \mathfrak{s}_{n}^{r}
$$

such that $w_{i}^{\prime}=w_{i}, \lambda_{i}^{\prime}=\lambda_{i}$ for $i \in[1, r]-\{f+1, f+3\}$ and such that

$$
\lambda_{f+1}^{\prime}=w_{f+2}^{\prime}\left(\lambda_{f+2}^{\prime}\right), \lambda_{f+2}^{\prime}=w_{f+3}^{\prime}\left(\lambda_{f+3}^{\prime}\right)
$$

Here $\boldsymbol{\omega}^{\prime}=\left(\dot{w}_{1}^{\prime}, \dot{w}_{2}^{\prime}, \ldots, \dot{w}_{r}^{\prime}\right)$.
From 4.6(a) we see that, for some $y \in W, X$ is a composition factor of

$$
\left(M_{\lambda_{y}}^{\omega_{y},[1, r]-\{f+1, f+3\}}\langle 2| y|-2 \nu\rangle\right)^{j}
$$

where $\omega_{y}, \boldsymbol{\lambda}_{y}$ are as in 4.6. Using this and [21, 2.18(b)] we see that

$$
X \cong M_{\lambda^{\prime}}^{\omega^{\prime},[1, r]}\langle | \mathbf{w}^{\prime}|+\nu+(r+1) \rho\rangle
$$

for some

$$
\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}, \boldsymbol{\lambda}^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{r}^{\prime}\right) \in \mathfrak{s}_{n}^{r}
$$

such that $w_{i}^{\prime}=w_{i}, \lambda_{i}^{\prime}=\lambda_{i}$ for $i \in[1, r]-\{f+1, f+3\}$; here $\omega^{\prime}=\left(\dot{w}_{1}^{\prime}, \dot{w}_{2}^{\prime}, \ldots, \dot{w}_{r}^{\prime}\right)$. It remains to show that we have automatically

$$
\lambda_{f+1}^{\prime}=w_{f+2}^{\prime}\left(\lambda_{f+2}^{\prime}\right), \lambda_{f+2}^{\prime}=w_{f+3}^{\prime}\left(\lambda_{f+3}^{\prime}\right)
$$

To see this we note that $\left(M_{\lambda_{y}}^{\omega_{y},[1, r]-\{f+1, f+3\}}\langle 2| y|-2 \nu\rangle\right)^{j}$ is equivariant for the $\mathbf{T}^{2}$-action

$$
\begin{aligned}
& \left(t_{1}, t_{2}\right):\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right) \\
& \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \ldots, x_{f} \mathbf{U}, x_{f+1} t_{1} \mathbf{U}, x_{f+2} t_{2} \mathbf{U}, x_{f+3} \mathbf{U}, \ldots, x_{r} \mathbf{U}\right)
\end{aligned}
$$

hence so are its composition factors and this implies that the equalities above for $\lambda_{f+1}^{\prime}, \lambda_{f+2}^{\prime}$ do hold.
4.10. From 4.8(c) we see that we have a distinguished triangle ( $\left.\Xi^{\prime}, \Xi, \Xi^{k}[-k]\right)$ where $\Xi^{\prime} \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right)$ satisfies $\left(\Xi^{\prime}\right)^{j}=0$ for all $j \geq k$. We show:
(a) Let $j \in \mathbf{Z}$ and let $K$ be one of $\Xi, \Xi^{j}, \Xi^{\prime}$. For any $\mathbf{w}^{\prime} \in W^{r}$ and any $h \in \mathbf{Z},\left.\mathcal{H}^{h} K\right|_{\tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}^{\emptyset}}$ is a local system.
We prove (a) for $K=\Xi$ or $K=\Xi^{j}$. Using 4.6(a), we see that it is enough to show that $\left.\mathcal{H}^{h}\left(M_{\lambda_{y}}^{\boldsymbol{\omega}_{y},[1, r]-\{f+1, f+3\}}\right)\right|_{\tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}^{\boldsymbol{\varphi}}}$ is a local system for any $h$ and that $\left.\mathcal{H}^{h}\left(\left(M_{\lambda_{y}}^{\boldsymbol{\omega}_{y},[1, r]-\{f+1, f+3\}}\right)^{j}\right)\right|_{\tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}}$ is a local system for any $h$ and any $j$. This follows by an argument entirely similar to that in the proof of [21, 3.10].

Now (a) for $K=\Xi^{\prime}$ follows from (a) for $\Xi$ and $\Xi^{k}[-k]$ using the long exact sequence for cohomology sheaves of $\left(\Xi^{\prime}, \Xi, \Xi^{k}[-k]\right)$ restricted to $\tilde{\mathcal{O}}_{\mathbf{w}^{\prime}}^{\emptyset}$.

We show:
(b) Let $\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}, j=2 \nu-\left|y^{\prime}\right|-\left|y^{\prime \prime}\right|$. Let

$$
\mathbf{w}_{y^{\prime}, y^{\prime \prime}}=\left(w_{1}, w_{2}, \ldots, w_{f}, y^{\prime}, w_{f+2}, y^{\prime \prime-1}, w_{f+3}, \ldots, w_{r}\right) \in W^{r}
$$

The induced homomorphism $\left.\left.\mathcal{H}^{j} \Xi\right|_{\tilde{\mathcal{O}}_{\mathrm{w}_{y^{\prime}, y^{\prime \prime}}}} \rightarrow \mathcal{H}^{j-k}\left(\Xi^{k}\right)\right|_{\tilde{\mathcal{O}}_{\mathrm{w}_{y^{\prime}, y^{\prime \prime}}^{0}}^{\varphi}}$ is an isomorphism.

We have an exact sequence of constructible sheaves
 $\left.\mathcal{H}^{j^{\prime}} \Xi^{\prime}\right|_{\tilde{\mathcal{O}}_{\mathbf{w}_{y^{\prime}, y^{\prime \prime}}}^{0}} \neq 0$ for some $j^{\prime} \geq j$. Since $\left.\mathcal{H}^{j^{\prime}} \Xi^{\prime}\right|_{\tilde{\mathcal{O}}_{\mathbf{w}_{y^{\prime}}, y^{\prime \prime}}^{0}}$ is a local system (see (a)), we deduce that $\tilde{\mathcal{O}}_{\mathbf{w}_{y^{\prime}, y^{\prime \prime}}^{\emptyset}}$ is contained in $\operatorname{supp}\left(\mathcal{H}^{j^{\prime}} \Xi^{\prime}\right)$. We have $\left(\Xi^{\prime}[k-1]\right)^{\tilde{j}}=0$ for any $\tilde{j}>0$ hence $\operatorname{dim} \operatorname{supp}\left(\mathcal{H}^{j^{\prime \prime}} \Xi^{\prime}[k-1]\right) \leq-j^{\prime \prime}$ for any $j^{\prime \prime}$. Taking $j^{\prime \prime}=j^{\prime}-k+1$, we deduce that

$$
\operatorname{dim} \tilde{\mathcal{O}}_{\mathbf{w}_{y^{\prime}, y^{\prime \prime}}^{\emptyset}}^{\emptyset} \leq \operatorname{dim} \operatorname{supp}\left(\mathcal{H}^{j^{\prime}} \Xi^{\prime}\right) \leq-j^{\prime}+k-1 \leq-j+k-1
$$

hence

$$
\left|\mathbf{w}_{y^{\prime}, y^{\prime \prime}}\right|+\nu+(r+1) \rho \leq-j+k-1 .
$$

We have $\left|\mathbf{w}_{y^{\prime}, y^{\prime \prime}}\right|+\nu+(r+1) \rho=-j+k$ hence $-j+k \leq-j+k-1$, contradiction. This proves (b).
4.11. For $\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}$ we set

$$
\begin{aligned}
& \omega_{y^{\prime}, y^{\prime \prime}}=\left(\dot{w}_{1}, \dot{w}_{2}, \ldots, \dot{w}_{f}, \dot{y}^{\prime}, \dot{w}_{f+2}, \dot{y}^{\prime \prime-1}, \dot{w}_{f+3}, \ldots, \dot{w}_{r}\right) \in W^{r}, \\
& \lambda_{y^{\prime}, y^{\prime \prime}}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{f}, \mathbf{e}^{-s}\left(\lambda_{f+2}\right), \lambda_{f+2}, y^{\prime \prime}\left(\lambda_{f+2}\right), \lambda_{f+4}, \ldots, \lambda_{r}\right) \in \mathfrak{s}_{n}^{r} \text {, } \\
& K_{y^{\prime}, y^{\prime \prime}}=M_{\lambda_{y^{\prime}, y^{\prime \prime}}}^{\omega_{y^{\prime}, y^{\prime \prime}, \emptyset}}\langle | \mathbf{w}_{y^{\prime}, y^{\prime \prime}}|+\nu+(r+1) \rho\rangle \in \mathcal{M}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right), \\
& \tilde{K}_{y^{\prime}, y^{\prime \prime}}=M_{\lambda_{y^{\prime}, y^{\prime \prime}}}^{\omega_{y^{\prime}, y^{\prime \prime}}[1, r]}\langle | \mathbf{w}_{y^{\prime}, y^{\prime \prime}}|+\nu+(r+1) \rho\rangle \in \mathcal{M}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right) \text {. }
\end{aligned}
$$

Note that when $y^{\prime}=\mathbf{e}^{-s}(y), y^{\prime \prime}=y, \mathbf{w}_{y^{\prime}, y^{\prime \prime}}, \boldsymbol{\omega}_{y^{\prime}, y^{\prime \prime}}, \boldsymbol{\lambda}_{y^{\prime}, y^{\prime \prime}}$ and $\tilde{K}_{y^{\prime}, y^{\prime \prime}}$ become $\mathbf{w}_{y}, \boldsymbol{\omega}_{y}, \boldsymbol{\lambda}_{y}$ (see 4.6) and $\tilde{K}_{y}$ (see 4.8). We show that we have canonically
(a)

$$
g r_{0}\left(\Xi^{k}(k / 2)\right)=\oplus_{y \in W} \tilde{K}_{y} .
$$

Since $g r_{0}\left(\Xi^{k}(k / 2)\right)$ is a semisimple perverse sheaf of pure weight zero, it is a direct sum of simple perverse sheaves, necessarily of the form described in 4.9(a). Thus we have canonically

$$
g r_{0}\left(\Xi^{k}(k / 2)\right)=\oplus_{\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}} V_{y^{\prime}, y^{\prime \prime}} \otimes \tilde{K}_{y^{\prime}, y^{\prime \prime}}
$$

where $V_{y^{\prime}, y^{\prime \prime}}$ are mixed $\overline{\mathbf{Q}}_{l^{\prime}}$-vector spaces of pure weight 0 . By $[1,5.1 .14], \Xi$ is mixed of weight $\leq 0$ hence $\Xi^{k}(k / 2)$ is mixed of weight $\leq 0$. Hence we have an exact sequence in $\mathcal{M}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right)$ :

$$
\begin{equation*}
0 \rightarrow \mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right) \rightarrow \Xi^{k}(k / 2) \rightarrow g r_{0}\left(\Xi^{k}(k / 2)\right) \rightarrow 0 \tag{a}
\end{equation*}
$$

that is,

$$
0 \rightarrow \mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right) \rightarrow \Xi^{k}(k / 2) \rightarrow \oplus_{\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}} V_{y^{\prime}, y^{\prime \prime}} \otimes \tilde{K}_{y^{\prime}, y^{\prime \prime}} \rightarrow 0
$$

(Here $\mathcal{W}^{-1}(?)$ denotes the part of weight $\leq-1$ of a mixed perverse sheaf.) Hence for any $\left(\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}\right) \in W^{2}$ we have an exact sequence of (mixed) cohomology sheaves restricted to $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}}$ (where $\left.h=2 \nu-\left|\tilde{y}^{\prime}\right|-\left|\tilde{y}^{\prime \prime}\right|-k\right)$ :

$$
\text { (b) } \begin{aligned}
& \mathcal{H}^{h}\left(\mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right)\right) \xrightarrow{\alpha} \mathcal{H}^{h}\left(\Xi^{k}(k / 2)\right) \rightarrow \oplus_{\left(y^{\prime}, y^{\prime \prime}\right) \in W^{2}} V_{y^{\prime}, y^{\prime \prime}} \otimes \mathcal{H}^{h}\left(\tilde{K}_{y^{\prime}, y^{\prime \prime}}\right) \\
& \rightarrow \mathcal{H}^{h+1}\left(\mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right)\right) .
\end{aligned}
$$

Moreover, by $4.10(\mathrm{~b})$, we have an equality of local systems on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \bar{y}^{\prime \prime}}^{\emptyset}}$ :

$$
\mathcal{H}^{h}\left(\Xi^{k}(k / 2)\right)=\mathcal{H}^{h+k}(\Xi(k / 2))=\mathcal{H}^{2 \nu-\left|y^{\prime}\right|-\left|y^{\prime \prime}\right|}(\Xi(k / 2))
$$

and this is $R_{y}(k / 2+|y|-\nu)$ if $\tilde{y}^{\prime}=\mathbf{e}^{-s}(y), \tilde{y}^{\prime \prime}=y$ (see 4.7(a)) and is 0 if $\tilde{y}^{\prime} \neq \mathbf{e}^{-s}\left(\tilde{y}^{\prime \prime}\right)$ (see 4.4(a)) hence is pure of weight $-k-\left|\tilde{y}^{\prime}\right|-\left|\tilde{y}^{\prime \prime}\right|+\nu=h$. On the other hand, $\mathcal{H}^{h}\left(\mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right)\right)$ is mixed of weight $\leq h-1$; it follows that $\alpha$ in (b) must be zero.

Assume that $\mathcal{H}^{h}\left(\tilde{K}_{y^{\prime}, y^{\prime \prime}}\right)$ is not identically zero on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}^{\emptyset}}$. Then, by 4.10(a), $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}^{\emptyset}}^{\dagger}$ is contained in supp $\mathcal{H}^{h}\left(\tilde{K}_{y^{\prime}, y^{\prime \prime}}\right)$ which has dimension $\leq-h$ (resp. $<-h$ if $\left.\left(y^{\prime}, y^{\prime \prime}\right) \neq\left(\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}\right)\right)$; hence $-h=\operatorname{dim} \tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \bar{y}^{\prime \prime}}^{\emptyset}}$ is $\leq-h$ (resp. $<-h)$; we see that we must have $\left(y^{\prime}, y^{\prime \prime}\right)=\left(\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}\right)$ and we have $\mathcal{H}^{h}\left(\tilde{K}_{y^{\prime}, y^{\prime \prime}}\right)=$ $\mathcal{H}^{h}\left(K_{y^{\prime}, y^{\prime \prime}}\right)$ on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}^{\emptyset}}$.

Assume that $\mathcal{H}^{h+1}\left(\mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right)\right)$ is not identically 0 on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}^{\emptyset}}^{\emptyset}$. Then, by 4.10(a), $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}^{\emptyset}}$ is contained in $\operatorname{supp} \mathcal{H}^{h+1}\left(\mathcal{W}^{-1}\left(\Xi^{k}(k / 2)\right)\right)$ which has dimension $\leq-h-1$; hence $-h=\operatorname{dim} \tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}}^{\emptyset} \leq-h-1$, a contradiction. We see that (b) becomes an isomorphism of local systems on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}}^{\square}$ :

$$
\begin{gathered}
0=V_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}} \otimes K_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}} \text { if } \mathbf{e}^{s}\left(\tilde{y}^{\prime}\right) \neq \tilde{y}^{\prime \prime} \\
R_{\tilde{y}^{\prime \prime}}(-h / 2) \xrightarrow{\sim} V_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}} \otimes \mathcal{H}^{h}\left(K_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}\right) \text { if } \mathbf{e}^{s}\left(\tilde{y}^{\prime}\right)=\tilde{y}^{\prime \prime}
\end{gathered}
$$

When $\mathbf{e}^{s}\left(\tilde{y}^{\prime}\right)=\tilde{y}^{\prime}$ we have $\mathcal{H}^{h}\left(K_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}\right)=R_{\tilde{y}^{\prime \prime}}(-h / 2)$ as local systems on $\tilde{\mathcal{O}}_{\mathbf{w}_{\tilde{y}^{\prime}, \bar{y}^{\prime \prime}}^{\emptyset}}^{\emptyset}$. It follows that $V_{\tilde{y}^{\prime}, \tilde{y}^{\prime \prime}}$ is $\overline{\mathbf{Q}}_{l}$ if $\mathbf{e}^{s}\left(\tilde{y}^{\prime}\right)=\tilde{y}^{\prime \prime}$ and is 0 if $\mathbf{e}^{s}\left(\tilde{y}^{\prime}\right) \neq \tilde{y}^{\prime \prime}$. This proves (a).
4.12. Let $h \in[1, r]$. Let ${ }_{h} \mathcal{D} \preceq \tilde{\mathcal{B}}^{r+1}$ (resp. ${ }_{h} \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{r+1}$ ) be the subcategory of $\mathcal{D} \tilde{\mathcal{B}}^{r+1}$ consisting of objects $K$ such that for any $j \in \mathbf{Z}$, any composition factor of $K^{j}$ is of the form $M_{\lambda}^{\omega,[1, r]}\langle | \mathbf{w}|+\nu+(r+1) \rho\rangle$ for some $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right) \in W^{r}, \boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \in \mathfrak{s}_{n}^{r}$ such that $w_{h} \cdot \lambda_{h} \preceq \mathbf{c}$ $\left(\right.$ resp. $\left.w_{h} \cdot \lambda_{h} \prec \mathbf{c}\right)$. $\left(\right.$ Here $\boldsymbol{\omega}=\left(\dot{w}_{1}, \dot{w}_{2}, \ldots, \dot{w}_{r}\right)$.)

Let ${ }_{h} \mathcal{M} \preceq \tilde{\mathcal{B}}^{r+1}$ be the subcategory of ${ }_{h} \mathcal{D} \preceq \tilde{\mathcal{B}}^{r+1}$ consisting of perverse sheaves. Let ${ }_{h} \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{r+1}$ be the subcategory of ${ }_{h} \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{r+1}$ consisting of perverse sheaves.

If $K \in \mathcal{M}_{m}\left(\tilde{\mathcal{B}}^{r+1}\right)$ is pure of weight 0 and is also in ${ }_{h} \mathcal{D} \preceq \tilde{\mathcal{B}}^{r+1}$, we denote by $\underline{K}$ the sum of all simple subobjects of $K$ (without mixed structure) which are not in ${ }_{h} \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{r+1}$.
4.13. Let $Z_{s} \xrightarrow{\eta} \mathcal{Y} \xrightarrow{\vartheta} \tilde{\mathcal{B}}^{4}$ be as in 4.4 with $r=3, f=0$. We define $\mathfrak{b}: \mathcal{D}\left(Z_{s}\right) \rightarrow \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$ and $\mathfrak{b}: \mathcal{D}_{m}\left(Z_{s}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ by

$$
\mathfrak{b}(L)=p_{03!} \vartheta!\eta^{*} L .
$$

We show:
(a) If $L \in \mathcal{D} \preceq\left(Z_{s}\right)$ then $\mathfrak{b}(L) \in \mathcal{D} \preceq \tilde{\mathcal{B}}^{2}$.
(b) If $L \in \mathcal{D}^{\prec}\left(Z_{s}\right)$ then $\mathfrak{b}(L) \in \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{2}$.
(c) If $L \in \mathcal{M} \preceq\left(Z_{s}\right)$ and $h>5 \rho+2 \nu+2 a$ then $(\mathfrak{b}(L))^{h} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

We can assume that $L=\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}$ where $z \cdot \lambda \in I_{n}^{s}, z \cdot \lambda \preceq \mathbf{c}$. Applying 4.5(a) with $P=\eta^{*} \mathcal{L}_{\lambda, s}^{\dot{i} \sharp}$ we see that

$$
\mathfrak{b}\left(\mathcal{L}_{\lambda, s}^{\dot{z} \sharp}\right) \approx\left\{L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{z}, \dot{y}^{-1},\{2\}}\langle-| z|-2 \nu\rangle ; y \in W\right\},
$$

hence

$$
\mathfrak{b}\left(\mathbb{L}_{\lambda, s}^{\dot{~}}\right) \approx\left\{L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{z}, \dot{y}^{-1},\{2\}}\langle-\nu+\rho\rangle ; y \in W\right\} .
$$

To prove (a) it is enough to show that for any $y \in W$ we have

$$
L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{y}, \dot{y}^{-1},\{2\}} \in \mathcal{D}^{\preceq} \tilde{\mathcal{B}}^{2} .
$$

When $z \cdot \lambda \in \mathbf{c}$ this follows from [21, 2.10(a)]. When $z \cdot \lambda \prec \mathbf{c}$ this again follows from [21, 2.10(a)], applied to the two-sided cell containing $z \cdot \lambda$ instead of $\mathbf{c}$.

The same argument proves (b). To prove (c) we can assume that $z \cdot \lambda \in \mathbf{c}$; it is enough to prove that for any $y \in W$ we have

$$
\left(L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{z}, \dot{y}^{-1},\{2\}}\langle-\nu+\rho\rangle\right)^{h} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}
$$

if $h>5 \rho+2 \nu+2 a$ or that

$$
\left(L_{\mathbf{e}^{-s}(\lambda),, \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}) \dot{,}, \dot{y}^{-1},\{2\}}\right)^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}
$$

if $j>6 \rho+\nu+2 a$. This follows from [21, 2.20(a)]. This completes the proof of (a), (b), (c).

We define $\underline{\mathfrak{b}}: \mathcal{C}_{0}^{\mathbf{c}}\left(Z_{s}\right) \rightarrow \mathcal{C}_{0}^{\mathbf{c}}\left(\tilde{\mathcal{B}}^{2}\right)$ by

$$
\underline{\mathfrak{b}}(L)=\underline{g r_{5 \rho+2 \nu+2 a}\left((\mathfrak{b}(L))^{5 \rho+2 \nu+2 a}\right)}((5 \rho+2 \nu+2 a) / 2) .
$$

We show:
(d) Let $z \cdot \lambda \in \mathbf{c}^{s}$. If $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$, then

$$
\underline{\mathfrak{b}}\left(\mathbb{L}_{\hat{\lambda}, s}^{\dot{\tilde{n}}}\right)=\oplus_{y \in W ; y \cdot \lambda \in \mathbf{c} \mathbf{L}_{\mathbf{e}^{-s}(\lambda)} \mathrm{e}^{-s}(\dot{y})} \mathbf{L}_{\dot{\lambda}} \dot{\dot{\tilde{}}} \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} .
$$

$$
\text { If } \mathbf{e}^{s}(\mathbf{c}) \neq \mathbf{c}, \text { then } \underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)=0
$$

We shall apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{m}\left(Y_{1}\right) \rightarrow \mathcal{D}_{m}\left(Y_{2}\right)$ replaced by $p_{03!}: \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{4}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ and with $\mathcal{D} \preceq\left(Y_{1}\right), \mathcal{D} \preceq\left(Y_{2}\right)$ replaced by ${ }_{2} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{2}\right)$, ${ }_{2} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{4}\right)$, see 4.12. We shall take $\mathbf{X}$ in loc.cit. equal to $\vartheta!\eta^{*} \mathbb{L}_{\hat{\lambda}, s}^{\dot{D}}$. The conditions of loc.cit. are satisfied: those concerning $\mathbf{X}$ are satisfied with $c^{\prime}=$ $2 \nu+3 \rho$. (For $h>|z|+3 \nu+4 \rho$ we have $\Xi^{h}=0$ that is $(\mathbf{X}[-|z|-\nu-\rho])^{h}=0$, with $\Xi$ as in 4.8(c). Hence if $j>2 \nu+3 \rho$ we have $\mathbf{X}^{j}=0$.) The conditions concerning $p_{03!}$ are satisfied with $c=2 \rho+2 a$. (This follows from [21, 2.20(a)]) Since $\mathfrak{b}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)=p_{03!} \mathbf{X}$ and $c+c^{\prime}=5 \rho+2 \nu+2 a$, we see that
$\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\dot{n}}}\right)=\underline{g r_{2 \rho+2 a}\left(p_{03!}\left(\left(g r_{2 \nu+3 \rho}\left(\left(\vartheta_{!} \eta^{*} \mathbb{L}_{\lambda, s}^{\dot{\dot{\lambda}}}\right)^{2 \nu+3 \rho}\right)((2 \nu+3 \rho) / 2)\right)\right)^{2 \rho+2 a}\right)}(\rho+a)$.
Using 4.11(a), we see that (with $\Xi$ as in 4.11(a) and $k=|z|+3 \nu+4 \rho$ ) we have

$$
\begin{aligned}
& \frac{g r_{2 \nu+3 \rho}\left(\left(\vartheta!\eta^{*} \mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)^{2 \nu+3 \rho}\right)((2 \nu+3 \rho) / 2)}{g r_{2 \nu+3 \rho}\left((\Xi\langle | z|+\nu+\rho\rangle)^{2 \nu+3 \rho}\right)}((2 \nu+3 \rho) / 2)
\end{aligned}
$$

$$
=\underline{g r_{0}\left(\Xi^{k}(k / 2)\right.}=\oplus_{y \in W} M_{\mathrm{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathrm{e}^{-s}(\tilde{y}), \dot{,}, \dot{y}^{-1}[1,3]}\langle 2| y|+|z|+\nu+4 \rho\rangle .
$$

Hence

$$
\begin{aligned}
& \underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\Sigma}}\right)=\underline{g r_{2 \rho+2 a}\left(\oplus_{y \in W}\left(p_{03!} M_{\mathrm{e}^{-s}(\lambda), \lambda, \lambda, y(\lambda)}^{\mathrm{e}^{-s}(\dot{,}), \dot{y}^{-1}[1,3]}\langle 2| y|+|z|+\nu+4 \rho\rangle\right)^{2 \rho+2 a}\right)}(\rho+a) \\
& =\underline{g r_{2 \rho+2 a}\left(\oplus_{y \in W}\left(L_{\mathrm{e}^{-s}(\lambda), \lambda, \lambda,(\lambda)}^{\mathrm{e}^{-s}(\hat{y}), \dot{,}, \dot{y}^{-1}(1,3]}\right)^{6 \rho+\nu+2 a}((\nu+4 \rho) / 2)\right)(\rho+a) .}
\end{aligned}
$$

Using [21, $2.26(\mathrm{a})]$, we see that in the last direct sum, the contribution of $y \in W$ is 0 unless $y \cdot \lambda \in \mathbf{c}$ and $\mathbf{e}^{-s}(y) \cdot \mathbf{e}^{-s}(\lambda) \in \mathbf{c}$. We see that the last direct sum is zero unless $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$. If $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$, for the terms corresponding to $y$ such that $y \cdot \lambda \in \mathbf{c}$, we may apply [21, 2.24(a)]. Now (d) follows.
4.14. We set $\mathbf{Z}_{\mathbf{c}}=\left\{s^{\prime} \in \mathbf{Z} ; \mathbf{e}^{s^{\prime}}(\mathbf{c})=\mathbf{c}\right\}$. This is a subgroup of $\mathbf{Z}$. In the remainder of this section we assume that $s \in \mathbf{Z}_{\mathbf{c}}$.

Let $Z_{s} \stackrel{!}{\longleftarrow}!\mathbf{Y}$ be as in 4.4 with $r=3, f=0$. Let ! $\tilde{\mathcal{B}}^{4}$ be the space of orbits of the free $\mathbf{T}^{2}$-action on $\tilde{\mathcal{B}}^{4}$ given by

$$
\left(t_{1}, t_{2}\right):\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} t_{1} \mathbf{U}, x_{2} t_{2} \mathbf{U}, x_{3} \mathbf{U}\right) ;
$$

let $!\vartheta:!\mathcal{Y} \rightarrow!\tilde{\mathcal{B}}^{4}$ be the map induced by $\vartheta$. We define $\mathfrak{b}^{\prime}: \mathcal{D}\left(Z_{s}\right) \rightarrow \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$ and $\mathfrak{b}^{\prime}: \mathcal{D}_{m}\left(Z_{s}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ by

$$
\mathfrak{b}^{\prime}(L)=p_{03!}!\vartheta_{!}!\eta^{*} L .
$$

(The map ! $\tilde{\mathcal{B}}^{4} \rightarrow \tilde{\mathcal{B}}^{2}$ induced by $p_{03}: \tilde{\mathcal{B}}^{4} \rightarrow \tilde{\mathcal{B}}^{2}$ is denoted again by $p_{03}$.) Let $\tau: \mathcal{Y} \rightarrow \mathfrak{Y}$ be as in 4.4 (it is a principal $\mathbf{T}^{2}$-bundle). We have the following results.
(a) If $L \in \mathcal{D} \preceq\left(Z_{s}\right)$, then $\mathfrak{b}^{\prime}(L) \in \mathcal{D} \leq \tilde{\mathcal{B}}^{2}$.
(b) If $L \in \mathcal{D}^{\prec}\left(Z_{s}\right)$, then $\mathfrak{b}^{\prime}(L) \in \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{2}$.
(c) If $L \in \mathcal{M} \preceq\left(Z_{s}\right)$ and $h>\rho+2 \nu+2 a$, then $\left(\mathfrak{b}^{\prime}(L)\right)^{h} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

We can assume that $L=\mathbb{L}_{\lambda, s}^{\dot{\sum}}$ where $z \cdot \lambda \in I_{n}^{s}, z \cdot \lambda \preceq \mathbf{c}$. A variant of the proof of 4.5(a) gives:

$$
\mathfrak{b}^{\prime}\left(\mathcal{L}_{\lambda, s}^{i \sharp}\right) \approx\left\{L^{\prime \sharp} L_{\mathrm{e}^{-s}(\lambda), \lambda, y, y(\lambda)}^{\mathrm{e}^{-s}(\dot{y}), \dot{y}^{-1},\{2\}}\langle-| z|-2 \nu\rangle ; y \in W\right\},
$$

hence

$$
\mathfrak{b}^{\prime}\left(\mathbb{L}_{\lambda, s}^{\dot{i} \sharp}\right) \approx\left\{L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{z}, \dot{y}^{-1},\{2\}}\langle-\nu+\rho\rangle ; y \in W\right\} .
$$

To prove (a) it is enough to show that for any $y \in W$ we have

$$
{ }^{\prime} L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{,}, \dot{y}^{-1},\{2\}} \in \mathcal{D}^{\preceq} \tilde{\mathcal{B}}^{2} .
$$

When $z \cdot \lambda \in \mathbf{c}$ this follows from [21, 2.10(c)]. When $z \cdot \lambda \prec \mathbf{c}$ this again follows from [21, 2.10(c)], applied to the two-sided cell containing $z \cdot \lambda$ instead of $\mathbf{c}$. The same argument proves (b). To prove (c) we can assume that $z \cdot \lambda \in \mathbf{c}$; it is enough to prove that for any $y \in W$ we have

$$
\left({ }^{\prime} L_{\mathrm{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathrm{e}^{-s}(\dot{y}), \dot{y}, \dot{y}^{-1},\{2\}}\langle-\nu+\rho\rangle\right)^{h} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}
$$

if $h>\rho+2 \nu+2 a$ or that $\left({ }^{\prime} L_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda)}^{\mathbf{e}^{-s}(\dot{y}), \dot{y}, \dot{y}^{-1},\{2\}}\right)^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$ if $j>2 \rho+\nu+2 a$. This follows from [21, 2.20(c)]. This completes the proof of (a), (b), (c).

We define $\underline{\mathfrak{b}^{\prime}}: \mathcal{C}_{0}^{\mathbf{c}}\left(Z_{s}\right) \rightarrow \mathcal{C}_{0}^{\mathbf{c}}\left(\tilde{\mathcal{B}}^{2}\right)$ by

$$
\underline{\mathfrak{b}}^{\prime}(L)=\underline{g r_{\rho+2 \nu+2 a}}\left(\left(\mathfrak{b}^{\prime}(L)\right)^{\rho+2 \nu+2 a}\right)((\rho+2 \nu+2 a) / 2) .
$$

In the remainder of this subsection we fix $z \cdot \lambda \in \mathbf{c}^{s}$ and we set $L=\mathbb{L}_{\lambda, s}^{\dot{\tilde{~}}}$. We show:
(d) We have canonically $\underline{\mathfrak{b}}^{\prime}(L)=\underline{\mathfrak{b}}(L)$.

The method of proof is similar to that of [21, 2.22(a)]. It is based on the fact that

$$
\mathfrak{b}(L)=\mathfrak{b}^{\prime}(L) \otimes \mathfrak{L}^{\otimes 2}
$$

which follows from the definitions. We define $\mathcal{R}_{i, j}$ for $i \in[0,2 \rho+1]$ and $\mathcal{P}_{i, j}$ for $i \in[0,2 \rho]$ as in 21, 2.17], but replacing $L^{J},{ }^{\prime} L^{J}, r, \delta$ by $\mathfrak{b}(L), \mathfrak{b}^{\prime}(L), 3,2 \rho$. In particular, we have

$$
\mathcal{P}_{i, j}=\mathcal{X}_{4 \rho-i}(i-2 \rho) \otimes\left(\mathfrak{b}^{\prime}(L)\right)^{-4 \rho+i+j} \text { for } i \in[0,2 \rho]
$$

where $\mathcal{X}_{4 \rho-i}$ is a free abelian group of rank $\binom{2 \rho}{i}$ and $\mathcal{X}_{4 \rho}=\mathbf{Z}$. We have for any $j$ an exact sequence analogous to [21, 2.17(a)]:
(e) $\quad \cdots \rightarrow \mathcal{P}_{i, j-1} \rightarrow \mathcal{R}_{i+1, j} \rightarrow \mathcal{R}_{i, j} \rightarrow \mathcal{P}_{i, j} \rightarrow \mathcal{R}_{i+1, j+1} \rightarrow \mathcal{R}_{i, j+1} \rightarrow \ldots$,
and we have

$$
\mathcal{R}_{0, j}=(\mathfrak{b}(L))^{j}, \quad \mathcal{P}_{0, j}=\left(\mathfrak{b}^{\prime}(L)\right)^{j-4 \rho}(-2 \rho) .
$$

We show:
(f) If $i \in[0,2 \rho+1]$ then $\mathcal{R}_{i, j} \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$.
(g) If $i \in[0,2 \rho+1], j>6 \rho-i+\nu+2 a$ then $\mathcal{R}_{i, j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

We prove (f), (g) by descending induction on $i$ as in [21, 2.21]. If $i=2 \rho+1$ then, since $\mathcal{R}_{2 \rho+1, j}=0$, there is nothing to prove. Now assume that $i \in$ $[0,2 \rho]$. Assume that $\lambda^{\prime} \cdot w$ is such that $\mathbf{L}_{\lambda^{\prime}}^{\dot{w}}$ is a composition factor of $\mathcal{R}_{i, j}$ (without the mixed structure). We must show that $w \cdot \lambda^{\prime} \preceq \mathbf{c}$ and that, if $j>6 \rho-i+\nu+2 a$, then $w \cdot \lambda^{\prime} \prec \mathbf{c}$. Using (e), we see that $\mathbf{L}_{\lambda^{\prime}}^{\dot{w}}$ is a composition factor of $\mathcal{R}_{i+1, j}$ or of $\mathcal{P}_{i, j}$. In the first case, using the induction hypothesis we see that $w \cdot \lambda^{\prime} \preceq \mathbf{c}$ and that, if $j>6 \rho-i+\nu+2 a$ (so that $j>6 \rho-i-1+\nu+2 a$ ), then $w \cdot \lambda^{\prime} \prec \mathbf{c}$. In the second case, $\mathbf{L}_{\lambda^{\prime}}^{\dot{w}}$ is a composition factor of $\left(\mathfrak{b}^{\prime}(L)\right)^{-4 \rho+i+j}$. Using (a), (c), we see that $w \cdot \lambda^{\prime} \preceq \mathbf{c}$ and that, if $j>6 \rho-i+\nu+2 a$ (so that $-4 \rho+i+j>\nu+2 \rho+2 a$ ), then $w \cdot \lambda^{\prime} \prec \mathbf{c}$. This proves (f), (g).

We show:
(h) Assume that $i \in[0,2 \rho+1]$. Then $\mathcal{R}_{i, j}$ is mixed of weight $\leq j-i$.

We argue as in [21, 2.22] by descending induction on $i$. If $i=2 \rho+1$ there is nothing to prove. Assume now that $i \leq 2 \rho$. By Deligne's theorem, $\mathfrak{b}^{\prime}(L)$ is mixed of weight $\leq 0$; hence $\left(\mathfrak{b}^{\prime}(L)\right)^{-4 \rho+i+j}$ is mixed of weight $\leq-4 \rho+i+j$ and $\mathcal{X}_{4 \rho-i}(i-2 \rho) \otimes\left(\mathfrak{b}^{\prime}(L)\right)^{-4 \rho+i+j}$ is mixed of weight $\leq-4 \rho+i+j-2(i-2 \rho)=$ $j-i$. In other words, $\mathcal{P}_{i, j}$ is mixed of weight $\leq j-i$. Thus in the exact sequence $\mathcal{R}_{i+1, j} \rightarrow \mathcal{R}_{i, j} \rightarrow \mathcal{P}_{i, j}$ coming from (e) in which $\mathcal{R}_{i+1, j}$ is mixed of weight $\leq j-i-1<j-i$ (by the induction hypothesis) and $\mathcal{P}_{i, j}$ is mixed of weight $\leq j-i$, we must have that $\mathcal{R}_{i, j}$ is mixed of weight $\leq j-i$. This proves (h).

We now prove (d). From (e) we deduce an exact sequence

$$
g r_{j}\left(\mathcal{R}_{1, j}\right) \rightarrow g r_{j}\left(\mathcal{R}_{0, j}\right) \rightarrow g r_{j}\left(\mathcal{P}_{0, j}\right) \rightarrow g r_{j}\left(\mathcal{R}_{1, j+1}\right)
$$

By (h) we have $g r_{j}\left(\mathcal{R}_{1, j}\right)=0$. We have $g r_{j}\left(\mathcal{R}_{0, j}\right)=g r_{j}\left(\mathfrak{b}(L)^{j}\right), g r_{j}\left(\mathcal{P}_{0, j}\right)=$ $g r_{j}\left(\left(\mathfrak{b}^{\prime}(L)\right)^{-4 \rho+j}(-2 \rho)\right)$. Moreover, by $(\mathrm{g})$ we have $\mathcal{R}_{1, j+1} \in \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{2}$ since
$j+1>6 \rho-1+\nu+2 a$. It follows that $g r_{j}\left(\mathcal{R}_{1, j+1}\right) \in \mathcal{D}^{\prec} \tilde{\mathcal{B}}^{2}$. Thus the exact sequence above induces an isomorphism as in (d).

Let $p_{i j}^{\prime}: \tilde{\mathcal{B}}^{3} \rightarrow \tilde{\mathcal{B}}^{2}$ be the projection to the $i j$-coordinate, where $i j$ is 12, 23 or 13. Let

$$
R=\mathbf{T} \backslash\left\{\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3}^{\prime} \mathbf{U}, \gamma\right) \in \tilde{\mathcal{B}}^{4} \times G_{s} ; \gamma \in x_{2} \mathbf{U} \tau^{s} x_{1}^{-1}\right\}
$$

where $\mathbf{T}$ acts freely by

$$
t:\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3}^{\prime} \mathbf{U}, \gamma\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{e}^{-s}(t) \mathbf{U}, x_{2} t \mathbf{U}, x_{3}^{\prime} \mathbf{U}, \gamma\right)
$$

We have cartesian diagrams

where

$$
\begin{aligned}
& d_{1}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right)=\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, \gamma x_{0} \tau^{-s} \mathbf{U}, \gamma\right),\right. \\
&\left.\left(\gamma x_{0} \tau^{-s} \mathbf{U}, x_{3} \mathbf{U}\right)\right), \\
& d_{2}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right)=\left(\left(x_{0} \mathbf{U}, \gamma^{-1} x_{3} \tau^{s} \mathbf{U}\right),\right. \\
&\left.\left(\gamma^{-1} x_{3} \tau^{s} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right)\right), \\
& c_{1}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right)=\left(x_{0} \mathbf{U}, \gamma x_{0} \tau^{-s} \mathbf{U}, x_{3} \mathbf{U}\right), \\
& c_{2}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right)=\left(x_{0} \mathbf{U}, \gamma^{-1} x_{3} \tau^{s} \mathbf{U}, x_{3} \mathbf{U}\right), \\
& p^{\prime}=\left(p_{12}^{\prime}, p_{23}^{\prime}\right), \quad s_{1}=p_{03}^{\prime} \vartheta \times 1, \quad s_{2}=1 \times p_{03}^{\prime} \vartheta
\end{aligned}
$$

It follows that $p^{\prime *} s_{1!}=c_{1!} d_{1}^{*}, p^{* *} s_{2!}=c_{2!} d_{2}^{*}$. Now let $L \in \mathcal{D}\left(Z_{s}\right), L^{\prime} \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$, $\tilde{L}^{\prime} \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$, We have $\eta^{*} L \boxtimes L^{\prime} \in \mathcal{D}\left({ }^{\prime} \mathcal{Y} \times \tilde{\mathcal{B}}^{2}, \tilde{L}^{\prime} \boxtimes \eta^{*} L \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2} \times{ }^{\prime} \mathcal{Y}\right)\right.$. We
have
$p_{12}^{\prime}{ }^{*} \mathfrak{b}^{\prime}(L) \otimes p_{23}^{\prime}{ }^{*} L^{\prime}=p^{* *} s_{1!}\left(\eta^{*} L \boxtimes L^{\prime}\right)=c_{1!} d_{1}^{*}\left(\eta^{*} L \boxtimes L^{\prime}\right)=c_{1!}\left(e_{1}^{*} L \boxtimes e_{1}^{\prime *} L^{\prime}\right)$,
$p_{12}^{\prime}{ }^{*} \tilde{L}^{\prime} \otimes p_{23}^{\prime}{ }^{*} \mathfrak{b}^{\prime}(L)=p^{\prime *} s_{2!}\left(\tilde{L}^{\prime} \boxtimes \eta^{*} L\right)=c_{2!} d_{2}^{*}\left(\tilde{L}^{\prime} \boxtimes \eta^{*} L\right)=c_{2!}\left(e_{2}^{\prime *} \tilde{L}^{\prime} \boxtimes e_{1}{ }^{*} L\right)$,
where

$$
\begin{aligned}
e_{1} & : R \rightarrow Z_{s} \text { is }\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto \epsilon_{s}\left(x_{1} \mathbf{U}, x_{2} \mathbf{U}\right), \\
e_{1}^{\prime} & : R \rightarrow \tilde{\mathcal{B}}^{2} \text { is }\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto\left(\gamma x_{0} \tau^{-s} \mathbf{U}, x_{3} \mathbf{U}\right), \\
e_{2}^{\prime} & : R \rightarrow \tilde{\mathcal{B}}^{2} \text { is }\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto\left(x_{0} \mathbf{U}, \gamma^{-1} x_{3} \tau^{s} \mathbf{U}\right)
\end{aligned}
$$

Applying $p_{13!}^{\prime}$ we see that

$$
\mathfrak{b}^{\prime}(L) \circ L^{\prime}=\tilde{c}_{!}\left(e_{1}^{*} L \boxtimes e_{1}^{\prime *} L\right), \tilde{L}^{\prime} \circ \mathfrak{b}^{\prime}(L)=\tilde{c}_{!}\left(e_{2}^{\prime *} L \boxtimes e_{1}^{*} L\right),
$$

where $\tilde{c}: R \rightarrow \tilde{\mathcal{B}}^{2}$ is $\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto\left(x_{0} \mathbf{U}, x_{3} \mathbf{U}\right)$.
We define $\mathbf{e}: \tilde{\mathcal{B}}^{2} \rightarrow \tilde{\mathcal{B}}^{2}$ by $\mathbf{e}(x \mathbf{U}, y \mathbf{U})=(\mathbf{e}(x) \mathbf{U}, \mathbf{e}(y) \mathbf{U})$. We show:
(i) If in addition $L^{\prime} \in \mathcal{M}\left(\tilde{\mathcal{B}}^{2}\right)$ is $G$-equivariant, then we have canonically

$$
\mathfrak{b}^{\prime}(L) \circ L^{\prime}=\left(\mathbf{e}^{s *} L^{\prime}\right) \circ \mathfrak{b}^{\prime}(L)
$$

We take $\tilde{L}^{\prime}=\mathbf{e}^{s *} L^{\prime}$. It is enough to show that $\tilde{c}_{!}\left(e_{1}^{*} L \boxtimes e_{1}^{\prime *} L^{\prime}\right)=\tilde{c}_{!}\left(e_{2}^{\prime *} \tilde{L}^{\prime} \boxtimes\right.$ $\left.e_{1}^{*} L\right)$. Hence it is enough to show that we have canonically $e_{1}^{\prime *} L^{\prime}=e_{2}^{\prime *} \tilde{L}^{\prime}$ that is, $e_{1}^{\prime *} L^{\prime}=e_{2}^{\prime \prime *} L^{\prime}$ where $e_{2}^{\prime \prime}=\mathbf{e}^{s} e_{2}^{\prime}: R \rightarrow \tilde{\mathcal{B}}^{2}$. We identify $\tilde{G}_{s}$ with $G$ by $\gamma \mapsto g$ where $\gamma=g \tau^{s}$. Then $e_{1}^{\prime}: R \rightarrow \tilde{\mathcal{B}}^{2}$ is $\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto$ $\left(g \mathbf{e}^{s}\left(x_{0}\right) \mathbf{U}, x_{3} \mathbf{U}\right), e_{2}^{\prime \prime}: R \rightarrow \tilde{\mathcal{B}}^{2}$ is $\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, \gamma\right) \mapsto\left(\mathbf{e}^{s}\left(x_{0}\right) \mathbf{U}\right.$, $\left.g^{-1} x_{3} \mathbf{U}\right)$. The equality $e_{1}^{\prime *} L^{\prime}=e_{2}^{\prime \prime *} L^{\prime}$ follows from the $G$-equivariance of $L^{\prime}$. This proves (i).

We show:
(j) If $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}, L^{\prime} \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$, then we have canonically $\underline{\mathfrak{b}}(L) \underline{\circ} L^{\prime}=\left(\mathbf{e}^{s *} L^{\prime}\right) \underline{\mathfrak{b}}(L)$.

By (d), it is enough to prove that $\underline{\mathfrak{b}}^{\prime}(L) \propto L^{\prime}=\left(\mathbf{e}^{s *} L^{\prime}\right) \underline{\mathfrak{b}}^{\prime}(L)$. Using (i) together with (a), (b), (c) and results in [21, 2.23], we see that both sides are equal to

$$
\underline{g r_{\rho+\nu+3 a}\left(\tilde{c}_{!}\left(e_{1}^{*} L \otimes e_{1}^{\prime *} L^{\prime}\right)\right)^{\rho+\nu+3 a}}((\rho+\nu+3 a) / 2)
$$

$$
=\underline{\left.g r_{\rho+\nu+3 a} \tilde{c}_{!}\left(e_{1}^{*} L \otimes e_{2}^{\prime \prime *} L^{\prime}\right)\right)^{\rho+\nu+3 a}}((\rho+\nu+3 a) / 2) .
$$

4.15. Let

$$
\left.\mathfrak{Z}_{s}=\left\{\left(z_{0} \mathbf{U}, z_{1} \mathbf{U}, z_{2} \mathbf{U}, z_{3} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{4} \times \tilde{G}_{s} ; \gamma \in z_{2} \mathbf{B} \tau^{s} z_{1}^{-1}\right\} .
$$

Define $\tilde{\vartheta}: \mathfrak{Z}_{s} \rightarrow \tilde{\mathcal{B}}^{4}$ by $\left(\left(z_{0} \mathbf{U}, z_{1} \mathbf{U}, z_{2} \mathbf{U}, z_{3} \mathbf{U}\right), \gamma\right) \mapsto\left(z_{0} \mathbf{U}, z_{1} \mathbf{U}, z_{2} \mathbf{U}, z_{3} \mathbf{U}\right)$.
Let

$$
\begin{array}{r}
' \mathcal{Y}=\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{5} \times \tilde{G}_{s} ; \gamma \in x_{3} \mathbf{U} \tau^{s} x_{0}^{-1},\right. \\
\left.\gamma \in x_{2} \mathbf{B} \tau^{s} x_{1}^{-1}\right\} \\
{ }^{\prime \prime} \mathcal{Y}=\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{5} \times \tilde{G}_{s} ; \gamma \in x_{4} \mathbf{U} \tau^{s} x_{1}^{-1}\right. \\
\left.\gamma \in x_{3} \mathbf{B} \tau^{s} x_{2}^{-1}\right\} .
\end{array}
$$

Define ${ }^{\prime} \vartheta:{ }^{\prime} \mathcal{Y} \rightarrow \tilde{\mathcal{B}}^{5},{ }^{\prime \prime} \vartheta:{ }^{\prime \prime} \mathcal{Y} \rightarrow \tilde{\mathcal{B}}^{5}$ by

$$
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right)
$$

We have isomorphisms ${ }^{\prime} \mathfrak{c}:{ }^{\prime} \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}_{s},{ }^{\prime \prime} \mathfrak{c}:{ }^{\prime \prime} \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}_{s}$ given by

$$
\begin{aligned}
& { }^{\prime} \mathfrak{c}:\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \mapsto\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right), \\
& { }^{\prime \prime} \mathfrak{c}:\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \mapsto\left(\left(x_{0} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) .
\end{aligned}
$$

Define ${ }^{\prime} d: \tilde{\mathcal{B}}^{5} \rightarrow \tilde{\mathcal{B}}^{4},{ }^{\prime \prime} d: \tilde{\mathcal{B}}^{5} \rightarrow \tilde{\mathcal{B}}^{4}$ by

$$
\begin{aligned}
& { }^{\prime} d:\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right) \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{4} \mathbf{U}\right), \\
& { }^{\prime \prime} d:\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right) \mapsto\left(x_{0} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right) .
\end{aligned}
$$

We fix $w, u$ in $W$ and $\lambda, \lambda^{\prime}$ in $\mathfrak{s}_{n}$. We assume that $w \cdot \lambda \in I_{n}^{s}$. The smooth subvarieties

$$
\begin{aligned}
\mathcal{U} & =\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \in{ }^{\prime} \mathcal{Y} ; x_{1}^{-1} x_{2} \in G_{w}, x_{3}^{-1} x_{4} \in G_{\mathbf{e}^{s}(u)}\right\} \\
\mathcal{U} & =\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \in \mathfrak{Z}_{s} ; x_{1}^{-1} x_{2} \in G_{w}, x_{0}^{-1} g^{-1} x_{3} \in G_{u}\right\} \\
{ }^{\prime} \mathcal{U} & =\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) \in{ }^{\prime \prime} \mathcal{Y} ; x_{2}^{-1} x_{3} \in G_{w}, x_{0}^{-1} x_{1} \in G_{u}\right\}
\end{aligned}
$$

of ${ }^{\prime} \mathcal{Y}, \mathfrak{Z}_{s},{ }^{\prime \prime} \mathcal{Y}$ correspond to each other under the isomorphisms ${ }^{\prime} \mathcal{Y} \xrightarrow{\prime} \rightarrow \mathcal{Z}_{s} \stackrel{\prime \prime}{\leftarrow}{ }^{\leftarrow} \prime \mathcal{Y}$. Moreover, the maps ' $\sigma:{ }^{\prime} \mathcal{U} \rightarrow Z_{s}, \sigma: \mathcal{U} \rightarrow Z_{s}$, " $\sigma:{ }^{\prime \prime} \mathcal{U} \rightarrow Z_{s}$ given by

$$
\begin{aligned}
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) & \mapsto \epsilon_{s}\left(x_{1} \mathbf{U}, x_{2} \mathbf{U}\right), \\
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) & \mapsto \epsilon_{s}\left(x_{1} \mathbf{U}, x_{2} \mathbf{U}\right) \\
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) & \mapsto \epsilon_{s}\left(x_{2} \mathbf{U}, x_{3} \mathbf{U}\right)
\end{aligned}
$$

correspond to each other under the isomorphisms $\mathcal{Y} \xrightarrow{c} \underset{\mathcal{Z}}{s} \stackrel{\prime \prime}{\leftarrow}$
Also, the maps ' $\tilde{\sigma}:{ }^{\prime} \mathcal{U} \rightarrow \tilde{\mathcal{O}}_{\mathrm{e}^{s}(u)}, \tilde{\sigma}: \mathcal{U} \rightarrow \tilde{\mathcal{O}}_{\mathrm{e}^{s}(u)}$, given by

$$
\begin{aligned}
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) & \mapsto\left(x_{3} \mathbf{U}, x_{4} \mathbf{U}\right) \\
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) & \mapsto\left(\gamma x_{0} \tau^{-s} \mathbf{U}, x_{3} \mathbf{U}\right)
\end{aligned}
$$

correspond to each other under the isomorphism ${ }^{\prime} \mathcal{Y} \xrightarrow{\prime} \mathcal{Z}_{s}$ and the maps $\tilde{\sigma}_{1}: \mathcal{U} \rightarrow \tilde{\mathcal{O}}_{u}$, " $\tilde{\sigma}: " \mathcal{U} \rightarrow \tilde{\mathcal{O}}_{u}$ given by

$$
\begin{aligned}
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) & \mapsto\left(x_{0} \mathbf{U}, \gamma^{-1} x_{3} \tau^{s} \mathbf{U}\right), \\
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}, x_{4} \mathbf{U}\right), \gamma\right) & \mapsto\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}\right),
\end{aligned}
$$

correspond to each other under the isomorphism $\mathcal{Z}_{s} \stackrel{\prime \prime}{\leftarrow} \stackrel{\mathcal{L}}{\leftarrow} \mathcal{Y}$. It follows that the local systems ' $\sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{u}}, \sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{u}}$, " $\sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{u}}$ correspond to each other under
 correspond to each other under the isomorphism ${ }^{\mathcal{Y}}{ }^{\prime} \xrightarrow{C} \mathfrak{Z}_{s}$; the local systems $\tilde{\sigma}_{1}^{*} L_{\lambda^{\prime}}^{\dot{u}}, " \tilde{\sigma}^{*} L_{\lambda^{\prime}}^{\dot{u}}$ correspond to each other under the isomorphism $\mathfrak{Z}_{s} " \stackrel{c}{\leftarrow} " \mathcal{Y}$. Moreover, by the $G$-equivariance of $L_{\lambda^{\prime}}^{\dot{\prime}}$, we have as in the proof of 4.14(i): $\tilde{\sigma}^{*} L_{\mathrm{e}^{s}\left(\lambda^{\prime}\right)}^{\mathrm{e}^{s}(i)}=\tilde{\sigma}_{1}^{*}\left(L_{\lambda^{\prime}}^{i}\right)$.

Let ' $K, K,{ }^{\prime \prime} K$ be the intersection cohomology complex of the closure of ${ }^{\prime} \mathcal{U}, \mathcal{U},{ }^{\prime} \mathcal{U}$ respectively with coefficients in the local system
$' \sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{u}} \otimes^{\prime} \tilde{\sigma}^{*} L_{\mathrm{e}^{s}\left(\lambda^{\prime}\right)}^{\mathrm{e}^{s}(i)}, \sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{\omega}} \otimes \tilde{\sigma}^{*} L_{\mathrm{e}^{s}\left(\lambda^{\prime}\right)}^{\mathrm{e}^{s}(i)}=\sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{\omega}} \otimes \tilde{\sigma}_{1}^{*}\left(L_{\lambda^{\prime}}^{\dot{u}}\right),{ }^{\prime \prime} \sigma^{*} \mathcal{L}_{\lambda, s}^{\dot{w}} \otimes^{\prime \prime} \tilde{\sigma}^{*} L_{\lambda^{\prime}}^{\dot{u}}$,
on ${ }^{\prime} \mathcal{U}, \mathcal{U},{ }^{\prime} \mathcal{U}$ (respectively), extended by 0 on the complement of this closure in ${ }^{\prime} \mathcal{Y}, \mathfrak{Z}_{s},{ }^{\prime \prime} \mathcal{Y}$. We see that ' $K, K,{ }^{\prime \prime} K$ correspond to each other under the

this and the commutative diagram

we see that
(a)

$$
{ }^{\prime} d_{!}^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)={ }^{\prime \prime} d_{!}^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)
$$

(Both sides are equal to $\tilde{\vartheta}_{!} K$.)
4.16. In this subsection we study the functor ' $d_{!}: \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{4}\right)$. Let $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right), \boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in \mathfrak{s}_{n}^{4}, \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ (with $\left.\omega_{i} \in \kappa_{0}^{-1}\left(w_{i}\right)\right)$. Assume that $w_{4} \cdot \lambda_{4} \preceq \mathbf{c}$. Let $K=M_{\lambda}^{\omega,[1,4]}\langle | \mathbf{w}|+5 \rho+\nu\rangle \in$ $\mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right)$. As in 21, 3.16], properties (a), (b), (c), (d) hold:
(a) If $h>a+\rho$ then $\left({ }^{\prime} d!K\right)^{h} \in^{\prime} \mathcal{M}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$. Moreover,

$$
\begin{array}{r}
\underline{g r_{a+\rho}\left(\left(\left(^{\prime} d K\right)^{a+\rho}\right)\right.}((a+\rho) / 2)=\oplus_{y^{\prime} \in W ; y^{\prime-1} \cdot \lambda_{4} \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda_{4}}^{j^{\prime-1}}, \mathbf{L}_{\lambda_{3}}^{\omega_{3}} \mathrm{~L}_{\lambda_{4}}^{\omega_{4}}\right) \\
\otimes M_{\lambda_{1}, \lambda_{2}, \lambda_{4}}^{\omega_{1}, \omega_{2}, \dot{j}^{\prime-1},[1,3]}\langle | w_{1}\left|+\left|w_{2}\right|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{array}
$$

(b) If $K \in{ }_{4} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{5}\right)$ then ${ }^{\prime} d_{!}(K) \in{ }_{4} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{4}\right)$.
(c) If $K \in{ }_{4} \mathcal{D}^{\prec}\left(\tilde{\mathcal{B}}^{5}\right)$ then ${ }^{\prime} d_{!}(K) \in{ }_{4} \mathcal{D}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$.
(d) If $K \in{ }_{4} \mathcal{M} \preceq\left(\tilde{\mathcal{B}}^{5}\right)$ and $h>a+\rho$ then $\left({ }^{\prime} d_{!}(K)\right)^{h} \in{ }_{4} \mathcal{M}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$.
4.17. In this subsection we study the functor " $d!: \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{4}\right)$. Let $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right), \boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in \mathfrak{s}_{n}^{4}, \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ (with $\left.\omega_{i} \in \kappa_{0}^{-1}\left(w_{i}\right)\right)$. Assume that $w_{1} \cdot \lambda_{1} \preceq \mathbf{c}$. Let $K=M_{\lambda}^{\omega,[1,4]}\langle | \mathbf{w}|+5 \rho+\nu\rangle \in$ $\mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right)$. As in [21, 3.17], properties (a), (b), (c), (d) hold:
(a) If $h>a+\rho$ then $\left({ }^{\prime \prime} d_{!} K\right)^{h} \in{ }^{\prime} \mathcal{M}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$. Moreover,

$$
\begin{array}{r}
\underline{g r_{a+\rho}\left(\left({ }^{\prime \prime} d!K\right)^{a+\rho}\right)}((a+\rho) / 2)=\oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda_{2} \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda_{2}}^{\dot{y}^{\prime}}, \mathbf{L}_{\lambda_{1} \bigcirc}^{\omega_{1}} \mathbf{L}_{\lambda_{2}}^{\omega_{2}}\right) \\
\otimes M_{\lambda_{2}, \lambda_{3}, \lambda_{4}}^{j^{\prime}, \omega_{3}, \omega_{4},[1,3]}\langle | w_{3}\left|+\left|w_{4}\right|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{array}
$$

(b) If $K \in{ }_{1} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{5}\right)$ then ${ }^{\prime \prime} d_{!}(K) \in{ }_{1} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{4}\right)$.
(c) If $K \in{ }_{1} \mathcal{D}^{\prec}\left(\tilde{\mathcal{B}}^{5}\right)$ then ${ }^{\prime \prime} d_{!}(K) \in{ }_{1} \mathcal{D}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$.
(d) If $K \in{ }_{1} \mathcal{M} \preceq\left(\tilde{\mathcal{B}}^{5}\right)$ and $h>a+\rho$ then $\left({ }^{\prime \prime} d_{!}(K)\right)^{h} \in{ }_{1} \mathcal{M}^{\prec}\left(\tilde{\mathcal{B}}^{4}\right)$.
4.18. Let $w \cdot \lambda \in I_{n}^{s}, u \cdot \lambda^{\prime} \in \mathbf{c}$. We shall apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{m}\left(Y_{1}\right) \rightarrow \mathcal{D}_{m}\left(Y_{2}\right)$ replaced by ${ }^{\prime} d_{!}: \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{4}\right)$ and with $\mathcal{D} \preceq\left(Y_{1}\right), \mathcal{D} \preceq\left(Y_{2}\right)$ replaced by ${ }_{4} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{5}\right),{ }_{4} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{4}\right)$, see 4.15 . We shall take $\mathbf{X}$ in loc.cit. equal to $\Xi=^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)$ as in $4.15,\left(w_{2}, w_{4}\right)=\left(w, \mathbf{e}^{s}(u)\right),\left(\lambda_{2}, \lambda_{4}\right)=$ $\left(\lambda, \mathbf{e}^{s}\left(\lambda^{\prime}\right)\right)$. The conditions of loc.cit. are satisfied: those concerning $\mathbf{X}$ are satisfied with $c^{\prime}=k=|w|+|u|+3 \nu+5 \rho$ (see 4.8(c)); those concerning $\Phi$ are satisfied with $c=a+\rho$ (see 4.16). We see that

$$
\begin{aligned}
& \frac{g r_{a+\rho+k}\left(\left({ }^{\prime} d!{ }^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{a+\rho+k}\right)((a+\rho+k) / 2)}{\left.\left.\quad=\underline{g r_{a+\rho}\left(\left({ }^{\prime} d!g r_{k}\left(\left(^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{k}\right)\right.\right.}(k / 2)\right)^{a+\rho}\right)}((a+\rho) / 2) .
\end{aligned}
$$

Using 4.11(a), we have:

$$
\begin{aligned}
\left.g r_{k}\left({ }^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{k}\right)(k / 2) & =\oplus_{y \in W} M_{\mathbf{e}^{-s}(\lambda), \lambda, y(\lambda), \mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{-s}\left(\dot{w}, \dot{y}^{-1}, \mathbf{e}^{s}(\dot{u}),[1,4]\right.}\langle 2| y|+|w|+|u|+5 \rho+\nu\rangle \\
& =\underline{g r_{k}\left({ }^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{k}(k / 2) .}
\end{aligned}
$$

Hence, using 4.16(a), we have

$$
\begin{aligned}
& \underline{g r_{a+\rho}\left(\left({ }^{\prime} d!\underline{g r_{k}\left(\left({ }^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{k}\right)}(k / 2)\right)^{a+\rho}\right)}((a+\rho) / 2) \\
& =\oplus_{y \in W} \oplus_{y^{\prime} \in W ; y^{\prime-1} \cdot \mathbf{e}^{s}\left(\lambda^{\prime}\right) \in \mathbf{c} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\dot{y}^{\prime-1}}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \underline{\varrho} \mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(\dot{u})}\right), ~\left(y^{\prime}\right)} \\
& \otimes M_{\mathbf{e}^{-s}(\lambda), \lambda, \mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathrm{e}^{-s}(\dot{y}), \dot{y^{\prime}},{ }^{\prime}-[1,3]}\langle | y\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{aligned}
$$

Since $y^{\prime-1} \cdot \mathbf{e}^{s}\left(\lambda^{\prime}\right) \in \mathbf{c}, \mathbf{e}^{s}(u) \cdot \mathbf{e}^{s}\left(\lambda^{\prime}\right) \in \mathbf{c}$ (recall that $\mathbf{e}^{s} \mathbf{c}=\mathbf{c}$ ), for $y \in W$ we have

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathrm{e}^{s}\left(\lambda^{\prime}\right)}^{\dot{y}^{\prime}-1}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \underline{\mathrm{O}}^{\left.\mathbf{L}_{\mathrm{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(i)}\right)=0}\right.
$$

unless $\mathbf{e}^{s}\left(\lambda^{\prime}\right)=y^{\prime}(\lambda)\left(\right.$ see [21, 4.6(b)]) and $y^{-1} \cdot y(\lambda) \in \mathbf{c}$ (see [21, 2.26(a)]) or equivalently, $y \cdot \lambda \in \mathbf{c}$. Thus we have
(a)

$$
\begin{aligned}
& \frac{g r_{a+\rho+k}\left(\left({ }^{\prime} d!!^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{a+\rho+k}\right)((a+\rho+k) / 2)}{=} \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c} \oplus_{y^{\prime} \in W ; y^{\prime-1} \cdot y^{\prime}(\lambda) \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \mathbf{L}^{\mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}(\dot{u})}\right)} \quad \otimes M_{\mathbf{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\mathrm{e}^{-s}(\dot{y}), \dot{w}, \dot{y}^{\prime-1},[1,3]}\langle | y\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{aligned}
$$

4.19. In the setup of 4.18 we shall apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{m}\left(Y_{1}\right) \rightarrow \mathcal{D}_{m}\left(Y_{2}\right)$ replaced by ${ }^{\prime \prime} d_{!}: \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{5}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{4}\right)$ and with $\mathcal{D} \preceq\left(Y_{1}\right), \mathcal{D} \preceq\left(Y_{2}\right)$ replaced by ${ }_{1} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{5}\right),{ }_{1} \mathcal{D} \preceq\left(\tilde{\mathcal{B}}^{4}\right)$, see 4.15 . We shall take $\mathbf{X}$ in loc.cit. equal to $\Xi={ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)$ as in 4.15, $\left(w_{1}, w_{3}\right)=(u, w),\left(\lambda_{1}, \lambda_{3}\right)=\left(\lambda^{\prime}, \lambda\right)$. The conditions of loc.cit. are satisfied: those concerning $\mathbf{X}$ are satisfied with $c^{\prime}=k=|w|+|u|+3 \nu+5 \rho$ (see 4.8(c)); those concerning $\Phi$ are satisfied with $c=a+\rho$ (see 4.17). We see that

$$
\begin{aligned}
& \underline{g r_{a+\rho+k}\left(\left({ }^{\prime \prime} d_{!}^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{a+\rho+k}\right)}((a+\rho+k) / 2) \\
& =\underline{g r_{a+\rho}\left(\left({ }^{\prime \prime} d!\underline{\left.g r_{k}\left({ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{k}\right)}(k / 2)\right)^{a+\rho}\right)((a+\rho) / 2) . ~}
\end{aligned}
$$

Using 4.11(a), we have:

$$
\left.\left.\begin{array}{rl}
\left.g r_{k}\left({ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{k}\right)(k / 2) & =\oplus_{y^{\prime} \in W} M_{\lambda^{\prime}, \mathbf{e}^{-s}(\lambda),,,, y^{\prime}(\lambda)}^{\dot{u}, \mathbf{e}^{-s}\left(\dot{y}^{\prime}\right), \dot{y}^{\prime}-1},[1,4]
\end{array} 2\left|y^{\prime}\right|+|w|+|u|+5 \rho+\nu\right\rangle\right) .
$$

Hence, using 4.17(a), we have

$$
\begin{aligned}
& \underline{g r_{a+\rho}\left(\left({ }^{\prime \prime} d!\underline{g r_{k}\left(\left({ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{k}\right)}(k / 2)\right)^{a+\rho}\right)}((a+\rho) / 2) \\
& =\oplus_{y^{\prime} \in W} \oplus_{y_{1} \in W ; y_{1} \cdot \mathbf{e}^{-s}(\lambda) \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\dot{y}_{1}}, \mathbf{L}_{\lambda^{\prime} \cap}^{\dot{u}} \underline{\left.\mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}\left(\dot{y}^{\prime}\right)}\right)}\right) \\
& \quad \otimes M_{\mathbf{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\dot{y}_{1}, \dot{w}, \dot{y}^{\prime}-1,[1,3]}\langle | y_{1}\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{aligned}
$$

Since $u \cdot \lambda^{\prime} \in \mathbf{c}$, for $y^{\prime} \in W$ we have
unless $\mathbf{e}^{s}\left(\lambda^{\prime}\right)=y^{\prime}(\lambda)\left(\right.$ see [21, 4.6(b)]) and $y^{\prime}(\lambda)=\mathbf{e}^{s}\left(\lambda^{\prime}\right)$ (see [21, 2.26(a)]). Thus we have

$$
\begin{aligned}
& \underline{g r_{a+\rho+k}\left(\left({ }^{\prime \prime} d_{!}{ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{a+\rho+k}\right)}((a+\rho+k) / 2)
\end{aligned}
$$

$$
\begin{aligned}
& \otimes M_{\mathbf{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\dot{y}_{1}, \dot{y^{\prime}}, \dot{y}^{\prime-1},[1,3]}\langle | y_{1}\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle \text {. }
\end{aligned}
$$

Setting $y_{1}=\mathbf{e}^{-s} y$ and using that $\mathbf{e}^{-s} y \cdot \mathbf{e}^{-s}(\lambda) \in \mathbf{c}$ if and only if $y \cdot \lambda \in \mathbf{c}$,
we can rewrite this as follows:
(a) $\quad \underline{g r_{a+\rho+k}\left(\left({ }^{\prime \prime} d!{ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{a+\rho+k}\right)}((a+\rho+k) / 2)$

$$
\begin{aligned}
= & \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathrm{e}^{-s}(\lambda)}^{\mathrm{e}^{-s} \dot{y}}, \mathbf{L}_{\lambda^{\prime} \bigcirc}^{\dot{u}} \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathrm{e}^{-s}\left(\dot{y}^{\prime}\right)}\right) \\
& \otimes M_{\mathrm{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\mathrm{e}^{-s} \dot{y}, \dot{y^{\prime}-1},[1,3]}\langle | y\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{aligned}
$$

4.20. Let $y_{1} \cdot \lambda_{1} \in \mathbf{c}, y_{2} \cdot \lambda_{2} \in \mathbf{c}, y_{3} \cdot \lambda_{3} \in \mathbf{c}$. From 21, 3.20] we see that:
(a) we have canonically

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y_{2}\left(\lambda_{2}\right)}^{\dot{y}_{2}^{-1}}, \mathbf{L}_{y_{1}\left(\lambda_{1}\right)}^{\dot{y}_{1}^{-1}} \underline{L}_{\lambda_{3}}^{\dot{y}_{3}}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda_{1}}^{\dot{y}_{1}}, \mathbf{L}_{\lambda_{3}}^{\dot{y}_{3}} \underline{\mathbf{L}}_{\lambda_{2}}^{\dot{y}_{2}}\right) .
$$

In the setup of 4.18, we apply $4.18(\mathrm{a}), 4.19$ (a) to $w \cdot \lambda, u \cdot \lambda^{\prime}$ and we use the equality

$$
\begin{aligned}
& \underline{g r_{a+\rho+k}\left(\left({ }^{\prime} d_{!}{ }^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)\right)^{a+\rho+k}\right)}((a+\rho+k) / 2) \\
& =\underline{g r_{a+\rho+k}\left(\left({ }^{\prime \prime} d!{ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)\right)^{a+\rho+k}\right)}((a+\rho+k) / 2)
\end{aligned}
$$

which comes from ${ }^{\prime} d!^{\prime} \vartheta_{!}\left({ }^{\prime} K\right)={ }^{\prime \prime} d{ }^{\prime \prime} \vartheta_{!}\left({ }^{\prime \prime} K\right)$, see $4.15(\mathrm{a})$; we obtain
(b)

$$
\begin{aligned}
& \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \varrho^{\left.\mathbf{L}^{\mathbf{e}^{s}(\dot{u}}{ }^{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}\right)}\right. \\
& \otimes M_{\mathbf{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\mathrm{e}^{-s}(\dot{y}), \dot{y^{\prime}-1},[1,3]}\langle | y\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle \\
& =\oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathrm{e}^{-s} \dot{y}}, \mathbf{L}_{\lambda^{\prime}}^{\dot{u}} \underline{L}_{\mathbf{L}^{-s}(\lambda)}^{\mathrm{e}^{-s}\left(\dot{y}^{\prime}\right)}\right) \\
& \otimes M_{\mathrm{e}^{-s}(\lambda), \lambda, y^{\prime}(\lambda)}^{\mathrm{e}^{-s} \dot{y}, \dot{,}, \dot{j}^{\prime}-1}[1,3] \quad\langle | y\left|+|w|+\left|y^{\prime}\right|+4 \rho+\nu\right\rangle .
\end{aligned}
$$

4.21. We assume that $w \cdot \lambda, u \cdot \lambda^{\prime}$ in 4.18 satisfy in addition $w \cdot \lambda \in \mathbf{c}$. We apply $p_{03!}$ and $\langle N\rangle$ for some $N$ to the two sides of 4.20 (b). (Recall that $p_{03}: \tilde{\mathcal{B}}^{4} \rightarrow \tilde{\mathcal{B}}^{2}$.) We obtain

$$
\begin{aligned}
& \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \xlongequal{ } \mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(\dot{u})}\right) \otimes \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\dot{y})} \circ \mathbf{L}_{\lambda}^{\dot{w}} \circ \mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}} \\
& =\oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathrm{e}^{-s}(\lambda)}^{\mathbf{e}^{-s} \dot{y}}, \mathbf{L}_{\lambda^{\prime} \bigcirc \underline{\underline{u}}}^{\dot{u}} \mathbf{L}_{\mathrm{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}\left(\dot{y}^{\prime}\right)}\right) \\
& \otimes \mathbf{L}_{\mathrm{e}^{-s}(\lambda)}^{\mathrm{e}^{-s} \dot{y}} \circ \mathbf{L}_{\lambda}^{\dot{w}} \circ \mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}} .
\end{aligned}
$$

Applying $\underline{()^{\{2(a-\nu)\}}}$ to both sides and using [21, 2.24(a)] we obtain

$$
\begin{aligned}
& \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime}-1}, \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \underline{\varrho} \mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(\dot{u})}\right) \otimes \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}(\dot{y})} \underline{\varrho} \mathbf{L}_{\lambda}^{\dot{j}} \underline{\mathbf{L}^{\dot{L}^{\prime}(\lambda)}} \\
& =\oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \oplus_{y^{\prime} \in W ; y^{\prime} \cdot \lambda \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s} \dot{y}}, \mathbf{L}_{\lambda^{\prime}}^{\dot{u}} \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s}\left(\dot{y}^{\prime}\right)}\right) \\
& \otimes \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathbf{e}^{-s} \dot{y}} \underline{\mathbf{L}_{\lambda}} \underline{\dot{o}^{\dot{w}}} \mathbf{L}_{y^{\prime}(\lambda)}^{\dot{y}^{\prime-1}},
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& \oplus_{y \in W ; y \cdot \lambda \in \mathbf{c} \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}{ }^{-s}(\dot{y})}^{\mathbf{L}_{\lambda}^{\dot{w}} \supseteq \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \xlongequal{ } \mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(\dot{u})}}
\end{aligned}
$$

Using 4.13(d), this can be rewritten as follows:

$$
\begin{equation*}
\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{w}}\right) \underline{\varrho} \mathbf{L}_{\mathbf{e}^{s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{s}(\dot{u})}=\mathbf{L}_{\lambda^{\prime}}^{\dot{u}} \underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{w}}\right) . \tag{a}
\end{equation*}
$$

Another identification of the two sides in (a) is given by $4.14(\mathrm{j})$ with $L=\mathbb{L}_{\lambda, s}^{\dot{w}}$, $L^{\prime}=\mathbf{L}_{\lambda^{\prime}}^{\dot{u}}\left(\right.$ note that $\underline{\mathfrak{b}}(L)=\underline{\mathfrak{b}}^{\prime}(L)$ by 4.14(d)). In fact, the arguments in 4.134.20 and in this subsection show that
(b) these two identifications of the two sides of (a) coincide.
4.22. Let $s^{\prime}, s^{\prime \prime} \in \mathbf{Z}$. Let

$$
\begin{aligned}
V= & \left(B_{0}, B_{1}, B_{2}, \gamma U_{B_{0}}, \gamma^{\prime} U_{B_{1}}\right) ; \\
& \left.\left(B_{0}, B_{1}, B_{2}\right) \in \mathcal{B}^{3}, \gamma \in \tilde{G}_{s^{\prime}}, \gamma^{\prime} \in \tilde{G}_{s^{\prime \prime}}, \gamma B_{0} \gamma^{-1}=B_{1}, \gamma^{\prime} B_{1} \gamma^{\prime-1}=B_{2}\right\} .
\end{aligned}
$$

Define $p_{01}: V \rightarrow Z_{s^{\prime}}, p_{12}: V \rightarrow Z_{s^{\prime \prime}}, p_{02}: V \rightarrow Z_{s^{\prime}+s^{\prime \prime}}$ by

$$
\begin{aligned}
& p_{01}:\left(B_{0}, B_{1}, B_{2}, \gamma U_{B_{0}}, \gamma^{\prime} U_{B_{1}}\right) \mapsto\left(B_{0}, B_{1}, \gamma U_{B_{0}}\right), \\
& p_{12}:\left(B_{0}, B_{1}, B_{2}, g U_{B_{0}}, \gamma^{\prime} U_{B_{1}}\right) \mapsto\left(B_{1}, B_{2}, \gamma^{\prime} U_{B_{1}}\right), \\
& p_{02}:\left(B_{0}, B_{1}, B_{2}, \gamma U_{B_{0}}, \gamma^{\prime} U_{B_{1}}\right) \mapsto\left(B_{0}, B_{2}, \gamma^{\prime} \gamma U_{B_{0}}\right) .
\end{aligned}
$$

For $L \in \mathcal{D}\left(Z_{s^{\prime}}\right), L^{\prime} \in \mathcal{D}\left(Z_{s^{\prime \prime}}\right)$ we set

$$
L \bullet L^{\prime}=p_{02!}\left(p_{01}^{*} L \otimes p_{12}^{*} L^{\prime}\right) \in \mathcal{D}\left(Z_{s^{\prime}+s^{\prime \prime}}\right)
$$

This operation defines a monoidal structure on $\sqcup_{s^{\prime} \in \mathbf{Z}} \mathcal{D}\left(Z_{s^{\prime}}\right)$. Hence if ${ }^{1} L \in$ $\mathcal{D}\left(Z_{s_{1}}\right),{ }^{2} L \in \mathcal{D}\left(Z_{s_{2}}\right), \ldots,{ }^{r} L \in \mathcal{D}\left(Z_{s_{r}}\right)$, then ${ }^{1} L \bullet{ }^{2} L \bullet \ldots \bullet{ }^{r} L \in \mathcal{D}\left(Z_{s_{1}+\cdots+s_{r}}\right)$
is well defined. Note that, if $L \in \mathcal{D}_{m}\left(Z_{s^{\prime}}\right), L_{m}^{\prime} \in \mathcal{D}\left(Z_{s^{\prime \prime}}\right)$ then we have naturally $L \bullet L^{\prime} \in \mathcal{D}_{m}\left(Z_{s^{\prime}+s^{\prime \prime}}\right)$. We show:
(a) For $L \in \mathcal{D}\left(Z_{s^{\prime}}\right), L^{\prime} \in \mathcal{D}\left(Z_{s^{\prime \prime}}\right)$ we have canonically $\epsilon_{s^{\prime}+s^{\prime \prime}}^{*}\left(L \bullet L^{\prime}\right)=\epsilon_{s^{\prime}}^{*}(L) \circ$ $\epsilon_{s^{\prime \prime}}^{*}\left(L^{\prime}\right)$.

Let

$$
Y=\left\{\left(x \mathbf{U}, y \mathbf{U}, \gamma U_{x \mathbf{B} x^{-1}}\right) ; x \mathbf{U} \in \tilde{\mathcal{B}}, y \mathbf{U} \in \tilde{\mathcal{B}} ; \gamma \in \tilde{G}_{s^{\prime}}\right\} .
$$

Define $j: Y \rightarrow \tilde{\mathcal{B}}^{2}, j_{1}: Y \rightarrow Z_{s^{\prime}}, j_{2}: Y \rightarrow Z_{s^{\prime \prime}}$ by

$$
\begin{aligned}
j\left(x \mathbf{U}, y \mathbf{U}, \gamma U_{x \mathbf{B} x^{-1}}\right) & =(x \mathbf{U}, y \mathbf{U}), \\
j_{1}\left(x \mathbf{U}, y \mathbf{U}, \gamma U_{x \mathbf{B} x^{-1}}\right) & =\left(x \mathbf{B} x^{-1}, \gamma x \mathbf{B} x^{-1} \gamma^{-1}, \gamma U_{x \mathbf{B} x^{-1}}\right) \\
j_{2}\left(x \mathbf{U}, y \mathbf{U}, \gamma U_{x \mathbf{B} x^{-1}}\right) & =\left(\gamma x \mathbf{B} x^{-1} \gamma^{-1}, y \mathbf{B} y^{-1}, y \mathbf{U} \tau^{s^{\prime}+s^{\prime \prime}} x^{-1} \gamma^{-1}\right) .
\end{aligned}
$$

From the definitions we have

$$
\epsilon_{s^{\prime}+s^{\prime \prime}}^{*}\left(L \bullet L^{\prime}\right)=j_{!}\left(j_{1}^{*}(L) \otimes j_{2}^{*}\left(L^{\prime}\right)\right)=\epsilon_{s^{\prime}}^{*}(L) \circ \epsilon_{s^{\prime \prime}}^{*}\left(L^{\prime}\right)
$$

and (a) follows.
4.23. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. Let $L \in \mathcal{D}^{\mathbb{\aleph}} Z_{s}, L^{\prime} \in \mathcal{D}^{\boldsymbol{\omega}} Z_{s^{\prime}}$. We show:
(a) If $L \in \mathcal{D}^{\preceq} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\preceq} Z_{s^{\prime}}$ then $L \bullet L^{\prime} \in \mathcal{D}^{\preceq} Z_{s+s^{\prime}}$. If $L \in \mathcal{D}^{\prec} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\prec} Z_{s^{\prime}}$ then $L \bullet L^{\prime} \in \mathcal{D}^{\prec} Z_{s+s^{\prime}}$.

For the first assertion of (a) we can assume that $L=\mathbb{L}_{\lambda, s}^{\dot{w}}, L^{\prime}=\mathbb{L}_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}$ with $w \cdot \lambda \in I_{n}^{s}, w^{\prime} \cdot \lambda^{\prime} \in I_{n}^{s^{\prime}}$ and either $w \cdot \lambda \preceq \mathbf{c}$ or $w^{\prime} \cdot \lambda^{\prime} \preceq \mathbf{c}$. Assume that $w_{1} \cdot \lambda_{1} \in I_{n}^{s+s^{\prime}}$ and $\mathbb{L}_{\lambda_{1}, s+s^{\prime}}^{\dot{w}_{1}}$ is a composition factor of $\left(L \bullet L^{\prime}\right)^{j}$. Then $\mathbf{L}_{\lambda_{1}}^{\dot{w}_{1}}=\tilde{\epsilon}_{s+s^{\prime}} \mathbb{L}_{\lambda_{1}, s+s^{\prime}}^{\dot{w}_{1}}$ is a composition factor of

$$
\begin{aligned}
\epsilon_{s+s^{\prime}}^{*}\left(L \bullet L^{\prime}\right)^{j}\langle\rho\rangle & =\left(\epsilon_{s+s^{\prime}}^{*}\left(L \bullet L^{\prime}\right)\right)^{j+\rho}(\rho / 2)=\left(\epsilon_{s}^{*} L \circ \epsilon_{s^{\prime}}^{*} L^{\prime}\right)^{j+\rho}(\rho / 2) \\
& =\left(\epsilon_{s}^{*} L\langle\rho\rangle \circ \epsilon_{s^{\prime}}^{*} L^{\prime}\langle\rho\rangle\right)^{j-\rho}(-\rho / 2)=\left(\mathbf{L}_{\lambda}^{\dot{w}} \circ \mathbf{L}_{\lambda^{\prime}}^{\dot{w}^{\prime}}\right)^{j-\rho}(\rho / 2)
\end{aligned}
$$

From [21, 2.23(b)] we see that $w_{1} \cdot \lambda_{1} \preceq \mathbf{c}$. This proves the first assertion of (a). The second assertion of (a) can be reduced to the first assertion.

We show:
(b) Assume that $L \in \mathcal{M}^{\wedge} Z_{s}, L^{\prime} \in \mathcal{M}^{\wedge} Z_{s^{\prime}}$ and that either $L \in \mathcal{D}^{\preceq} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\preceq} Z_{s^{\prime}}$. If $j>a+\rho-\nu$ then $\left(L \bullet L^{\prime}\right)^{j} \in \mathcal{M}^{\prec} Z_{s+s^{\prime}}$.

We can assume that $L=\mathbb{L}_{\lambda, s}^{\dot{w}}, L^{\prime}=\mathbb{L}_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}$ with $w \cdot \lambda \in I_{n}^{s}, w^{\prime} \cdot \lambda^{\prime} \in I_{n}^{s^{\prime}}$ and either $w \cdot \lambda \in \mathbf{c}$ or $w^{\prime} \cdot \lambda^{\prime} \in \mathbf{c}$. Assume that $w_{1} \cdot \lambda_{1} \in I_{n}^{s+s^{\prime}}$ and that $\mathbb{L}_{\lambda_{1}, s+s^{\prime}}^{\dot{w}_{1}}$ is a composition factor of $\left(L \bullet L^{\prime}\right)^{j}$. Then as in the proof of $($ a $), \mathbf{L}_{\lambda_{1}}^{\dot{w}_{1}}$ is a composition factor of

$$
\tilde{e}_{s+s^{\prime}}\left(L \bullet L^{\prime}\right)^{j}=\left(\mathbf{L}_{\lambda}^{\dot{w}} \circ \mathbf{L}_{\lambda^{\prime}}^{\dot{w}^{\prime}}\right)^{j-\rho}(-\rho / 2) .
$$

Since $j-\rho>a-\nu$ we see from [21, 2.23(a)] that $w_{1} \cdot \lambda_{1} \prec \mathbf{c}$. This proves (b).
4.24. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. For $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}}$ we set

$$
L \bullet L^{\prime}=\underline{\left(L \bullet L^{\prime}\right)^{\{a+\rho-\nu\}}} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s+s^{\prime}}
$$

Using 4.23(a),(b) we see as in [21, 2.24] that for $L \in \mathcal{C}_{0}^{\mathrm{c}} Z_{s}, L^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} Z_{s^{\prime}}, L^{\prime \prime} \in$ $\mathcal{C}_{0}^{\mathrm{c}} Z_{s^{\prime \prime}}$ we have

$$
L \underline{\bullet}\left(L^{\prime} \bullet L^{\prime \prime}\right)=\left(L \bullet L^{\prime}\right) \underline{\bullet} L^{\prime \prime}=\underline{\left(L \bullet L^{\prime} \bullet L^{\prime \prime}\right)^{\{2 a+2 \rho-2 \nu\}}} .
$$

We see that $L, L^{\prime} \mapsto L_{\underline{\bullet}} L^{\prime}$ defines a monoidal structure on $\sqcup_{s^{\prime} \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}}$. Hence if ${ }^{1} L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s_{1}},{ }^{2} L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s_{2}}, \ldots,{ }^{r} L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s_{r}}$, then ${ }^{1} L \stackrel{\bullet}{~}^{2} L \bullet \ldots \stackrel{\bullet}{\bullet}^{r} L \in$ $\mathcal{C}_{0}^{\mathbf{c}} Z_{s_{1}+\cdots+s_{r}}$ is well defined; we have

$$
\begin{equation*}
{ }^{1} L \stackrel{\bullet}{2}^{2} L \bullet \cdots \stackrel{\bullet}{\bullet}^{r} L=\underline{\left({ }^{1} L \bullet{ }^{2} L \bullet \ldots \bullet^{r} L\right)^{\{(r-1)(a+\rho-\nu)\}}} . \tag{a}
\end{equation*}
$$

For $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}}$ we have $\tilde{\epsilon}_{s} L, \tilde{\epsilon}_{s^{\prime}} L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. We show:

$$
\begin{equation*}
\tilde{\epsilon}_{s+s^{\prime}}\left(L \bullet L^{\prime}\right)=\left(\tilde{\epsilon}_{s} L\right) \underline{\varrho}\left(\tilde{\epsilon}_{s^{\prime}} L^{\prime}\right) \tag{b}
\end{equation*}
$$

It is enough to show that

$$
\begin{aligned}
& \epsilon_{s+s^{\prime}}^{*}\left(g r_{0}\left(\left(L \bullet L^{\prime}\right)^{a+\rho-\nu}\right)((a+\rho-\nu) / 2)\right)[\rho](\rho / 2) \\
& \left.\left.\quad=g r_{0}\left(\left(\epsilon_{s}^{*} L[\rho](\rho / 2) \circ \epsilon_{s^{\prime}}^{*} L^{\prime}[\rho](\rho / 2)\right)^{a-\nu}\right)((a-\nu) / 2)\right)\right)
\end{aligned}
$$

The left hand side is equal to

$$
\left.g r_{0}\left(\epsilon_{s+s^{\prime}}^{*}\left(\left(L \bullet L^{\prime}\right)^{a+\rho-\nu}\right)((a+\rho-\nu) / 2)\right)[\rho](\rho / 2)\right)
$$

hence it is enough to show:

$$
\begin{aligned}
& \left.\epsilon_{s+s^{\prime}}^{*}\left(\left(L \bullet L^{\prime}\right)^{a+\rho-\nu}\right)((a+\rho-\nu) / 2)\right)[\rho](\rho / 2) \\
& \left.\quad=\left(\epsilon_{s}^{*} L[\rho](\rho / 2) \circ \epsilon_{s^{\prime}}^{*} L^{\prime}[\rho](\rho / 2)\right)^{a-\nu}((a-\nu) / 2)\right)
\end{aligned}
$$

that is,

$$
\epsilon_{s+s^{\prime}}^{*}\left(\left(L \bullet L^{\prime}\right)^{a+\rho-\nu}\right)[\rho]=\left(\epsilon_{s}^{*} L[\rho] \circ \epsilon_{s^{\prime}}^{*} L^{\prime}[\rho]\right)^{a-\nu}
$$

or, after using 4.3(b):

$$
\left(\epsilon_{s+s^{\prime}}^{*}\left(L \bullet L^{\prime}\right)\right)^{a+2 \rho-\nu}=\left(\epsilon_{s}^{*} L \circ \epsilon_{s^{\prime}}^{*} L^{\prime}\right)^{a+2 \rho-\nu}
$$

It remains to use that $\epsilon_{s+s^{\prime}}^{*}\left(L \bullet L^{\prime}\right)=\epsilon_{s}^{*} L \circ \epsilon_{s^{\prime}}^{*} L^{\prime}$, see 4.22(a).
4.25. In the setup of 4.14 let
${ }^{\diamond} \mathcal{Y}=\mathbf{T}^{2} \backslash\left\{\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \in \tilde{\mathcal{B}}^{4} \times \tilde{G}_{s} ; \gamma \in x_{3} \mathbf{U} \tau^{s} x_{0}^{-1}, \gamma \in x_{2} \mathbf{U} \tau^{s} x_{1}^{-1}\right\}$
where $\mathbf{T}^{2}$ acts freely by

$$
\left(t_{1}, t_{2}\right):\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \mapsto\left(\left(x_{0} t_{1} \mathbf{U}, x_{1} t_{2} \mathbf{U}, x_{2} t_{2} \mathbf{U}, x_{3} t_{1} \mathbf{U}\right), \gamma\right)
$$

We define ${ }^{\diamond} \eta:{ }^{\diamond} \mathcal{Y} \rightarrow Z_{s}$ by

$$
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \mapsto \epsilon_{s}\left(x_{1} \mathbf{U}, x_{2} \mathbf{U}\right)
$$

We define $d:{ }^{\diamond} \mathcal{Y} \rightarrow Z_{s}$ by

$$
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \mapsto \epsilon_{s}\left(x_{0} \mathbf{U}, x_{3} \mathbf{U}\right)
$$

We define $\mathfrak{b}^{\prime \prime}: \mathcal{D}\left(Z_{s}\right) \rightarrow \mathcal{D}\left(Z_{s}\right)$ and $\mathfrak{b}^{\prime \prime}: \mathcal{D}_{m}\left(Z_{s}\right) \rightarrow \mathcal{D}_{m}\left(Z_{s}\right)$ by

$$
\mathfrak{b}^{\prime \prime}(L)=d_{!}\left({ }^{\diamond} \eta\right)^{*} L .
$$

From the definitions it is clear that
(a)

$$
\mathfrak{b}^{\prime}(L)=\epsilon_{s}^{*} \mathfrak{b}^{\prime \prime}(L)
$$

Using (a) we see that 4.14(a),(b),(c) imply the following statements.
(b) If $L \in \mathcal{D}^{\preceq}\left(Z_{s}\right)$, then $\mathfrak{b}^{\prime \prime}(L) \in \mathcal{D}^{\preceq} Z_{s}$. If $L \in \mathcal{D}^{\prec}\left(Z_{s}\right)$ then $\mathfrak{b}^{\prime \prime}(L) \in \mathcal{D}^{\prec} Z_{s}$.
(c) If $L \in \mathcal{M} \preceq\left(Z_{s}\right)$ and $h>2 \nu+2 a$ then $\left(\mathfrak{b}^{\prime \prime}(L)\right)^{h} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

We define $\underline{\mathfrak{b}^{\prime \prime}}: \mathcal{C}_{0}^{\mathbf{c}}\left(Z_{s}\right) \rightarrow \mathcal{C}_{0}^{\mathbf{c}}\left(Z_{s}\right)$ by

$$
\underline{\mathfrak{b}^{\prime \prime}}(L)=\underline{g r_{2 \nu+2 a}\left(\left(\mathfrak{b}^{\prime \prime}(L)\right)^{2 \nu+2 a}\right)}(\nu+a) .
$$

Using results in 4.3 we see that, if $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$, then
(d) $\underline{\mathfrak{b}}^{\prime}(L)=\tilde{\epsilon}_{s}\left(\underline{\mathfrak{b}}^{\prime \prime}(L)\right)$.

## 5. The monoidal category $\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}$

5.1. In this section, $\mathbf{c}, a, \mathfrak{o}, n, \Psi$ are as in 3.1(a).

Define $\delta: \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}^{2}$ by $x \mathbf{U} \mapsto(x \mathbf{U}, x \mathbf{U})$. For $w \cdot \lambda \in \mathbf{c}$ we set

$$
\beta_{w \cdot \lambda}=\mathcal{H}^{-a+|w|}\left(\delta^{*}\left(L_{\lambda}^{w \sharp}\right)\right)((-a+|w|) / 2) .
$$

By [21, 4.1] we have
(a) $\operatorname{dim} \beta_{w \cdot \lambda}=1$ if $w \cdot \lambda \in \mathbf{D}_{\mathbf{c}}, \operatorname{dim} \beta_{w \cdot \lambda}=0$ if $w \cdot \lambda \notin \mathbf{D}_{\mathbf{c}}$.

We set

$$
\mathbf{1}^{\prime}=\oplus_{d \cdot \lambda \in \mathbf{D}_{\mathbf{c}}} \beta_{d \cdot \lambda}^{*} \otimes \mathbf{L}_{\lambda}^{\dot{d}} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}
$$

Here $\beta_{d \cdot \lambda}^{*}$ is the vector space dual to $\beta_{d \cdot \lambda}$.
5.2. For $L \in \mathcal{D}_{m}\left(\tilde{\mathcal{B}}^{2}\right)$ we set $L^{\dagger}=\tilde{\mathfrak{h}}^{*} L$ where $\tilde{\mathfrak{h}}: \tilde{\mathcal{B}}^{2} \rightarrow \tilde{\mathcal{B}}^{2}$ is as in 3.1. By [21, 4.4(b)], we have:
(a) If $L \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ then $\mathfrak{D}\left(L^{\dagger}\right) \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. If $L \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ then $\mathfrak{D}\left(L^{\dagger}\right) \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$.
5.3. The bifunctor $\mathcal{C}_{0}^{\mathrm{c}} \tilde{\mathcal{B}}^{2} \times \mathcal{C}_{0}^{\text {c }} \tilde{\mathcal{B}}^{2} \rightarrow \mathcal{C}_{0}^{\mathrm{c}} \tilde{\mathcal{B}}^{2}, L, L^{\prime} \mapsto L_{\propto} L^{\prime}$ in 3.10 gives rise to a bifunctor $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2} \times \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2} \rightarrow \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ denoted again by $L, L^{\prime} \mapsto L \propto L^{\prime}$ as follows. Let $L \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}, L^{\prime} \in \mathcal{C}^{\mathrm{c}} \tilde{\mathcal{B}}^{2}$; by replacing if necessary $\Psi$ by a power, we choose mixed structures of pure weight 0 on $L, L^{\prime}$, we define $L \underline{\propto} L^{\prime}$ as in 3.10 in terms of these mixed structures and we then disregard the mixed structure on $L \propto L^{\prime}$. The resulting object of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ is denoted again by $L \_L^{\prime}$; it is independent of the choice of $\Psi$ which defines the mixed structures.

Similarly for $s, s^{\prime}$ in $\mathbf{Z}_{\mathbf{c}}$, the bifunctor $\mathcal{C}_{0}^{\mathbf{c}} Z_{s} \times \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} Z_{s+s^{\prime}}, L, L^{\prime} \mapsto$ $L \bullet L^{\prime}$ in 4.24 gives rise to a bifunctor $\mathcal{C}^{\mathbf{c}} Z_{s} \times \mathcal{C}^{\mathbf{c}} Z_{s^{\prime}} \rightarrow \mathcal{C}^{\mathbf{c}} Z_{s+s^{\prime}}$ denoted again
by $L, L^{\prime} \mapsto L \bullet L^{\prime}$. Moreover, $\underline{\mathfrak{b}}: \mathcal{C}_{0}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ in 4.13 can be also viewed as a functor $\underline{\mathfrak{b}}: \mathcal{C}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$.

The operation $L \underline{\bullet} L^{\prime}\left(\right.$ resp. $\left.L \underline{\circ} L^{\prime}\right)$ makes $\sqcup_{s \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}^{\mathbf{c}} Z_{s}\left(\right.$ resp. $\left.\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}\right)$ into a monoidal abelian category (see 4.24, 3.10). By $21,4.5(\mathrm{a})$ ], we have:
(a) For $L, L^{\prime}$ in $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ we have canonically

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{1}^{\prime}, L \underline{\propto} L^{\prime}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathfrak{D}\left(L^{\prime \dagger}\right), L\right)
$$

### 5.4. We set

(a)

$$
\mathbf{1}=\oplus_{d \cdot \lambda \in \mathbf{D}_{\mathbf{c}}} \beta_{d \cdot \lambda} \otimes \mathbf{L}_{\lambda}^{\dot{d}^{-1}} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}
$$

Here $\beta_{d \cdot \lambda}$ is as in 5.1. By [21, 4.7(g)],
(a) $\mathbf{1}=\mathbf{1}^{\prime}$ is a unit object of the monoidal category $\mathcal{C}^{\text {c }} \tilde{\mathcal{B}}^{2}$.

By [21, 4.8], this monoidal category has a natural rigid structure.
5.5. In the remainder of this section we fix $s \in \mathbf{Z}_{\mathbf{c}}$.

In this case, $\left(\mathbf{e}^{s}\right)^{*}$ defines an equivalence of categories $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2} \rightarrow \mathcal{C}^{\mathrm{c}} \tilde{\mathcal{B}}^{2}$; this follows from 3.11(a).

By analogy with [20, 6.2] and slightly extending a definition in 22, 3.1], we define an $\mathbf{e}^{s}$-half-braiding for an object $\mathcal{L} \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$, as a collection $e_{\mathcal{L}}=\left\{e_{\mathcal{L}}(L) ; L \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}\right\}$ where $e_{\mathcal{L}}(L)$ is an isomorphism $\left(\mathbf{e}^{s}\right)^{*}(L) \underline{\mathcal{L}} \xrightarrow{\sim} \mathcal{L} \underline{\circ} L$ such that $e_{\mathcal{L}}(\mathbf{1})=I d_{\mathcal{L}}$ and such that (i), (ii) below hold:
(i) If $L \xrightarrow{t} L^{\prime}$ is a morphism in $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ then the diagram

is commutative.
(ii) If $L, L^{\prime} \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ then $e_{\mathcal{L}}\left(L \_L^{\prime}\right):\left(\mathbf{e}^{s}\right)^{*}\left(L \_L^{\prime}\right) \underline{\mathcal{L}} \rightarrow \mathcal{L} \_\left(L \_L^{\prime}\right)$ is equal to the composition

$$
\left(\mathbf{e}^{s}\right)^{*}(L) \underline{\varrho}\left(\mathbf{e}^{s}\right)^{*}\left(L^{\prime}\right) \underline{\propto} \mathcal{L} \xrightarrow{1 \supseteq e_{\mathcal{L}}\left(L^{\prime}\right)}\left(\mathbf{e}^{s}\right)^{*}(L) \underline{\mathcal{L}} \underline{\mathcal{O}} L^{\prime} \xrightarrow{e_{\mathcal{L}}(L) \propto 1} \mathcal{L} \underline{\circ} \underline{L} L^{\prime} .
$$

(When $s=0$ this reduces to the definition of a half-braiding for $\mathcal{L}$ given in [22, 3.1].)

Let $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$ be the category whose objects are the pairs $\left(\mathcal{L}, e_{\mathcal{L}}\right)$ where $\mathcal{L}$ is an object of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ and $e_{\mathcal{L}}$ is an $\mathbf{e}^{s}$-half-braiding for $\mathcal{L}$. For $\left(\mathcal{L}, e_{\mathcal{L}}\right),\left(\mathcal{L}^{\prime}, e_{\mathcal{L}^{\prime}}\right)$ in $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$ we define $\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}}\left(\left(\mathcal{L}, e_{\mathcal{L}}\right),\left(\mathcal{L}^{\prime}, e_{\mathcal{L}^{\prime}}\right)\right)$ to be the vector space consisting of all $t \in \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}}\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$ such that for any $L \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ the diagram

$$
\begin{aligned}
& \left(\mathbf{e}^{s}\right)^{*}(L) \propto \mathcal{L} \quad \xrightarrow{e_{\mathcal{L}}(L)} \quad \mathcal{L} \_L \\
& \text { 1ㄴ } \downarrow \quad \text { to1 } \downarrow \\
& \left(\mathbf{e}^{s}\right)^{*}(L) \underline{\mathcal{L}^{\prime}} \xrightarrow{e_{\mathcal{L}}\left(L^{\prime}\right)} \mathcal{L}^{\prime} \underline{\varrho} L
\end{aligned}
$$

is commutative. We say that $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$ is the $\mathbf{e}^{s}$-centre of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. By a variation of a result of [22], [4] (which concerns the usual centre), the additive category $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$ is semisimple, with finitely many isomorphism classes of simple objects. By a variation of a general result on semisimple rigid monoidal categories in 4, Proposition 5.4], for any $L \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ one can define directly an $\mathbf{e}^{s}$-half-braiding on the object
of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ such that, denoting by $\overline{\mathcal{I}_{s}(L)}$ the corresponding object of $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$, we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(L, L^{\prime}\right)=\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathrm{c}}}\left(\overline{\mathcal{I}_{s}(L)}, L^{\prime}\right) \tag{a}
\end{equation*}
$$

for any $L^{\prime} \in \mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$. (We use that for $y \cdot \lambda \in \mathbf{c}$, the dual of the simple object $\mathbf{L}_{\lambda}^{\dot{y}}$ is $\mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}}$, see 21, 4.4(c)]; we also use 3.11(a).) The $\mathbf{e}^{s}$-half-braiding on $\mathcal{I}_{s}(L)$ can be described as follows: for any $X \in \mathcal{C}^{c} \tilde{\mathcal{B}}^{2}$ we have canonically

$$
\begin{aligned}
& \left(\mathbf{e}^{s}\right)^{*}(X) \_\mathcal{I}_{s}(L) \\
& =\oplus_{y \cdot \lambda \in \mathbf{c}}\left(\mathbf{e}^{s}\right)^{*}(X) \underline{( }\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda}^{\dot{y}}\right) \underline{L} \underline{\circ} \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \\
& =\oplus_{y \cdot \lambda \in \mathbf{c}, z \cdot \lambda^{\prime} \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{z}}\right),\left(\mathbf{e}^{s}\right)^{*}\left(X \propto \mathbf{L}_{\lambda}^{\dot{y}}\right)\right) \otimes\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{z}}\right) \unrhd L \bigcirc \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} \\
& =\oplus_{y \cdot \lambda \in \mathbf{c}, z \cdot \lambda^{\prime} \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{\tilde{z}}}, X \underline{\mathbf{L}_{\lambda}^{\dot{y}}}\right) \otimes\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{\tilde{z}}}\right) \underline{L} \underline{\mathbf{L}^{\dot{L}^{-1}}}{ }_{y(\lambda)}^{\dot{y}^{-1}}
\end{aligned}
$$

2017] NON-UNIPOTENT REPRESENTATIONS AND CATEGORICAL CENTRES 269

$$
\begin{aligned}
& =\oplus_{y \cdot \lambda \in \mathbf{c}, z \cdot \lambda^{\prime} \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}}, \mathbf{L}_{z\left(\lambda^{\prime}\right)}^{\dot{z}^{-1}} \otimes X\right) \otimes\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{z}^{\prime}} \underline{\varrho} L_{\varrho} \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}}\right. \\
& =\oplus_{z \cdot \lambda^{\prime} \in \mathbf{c}}\left(\mathbf{e}^{s}\right)^{*}\left(\mathbf{L}_{\lambda^{\prime}}^{\dot{z}}\right) \underline{L} \underline{L} \underline{L}_{z\left(\lambda^{\prime}\right)}^{\dot{z}^{-1}} \otimes X=\mathcal{I}_{s}(L) \underline{\varrho} X .
\end{aligned}
$$

(The fourth equality uses 4.20(a); we have also used 3.11(a).) We show:
(b) If $z \cdot \lambda \in \mathbf{c}$ and $\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{\tilde{\Sigma}}}\right) \neq 0$ then $z \cdot \lambda \in \mathbf{c}^{s}$.

For some $y \cdot \lambda^{\prime} \in \mathbf{c}$ we have $\mathbf{L}_{\mathbf{e}^{-s}\left(\lambda^{\prime}\right)}^{\mathbf{e}^{-s}\left(\mathbf{L}_{\lambda}^{\dot{z}}\right.} \neq 0$ (hence $\mathbf{e}^{-s}\left(\lambda^{\prime}\right)=z(l)$ ) and $\mathbf{L}_{\lambda}^{\dot{z}} \bigcirc \mathbf{L}_{y\left(\lambda^{\prime}\right)}^{\dot{y}^{-1}} \neq 0$ (hence $\lambda=\lambda^{\prime}$ ). It follows that $z(\lambda)=\mathbf{e}^{-s}(\lambda)$ and (b) is proved.
5.6. By $4.13(\mathrm{~d})$, for $z \cdot \lambda \in \mathbf{c}^{s}$ we have canonically
(a)

$$
\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)=\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{\tilde{z}}}\right)
$$

as objects of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. Here $\underline{\mathfrak{b}}: \mathcal{C}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ is as in 5.3. Now $\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{z}}\right)$ has a natural $\mathbf{e}^{s}$-half-braiding (by 5.5) and $\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)$ has a natural $\mathbf{e}^{s}$-half-braiding (by 4.14(j)). By 4.21(b),
(b) these two $\mathbf{e}^{s}$-half-braidings are compatible with the identification (a).

In view of (a), (b) we can reformulate 5.5(a) as follows.

Theorem 5.7. For any $z \cdot \lambda \in \mathbf{c}^{s}, L^{\prime} \in \mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$, we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda}^{\dot{\tilde{z}}}, L^{\prime}\right)=\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}}\left(\overline{\underline{\mathfrak{k}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right)}, L^{\prime}\right) \tag{a}
\end{equation*}
$$

where $\overline{\underline{\mathfrak{b}}\left(\mathbb{L}_{\hat{\lambda}, s}^{\dot{\dot{x}})}\right.}$ is $\underline{\mathfrak{b}}\left(\mathbb{L}_{\dot{\lambda}, s}^{\dot{\tilde{z}}}\right)$ viewed as an object of $\mathcal{Z}_{\mathbf{e}^{\mathbf{c}}}^{\mathbf{c}}$ with the $\mathbf{e}^{s}$-half-braiding given by $4.14(j)$.

### 5.8. We set

$$
\mathbf{1}_{0}^{\prime}=\oplus_{d \cdot \lambda \in \mathbf{D}_{\mathbf{c}}} \beta_{d \cdot \lambda}^{*} \otimes \mathbb{L}_{\lambda, 0}^{\dot{d}} \in \mathcal{C}^{\mathbf{c}} Z_{0}
$$

From the definitions we have $\tilde{\epsilon}_{0} \mathbf{1}_{0}^{\prime}=\mathbf{1}^{\prime}$. Since $\mathbf{1}^{\prime}=\mathbf{1}$, we have also $\tilde{\epsilon}_{0} \mathbf{1}_{0}^{\prime}=\mathbf{1}$. We show:
(a) For $L \in \mathcal{C}^{\mathbf{c}} Z_{-s}, L^{\prime} \in \mathcal{C}^{\mathbf{c}} Z_{s}$ we have

$$
\operatorname{Hom}_{\mathcal{M}\left(Z_{0}\right)}\left(\mathbf{1}_{0}^{\prime}, L \bullet L^{\prime}\right)=\operatorname{Hom}_{\mathcal{M}\left(Z_{-s}\right)}\left(\mathfrak{D}\left(L^{\prime \dagger}\right), L\right)
$$

We can assume that $L=\mathbb{L}_{\lambda,-s}^{\dot{w}}, L^{\prime}=\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}^{\prime}}$ where $w \cdot \lambda \in \mathbf{c}^{-s}, w^{\prime} \cdot \lambda^{\prime} \in \mathbf{c}^{s}$. Using the fully faithfulness of $\tilde{\epsilon}_{0}: \mathcal{M}\left(Z_{0}\right) \rightarrow \mathcal{M} \tilde{\mathcal{B}}^{2}, \tilde{\epsilon}_{-s}: \mathcal{M}\left(Z_{-s}\right) \rightarrow$ $\mathcal{M} \tilde{\mathcal{B}}^{2}$, and the equality $\tilde{\epsilon}_{0} \mathbf{1}_{0}^{\prime}=\mathbf{1}$, we see that it is enough to prove that

$$
\operatorname{Hom}_{\mathcal{M}\left(\tilde{\mathcal{B}}^{2}\right)}\left(\mathbf{1}, \tilde{\epsilon}_{0}\left(L \bullet L^{\prime}\right)\right)=\operatorname{Hom}_{\mathcal{M} \tilde{\mathcal{B}}^{2}}\left(\tilde{\epsilon}_{-s}\left(\mathfrak{D}\left(L^{\prime \dagger}\right)\right), \tilde{\epsilon}_{-s}(L)\right) .
$$

From 4.3 we have $\tilde{\epsilon}_{-s}(L)=\mathbf{L}_{\lambda}^{\dot{w}}, \tilde{\epsilon}_{s}\left(L^{\prime}\right)=\mathbf{L}_{\lambda^{\prime}}^{\dot{w}^{\prime}}, \tilde{\epsilon}_{-s}\left(\mathbb{L}_{w^{\prime}\left(\lambda^{\prime}\right),-s}^{\dot{w}^{\prime} 1}\right)=\mathbf{L}_{w^{\prime}\left(\lambda^{\prime}\right)}^{\dot{w}^{\prime-1}}$.
From 4.3(e) we have

$$
\left.\tilde{\epsilon}_{-s}\left(\mathfrak{D}\left(L^{\prime \dagger}\right)\right)=\tilde{\epsilon}_{-s}\left(\mathfrak{D}\left(\mathbb{L}_{w^{\prime}\left(\lambda^{\prime-1}\right.}^{\dot{w}^{\prime-1}}\right),-s\right)\right)=\tilde{\epsilon}_{-s}\left(\mathbb{L}_{w^{\prime}\left(\lambda^{\prime}\right),-s}^{\dot{w}^{\prime-1}}\right)=\mathbf{L}_{w^{\prime}\left(\lambda^{\prime}\right)}^{\dot{w}^{\prime-1}} .
$$

(We have use that $\mathfrak{D}\left(\mathbb{L}_{w^{\prime}\left(\lambda^{\prime}-1\right.}^{\dot{w}^{\prime-1},-s}\right)=\mathbb{L}_{w^{\prime}\left(\lambda^{\prime}\right),-s}^{\dot{w}^{\prime \prime}}$ which follows from [21, 4.4(a)]) Using 4.24(b), we have

$$
\tilde{\epsilon}_{0}\left(L \underline{\bullet} L^{\prime}\right)=\left(\tilde{\epsilon}_{-s} L\right) \underline{\varrho}\left(\tilde{\epsilon}_{s} L^{\prime}\right)=\mathbf{L}_{\lambda}^{\dot{w}} \underline{\mathbf{L}_{\lambda^{\prime}} \dot{w}^{\prime}}
$$

Hence it is enough to prove

$$
\operatorname{Hom}_{\mathcal{M} \tilde{\mathcal{B}}^{2}}\left(\mathbf{1}, \mathbf{L}_{\lambda}^{\dot{w}} \bigcirc \mathbf{L}_{\lambda^{\prime}}^{\dot{w}^{\prime}}\right)=\operatorname{Hom}_{\mathcal{M} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{w^{\prime}\left(\lambda^{\prime}\right)}^{\dot{w}^{\prime \prime}-1}, \mathbf{L}_{\lambda}^{\dot{w}}\right)
$$

This follows from [21, 4.5(a)].

## 6. Truncated induction, truncated restriction, truncated convolution

6.1. In this section we fix $s \in \mathbf{Z}$.

Let $\dot{Z}_{s}=\left\{\left(B, B^{\prime}, \gamma\right) \in \mathcal{B} \times \mathcal{B} \times \tilde{G}_{s} ; \gamma B \gamma^{-1}=B^{\prime}\right\}$. We have a diagram

$$
\begin{equation*}
Z_{s} \stackrel{f}{\leftarrow} \dot{Z}_{s} \xrightarrow{\pi} \tilde{G}_{s} \tag{a}
\end{equation*}
$$

where $f\left(B, B^{\prime}, \gamma\right)=\left(B, B^{\prime}, \gamma U_{B}\right), \pi\left(B, B^{\prime}, \gamma\right)=\gamma$. Note that $G$ acts on $Z_{s}$ by $g:\left(B, B^{\prime}, \gamma U_{B}\right) \mapsto\left(g B g^{-1}, g B^{\prime} g^{-1}, g \gamma g^{-1} U_{g B g^{-1}}\right)$, on $\dot{Z}_{s}$ by $g$ : $\left(B, B^{\prime}, \gamma\right) \mapsto\left(g B g^{-1}, g B^{\prime} g^{-1}, g \gamma g^{-1}\right)$, on $\tilde{G}_{s}$ by $g: \gamma \mapsto g \gamma g^{-1}$; moreover, $f$ and $\pi$ are compatible with these $G$-actions. We define $\chi: \mathcal{D}\left(Z_{s}\right) \rightarrow \mathcal{D}\left(\tilde{G}_{s}\right)$ by

$$
\chi(L)=\pi!f^{*} L
$$

For any $w \cdot \lambda \in I$ we define $\mathfrak{R}_{\lambda, s}^{\dot{u}} \in \mathcal{D}\left(\tilde{G}_{s}\right), R_{\lambda, s}^{\dot{u}} \in \mathcal{D}\left(\tilde{G}_{s}\right)$ by

$$
\begin{gathered}
\Re_{\lambda, s}^{\dot{w}}=\chi\left(\mathcal{L}_{\lambda, s}^{\dot{w}}\right), R_{\lambda, s}^{\dot{w}}=\chi\left(\mathcal{L}_{\lambda, s}^{\dot{w} \sharp}\right), \text { if } w \cdot \lambda \in I^{s}, \\
\Re_{\lambda}^{\dot{w}}=0, R_{\lambda}^{\dot{w}}=0 \text { if } w \cdot \lambda \notin I^{s} .
\end{gathered}
$$

Assume now that $s \neq 0$ and that we are in case A. In this case, the conjugation $G$-action on $\tilde{G}_{s}$ is transitive, see 2.1 , and the stabilizer of $\tau^{s}$ for this $G$-action is the finite group $G^{\mathbf{e}^{s}}=\left\{g \in G ; \mathbf{e}^{s}(g)=g\right\}$.

With the notation of 4.1 , for $w \in W$ we have isomorphisms

$$
X_{s}^{w} \xrightarrow{\sim} \pi^{-1}\left(\tau^{s}\right) \cap f^{-1}\left(Z_{s}^{w}\right), \bar{X}_{s}^{w} \xrightarrow{\sim} \pi^{-1}\left(\tau^{s}\right) \cap f^{-1}\left(\bar{Z}_{s}^{w}\right)
$$

given by $B \mapsto\left(B, \mathbf{e}^{s}(B), \tau^{s}\right)$. Using this, and the transitivity of the $G$ action on $\tilde{G}_{s}$, we see that for $w \cdot \lambda \in I^{s}$ and for $j \in \mathbf{Z},\left(\Re_{\lambda, s}^{\dot{u}}\right)^{j}[-\Delta]$ (resp. $\left.\left(R_{\lambda, s}^{\dot{u}}\right)^{j}[-\Delta]\right)$ is the $G$-equivariant local system on $\tilde{G}_{s}$ whose stalk at $\tau^{s}$ is $H_{c}^{j-\Delta}\left(X_{s}^{z}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)[\Delta]$ (resp. $\left.I H^{j-\Delta}\left(\bar{X}_{s}^{z}, \mathcal{F}_{\lambda, s}^{\dot{w}}\right)[\Delta]\right)$ with the $G^{\mathbf{e}^{s}}$-action considered in 4.1.

We return to the general case. We say that a simple perverse sheaf $A$ on $\tilde{G}_{s}$ is a character sheaf if the following equivalent conditions are satisfied:
(i) there exists $w \cdot \lambda \in I$ such that $\left(A: \oplus_{j}\left(\Re_{\lambda, s}^{\dot{w}}\right)^{j}\right) \neq 0$;
(ii) there exists $w \cdot \lambda \in I$ such that $\left(A:\left(R_{\lambda, s}^{\dot{u}}\right)^{j}\right) \neq 0$.

In case A with $s \neq 0$, if $A$ satisfies either (i) or (ii), then it must be $G$ equivariant, hence $A[-D]$ must be a $G$-equivariant local system whose stalk at $\tau^{s}$ viewed as a $G^{\mathbf{e}^{s}}$-module is irreducible, so that in this case the equivalence of (i),(ii) follows from the equivalence of (i), (ii) in 4.1. In case A with $s=0$ the equivalence of (i),(ii) follows from [11, 12.7]; a similar proof applies in case B (see also [14, 28.13]).

A character sheaf $A$ determines a $W$-orbit $\mathfrak{o}$ on $\mathfrak{s}_{\infty}$ : the set of $\lambda \in$ $\mathfrak{s}_{\infty}$ such that $\left(A: \oplus_{j}\left(\Re_{\lambda, s}^{\dot{w}}\right)^{j}\right) \neq 0$ for some $w \in W$ (or equivalently $(A$ : $\left.\oplus_{j}\left(R_{\lambda, s}^{\dot{w}}\right)^{j}\right) \neq 0$ for some $\left.w \in W\right)$; we have necessarily $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$. In case A with $s \neq 0$ this follows from 4.1. In case A with $s=0$ this follows from [11, 11.2(a), 12.7]; a similar proof applies in case B.

We now fix $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ such that $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$. We say that $A$ is an $\mathfrak{o}$ character sheaf if the $W$-orbit on $\mathfrak{s}_{\infty}$ determined by $A$ is $\mathfrak{o}$. Let $C S_{\mathfrak{o}, s}$ be a set of representatives for the isomorphism classes of $\mathfrak{o}$-character sheaves on $\tilde{G}_{s}$. In case A with $s \neq 0$ we have a natural bijection $C S_{\mathfrak{o}, s} \leftrightarrow \operatorname{Irr}_{\mathfrak{0}}\left(G^{\mathbf{e}^{s}}\right)$ (notation of 4.1); to $A \in C S_{\mathfrak{o}, S}$ corresponds the stalk of the $G$-equivariant local system $A[-\Delta]$ at $\tau^{s}$, viewed as an irreducible $G^{\mathbf{e}^{s}}$-module.

Let $\mathfrak{o} \in W \backslash \mathfrak{s}_{\infty}$ be such that $\mathbf{e}^{s}(\mathfrak{o})=\mathfrak{o}$. With notation in 2.4 we have the following result.
(b) There exists a pairing $C S_{\mathfrak{o}, s} \times \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right) \rightarrow \overline{\mathbf{Q}}_{l},(A, E) \mapsto b_{A, E}$ such that for any $A \in C S_{\mathfrak{o}, s}$, any $z \cdot \lambda \in I$ with $\lambda \in \mathfrak{o}$ and any $j \in \mathbf{Z}$ we have

$$
\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{j}\right)=(-1)^{j+\Delta}\left(j-\Delta-|z| ; \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{0}}^{1}\right)} b_{A, E} \operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)\right) .
$$

Assume first that $z \cdot \lambda \in I^{s}$. In case A with $s \neq 0$, (b) follows from 4.1(b). In case A with $s=0$, (b) is a reformulation of [11, 14.11], see 21, 5.1]. In case $\mathrm{B},(\mathrm{b})$ can be deduced from $[15,34.19]$ and the quasi-rationality result [16, 39.8]. (In loc.cit. there is the assumption that the adjoint group of $G$ is simple, which was made to simplify the arguments.)

Next we assume tha $z \cdot \lambda \in I-I^{s}$. Then the left hand side of (a) is zero; hence it is enough to show that $\operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)=0$ for any $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$. We have a direct sum decomposition $E^{v}=\oplus_{\lambda^{\prime} \in \mathfrak{s}_{\infty}} 1_{\lambda^{\prime}} E^{v}$. It is enough to show that for $\lambda^{\prime} \in \mathfrak{s}_{\infty}$ we have $\mathbf{e}_{s} c_{z \cdot \lambda}\left(1_{\lambda^{\prime}} E^{v}\right) \subset 1_{\lambda^{\prime \prime}} E^{v}$ where $\lambda^{\prime \prime} \in \mathfrak{s}_{\infty}, \lambda^{\prime \prime} \neq \lambda^{\prime}$. We can assume that $\lambda^{\prime}=\lambda$. We have

$$
\mathbf{e}_{s} c_{z \cdot \lambda}\left(1_{\lambda} E^{v}\right) \subset \mathbf{e}_{s}\left(1_{z(\lambda)} E^{v}\right)=1_{\mathbf{e}^{s}(z(\lambda)} E^{v}
$$

It is enough to show that $\mathbf{e}^{s}(z(\lambda)) \neq \lambda$ that is, $z(\lambda) \neq \mathbf{e}^{-s}(\lambda)$; this follows from $z \cdot \lambda \notin I^{s}$.

Given $A \in C S_{\mathfrak{o}, s}$, there is a unique two-sided cell $\mathbf{c}_{A}$ of $I$ such that $b_{A, E}=0$ whenever $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ satisfies $\mathbf{c}_{E} \neq \mathbf{c}_{A}$. In case A with $s \neq 0$ this follows from results in [6], under the assumption that the centre of $G$ is connected; but the argument in [6] extends to the general case. In case A with $s=0$ this follows from [11, 16.7]. In case B this follows from 17, §41]. We have necessarily $\mathbf{c}_{A} \subset I_{0}$. As in [17, 41.8], [18, 44.18], we see that:
(c) We have $\left(A: \oplus_{j}\left(R_{\lambda, s}^{\dot{z}}\right)^{j}\right) \neq 0$ for some $z \cdot \lambda \in \mathbf{c}_{A}$; conversely, if $z \cdot \lambda \in I$ is such that $\left(A: \oplus_{j}\left(R_{\lambda, s}^{\dot{z}}\right)^{j}\right) \neq 0$, then $\mathbf{c}_{A} \preceq z \cdot \lambda$.

Let $a_{A}$ be the value of the $a$-function on $\mathbf{c}_{A}$. If $z \cdot \lambda \in I^{s}, E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{0}}^{1}\right)$ satisfy $\operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right) \neq 0$ then $\mathbf{c}_{E} \preceq z \cdot \lambda$; if in addition we have $z \cdot \lambda \in \mathbf{c}_{E}$ then from the definitions we have

$$
\operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)=\sum_{h \geq 0} c_{z \cdot \lambda, E, h, s} v^{a_{E}-h}
$$

where $c_{z \cdot \lambda, E, h, s} \in \overline{\mathbf{Q}}_{l}$ is zero for large $h, c_{z \cdot \lambda, E, 0, s}=\operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)$ and $a_{E}$ is as in 1.13. Hence from (b) we see that for $A \in C S_{\mathfrak{o}, s}$ and $z \cdot \lambda \in I_{\mathfrak{o}}, j \in \mathbf{Z}$, the following holds:
(d) We have $\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{j}\right)=0$ unless $\mathbf{c}_{A} \preceq z \cdot \lambda$; if $z \cdot \lambda \in \mathbf{c}_{A}$, then

$$
\left(A:\left(R_{\lambda, s}^{\dot{\tilde{n}}}\right)^{j}\right)=(-1)^{j+\Delta}\left(j-\Delta-|z| ; \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{0}}^{1}\right) ; \mathbf{c}_{E}=\mathbf{c}_{A} ; h \geq 0} b_{A, E} c_{z \cdot \lambda, E, h, s} v^{a_{A}-h}\right)
$$

which is 0 unless $j-\Delta-|z| \leq a_{A}$.

In the remainder of this section let $\mathbf{c}, a, n, \Psi$ be as in 3.1(a). We assume that $w \cdot \lambda \in \mathbf{c} \Longrightarrow \lambda \in \mathfrak{o}$.
Note that $\chi$ can be also viewed as a functor $\chi: \mathcal{D}_{m}\left(Z_{s}\right) \rightarrow \mathcal{D}_{m}\left(\tilde{G}_{s}\right)$.
Let $\mathcal{M} \preceq \tilde{G}_{s}$ (resp. $\mathcal{M} \prec \tilde{G}_{s}$ ) be the category of perverse sheaves on $\tilde{G}_{s}$ whose composition factors are all of the form $A \in C S_{\mathfrak{o}, s}$ with $\mathbf{c}_{A} \preceq \mathbf{c}$ (resp. $\mathbf{c}_{A} \prec \mathbf{c}$ ). Let $\mathcal{D} \preceq \tilde{G}_{s}$ (resp. $\left.\mathcal{D}^{\prec} \tilde{G}_{s}\right)$ be the subcategory of $\mathcal{D}\left(\tilde{G}_{s}\right)$ whose objects are complexes $K$ such that $K^{j}$ is in $\mathcal{M} \preceq \tilde{G}_{s}\left(\right.$ resp. $\left.\mathcal{M} \prec \tilde{G}_{s}\right)$ for any $j$. Let $\mathcal{D} \underset{\bar{m}}{\preceq} \tilde{G}_{s}$ (resp. $\left.\mathcal{D}_{m}^{\prec} \tilde{G}_{s}\right)$ be the subcategory of $\mathcal{D}_{m}\left(\tilde{G}_{s}\right)$ whose objects are also in $\mathcal{D} \preceq \tilde{G}_{s}\left(\right.$ resp. $\left.\mathcal{D}^{\prec} \tilde{G}_{s}\right)$.

Let $z \cdot \lambda \in I_{0}$. From (d) we deduce:
(e) If $z \cdot \lambda \preceq \mathbf{c}$, then $\left(R_{\lambda, s}^{\dot{z}}\right)^{j} \in \mathcal{M} \preceq \tilde{G}_{s}$ for all $j \in \mathbf{Z}$.
(f) If $z \cdot \lambda \in \mathbf{c}$ and $j>a+\Delta+|z|$ then $\left(R_{\lambda, s}^{\dot{\varepsilon}}\right)^{j} \in \mathcal{M}^{\prec} \tilde{G}_{s}$.
(g) If $z \cdot \lambda \prec \mathbf{c}$ then $\left(R_{\lambda, s}^{\dot{z}}\right)^{j} \in \mathcal{M}^{\prec} \tilde{G}_{s}$ for all $j \in \mathbf{Z}$.
6.2. Let $C S_{\mathbf{c}, s}=\left\{A \in C S_{\mathfrak{0}, s} ; \mathbf{c}_{A}=\mathbf{c}\right\}$. For any $z \cdot \lambda \in I$ we set

$$
n_{z}=a(z)+\Delta+|z| .
$$

Let $A \in C S_{\mathbf{c}, s}$ and let $z \cdot \lambda \in \mathbf{c}$. We have
(a)

$$
\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}}\right)=(-1)^{a+|z|} \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right)} b_{A, E} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)
$$

Indeed, from 6.1(b) we have

$$
\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}}\right)=(-1)^{a+|z|} \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{o}^{1}\right)} b_{A, E}\left(a ; \operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)\right)
$$

and it remains to use that $\left(a ; \operatorname{tr}\left(\mathbf{e}_{s} c_{z \cdot \lambda}, E^{v}\right)\right)=\operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)$. We show:
(b) For any $A \in C S_{\mathbf{c}, s}$ there exists $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ such that $b_{A, E} \neq 0$ hence $\mathbf{c}_{E}=\mathbf{c}$.

Assume that this is not so. Then, using $6.1(\mathrm{~b})$, for any $z \cdot \lambda \in I_{0}$ we have $\left(A: \oplus_{j}\left(R_{\lambda, s}^{\dot{z}}\right)^{j}\right)=0$. This contradicts the assumption that $A \in C S_{\mathfrak{o}, s}$. We show:
(c) For any $A \in C S_{\mathbf{c}, s}$ there exists $z \cdot \lambda \in \mathbf{c}$ such that $\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}}\right) \neq 0$.

Assume that this is not so. Then, using (a), we see that

$$
\sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{0}}^{1}\right) ; \mathbf{c}_{E}=\mathbf{c}} b_{A, E} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)=0
$$

for any $z \cdot \lambda \in \mathbf{c}$. If $z \cdot \lambda \in I_{0}-\mathbf{c}$ then the last sum is automatically zero since $t_{z \cdot \lambda}$ acts as 0 on $E^{\infty}$ for each $E$ in the sum. Thus we have

$$
\sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right) ; \mathbf{c}_{E}=\mathbf{c}} b_{A, E} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)=0
$$

for any $z \cdot \lambda \in I_{0}$. In the last sum the condition $\mathbf{c}_{E}=\mathbf{c}$ is automatically satisfied if $b_{A, E} \neq 0$. Thus we have

$$
\sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right)} b_{A, E} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right)=0
$$

for any $z \cdot \lambda \in I_{0}$. By a general argument (see for example [15, 34.14(e)]), the linear functions $t_{z \cdot \lambda} \mapsto \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right), \mathbf{J}_{\mathfrak{0}} \rightarrow \overline{\mathbf{Q}}_{l}$ (for various $E$ as in the last sum) are linearly independent. It follows that $b_{A, E}=0$ for each $E$ as in the last sum. This contradicts (b).

We show:
(d) Let $z \cdot \lambda \in \mathbf{c}$ be such that $\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}} \neq 0$. Then $z \cdot \lambda \underset{\text { left }}{\sim}$ $e e^{s}\left(z^{-1}\right) \cdot \mathbf{e}^{s}(z(\lambda))$ and $z \cdot \lambda \underset{\text { left }}{\sim}$ $e e^{s}\left(z^{-1}\right) \cdot \lambda$.
Using (a) we see that there exists $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ such that $\operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right) \neq$ 0 . We have $E^{\infty}=\oplus_{d \cdot \lambda_{1} \in \mathbf{D} \cap \mathfrak{o}} t_{d \cdot \lambda_{1}} E^{\infty}$. We define $d \cdot \lambda_{1} \in \mathbf{D} \cap \mathfrak{o}$ by the condition that $z \cdot \lambda \underset{\text { left }}{\sim} d \cdot \lambda_{1}$. We define $d^{\prime} \cdot \lambda_{1}^{\prime} \in \mathbf{D} \cap \mathfrak{o}$ by the condition that $z^{-1} \cdot z(\lambda) \underset{\text { left }}{\sim} d^{\prime} \cdot \lambda_{1}^{\prime}$. Now $t_{z \cdot \lambda}: E^{\infty} \rightarrow E^{\infty}$ maps the summand $t_{d \cdot \lambda_{1}} E^{\infty}$ into the summand $t_{d^{\prime} \cdot \lambda_{1}^{\prime}} E^{\infty}$ and all other summands to zero. Moreover, $\mathbf{e}_{s}$ maps $t_{d^{\prime} \cdot \lambda_{1}^{\prime}} E^{\infty}$ into $t_{\mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right)} E^{\infty}$. Hence $\mathbf{e}_{s} t_{z \cdot \lambda}: E^{\infty} \rightarrow E^{\infty}$ maps the summand $t_{d \cdot \lambda_{1}} E^{\infty}$ into the summand $t_{\mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right)} E^{\infty}$ and all other summands to zero. Since $\operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right) \neq 0$ it follows that $t_{d \cdot \lambda_{1}} E^{\infty}=t_{\mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right)} E^{\infty} \neq 0$. Since $\mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right) \in \mathbf{D} \cap \mathfrak{o}$, it follows that $d \cdot \lambda_{1}=\mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right)$. Since $\mathbf{e}^{s}\left(z^{-1}\right) \cdot \mathbf{e}^{s}(z(\lambda)) \underset{\text { left }}{\sim} \mathbf{e}^{s}\left(d^{\prime}\right) \cdot \mathbf{e}^{s}\left(\lambda_{1}^{\prime}\right)$, we see that $z \cdot \lambda \underset{\text { left }}{\sim} \mathbf{e}^{s}\left(z^{-1}\right) \cdot \mathbf{e}^{s}(z(\lambda))$. To complete the proof, it remains to note that $\mathbf{e}^{s}(z(\lambda))=\lambda$ that is $z \cdot \lambda \in I^{s}$. This follows from the fact that $\left(R_{\lambda, s}^{\dot{\tilde{n}}}\right)^{n_{z}} \neq 0$.

We show:
(e) If $C S_{\mathbf{c}, s} \neq \emptyset$ then $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$.

Using (c) and the hypothesis we see that there exists $z \cdot \lambda \in \mathbf{c}$ such that $\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}} \neq 0$. Using (d), we see that $\mathbf{e}^{s}\left(z^{-1}\right) \cdot \mathbf{e}^{s}(z(\lambda)) \in \mathbf{c}$. Since $z^{-1} \cdot z(\lambda) \in \mathbf{c}$ (see Q10 in 1.9) we have also $\mathbf{e}^{s}\left(z^{-1}\right) \cdot \mathbf{e}^{s}(z(\lambda)) \in \mathbf{e}^{s}(\mathbf{c})$. Thus, $\mathbf{c} \cap \mathbf{e}^{s}(\mathbf{c}) \neq \emptyset$. It follows that $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$.
6.3. Until the end of 6.7 we assume that $s \in \mathbf{Z}_{\mathbf{c}}$.

We show:
(a) If $L \in \mathcal{D}^{\preceq} Z_{s}$ then $\chi(L) \in \mathcal{D} \preceq \tilde{G}_{s}$. If $L \in \mathcal{D}^{\prec} Z_{s}$ then $\chi(L) \in \mathcal{D}^{\prec} \tilde{G}_{s}$.
(b) If $L \in \mathcal{M}^{\preceq} Z_{s}$ and $j>a+\nu$ then $(\chi(L))^{j} \in \mathcal{M}^{\prec} \tilde{G}_{s}$.

It is enough to prove (a),(b) assuming in addition that $L=\mathbb{L}_{\lambda, z}^{\dot{\tilde{n}}}$ where $z \cdot \lambda \in I^{s}, z \cdot \lambda \preceq \mathbf{c}$. Then (a) follows from 6.1(e), (g). In the setup of (b) we have

$$
\left(\chi\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right)\right)^{j}=\left(R_{\lambda}^{\dot{z}}\right)^{j+|z|+\nu+\rho}((|z|+\nu+\rho) / 2)
$$

and this is in $\mathcal{M}^{\prec} G$ since $j+|z|+\nu+\rho>a+\Delta+|z|$, see 6.1(f).
6.4. Let $\mathcal{C} \tilde{G}_{s}$ be the subcategory of $\mathcal{M}\left(\tilde{G}_{s}\right)$ consisting of semisimple objects. Let $\mathcal{C}_{0}^{\star} \tilde{G}_{s}$ be the subcategory of $\mathcal{M}_{m}\left(\tilde{G}_{s}\right)$ consisting of objects of pure of weight zero. Let $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ be the subcategory of $\mathcal{M}\left(\tilde{G}_{s}\right)$ consisting of objects which are direct sums of objects in $C S_{\mathbf{c}, s}$. Let $\mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{s}$ be the subcategory of $\mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{G}_{s}$ consisting of those $K$ such that, as an object of $\mathcal{C} \tilde{G}_{s}, K$ belongs to $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$. For $K \in \mathcal{C}_{0}^{\boldsymbol{\omega}} \tilde{G}_{s}$ let $\underline{K}$ be the largest subobject of $K$ such that as an object of $\mathcal{C} \tilde{G}_{s}$, we have $\underline{K} \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$.
6.5. For $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$ we set

$$
\underline{\chi}(L)=\underline{(\chi(L))^{a+\nu}}((a+\nu) / 2)=\underline{(\chi(L))^{\{a+\nu\}}} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s} .
$$

(The last equality uses that $\pi$ in 6.1 is proper hence it preserves purity.) The functor $\underline{\chi}: \mathcal{C}_{0}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}$ is called truncated induction. For $z \cdot \lambda \in \mathbf{c}^{s}$ we have
(a)

$$
\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)=\underline{\left(R_{\lambda, s}^{\dot{\tilde{n}}}\right)^{n_{z}}}\left(n_{z} / 2\right)
$$

Indeed,

$$
\begin{aligned}
\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right) & \left.\left.=\underline{\left(\chi\left(\mathbb{L}_{\lambda, s}^{\dot{\dot{z}}}\right)\right)^{a+\nu}}((a+\nu) / 2)=\underline{\left(\chi \left(\mathcal{L}_{\lambda, s}^{\dot{z}}\right.\right.}\langle | z|+\nu+\rho\rangle\right)\right)^{a+\nu} \\
& =\left(\left(\alpha\left(\mathcal{L}_{\lambda, s}^{\dot{z}}\right)\right)\right)^{|z|+a+\Delta}((|z|+a+\Delta) / 2)=\underline{\left(\chi\left(\mathcal{L}_{\lambda, s}^{\dot{z} \sharp}\right)\right)^{n_{z}}\left(n_{z} / 2\right)} \\
& =\underline{\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}}\left(n_{z} / 2\right) .}
\end{aligned}
$$

Using (a) and 6.2(d) we see that:
(d) If $z \cdot \lambda \in \mathbf{c}^{s}$ is such that $\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{\lambda}}}\right) \neq 0$ then $z \cdot \lambda \underset{\text { left }}{\sim} e^{s}\left(z^{-1}\right) \cdot \lambda$.
6.6. For $z \cdot \lambda, z^{\prime} \cdot \lambda^{\prime}$ in $\mathbf{c}^{s}$ we show:
(a) $\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right), \underline{\chi}\left(\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{z}^{\prime}}\right)\right)=\sum_{u \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{u^{-1} \cdot u\left(\lambda_{1}\right)} t_{z \cdot \lambda} t_{\mathbf{e}^{s}(u) \cdot \mathbf{e}^{s}\left(\lambda_{1}\right)} t_{z^{\prime-1} \cdot z^{\prime}\left(\lambda^{\prime}\right)}\right)$
where $\mathbf{t}: \mathbf{H}^{\infty} \rightarrow \mathbf{Z}$ is as in 1.9.
Let ()$^{\boldsymbol{n}}: \overline{\mathbf{Q}}_{l} \rightarrow \overline{\mathbf{Q}}_{l}$ be a field automorphism which maps any root of 1 in $\overline{\mathbf{Q}}_{l}$ to its inverse. The field automorphism $\overline{\mathbf{Q}}_{l}(v) \rightarrow \overline{\mathbf{Q}}_{l}(v)$ which maps $v$ to $v$ and $x \in \overline{\mathbf{Q}}_{l}$ to $x^{\boldsymbol{\omega}}$ is denoted again by ${ }^{\boldsymbol{\omega}}$.

Let $N_{1}$ (resp. $N_{2}$ ) be the left (resp. right) hand side of (a). Using 6.5(a) and the definitions we see that

$$
\begin{equation*}
N_{1}=\sum_{A \in C S_{\mathbf{c}, s}}\left(A:\left(R_{\lambda, s}^{\dot{z}}\right)^{n_{z}}\right)\left(A:\left(R_{\lambda^{\prime}, s}^{\dot{z}^{\prime}}\right)^{n_{z^{\prime}}}\right) . \tag{b}
\end{equation*}
$$

Using 6.2(a) and the analogous identity for $\left(A:\left(R_{\lambda^{\prime}, s}^{\dot{z}^{\prime}}\right)^{n z^{\prime}}\right)$ in which the field automorphism ( $)^{\boldsymbol{\omega}}: \overline{\mathbf{Q}}_{l} \rightarrow \overline{\mathbf{Q}}_{l}$ is applied to both sides (the left hand side is fixed by ( $\left.)^{\boldsymbol{\omega}}\right)$, we deduce that

$$
N_{1}=(-1)^{|z|+\left|z^{\prime}\right|} \sum_{E, E^{\prime} \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right)} \sum_{A \in C S_{\mathbf{c}, s}} b_{A, E} b_{A, E^{\prime}}^{\boldsymbol{\phi}} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right) \operatorname{tr}\left(\mathbf{e}_{s} t_{z^{\prime} \cdot \lambda^{\prime}}, E^{\prime \infty}\right)^{\boldsymbol{\omega}} .
$$

In the last sum we replace $\sum_{A \in C S_{\mathbf{c}, s}} b_{A, E} b_{A, E^{\prime}}^{\widehat{m}}$ by 1 if $E^{\prime}=E$ and by 0 if $E^{\prime} \neq E$. (In case A with $s \neq 0$ we use [6, 3.9(i)] which assumes that the centre of $G$ is connected, but a similar proof applies without assumption on the centre. In case A with $s=0$ and in case B we use [15, 35.18(g)].)

We see that

$$
N_{1}=(-1)^{|z|+\left|z^{\prime}\right|} \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{0}^{1}\right)} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right) \operatorname{tr}\left(\mathbf{e}_{s} t_{z^{\prime} \cdot \lambda^{\prime}}, E^{\infty}\right)^{\uparrow} .
$$

We now use the equality (for $E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathfrak{o}}^{1}\right)$ ):

$$
\operatorname{tr}\left(\mathbf{e}_{s} t_{z^{\prime} \cdot \lambda^{\prime}}, E^{\infty}\right)^{\boldsymbol{n}}=\operatorname{tr}\left(t_{z^{\prime}-1 \cdot z^{\prime}\left(\lambda^{\prime}\right)} \mathbf{e}_{s}^{-1}, E^{\infty}\right)
$$

which can be deduced from [15, 34.17]. We see that

$$
N_{1}=(-1)^{|z|+\left|z^{\prime}\right|} \sum_{E \in \operatorname{Irr}_{s}\left(\mathbf{H}_{\mathbf{o}}^{1}\right)} \operatorname{tr}\left(\mathbf{e}_{s} t_{z \cdot \lambda}, E^{\infty}\right) \operatorname{tr}\left(t_{z^{\prime}-1 \cdot z^{\prime}\left(\lambda^{\prime}\right)} \mathbf{e}_{s}^{-1}, E^{\infty}\right)
$$

This is equal to $(-1)^{|z|+\left|z^{\prime}\right|}$ times the trace of the linear map $\xi \mapsto t_{z \cdot \lambda} \mathbf{e}^{s}(\xi) t_{z^{\prime-1} \cdot z^{\prime}\left(\lambda^{\prime}\right)}$ from $\mathbf{J}_{0}$ to $\mathbf{J}_{\mathfrak{0}}$; hence it is equal to

$$
(-1)^{|z|+\left|z^{\prime}\right|} \sum_{u \cdot \lambda_{1} \in \mathfrak{0}} \mathbf{t}\left(t_{u^{-1} \cdot u\left(\lambda_{1}\right)} t_{z \cdot \lambda} t_{\mathbf{e}^{s}(u) \cdot \mathbf{e}^{s}\left(\lambda_{1}\right)} t_{z^{\prime-1} \cdot z^{\prime}\left(\lambda^{\prime}\right)}\right)=(-1)^{|z|+\left|z^{\prime}\right|} N_{2}
$$

(In the last sum, the terms with $u \cdot \lambda_{1} \in \mathfrak{o}-\mathbf{c}$ contribute 0 .) Thus, $N_{1}=$ $(-1)^{|z|+\left|z^{\prime}\right|} N_{2}$. Since $N_{1}$ and $N_{2}$ are natural numbers it follows that $N_{1}=N_{2}$. This proves (a).

The proof above shows also that $\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right), \underline{\chi}\left(\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{z}^{\prime}}\right)\right)=0$ whenever $(-1)^{|z|+\left|z^{\prime}\right|}=-1$.

Replacing in (a) $u \cdot \lambda_{1}$ by $\mathbf{e}^{-s}(y) \cdot \mathbf{e}^{-s} \lambda_{1}$ (recall that $\mathbf{e}^{s}: \mathbf{c} \rightarrow \mathbf{c}$ is a bijection) we can rewrite (a) as follows:
$\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right), \underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{z}^{\prime}}\right)\right)=\sum_{y \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{\epsilon^{-s}\left(y^{-1}\right) \cdot \mathbf{e}^{-s}\left(y\left(\lambda_{1}\right)\right)} t_{z \cdot \lambda} t_{y \cdot \lambda_{1}} t_{z^{\prime-1}} \cdot z^{\prime}\left(\lambda^{\prime}\right)\right)$.
Since $N_{1}$ (in the form (b)) is symmetric in $z \cdot \lambda, z^{\prime} \cdot \lambda^{\prime}$, we have also $\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}}} \tilde{G}_{s}\left(\underline{\chi}\left(\mathbb{L}_{\dot{\lambda}, s}^{\dot{\dot{z}}}\right), \underline{\chi}\left(\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{\xi}^{\prime}}\right)\right)=\sum_{y \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{\epsilon^{-s}\left(y^{-1}\right) \cdot \mathbf{e}^{-s}\left(y\left(\lambda_{1}\right)\right)} t_{z^{\prime} \cdot \lambda^{\prime}} t_{y \cdot \lambda_{1}} t_{z^{-1} \cdot z(\lambda)}\right)$.

Replacing $y \cdot \lambda_{1}$ by $y^{-1} \cdot y\left(\lambda_{1}\right)$ (recall that $y \cdot \lambda_{1} \mapsto y^{-1} \cdot y\left(\lambda_{1}\right)$ is an involution $\mathbf{c} \rightarrow \mathbf{c}$ ) we can rewrite this as follows:
(c)

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right), \underline{\chi}\left(\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{z}^{\prime}}\right)\right) \\
& =\sum_{y \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{\epsilon^{-s}}(y) \cdot \mathbf{e}^{-s}\left(\lambda_{1}\right) t_{z^{\prime} \cdot \lambda^{\prime}} t_{y^{-1} \cdot y\left(\lambda_{1}\right)} t_{z^{-1} \cdot z(\lambda)}\right)
\end{aligned}
$$

We show:
(d) There exist $z \cdot \lambda \in \mathbf{c}^{s}$ such that $\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right) \neq 0$.

Let $k=u \cdot \lambda_{1} \in \mathbf{c}$. Then $\mathbf{e}^{s}(k) \in \mathbf{c}, k^{!} \in \mathbf{c}$ hence by $1.15(\mathrm{~d})$ we have $t_{k^{\prime}} t_{j} t_{\mathbf{e}^{s}(k)} \neq 0$ for some $j \in I$. From 2.5(a) we deduce that $j \in \mathbf{c}^{s}$. We can find $j^{\prime}=z^{\prime} \cdot \lambda^{\prime} \in \mathbf{c}$ such that $t_{j^{\prime}}$ appears with nonzero coefficient in $t_{k^{\prime}} t_{j} t_{\mathbf{e}^{s}(k)}$. It follows that $\mathbf{t}\left(t_{k^{\prime}} t_{j} t_{\mathbf{e}^{s}(k)} t_{j^{\prime}!}\right) \neq 0$. Since $\mathbf{t}\left(\xi \xi^{\prime}\right)=\mathbf{t}\left(\xi^{\prime} \xi\right)$ for $\xi, \xi^{\prime} \in \mathbf{H}^{\infty}$ we deduce that $\mathbf{t}\left(t_{\mathbf{e}^{s}(k)} t_{j^{\prime}} t_{k^{\prime}} t_{j}\right) \neq 0$. In particular we have $t_{\mathbf{e}^{s}(k)} t_{j^{\prime}!} t_{k^{!}} \neq 0$. Applying the antiautomorphism $t_{u} \mapsto t_{u^{!}}$of $\mathbf{H}^{\infty}$ we deduce $t_{k} t_{j^{\prime}} t_{\mathbf{e}^{s}\left(k^{\prime}\right)} \neq 0$. Using again 2.5(a) we deduce that $j^{\prime} \in \mathbf{c}^{s}$. If $i \in \mathbf{c}, j \in I$ satisfy $t_{i^{\prime}} t_{j} t_{\mathbf{e}^{s}(i)} \neq 0$ then $j \in \mathbf{c}^{s}$. Since $\mathbf{t}\left(t_{h^{!}} t_{j} t_{\mathbf{e}^{s}(h)} t_{j^{\prime}!}\right) \in \mathbf{N}$ for any $h \in \mathbf{c}$ and $\mathbf{t}\left(t_{k^{\prime}} t_{j} t_{\mathbf{e}^{s}(k)} t_{j^{\prime}!}\right) \neq 0$, we see that $\sum_{h \in \mathbf{c}} \mathbf{t}\left(t_{h^{\prime}!} t_{j} t_{\mathbf{e}^{s}(h)} t_{j^{\prime}!}\right) \in \mathbf{N}_{>0}$. Using this and (a), we see that

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right), \underline{\chi}\left(\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{z}^{\prime}}\right)\right) \in \mathbf{N}_{>0}
$$

This proves (d).

The following converses to $6.2(\mathrm{e})$ is an immediate consequence of (d):
(e) We have $C S_{\mathbf{c}, s} \neq \emptyset$.
6.7. Let $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$. We show that $\mathfrak{D}(L) \in \mathcal{C}_{0}^{\widetilde{\mathbf{c}}} Z_{s}$. (Here $\widetilde{\mathbf{c}}$ is as in 1.14.) It is enough to note that for $w \cdot \lambda \in \mathbf{c}^{s}$ and $\omega \in \kappa_{0}^{-1}(w)$ we have
(a) (a) $\mathfrak{D}\left(\mathbb{L}_{\lambda, s}^{\omega}\right)=\mathbb{L}_{\lambda^{-1}, s}^{\omega}$.

We show:
(b) For $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$ we have canonically $\underline{\chi}(\mathfrak{D}(L))=\mathfrak{D}(\underline{\chi}(L))$ where the first $\underline{\chi}$ is relative to $\widetilde{\mathbf{c}}$ instead of $\mathbf{c}$.
Let $\pi, f, \dot{Z}_{s}$ be as in 6.1. By the relative hard Lefschetz theorem [1, 5.4.10] applied to the projective morphism $\pi$ and to $f^{*} L\langle\nu\rangle$ (a perverse sheaf of pure weight 0 on $\dot{Z}_{s}$ ) we have canonically for any $j \in \mathbf{Z}$ :
(c)

$$
\left(\pi!f^{*} L\langle\nu\rangle\right)^{-j}=\left(\pi_{!} f^{*} L\langle\nu\rangle\right)^{j}(j) .
$$

We have used the fact that $f$ is smooth with fibres of dimension $\nu$. This also shows that

$$
\begin{equation*}
\mathfrak{D}(\chi(\mathfrak{D}(L)))=\chi(L)\langle 2 \nu\rangle . \tag{d}
\end{equation*}
$$

Using (d) we have

$$
\begin{aligned}
\mathfrak{D}(\underline{\chi}(\mathfrak{D}(L))) & \left.=\mathfrak{D}\left((\chi(\mathfrak{D}(L)))^{a+\nu}((a+\nu) / 2)\right)\right) \\
& =(\mathfrak{D}(\chi(\mathfrak{D}(L))))^{-a-\nu}((-a-\nu) / 2) \\
& =(\chi(L)\langle 2 \nu\rangle)^{-a-\nu}((-a-\nu) / 2)=(\chi(L)\langle\nu\rangle)^{-a}(-a / 2) .
\end{aligned}
$$

Hence using (c) we have

$$
\mathfrak{D}(\underline{\chi}(\mathfrak{D}(L)))=(\chi(L)\langle\nu\rangle)^{a}(a / 2)=(\chi(L))^{a+\nu}((a+\nu) / 2)=\underline{\chi}(L) .
$$

This proves (b).
6.8. We define $\zeta: \mathcal{D}\left(\tilde{G}_{s}\right) \rightarrow \mathcal{D}\left(Z_{s}\right)$ and $\zeta: \mathcal{D}_{m}\left(\tilde{G}_{s}\right) \rightarrow \mathcal{D}_{m}\left(Z_{s}\right)$ by $\zeta(K)=$ $f_{!} \pi^{*} K$ where $Z_{s} \stackrel{f}{\leftarrow} \dot{Z}_{s} \stackrel{\pi}{\leftarrow} \tilde{G}_{s}$ is as in 6.1(a). We show:
(a) For any $L \in \mathcal{D}\left(Z_{s}\right)$ or $L \in \mathcal{D}_{m}\left(Z_{s}\right)$ we have $\mathfrak{b}^{\prime \prime}(L)=\zeta(\chi(L))$.

We have $\zeta(\chi(L))=f!\pi^{*} \pi!f^{*}(L)$. We have
$\dot{Z}_{s} \times \tilde{G}_{s} \dot{Z}_{s}=\left\{\left(\left(B_{0}, B_{1}, B_{2}, B_{3}\right), \gamma\right) \in \mathcal{B}^{4} \times \tilde{G}_{s} ; \gamma B_{0} \gamma^{-1}=B_{3}, \tilde{g} B_{1} \tilde{g}^{-1}=B_{2}\right\}$.
We have a cartesian diagram

where $\tilde{\pi}_{1}\left(\left(B_{0}, B_{1}, B_{2}, B_{3}\right), \gamma\right)=\left(B_{0}, B_{3}, \gamma\right), \tilde{\pi}_{2}\left(\left(B_{0}, B_{1}, B_{2}, B_{3}\right), \gamma\right)=\left(B_{1}\right.$, $\left.B_{2}, \gamma\right)$. It follows that $\pi^{*} \pi!=\tilde{\pi}_{1!} \tilde{\pi}_{2}^{*}$. Thus,

$$
\zeta(\chi(L))=f!\tilde{\pi}_{1!} \tilde{\pi}_{2}^{*} f^{*}(L)=\left(f \tilde{\pi}_{1}\right)_{!}\left(f \tilde{\pi}_{2}\right)^{*}(L)
$$

Define $\pi_{1}^{\prime}: \dot{Z}_{s} \times_{\tilde{G}_{s}} \dot{Z}_{s} \rightarrow Z_{s}, \pi_{2}^{\prime}: \dot{Z}_{s} \times \tilde{G}_{s} \dot{Z}_{s} \rightarrow Z_{s}$ by

$$
\begin{aligned}
& \pi_{1}^{\prime}\left(\left(B_{0}, B_{1}, B_{2}, B_{3}\right), \gamma\right)=\left(B_{0}, B_{3}, \gamma U_{B_{0}}\right) \\
& \pi_{2}^{\prime}\left(\left(B_{0}, B_{1}, B_{2}, B_{3}\right), \gamma\right)=\left(B_{1}, B_{2}, \gamma U_{B_{1}}\right)
\end{aligned}
$$

Then $\pi_{1}^{\prime}=f \tilde{\pi}_{1}, \pi_{2}^{\prime}=f \tilde{\pi}_{2}$ and $\zeta(\chi(L))=\pi_{1!}^{\prime} \pi_{2}^{\prime *}(L)$. Let ${ }^{\diamond} \mathcal{Y}$ be as in 4.14.
We have an isomorphism ${ }^{\diamond} \mathcal{Y} \rightarrow \dot{Z}_{s} \times{ }_{\tilde{G}_{s}} \dot{Z}_{s}$ induced by

$$
\left(\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, x_{2} \mathbf{U}, x_{3} \mathbf{U}\right), \gamma\right) \mapsto\left(\left(x_{0} \mathbf{B} x_{0}^{-1}, x_{1} \mathbf{B} x_{1}^{-1}, x_{2} \mathbf{B} x_{2}^{-1}, x_{3} \mathbf{B} x_{3}^{-1}\right), \gamma\right)
$$

We use this to identify ${ }^{\diamond} \mathcal{Y}=\dot{Z}_{s} \times \tilde{G}_{s} \dot{Z}_{s}$. Then $\pi_{1}^{\prime}, \pi_{2}^{\prime}$ become $d,{ }^{\diamond} \eta$ of 4.25 .
We see that (a) holds.
6.9. In the remainder of this section we assume that $s \in \mathbf{Z}_{\mathbf{c}}$.

Let $z \cdot \lambda \in \mathfrak{o}$. We set $\Sigma=\epsilon_{s}^{*} \zeta\left(R_{\lambda, s}^{\dot{z}}\right)\langle 2 \nu+| z| \rangle \in \mathcal{D}\left(\tilde{\mathcal{B}}^{2}\right)$. Let $j \in \mathbf{Z}$. We show:
(a) If $z \cdot \lambda \preceq \mathbf{c}$, then $\Sigma^{j} \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$.
(b) If $z \cdot \lambda \prec \mathbf{c}$, then $\Sigma^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.
(c) If $z \cdot \lambda \in \mathbf{c}$ and $j>\nu+2 \rho+2 a$, then $\Sigma^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$.

If $z \cdot \lambda \notin I^{s}$, then $\Sigma=0$ and there is nothing to prove. Now assume that
$z \cdot \lambda \in I^{s}$. Using 4.9(a), we have

$$
\Sigma=\epsilon_{s}^{*} \zeta\left(\chi\left(\mathcal{L}_{\lambda, s}^{i \sharp}\right)\right)\langle 2 \nu+| z| \rangle=\mathfrak{b}^{\prime}\left(\mathcal{L}_{\lambda, s}^{i \sharp}\right)\langle 2 \nu+| z| \rangle=\mathfrak{b}^{\prime}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right)\langle\nu-\rho\rangle .
$$

Now (a),(b) follow from 4.14(a),(b); (c) follows from 4.14(c). (If $j>\nu+$ $2 \rho+2 a$, then $j+\nu-r>2 \nu+\rho+2 a$.)
6.10. We show:
(a) If $K \in \mathcal{D} \preceq \tilde{G}_{s}$, then $\zeta(K) \in \mathcal{D}^{\preceq} Z_{s}$.
(b) If $K \in \mathcal{D}^{\prec} \tilde{G}_{s}$, then $\zeta(K) \in \mathcal{D}^{\prec} Z_{s}$.
(c) If $K \in \mathcal{D} \preceq \tilde{G}_{s}$ and $j>\nu+a$, then $(\zeta(K))^{j} \in \mathcal{M}^{\prec} Z_{s}$.

We can assume in addition that $K=A \in C S_{\mathbf{c}^{\prime}, s}$ for a two-sided cell $\mathbf{c}^{\prime}$ such that $\mathbf{c}^{\prime} \preceq \mathbf{c}$. Assume first that $\mathbf{c}^{\prime}=\mathbf{c}$. By $6.2(\mathrm{c})$ we can find $z \cdot \lambda \in \mathbf{c}$ such that $\left(A:\left(R_{\lambda, s}^{\dot{\tilde{~}}}\right)^{n_{z}}\right) \neq 0$. Then $A\left[-n_{z}\right]$ (without mixed structure) is a direct summand of the semisimple complex $R_{\lambda, s^{*}}^{\dot{~}}$. Hence $\epsilon_{s}^{*} \zeta(A)\left[-n_{z}\right]$ is a direct summand of $\epsilon_{s}^{*} \zeta\left(R_{\lambda, s}^{\dot{~}}\right)$ and $\epsilon_{s}^{*} \zeta(A)\left[-n_{z}+2 \nu+|z|\right]$ is a direct summand of $\Sigma$ (in 6.9), that is, $\epsilon_{s}^{*} \zeta(A)[-a-\rho]$ is a direct summand of $\Sigma$. By 6.9, if $j \in \mathbf{Z}$ (resp. $j>\nu+2 \rho+2 a$ ) then $\Sigma^{j} \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$ (resp. $\Sigma^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}$ ) hence $\left(\epsilon_{s}^{*} \zeta(A)[-a-\rho]\right)^{j} \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}\left(\right.$ resp. $\left.\left(\epsilon_{s}^{*} \zeta(A)[-a-\rho]\right)^{j} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}\right)$, that is, $\left(\epsilon_{s}^{*} \zeta(A)\right)^{j-a-\rho} \in \mathcal{M}^{\preceq} \tilde{\mathcal{B}}^{2}$ (resp. $\left.\left(\epsilon_{s}^{*} \zeta(A)\right)^{j-a-\rho} \in \mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}\right)$. We see that if $j^{\prime} \in \mathbf{Z}$ (resp. $\left.j^{\prime}>\nu+\rho+a\right)$ then $\left(\epsilon_{s}^{*} \zeta(A)\right)^{j^{\prime}} \in \mathcal{M} \preceq \tilde{\mathcal{B}}^{2}$ (resp. $\left(\epsilon_{s}^{*} \zeta(A)\right)^{j^{\prime}} \in$ $\left.\mathcal{M}^{\prec} \tilde{\mathcal{B}}^{2}\right)$, so that $(\zeta(A))^{j^{\prime}-\rho} \in \mathcal{M}^{\preceq} Z_{s}$ (resp. $\left.(\zeta(A))^{j^{\prime}-\rho} \in \mathcal{M}^{\prec} Z_{s}\right)$; here we use 4.3(a). We see that if $j \in \mathbf{Z}$ (resp. $j>\nu+a$, so that $j+\rho>\nu+\rho+a$ ), then $(\zeta(A))^{j} \in \mathcal{M}^{\preceq} Z_{s}$ (resp. $\left.(\zeta(A))^{j} \in \mathcal{M}^{\prec} Z_{s}\right)$. Thus the desired results hold when $\mathbf{c}^{\prime}=\mathbf{c}$.

Assume now that $\mathbf{c}^{\prime} \prec \mathbf{c}$. Applying the above argument with $\mathbf{c}$ replaced by $\mathbf{c}^{\prime}$, we see that the desired results hold.
6.11. For $K \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}$ we set

$$
\underline{\zeta}(K)=\underline{(\zeta(K))^{\{\nu+a\}}} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s} .
$$

We say that $\underline{\zeta}(K)$ is the truncated restriction of $K$.
6.12. Let $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$. We show:
(a) We have canonically $\underline{\zeta}(\underline{\chi}(L))=\underline{\mathfrak{b}^{\prime \prime}}(L)$.

We shall apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{m}\left(Y_{1}\right) \rightarrow \mathcal{D}_{m}\left(Y_{2}\right)$ replaced by $\zeta: \mathcal{D}_{m}\left(\tilde{G}_{s}\right) \rightarrow \mathcal{D}_{m}\left(Z_{s}\right)$ and with $\mathcal{D}^{\preceq}\left(Y_{1}\right), \mathcal{D} \preceq\left(Y_{2}\right)$ replaced by $\mathcal{D}^{\preceq} \tilde{G}_{s}$, $\mathcal{D} \preceq Z_{s}$. We shall take $\mathbf{X}$ in loc.cit. equal to $\chi(L)$. The conditions of loc.cit. are satisfied: those concerning $\mathbf{X}$ are satisfied with $c^{\prime}=a+\nu$, see 6.3. The conditions concerning $\zeta$ are satisfied with $c=a+\nu$, see 6.10. We see that

$$
\begin{equation*}
(\zeta(\chi(L)))^{j}=0 \text { if } j>2 a+2 \nu \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{g r_{2 a+2 \nu}\left((\zeta(\chi(L)))^{2 a+2 \nu}\right)}(a+\nu)=\underline{\zeta}(\underline{\chi}(L)) \tag{c}
\end{equation*}
$$

Since $\zeta(\chi(L))=\mathfrak{b}^{\prime \prime}(L)$, we see that the left hand side of (c) equals $\underline{\mathfrak{b}^{\prime \prime}}(L)$. Thus (a) is proved.

Combining (a) with $4.25(\mathrm{~d})$ and $4.14(\mathrm{~d})$ we see that
(b) we have canonically $\tilde{\epsilon}_{s} \underline{\zeta}(\underline{\chi}(L))=\underline{\mathfrak{b}}(L)$.
6.13. Let $K \in \mathcal{D}\left(\tilde{G}_{s}\right)$ and let $L \in \mathcal{D}^{\boldsymbol{\sim}} \tilde{\mathcal{B}}^{2}$. Let $\tilde{L}=\left(\mathbf{e}^{s}\right)^{*} L$. In (a) below the assumption $s \in \mathbf{Z}_{\mathbf{c}}$ is not used:
(a) there is a canonical isomorphism $\tilde{L} \circ \epsilon_{s}^{*} \zeta(K) \xrightarrow{\sim} \epsilon_{s}^{*} \zeta(K) \circ L$.

Let $Y=\tilde{\mathcal{B}}^{2} \times \tilde{G}_{s}$. Define $j: Y \rightarrow \tilde{G}_{s}$ by $j\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \gamma\right)=\gamma$. Define $j_{1}: Y \rightarrow \tilde{\mathcal{B}}^{2}$ by $j_{1}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \gamma\right)=\left(x_{0} \mathbf{U}, \gamma^{-1} x_{1} \tau^{s} \mathbf{U}\right)$. Define $j_{2}: Y \rightarrow$ $\tilde{\mathcal{B}}^{2}$ by $j_{2}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \gamma\right)=\left(\gamma x_{0} \tau^{-s} \mathbf{U}, x_{1} \mathbf{U}\right)$. From the definitions we have $\tilde{L} \circ \epsilon_{s}^{*} \zeta(K)=j_{2!}\left(j_{1}^{*}(\tilde{L}) \otimes j^{*}(K)\right), \epsilon_{s}^{*} \zeta(K) \circ L=j_{2!}\left(j_{2}^{*}(L) \otimes j^{*}(K)\right)$. It remains to prove that $j_{1}^{*}(\tilde{L})=j_{2}^{*} L$ that is, $j_{1}^{\prime *} L=j_{2}^{*} L$ where $j_{1}^{\prime}=\mathbf{e}^{s} j_{1}: Y \rightarrow \tilde{\mathcal{B}}^{2}$ is given by $j_{1}^{\prime}\left(x_{0} \mathbf{U}, x_{1} \mathbf{U}, \gamma\right)=\left(\tau^{s} x_{0} \tau^{-s} \mathbf{U}, \tau^{s} \gamma^{-1} x_{1} \mathbf{U}\right)$. The equality $j_{1}^{\prime *} L=j_{2}^{*} L$ follows from the $G$-equivariance of $L$. This proves (a).

Now let $K \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}$ and let $L \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. Since $\mathbf{e}^{s}(\mathbf{c})=\mathbf{c}$, we have $\left(\mathbf{e}^{s}\right)^{*} L \in$ $\mathcal{C}_{0}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$, see 3.11(a). We show that
(b) there is a canonical isomorphism $\left(\mathbf{e}^{s}\right)^{*}(L) \underline{\varrho} \tilde{\epsilon}_{s} \underline{\zeta}(K) \xrightarrow{\sim}\left(\tilde{\epsilon}_{s} \underline{\zeta}(K)\right) \underline{\perp} L$.

We apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} \tilde{\mathcal{B}}^{2} \rightarrow \mathcal{D}_{\bar{m}} \tilde{\mathcal{B}}^{2}, L^{\prime} \mapsto L^{\prime} \circ L$, $\mathbf{X}=\tilde{\epsilon}_{s} \zeta(K)$ and with $\left(c, c^{\prime}\right)=(a-\nu, \nu+a)$, see [21, 2.23(a)], 6.10(c). We deduce that we have canonically

$$
\begin{equation*}
\underline{\left.\underline{\left(\left(\tilde{\epsilon}_{s} \zeta(K)\right)^{\{a+\nu\}}\right.} \circ L\right)^{\{a-\nu\}}}=\underline{\left(\tilde{\epsilon}_{S} \zeta(K) \circ L\right)^{\{2 a\}}} . \tag{c}
\end{equation*}
$$

We apply the method of [19, 1.12] with $\Phi: \mathcal{D}_{\bar{m}}^{\checkmark} \tilde{\mathcal{B}}^{2} \rightarrow \mathcal{D}_{\bar{m}}^{\checkmark} \tilde{\mathcal{B}}^{2}, L^{\prime} \mapsto\left(\mathbf{e}^{s}\right)^{*} L \circ L^{\prime}$, $\mathbf{X}=\tilde{\epsilon}_{s} \zeta(K)$ and with $\left(c, c^{\prime}\right)=(a-\nu, \nu+a)$, see 21, 2.23(a)], 6.10(c). We deduce that we have canonically

$$
\begin{equation*}
\underline{\left(\left(\left(\mathbf{e}^{s}\right)^{*} L \circ \underline{\left.(\tilde{\epsilon} \zeta(K))^{\{a+\nu\}}\right)^{\{a-\nu\}}}\right.\right.}=\underline{\left(\left(\mathbf{e}^{s}\right)^{*} L \circ \tilde{\epsilon} \zeta(K)\right)^{\{2 a\}}} . \tag{d}
\end{equation*}
$$

We now combine (c), (d) with (a); we obtain (b).
6.14. Let $s^{\prime}, s^{\prime \prime}$ be integers. Let $\mu: \tilde{G}_{s^{\prime}} \times \tilde{G}_{s^{\prime \prime}} \rightarrow \tilde{G}_{s^{\prime}+s^{\prime \prime}}$ be the multiplication map. For $K \in \mathcal{D}\left(\tilde{G}_{s^{\prime}}\right), K^{\prime} \in \mathcal{D}\left(\tilde{G}_{s^{\prime \prime}}\right)\left(\right.$ resp. $\left.K \in \mathcal{D}_{m}\left(\tilde{G}_{s^{\prime}}\right), K^{\prime} \in \mathcal{D}_{m}\left(\tilde{G}_{s^{\prime \prime}}\right)\right)$ we set $K * K^{\prime}=\mu_{!}\left(K \boxtimes K^{\prime}\right)$; this is in $\mathcal{D}\left(\tilde{G}_{s^{\prime}+s^{\prime \prime}}\right)$ (resp. in $\left.\mathcal{D}_{m}\left(\tilde{G}_{s^{\prime}+s^{\prime \prime}}\right)\right)$. For $K \in \mathcal{D}\left(\tilde{G}_{s_{1}}\right), K^{\prime} \in \mathcal{D}\left(\tilde{G}_{s_{2}}\right), K^{\prime \prime} \in \mathcal{D}\left(\tilde{G}_{s_{3}}\right)$ we have canonically $(K *$ $\left.K^{\prime}\right) * K^{\prime \prime}=K *\left(K^{\prime} * K^{\prime \prime}\right)$ (and we denote this by $\left.K * K^{\prime} * K^{\prime \prime}\right)$. For $K \in \mathcal{M}\left(\tilde{G}_{s^{\prime}}\right), K^{\prime} \in \mathcal{M}\left(\tilde{G}_{s^{\prime \prime}}\right)$ we show:
(a) If $K^{\prime}$ is $G$-equivariant then we have canonically $K * K^{\prime}=\left(\left(\mathbf{e}^{-s^{\prime}}\right) * K^{\prime}\right) * K^{\prime}$.

If $K$ is $G$-equivariant then we have canonically $K * K^{\prime}=K^{\prime} *\left(\left(\mathbf{e}^{s^{\prime \prime}}\right) * K\right)$.
The proof is immediate. It will be omitted. (Compare [19, 4.1].)
6.15. Let $s^{\prime}, s^{\prime \prime} \in \mathbf{Z}$. We show:
(a) For $K \in \mathcal{D}\left(\tilde{G}_{s^{\prime}}\right), L \in \mathcal{D}\left(Z_{s^{\prime \prime}}\right)$ we have canonically $K * \chi(L)=\chi(L \bullet$ $\zeta(K))$.
Let $Y=\tilde{G}_{s^{\prime}} \times \tilde{G}_{s^{\prime \prime}} \times \mathcal{B}$. Define $c: Y \rightarrow \tilde{G}_{s^{\prime}} \times Z_{s^{\prime \prime}}$ by

$$
c\left(\gamma_{1}, \gamma_{2}, B\right)=\left(\gamma_{1},\left(B, \gamma_{2} B \gamma_{2}^{-1}, \gamma_{2} U_{B}\right)\right)
$$

define $d: Y \rightarrow \tilde{G}_{s^{\prime}+s^{\prime \prime}}$ by $d\left(\gamma_{1}, \gamma_{2}, B\right)=\gamma_{1} \gamma_{2}$. From the definitions we see that both $K * \chi(L), \chi(L \bullet \zeta(K))$ can be identified with $d!c^{*}(K \boxtimes L)$. This proves (a).

Now let $L \in \mathcal{D}\left(Z_{s^{\prime}}\right), L^{\prime} \in \mathcal{D}\left(Z_{s^{\prime \prime}}\right)$. Replacing in (a) $K, L$ by $\chi(L), L^{\prime}$ and using 6.8(a), we obtain

$$
\begin{equation*}
\chi(L) * \chi\left(L^{\prime}\right)=\chi\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right) \tag{b}
\end{equation*}
$$

6.16. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. Let $L \in \mathcal{D}^{\boldsymbol{\aleph}}\left(Z_{s}\right), L^{\prime} \in \mathcal{D}^{\boldsymbol{\aleph}}\left(Z_{s^{\prime}}\right), j \in \mathbf{Z}$. We show:
(a) If $L \in \mathcal{D}^{\preceq} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\preceq} Z_{s^{\prime}}$ then $L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L) \in \mathcal{D}^{\preceq} Z_{s+s^{\prime}}$.
(b) If $L \in \mathcal{D}^{\prec} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\prec} Z_{s^{\prime}}$ then $L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L) \in \mathcal{D}^{\prec} Z_{s+s^{\prime}}$.
(c) If $L \in \mathcal{M}^{\preceq} Z_{s}, L^{\prime} \in \mathcal{M}^{\boldsymbol{\wedge}} Z_{s^{\prime}}$ and $j>3 a+\rho+\nu$ then $\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right)^{j} \in$ $\mathcal{D}^{\prec} Z_{s+s^{\prime}}$.
Now (a), (b) follow from 4.25(b) and 4.23(a). To prove (c) we may assume that $L=\mathbb{L}_{\lambda, s}^{\dot{w}}, L^{\prime}=\mathbb{L}_{\dot{\prime}}^{\dot{w}^{\prime}, s^{\prime}}$, with $w \cdot \lambda \in I_{n}^{s}, w^{\prime} \cdot \lambda^{\prime} \in I_{n}^{s^{\prime}}$ and $w \cdot \lambda \preceq \mathbf{c}$. We apply the method of [19, 1.12] with $\Phi: \mathcal{D}^{\preceq} Z_{s} \rightarrow \mathcal{D}^{\preceq} Z_{s+s^{\prime}}, L_{1} \mapsto L^{\prime} \bullet L_{1}$ and $\mathbf{X}=\mathfrak{b}^{\prime \prime}(L)$ and with $c^{\prime}=2 \nu+2 a$ (see 4.25(c)), $c=a+\rho-\nu($ see 4.23(b)). We have $c+c^{\prime}=\nu+\rho+3 a$ hence (c) holds.
6.17. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. Let $L \in \mathcal{D}^{\boldsymbol{N}}\left(Z_{s}\right), L^{\prime} \in \mathcal{D}^{\boldsymbol{N}}\left(Z_{s^{\prime}}\right), j \in \mathbf{Z}$. We show:
(a) If $L \in \mathcal{D}^{\preceq} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\preceq} Z_{s^{\prime}}$ then $\chi\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right) \in \mathcal{D} \preceq \tilde{G}_{s+s^{\prime}}$.
(b) If $L \in \mathcal{D}^{\prec} Z_{s}$ or $L^{\prime} \in \mathcal{D}^{\prec} Z_{s^{\prime}}$ then $\chi\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right) \in \mathcal{D}^{\prec} \tilde{G}_{s+s^{\prime}}$.
(c) If $L \in \mathcal{M}^{\preceq} Z_{s}, L^{\prime} \in \mathcal{M}^{\bullet} Z_{s^{\prime}}$ and $j>4 a+2 \nu+\rho$ then $\left(\chi\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right)\right)^{j} \in$ $\mathcal{M}^{\prec} \tilde{G}_{s+s^{\prime}}$.
(a), (b) follow from 6.3(a) using 6.16(a), (b). To prove (c) we can assume that $L=\mathbb{L}_{\lambda, s}^{\dot{w}}, L^{\prime}=\mathbb{L}_{\lambda^{\prime}}^{\dot{w^{\prime}} s^{\prime}}$ with $w \cdot \lambda \in I_{n}^{s}, w^{\prime} \cdot \lambda^{\prime} \in I_{n}^{s^{\prime}}$ and $w \cdot \lambda \preceq \mathbf{c}$. We apply the method of [19, 1.12] with $\Phi: \mathcal{D} \preceq Z_{s+s^{\prime}} \rightarrow \mathcal{D} \preceq \tilde{G}_{s+s^{\prime}}, L_{1} \mapsto \chi\left(L_{1}\right)$, $\mathbf{X}=L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)$ and with $c^{\prime}=\nu+\rho+3 a$ (see 6.16(c)), $c=a+\nu$ (see 6.3(b)). We have $c+c^{\prime}=2 \nu+\rho+4 a$ hence (c) holds.
6.18. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. Let $K \in \mathcal{D}^{\boldsymbol{\aleph}}\left(\tilde{G}_{s}\right), K^{\prime} \in \mathcal{D}^{\boldsymbol{\aleph}}\left(\tilde{G}_{s^{\prime}}\right)$. We show:
(a) If $K \in \mathcal{D} \preceq \tilde{G}_{s}$ or $K^{\prime} \in \mathcal{D} \preceq \tilde{G}_{s^{\prime}}$ then $K * K^{\prime} \in \mathcal{D} \preceq G_{s+s^{\prime}}$.
(b) If $K \in \mathcal{D}^{\prec} \tilde{G}_{s}$ or $K^{\prime} \in \mathcal{D}^{\prec} \tilde{G}_{s^{\prime}}$ then $K * K^{\prime} \in \mathcal{D}^{\prec} \tilde{G}_{s+s^{\prime}}$.
(c) If $K \in \mathcal{D} \preceq \tilde{G}_{s}$ or $K^{\prime} \in \mathcal{D} \preceq \tilde{G}_{s^{\prime}}$ and $j>2 a+\rho$ then $\left(K * K^{\prime}\right)^{j} \in \mathcal{D}^{\prec} \tilde{G}_{s+s^{\prime}}$.

We can assume that $K=A \in C S_{\mathfrak{o}, s}, K^{\prime}=A^{\prime} \in C S_{\mathfrak{o}, s^{\prime}}$. Let $A^{\prime \prime} \in \mathcal{M}\left(\tilde{G}_{s+s^{\prime}}\right)$ be a composition factor of $\left(A * A^{\prime}\right)^{j}$. By $6.2(\mathrm{c})$ we can find $w \cdot \lambda \in \mathbf{c}_{A}$, $w^{\prime} \cdot \lambda^{\prime} \in \mathbf{c}_{A^{\prime}}$ such that $\left(A:\left(R_{\lambda, s}^{\dot{w}}\right)^{n_{w}}\right) \neq 0,\left(A^{\prime}:\left(R_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}\right)^{n_{w^{\prime}}}\right) \neq 0$. Then $A$ is a direct summand of $R_{\lambda, s}^{\dot{u}}\left[n_{w}\right]$ and $A^{\prime}$ is a direct summand of $R_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}\left[n_{w^{\prime}}\right]$. Hence $A * A^{\prime}$ is a direct summand of

$$
R_{\lambda, s}^{\dot{w}} * R_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}\left[a(w \cdot \lambda)+a\left(w^{\prime} \cdot \lambda^{\prime}\right)+|w|+\left|w^{\prime}\right|+2 \Delta\right]
$$

and $\left(A * A^{\prime}\right)^{j}$ is a direct summand of

$$
\left(R_{\lambda, s}^{\dot{w}} * R_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}\left[|w|+\left|w^{\prime}\right|+2 \nu+2 \rho\right]\right)^{j+a(w \cdot \lambda)+a\left(w^{\prime} \cdot \lambda^{\prime}\right)+2 \nu}
$$

$$
=\left(\chi\left(\mathbb{L}_{\lambda, s}^{\dot{w}}\right) * \chi\left(\mathbb{L}_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}}\right)\right)^{j+a(w \cdot \lambda)+a\left(w^{\prime} \cdot \lambda^{\prime}\right)+2 \nu}
$$

Using $6.15(\mathrm{~b})$ we see that $\left(A * A^{\prime}\right)^{j}$ is a direct summand of

$$
\begin{equation*}
\left(\chi\left(\mathbb{L}_{\lambda^{\prime}, s^{\prime}}^{\dot{w}^{\prime}} \bullet \mathfrak{b}^{\prime \prime}\left(\mathbb{L}_{\lambda, s}^{\dot{w}}\right)\right)^{j+a(w \cdot \lambda)+a\left(w^{\prime} \cdot \lambda^{\prime}\right)+2 \nu}\right. \tag{d}
\end{equation*}
$$

Hence $A^{\prime \prime}$ is a composition factor of (d). Using 6.17 (a) we see that $A^{\prime \prime} \in$ $C S_{\mathfrak{o}, s+s^{\prime}}$, that $\mathbf{c}_{A^{\prime \prime}} \preceq w \cdot \lambda$ and that $\mathbf{c}_{A^{\prime \prime}} \preceq w^{\prime} \cdot \lambda^{\prime}$. In the setup of (a) we have $w \cdot \lambda \preceq \mathbf{c}$ or $w^{\prime} \cdot \lambda^{\prime} \preceq \mathbf{c}$ hence $\mathbf{c}_{A^{\prime \prime}} \leq \mathbf{c}$. Thus (a) holds. Similarly, (b) holds. In the setup of (c) we have $w \cdot \lambda \preceq \mathbf{c}$ and $w^{\prime} \cdot \lambda^{\prime} \preceq \mathbf{c}$. Hence $a(w \cdot \lambda) \geq a, a\left(w^{\prime} \cdot \lambda^{\prime}\right) \geq a$. (See Q3 in 1.9.) Assume that $\mathbf{c}_{A^{\prime \prime}}=\mathbf{c}$. Since $A^{\prime \prime}$ is a composition factor of $(\mathrm{d})$, we see from $6.17(\mathrm{c})$ that

$$
j+a(w \cdot \lambda)+a\left(w^{\prime} \cdot \lambda^{\prime}\right)+2 \nu \leq 4 a+2 \nu+\rho
$$

hence $j+2 a+2 \nu \leq 4 a+2 \nu+\rho$ and $j \leq 2 a+\rho$. This proves (c).
6.19. Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. For $K \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}, K^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s^{\prime}}$, we set

$$
K_{\underline{*}} K^{\prime}=\underline{\left(K * K^{\prime}\right)^{\{2 a+\rho\}}} \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s+s^{\prime}}
$$

We say that $K \pm K^{\prime}$ is the truncated convolution of $K, K^{\prime}$. Note that $6.14(\mathrm{a})$ induces for $K, K^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} G$ a canonical isomorphism
(a)

$$
K_{\underline{*}} K^{\prime}=K_{\underline{*}}^{\prime}\left(\left(\mathbf{e}^{s^{\prime}}\right)^{*} K\right) .
$$

Let $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}}, K \in \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}$. Using the method of [19, 1.2] several times, we see that

$$
K \underline{*} \underline{\chi}(L)=\underline{g r_{k}}\left((K * \chi(L))^{k}\right)(k / 2)
$$

where $k=(a+\nu)+(2 a+\rho)=3 a+\nu+\rho$ and

$$
\underline{\chi}(L \underline{\bullet} \underline{\zeta}(K))=\underline{g r_{k^{\prime}}}\left(\left(\chi(L \bullet \zeta(K))^{k^{\prime}}\right)\left(k^{\prime} / 2\right)\right.
$$

where $k^{\prime}=(a+\nu)+(a+\nu)+(a+\rho-\nu)=3 a+\nu+\rho$. Using now 6.15(a) and the equality $k=k^{\prime}$ we obtain

$$
\begin{equation*}
K_{\underline{*} \underline{\chi}}(L)=\underline{\chi}\left(L_{\underline{\bullet}} \underline{\zeta}(K)\right) \tag{b}
\end{equation*}
$$

Let $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s^{\prime}}$. Using the method of [19, 1.12] several times, we see that

$$
\underline{\chi}(L) \underline{*} \underline{\chi}\left(L^{\prime}\right)=\underline{g r_{k}\left(\left(\chi(L) * \chi\left(L^{\prime}\right)\right)^{k}\right)}(k / 2)
$$

where $k=(a+\nu)+(a+\nu)+(2 a+\rho)=4 a+2 \nu+\rho$ and

$$
\underline{\chi}\left(L^{\prime} \underline{\bullet \mathfrak{b}^{\prime \prime}}(L)=\underline{g r_{k^{\prime}}\left(\left(\chi\left(L^{\prime} \bullet \mathfrak{b}^{\prime \prime}(L)\right)\right)^{k^{\prime}}\right)}\left(k^{\prime} / 2\right)\right.
$$

where $k^{\prime}=(2 a+2 \nu)+(a+\rho-\nu)+(a+\nu)=4 a+2 \nu+\rho$. Using now 6.15(b) and the equality $k=k^{\prime}$ we obtain

$$
\begin{equation*}
\underline{\chi}(L) \underline{\underline{\chi}} \underline{( }\left(L^{\prime}\right)=\underline{\chi}\left(L^{\prime} \underline{\bullet}\left(\underline{\mathfrak{b}^{\prime \prime}}(L)\right)\right) . \tag{c}
\end{equation*}
$$

We show (assuming that $s_{h} \in \mathbf{Z}_{\mathbf{c}}$ for $h=1,2,3$ ):
(d) For $K \in \mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{s_{1}}, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{s_{2}}, K^{\prime \prime} \in \mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{s_{3}}$, there is a canonical isomor$\operatorname{phism}\left(K_{\underline{*}} K^{\prime}\right) \underline{\underline{*}} K^{\prime \prime} \xrightarrow{\sim} K_{\underline{*}}\left(K^{\prime} \underline{\underline{*}} K^{\prime \prime}\right)$.
Indeed, just as in [19, 4.7] we can identify, using the method of [19, 1.12], $\operatorname{both}\left(K_{\underline{*}} K^{\prime}\right) \underline{\underline{*}} K^{\prime \prime}$ and $K \underline{*}\left(K^{\prime} \underline{*} K^{\prime \prime}\right)$ with $\underline{\left(K * K^{\prime} * K^{\prime \prime}\right)^{\{4 a+2 \rho\}}}$.
6.20. Let $s^{\prime}, s^{\prime \prime} \in \mathbf{Z}$. For $K \in \mathcal{D}\left(\tilde{G}_{s^{\prime}}\right), K^{\prime} \in \mathcal{D}\left(\tilde{G}_{s^{\prime \prime}}\right)$, we show:
(a) We have canonically $\zeta\left(K * K^{\prime}\right)=\zeta\left(K^{\prime}\right) \bullet \zeta(K)$.

Let

$$
Y=\left\{\left(B, \gamma U_{B}, \gamma_{1}, \gamma_{2}\right) ; B \in \mathcal{B}, \gamma \in \tilde{G}_{s^{\prime}+s^{\prime \prime}}, \gamma_{1} \in \tilde{G}_{s^{\prime}}, \gamma_{2} \in \tilde{G}_{s^{\prime \prime}} ; \gamma_{1} \gamma_{2} \in \gamma U_{B}\right\}
$$

Define $j_{1}: Y \rightarrow \tilde{G}_{s^{\prime}}, j_{2}: Y \rightarrow \tilde{G}_{s^{\prime \prime}}$ by $j_{1}\left(B, \gamma U_{B}, \gamma_{1}, \gamma_{2}\right)=\gamma_{1}$, $j_{2}\left(B, \gamma U_{B}, \gamma_{1}, \gamma_{2}\right)=\gamma_{2}$. Define $j: Y \rightarrow Z_{s^{\prime}+s^{\prime \prime}}$ by $j\left(B, \gamma U_{B}, \gamma_{1}, \gamma_{2}\right)=$ $\left(B, \gamma B \gamma^{-1}, \gamma U_{B}\right)$. From the definitions we have $\zeta\left(K * K^{\prime}\right)=j_{!}\left(j_{1}^{*}(K) \otimes\right.$ $\left.j_{2}^{*}\left(K^{\prime}\right)\right)=\zeta\left(K^{\prime}\right) \bullet \zeta(K) ;$ (a) follows.

Let $s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. For $K \in \mathcal{D}_{0}^{\mathbf{c}}\left(G_{s}\right), K^{\prime} \in \mathcal{D}_{0}^{\mathbf{c}}\left(G_{s^{\prime}}\right)$, we show:
(b) We have canonically $\underline{\zeta}\left(K_{\underline{*}} K^{\prime}\right)=\underline{\zeta}\left(K^{\prime}\right) \underline{\mathbf{\zeta}}(K)$.

Using the method of [19, 1.12] we see that

$$
\underline{\zeta}\left(K \underline{*} K^{\prime}\right)=\underline{g r_{k}\left(\left(\zeta\left(K * K^{\prime}\right)\right)^{k}\right)}(k / 2)
$$

where $k=(a+\nu)+(2 a+\rho)=3 a+\nu+\rho$ and that

$$
\underline{\zeta}\left(K^{\prime}\right) \underline{\varrho} \underline{\zeta}(K)=\underline{g r_{k^{\prime}}\left(\left(\zeta(K) \bullet \zeta\left(K^{\prime}\right)\right)^{k^{\prime}}\right)}\left(k^{\prime} / 2\right)
$$

where $k^{\prime}=(a+\rho-\nu)+(a+\nu)+(a+\nu)=3 a+\nu+\rho$. It remains to use (a) and the equality $k=k^{\prime}$.
6.21. Let $s^{\prime} \in \mathbf{Z}$. Define $h: \tilde{G}_{s^{\prime}} \rightarrow \tilde{G}_{-s^{\prime}}$ by $\gamma \mapsto \gamma^{-1}$. For $K \in \mathcal{D}\left(\tilde{G}_{-s^{\prime}}\right)$ we set $K^{\dagger}=h^{*} K \in \mathcal{D}\left(\tilde{G}_{s^{\prime}}\right)$. We show:
(a) For $L \in \mathcal{D}\left(Z_{-s^{\prime}}\right)$ we have $(\chi(L))^{\dagger}=\chi\left(L^{\dagger}\right)$ with $L^{\dagger}$ as in 4.2.

This follows from the definition of $\chi$ using the commutative diagram

where $f, \pi$ are as in $6.1, \mathfrak{h}$ is as in 4.2 and $\dot{\mathfrak{h}}: \dot{Z}_{s^{\prime}} \rightarrow \dot{Z}_{-s^{\prime}}$ is $\left(B, B^{\prime}, \gamma\right) \mapsto$ $\left(B^{\prime}, B, \gamma^{-1}\right)$.

From (a) and 4.3(e) we see that, if $w \cdot \lambda \in I_{n}^{-s}$, then

$$
\begin{equation*}
\left(\chi\left(\mathbb{L}_{\lambda,-s}^{\dot{w}}\right)\right)^{\dagger}=\chi\left(\mathbb{L}_{w(\lambda)^{-1}, s}^{\dot{w}^{-1}}\right) . \tag{b}
\end{equation*}
$$

We deduce that
(c) if $A \in C S_{\mathbf{c},-s}$, then $A^{\dagger} \in C S_{\widetilde{\mathbf{c}}, s}$.

From (a), (c) we deduce:
(d) For $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{-s}$ we have $(\underline{\chi}(L))^{\dagger}=\underline{\chi}\left(L^{\dagger}\right)$ where the second $\underline{\chi}$ is relative to $\tilde{\mathbf{c}}, \mathfrak{o}^{-1}$ instead of $\mathbf{c}, \mathfrak{o}$.

## 7. Equivalence of $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ with the $\mathbf{e}^{s}$-centre of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$

7.1. In this section (except in 7.8) let $\mathbf{c}, \mathfrak{o}, a, n, \Psi$ be as in 3.1(a).

In this subsection we assume that $s \in \mathbf{Z}_{\mathbf{c}}$. Let $u: \tilde{G}_{-s} \rightarrow \mathbf{p}$ be the obvious map; let $\phi: \mathbf{p} \rightarrow G$ be the map with image $\{1\}$. From [10, 7.4] we see that
for $K, K^{\prime}$ in $\mathcal{M}_{m} \tilde{G}_{-s}$ we have canonically

$$
\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}=\operatorname{Hom}_{\mathcal{M}\left(\tilde{G}_{-s}\right)}\left(\mathfrak{D}(K), K^{\prime}\right), \quad\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{j}=0 \text { if } j>0
$$

We deduce that if $K, K^{\prime}$ are also pure of weight 0 then $\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}$ is pure of weight 0 that is, $\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}=g r_{0}\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}$. From the definitions we see that we have $u_{!}\left(K \otimes K^{\prime}\right)=\phi^{*}\left(K^{\dagger} * K^{\prime}\right)$ where $K^{\dagger} \in \mathcal{M}_{m}\left(\tilde{G}_{s}\right)$ is as in 6.21. Hence, for $K^{\prime}$ in $\mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{-s}$ and $K$ in $\mathcal{C}_{0}^{\tilde{\mathrm{c}}} \tilde{G}_{-s}$ (so that $K^{\dagger} \in \mathcal{C}_{0}^{\mathrm{c}} \tilde{G}_{s}$, see 6.21(c)) we have
(a) $\operatorname{Hom}_{\mathcal{M}\left(\tilde{G}_{-s}\right)}\left(\mathfrak{D}(K), K^{\prime}\right)=\left(\phi^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{0}=\left(\phi^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{\{0\}}$.

Using [19, 8.2] with $\Phi: \mathcal{D} \stackrel{\preceq}{m} \tilde{G}_{0} \rightarrow \mathcal{D}_{m} \mathbf{p}, K_{1} \mapsto \phi^{*} K_{1}, c=-2 a-\rho$ (see 21, 6.8(a)]), $K$ replaced by $K^{\dagger} * K^{\prime} \in \mathcal{D}_{m}\left(\tilde{G}_{0}\right)$ and $c^{\prime}=2 a+\rho$, we see that we have canonically

$$
\left(\phi^{*}\left(K^{\dagger} \underline{\underline{ }} K^{\prime}\right)\right)^{\{-2 a-\rho\}} \subset\left(\phi^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{\{0\}} .
$$

In particular, if $L \in \mathcal{C}_{0}^{\mathbf{c}} Z_{-s}, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$, then we have canonically

$$
\left(\phi^{*}\left(\underline{\chi}\left(L^{\prime}\right) \underline{\underline{\chi}}(L)\right)\right)^{\{-2 a-\rho\}} \subset\left(\phi^{*}\left(\underline{\chi}\left(L^{\prime}\right) * \underline{\chi}(L)\right)\right)^{\{0\}} .
$$

Using the equality

$$
\left.\left(\phi^{*}\left(\underline{\chi}\left(L^{\prime}\right) \underline{\underline{\chi}}(L)\right)\right)^{\{-2 a-\rho\}}=\phi^{*}\left(\underline{\chi}\left(L \underline{\bullet} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)\right)^{-2 a-\rho}
$$

which comes from 6.19 (b), we deduce that we have canonically

$$
\left.\phi^{*}\left(\underline{\chi}\left(L \underline{\varrho} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)\right)^{-2 a-\rho} \subset\left(\phi^{*}\left(\underline{\chi}\left(L^{\prime}\right) * \underline{\chi}(L)\right)\right)^{\{0\}}
$$

or equivalently, using (a) with $K, K^{\prime}$ replaced by $\underline{\chi}\left(L^{\prime}\right)^{\dagger}, \underline{\chi}(L)$,

$$
\begin{aligned}
& \phi^{*}\left(\underline{\chi}\left(L \underline{\bullet} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)^{-2 a-\rho} \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{-s}}\left(\mathfrak{D}\left(\underline{\chi}\left(L^{\prime}\right)^{\dagger}\right), \underline{\chi}(L)\right) \\
& =\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}\left(\underline{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right) .
\end{aligned}
$$

Using now [21, 6.9(d)] with $L$ replaced by $L \underline{\bullet} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right) \in \mathcal{C}_{0}^{\mathrm{c}} Z_{0}$, we have canonically

$$
\phi^{*}\left(\underline{\chi}\left(L \underline{\varrho} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)^{-2 a-\rho}=\operatorname{Hom}_{\mathcal{C}^{c} Z_{0}}\left(\mathbf{1}_{0}^{\prime}, L \underline{\mathbf{\bullet}} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)
$$

Thus we have canonically

$$
\operatorname{Hom}_{\mathcal{C}^{c} Z_{0}}\left(\mathbf{1}_{0}^{\prime}, L \underline{\mathbf{\bullet}} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right) \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right)
$$

or equivalently (using 5.8(a))

$$
\operatorname{Hom}_{\mathcal{C}^{c} Z_{-s}}\left(\mathfrak{D}\left(\underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)^{\dagger}\right), L\right) \subset \operatorname{Hom}_{\mathcal{C}^{c}}^{\tilde{G}_{s}}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right) .
$$

Now we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}^{c} Z_{-s}}\left(\mathfrak{D}\left(\underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)^{\dagger}\right), L\right) & =\operatorname{Hom}_{\mathcal{C}^{c} Z_{-s}}\left(\mathfrak{D}(L), \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)^{\dagger}\right) \\
& =\operatorname{Hom}_{\mathcal{C}^{c} Z_{s}}\left((\mathfrak{D}(L))^{\dagger}, \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right),
\end{aligned}
$$

hence

$$
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}\left((\mathfrak{D}(L))^{\dagger}, \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right) \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right)
$$

We set ${ }^{1} L=\mathfrak{D}\left(L^{\dagger}\right)=(\mathfrak{D}(L))^{\dagger} \in \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$ and note that

$$
\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right)=\mathfrak{D}\left(\underline{\chi}\left(L^{\dagger}\right)\right)=\underline{\chi}\left(\mathfrak{D}\left(L^{\dagger}\right)\right)=\underline{\chi}\left({ }^{1} L\right),
$$

see $6.21(\mathrm{~d}), 6.7(\mathrm{~b})$. We obtain

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}\left({ }^{1} L, \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right) \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}\left(\underline{\chi}\left({ }^{1} L\right), \underline{\chi}\left(L^{\prime}\right)\right) \tag{b}
\end{equation*}
$$

for any ${ }^{1} L, L^{\prime}$ in $\mathcal{C}_{0}^{\mathbf{c}} Z_{s}$. We show that (b) is an equality:
(c)

$$
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}\left({ }^{1} L, \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)=\operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left({ }^{1} L\right), \underline{\chi}\left(L^{\prime}\right)\right) .
$$

Let $N^{\prime}$ (resp. $N^{\prime \prime}$ ) be the dimension of the left (resp. right) hand side of (b). It is enough to show that $N^{\prime}=N^{\prime \prime}$. We can assume that ${ }^{1} L=\mathbb{L}_{\dot{\lambda}^{\prime}, s}^{\dot{z}^{\prime}}$, $L^{\prime}=\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}$ where $z \cdot \lambda \in \mathbf{c}^{s}, z^{\prime \prime} \cdot \lambda^{\prime} \in \mathbf{c}^{s}$. By $6.12(\mathrm{a}), N^{\prime}$ is the multiplicity of ${ }^{1} L$ in $\underline{\mathfrak{b}^{\prime \prime}}\left(L^{\prime}\right)$; by the fully faithfulness of $\tilde{\epsilon}_{s}$ this is the same as the multiplicity of $\tilde{\epsilon}_{s}^{1} L$ in $\tilde{\epsilon}_{s} \underline{\mathfrak{b}^{\prime \prime}}\left(L^{\prime}\right)=\underline{\mathfrak{b}^{\prime}}\left(L^{\prime}\right)=\underline{\mathfrak{b}}\left(L^{\prime}\right)$ (the last two equalities use $4.25(\mathrm{~d})$ and 4.14(d)). By 4.13(d), this is the same as the multiplicity of $\mathbf{L}_{\lambda^{\prime}}^{\dot{z}^{\prime}}$ in

$$
\oplus_{y \in W ; y \cdot \lambda \in \mathbf{c}} \mathbf{L}_{\mathbf{e}^{-s}(\lambda)}^{\mathrm{e}^{-s}(\dot{y})} \varrho \mathbf{L}_{\lambda}^{\dot{\tilde{z}}} \underline{-} \mathbf{L}_{y(\lambda)}^{\dot{y}^{-1}} .
$$

Using now [21, 2.22(c)] we see that $N^{\prime}$ is the coefficient of $t_{z^{\prime} \cdot \lambda^{\prime}}$ in

$$
\sum_{y \in W ; y \cdot \lambda \in \mathbf{c}} t_{\mathbf{e}^{-s}(y) \cdot \mathbf{e}^{-s}(\lambda)} t_{z \cdot \lambda} t_{y^{-1} \cdot y(\lambda)} \in \mathbf{H}^{\infty}
$$

Hence if $\mathbf{t}: \mathbf{H}^{\infty} \rightarrow \mathbf{Z}$ is as in 1.9, then

$$
N^{\prime}=\sum_{y \in W ; y \cdot \lambda \in \mathbf{c}} \mathbf{t}\left(t_{\mathbf{e}^{-s}(y) \cdot \mathbf{e}^{-s}(\lambda)} t_{z \cdot \lambda} t_{y^{-1} \cdot y(\lambda)} t_{z^{\prime-1} \cdot z^{\prime}\left(\lambda^{\prime}\right)}\right) .
$$

This can be rewritten as

$$
N^{\prime}=\sum_{y \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{\mathbf{e}^{-s}(y) \cdot \mathbf{e}^{-s}\left(\lambda_{1}\right)} t_{z \cdot \lambda} t_{y^{-1} \cdot y\left(\lambda_{1}\right)} t_{z^{\prime-1} \cdot z^{\prime}\left(\lambda^{\prime}\right)}\right) .
$$

(In the last sum, the terms corresponding to $y \cdot \lambda_{1}$ with $\lambda_{1} \neq \lambda$ are equal to zero.) By 6.6(c) (with $z \cdot \lambda, z^{\prime} \cdot \lambda^{\prime}$ interchanged) we have

$$
N^{\prime \prime}=\sum_{y \cdot \lambda_{1} \in \mathbf{c}} \mathbf{t}\left(t_{\epsilon^{-s}(y) \cdot \mathbf{e}^{-s}\left(\lambda_{1}\right)} t_{z \cdot \lambda} t_{y^{-1} \cdot y\left(\lambda_{1}\right)} t_{z^{\prime-1} \cdot z^{\prime}(\lambda)}\right) .
$$

Thus, $N^{\prime}=N^{\prime \prime}$. This completes the proof of (c).
7.2. Let $s, s^{\prime} \in \mathbf{Z}_{\mathbf{c}}$. We define a bifunctor $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s} \times \mathcal{C}^{\mathbf{c}} \tilde{G}_{s^{\prime}} \rightarrow \mathcal{C}^{\mathbf{c}} \tilde{G}_{s+s^{\prime}}$ denoted by $K, K^{\prime} \mapsto K \underline{\geqq} K^{\prime}$ as follows. By replacing if necessary $\Psi$ in 7.1 by a power, we can assume that any $A \in C S_{\mathbf{c}, s}$ and any $A \in C S_{\mathbf{c}, s^{\prime}}$ admits a mixed structure (defined in terms of $\Psi$ ) of pure weight zero. Let $K \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$, $K^{\prime} \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s^{\prime}}$; we choose mixed structures of pure weight 0 on $K, K^{\prime}$ with respect to $\Psi$ (this is possible by our choice of $\Psi$ ). We define $K \underset{\sim}{*} K^{\prime}$ as in 6.19 in terms of these mixed structures and we then disregard the mixed structure on $K \underline{ \pm} K^{\prime}$. The resulting object of $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s+s^{\prime}}$ is denoted again by $K \underset{セ}{ } K^{\prime}$; it is independent of the choice made.

In the same way the functor $\underline{\chi}: \mathcal{C}_{0}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s}$ gives rise to a functor $\mathcal{C}^{\mathbf{c}} Z_{s} \rightarrow \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ denoted again by $\underline{\chi} ;$ the functor $\underline{\zeta}: \mathcal{C}_{0}^{\mathbf{c}} \tilde{G}_{s} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} Z_{s}$ gives rise to a functor $\mathcal{C}^{\mathrm{c}} \tilde{G}_{s} \rightarrow \mathcal{C}^{\mathrm{c}} Z_{s}$ denoted again by $\underline{\zeta}$.

The operation $K \underset{\underbrace{}}{*} K^{\prime}$ is again called truncated convolution. It has a canonical associativity isomorphism (deduced from that in 6.19(d)); this makes $\sqcup_{s \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ into a monoidal category.

From 6.20 we see that under $\underline{\zeta}: \sqcup_{s \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}^{\mathbf{c}} \tilde{G}_{s} \rightarrow \sqcup_{s \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}^{\mathbf{c}} Z_{s}$, the monoidal structure on $\sqcup_{s \in \mathbf{Z}_{\mathrm{c}}} \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ is compatible with the opposite of the monoidal structure on $\sqcup_{s \in \mathbf{Z}_{\mathbf{c}}} \mathcal{C}^{\mathbf{c}} Z_{s}$.

If $K \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ then the isomorphisms 6.13(b) provide an $\mathbf{e}^{s}$-half-braiding for $\tilde{\epsilon}_{s} \underline{\zeta}(K) \in \mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ so that $\tilde{\epsilon}_{s} \underline{\zeta}(K)$ can be naturally viewed as an object of $\mathcal{Z}_{\mathrm{e}^{s}}^{\mathbf{c}}$ denoted by $\overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)}$. (Note that $6.13(\mathrm{~b})$ is stated in the mixed category but it implies the corresponding result in the unmixed category.) Then $K \mapsto \overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)}$ is a functor $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s} \rightarrow \mathcal{Z}_{\mathbf{e}^{\mathbf{c}}}$.

Theorem 7.3. Let $s \in \mathbf{Z}_{\mathbf{c}}$. The functor $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s} \rightarrow \mathcal{Z}_{\mathbf{e}^{\mathbf{c}}}^{\mathbf{c}}, K \mapsto \overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)}$ is an equivalence of categories.

From $6.12(\mathrm{a}), 4.14(\mathrm{~d}), 4.25(\mathrm{~d})$ we have canonically for any $z \cdot \lambda \in \mathbf{c}^{s}$ :
(a)

$$
\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\dot{\lambda}, s}^{\dot{\tilde{z}}}\right)\right)=\underline{\mathfrak{b}}\left(\mathbb{L}_{\hat{\lambda}, s}^{\dot{\tilde{n}}}\right)
$$

as objects of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$. From the definitions we see that the $\mathbf{e}^{s}$-half-braiding on the left hand side of (a) provided by 7.2 is the same as the $\mathbf{e}^{s}$-half-braiding on the right hand side of (a) provided by $4.14(\mathrm{j})$. Hence we have

$$
\begin{equation*}
\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\dot{\lambda}, s}^{\dot{\tilde{n}}}\right)\right)}=\overline{\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)} \tag{b}
\end{equation*}
$$

as objects of $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$. Using this and 5.7(a) with $L^{\prime}=\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)$ (where $z \cdot \lambda, w \cdot \lambda^{\prime}$ are in $\mathbf{c}^{s}$ ), we have

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L} \dot{\lambda}_{\lambda}^{\dot{\tilde{z}}}, \tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)\right)=\operatorname{Hom}_{\mathcal{Z}_{\mathrm{e}^{s}}^{\mathbf{c}}}\left(\overline{\left.\tilde{\epsilon}_{s} \underline{\zeta} \underline{\chi}\left(\underline{L_{\lambda, s}}\right)\right)} \overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{i}}\right)\right)}\right) .
$$

Combining this with the equalities

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right), \underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)=\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}\left(\mathbb{L}_{l, s}^{\dot{\tilde{z}}}, \underline{\zeta}\left(\underline{( }\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)\right) \\
& =\operatorname{Hom}_{\mathcal{C}^{c} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{l}^{\dot{z}}, \tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)\right),
\end{aligned}
$$

of which the first comes from 6.10(c) and the second comes from the fully faithfulness of $\tilde{\epsilon}_{s}$, we obtain

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\hat{\lambda}, s}^{\dot{\tilde{n}}}\right), \underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)=\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}}\left(\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\dot{i}}}\right)\right)}, \overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)}\right) .
$$

In other words, setting

$$
\begin{aligned}
& \mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}=\operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{j}}}\right), \underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right) \\
& \mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}^{\prime}=\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}}\left(\tilde{\epsilon}_{s} \underline{\zeta} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)\right), \frac{\left.\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)\right)}{}\right.
\end{aligned}
$$

we have

$$
\begin{equation*}
\mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}=\mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}^{\prime} \tag{c}
\end{equation*}
$$

Note that the identification (c) is induced by the functor $K \mapsto \overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)}$. Let $\mathbf{A}=\oplus \mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}, \mathbf{A}^{\prime}=\oplus \mathbf{A}_{z \cdot \lambda, w \cdot \lambda^{\prime}}$ (both direct sums are taken over all $z \cdot \lambda, w \cdot \lambda^{\prime}$ in $\mathbf{c}^{s}$ ). Then from (c) we have $\mathbf{A}=\mathbf{A}^{\prime}$. Note that this identification is compatible with the obvious algebra structures of $\mathbf{A}, \mathbf{A}^{\prime}$.

For any $A \in C S_{\mathbf{c}, s}$ we denote by $\mathbf{A}_{A}$ the set of all $f \in \mathbf{A}$ such that for any $z \cdot \lambda, w \cdot \lambda^{\prime}$, the $\left(z \cdot \lambda, w \cdot \lambda^{\prime}\right)$-component of $f$ maps the $A$-isotypic component of $\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}, s}\right)$ to the $A$-isotypic component of $\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)$ and any other isotypic component of $\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)$ to 0 . Thus, $\mathbf{A}=\oplus_{A \in C S_{\mathbf{c}, s}} \mathbf{A}_{A}$ is the decomposition of A into a sum of simple algebras. (Each $\mathbf{A}_{A}$ is nonzero since, by $6.2(\mathrm{c})$ and 6.5(a), any $A$ is a summand of some $\underline{\chi}\left(\mathbb{L}_{\hat{\lambda}, s}^{\dot{\tilde{n}}}\right)$.)

Let $\mathfrak{S}$ be a set of representatives for the isomorphism classes of simple objects of $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$. For any $\sigma \in \mathfrak{S}$ we denote by $\mathbf{A}_{\sigma}^{\prime}$ the set of all $f^{\prime} \in \mathbf{A}^{\prime}$ such that for any $z \cdot \lambda, w \cdot \lambda^{\prime}$, the $\left(z \cdot \lambda, w \cdot \lambda^{\prime}\right)$-component of $f^{\prime}$ maps the $\sigma$-isotypic component of $\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{i}}\right)\right)}$ to the $\sigma$-isotypic component of $\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda^{\prime}, s}^{\dot{w}}\right)\right)}$ ) and all other isotypic components of $\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\dot{\lambda}, s}^{\dot{\tilde{i}}}\right)\right)}$ to zero. Then $\mathbf{A}^{\prime}=\oplus_{\sigma \in \mathfrak{S}} \mathbf{A}_{\sigma}^{\prime}$ is the decomposition of $\mathbf{A}^{\prime}$ into a sum of simple algebras. (Each $\mathbf{A}_{\sigma}^{\prime}$ is nonzero since any $\sigma$ is a summand of some $\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{i}}}\right)\right)}$ with $z \cdot \lambda \in \mathbf{c}^{s}$. Indeed, we can find $z \cdot \lambda \in \mathbf{c}$ such that $\mathbf{L}_{\lambda}^{\dot{z}}$ is a direct summand of $\sigma$, viewed as an object of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$; then, by $5.5(\mathrm{a}), \sigma$ is a summand of $\overline{\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{z}}\right)}$. If in addition, $z \cdot \lambda \in \mathbf{c}^{s}$ then, by 5.6(a),(b), we have $\overline{\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{\tilde{z}})}\right.}=\overline{\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)}$ hence $\sigma$ is a summand of $\overline{\underline{\mathfrak{b}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right)}$ hence, by (a), $\sigma$ is a summand of $\overline{\tilde{\epsilon}_{s} \underline{\zeta}\left(\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}\right)\right),}$ as required. If $z \cdot \lambda \notin \mathbf{c}^{s}$ then, by $5.5(\mathrm{~b})$, we have $\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{z}}\right)=0$ which is a contradiction.) Since $\mathbf{A}=\mathbf{A}^{\prime}$, from the uniqueness of decomposition of a semisimple algebra as a direct sum of simple algebras, we see that there is a unique bijection $C S_{\mathbf{c}, s} \leftrightarrow \mathfrak{S}, A \leftrightarrow \sigma_{A}$ such that $\mathbf{A}_{A}=\mathbf{A}_{\sigma_{A}}^{\prime}$ for any $A \in C S_{\mathbf{c}, s}$. From the definitions we now see that for any $A \in C S_{\mathbf{c}, s}$ we have $\overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)} \cong \sigma_{A}$. Therefore, Theorem 7.3 holds.

Theorem 7.4. We preserve the setup of Theorem 7.3. Let $L \in \mathcal{C}^{\mathbf{c}} Z_{s}$, $K \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$. We have canonically
(a)

$$
\operatorname{Hom}_{\mathcal{C}^{c} Z_{s}}(L, \underline{\zeta}(K))=\operatorname{Hom}_{\mathcal{C}^{c}} \tilde{G}_{s}(\underline{\chi}(L), K) .
$$

We can assume that $L=\mathbb{L}_{\hat{\tilde{\lambda}}, s}^{\dot{\dot{s}}}$ where $z \cdot \lambda \in \mathbf{c}^{s}$. From 7.3 and its proof we see that

Using 5.5(a) we see that

$$
\operatorname{Hom}_{\mathcal{Z}_{\mathbf{e}^{s}}^{\mathrm{c}}}\left(\overline{\mathcal{I}_{s}\left(\mathbf{L}_{\lambda}^{\dot{z}}\right)}, \overline{\tilde{\epsilon}_{s} \underline{\zeta}(K)}\right) \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{\mathcal{B}}^{2}}\left(\mathbf{L}_{\lambda}^{\dot{\tilde{z}}}, \tilde{\epsilon}_{s} \underline{\zeta}(K)\right)=\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}(L, \underline{\zeta}(K))
$$

This proves the theorem.
7.5. We preserve the setup of Theorem 7.3. We show that for $K \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ we have canonically
(a)

$$
\mathfrak{D}(\underline{\zeta}(\mathfrak{D}(K))))=\underline{\zeta}(K) .
$$

Here the first $\underline{\zeta}$ is relative to $\widetilde{\mathbf{c}}$. It is enough to show that for any $L \in \mathcal{C}^{\mathbf{c}} Z_{s}$ we have canonically

$$
\left.\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}(L, \mathfrak{D}(\underline{\zeta}(\mathfrak{D}(K))))\right)=\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} Z_{s}}(L, \underline{\zeta}(K)) .
$$

Here the left side equals

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}^{c} Z_{s}}(\underline{\zeta}(\mathfrak{D}(K)), \mathfrak{D}(L)) & =\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}(\mathfrak{D}(K), \underline{\chi}(\mathfrak{D}(L))) \\
& =\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \tilde{G}_{s}}(\mathfrak{D}(K), \mathfrak{D}(\underline{\chi}(L))) .
\end{aligned}
$$

(We have used 7.4(a) for $\tilde{\mathbf{c}}$ and 6.7(b).) The right hand side equals

$$
\operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}(\underline{\chi}(L), K)=\operatorname{Hom}_{\mathcal{C}^{c} \tilde{G}_{s}}(\mathfrak{D}(K), \mathfrak{D}(\underline{\chi}(L)))
$$

(We have again used 7.4(a).) This proves (a).

Theorem 7.6. Let $s \in \mathbf{Z}_{\mathbf{c}}$. Let $K \in \mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$. In $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ we have

$$
\tilde{\epsilon}_{s} \underline{\zeta}(K) \cong \oplus_{z \cdot \lambda \in \mathbf{c}^{s} ; z \cdot \lambda} \sim_{\text {left }} e^{s}\left(z^{-1}\right) \cdot \lambda\left(\mathbf{L}_{\lambda}^{\dot{\tilde{z}}}\right)^{\oplus N(z, \lambda)}
$$

where $N(z, \lambda) \in \mathbf{N}$.

In $\mathcal{C}^{\mathbf{c}} Z_{s}$ we have

$$
\begin{equation*}
\underline{\zeta}(K) \cong \oplus_{z \cdot \lambda \in \mathbf{c}^{s}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{z}}}\right)^{\oplus N(z, \lambda)} \tag{a}
\end{equation*}
$$

where $N(z, \lambda) \in \mathbf{N}$. If $N(z, \lambda)>0$ then

$$
\operatorname{Hom}_{\mathcal{C}^{c} Z_{s}}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{x}}}, \underline{\zeta}(K)\right) \neq 0
$$

hence by 7.4 we have $\left.\operatorname{Hom}_{\mathcal{C}^{c}} \tilde{G}_{s} \underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right), K\right) \neq 0$ and in particular $\underline{\chi}\left(\mathbb{L}_{\lambda, s}^{\dot{\tilde{n}}}\right) \neq 0$. Using $6.5(\mathrm{~d})$ we deduce that
(b) $z \cdot \lambda \underset{\text { left }}{\sim} e^{s}\left(z^{-1}\right) \cdot \lambda$.

Thus the direct sum in (a) can be restricted to $z \cdot \lambda$ satisfying (b). We now apply $\tilde{\epsilon}_{s}$ to both sides of (a) and use that $\tilde{\epsilon}_{s} \mathbb{L}_{\lambda, s}^{\dot{\tilde{}}}=\mathbf{L}_{\lambda}^{\dot{\tilde{n}}}$. The theorem follows.
7.7. Let $s \in \mathbf{Z}_{\mathbf{c}}$. From 7.3 and 7.6 we see that any object of $\mathcal{Z}_{\mathbf{e}^{s}}^{\mathbf{c}}$, when viewed as an object of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$, is a direct sum of objects of the form $\mathbf{L}_{\lambda}^{\dot{\tilde{z}}}$ with $z \cdot \lambda \in \mathbf{c}^{s}$ such that $z \cdot \lambda \underset{\text { left }}{\sim} e^{s}\left(z^{-1}\right) \cdot \lambda$.

In the remainder of this subsection we assume that $\tilde{G}$ is as in case A with $G$ simple of type $A_{2}$ (resp. $B_{2}$ or $G_{2}$ ). In this case $W$ is generated by $\sigma_{1}, \sigma_{2}$ in $S$ with relation $\left(\sigma_{1} \sigma_{2}\right)^{m}=1$ where $m=3$ (resp. $m=4$ or $m=6$ ). We assume that $\mathbf{c}$ is the two-sided cell of $I$ consisting of all $w \cdot 1$ where $w \in W, 1 \leq|w| \leq m-1$. We shall write $\mathbf{L}^{i j i \ldots}$ instead of $\mathbf{L}_{1}^{\dot{\sigma}_{i} \dot{\sigma}_{j} \dot{\sigma}_{i} \ldots}$ where $i j i \ldots$ is $121 \ldots$ or $212 \ldots$. The objects of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ of the form $\tilde{\epsilon}_{s} \underline{\zeta}(K)$ with $K$ a simple object of $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$ are (up to isomorphism) the following ones:

$$
\begin{aligned}
& \mathbf{L}^{1} \oplus \mathbf{L}^{2} \text { for type } A_{2} ; \\
& \mathbf{L}^{1} \oplus \mathbf{L}^{2}, \mathbf{L}^{1} \oplus \mathbf{L}^{212}, \mathbf{L}^{2} \oplus \mathbf{L}^{121}, \mathbf{L}^{121} \oplus \mathbf{L}^{212} \text { for type } B_{2} ; \\
& \mathbf{L}^{1} \oplus \mathbf{L}^{2}, \mathbf{L}^{1} \oplus \mathbf{L}^{2} \oplus \mathbf{L}^{121} \oplus \mathbf{L}^{212}, \mathbf{L}^{2} \oplus \mathbf{L}^{121} \oplus \mathbf{L}^{21212}, \\
& \mathbf{L}^{1} \oplus \mathbf{L}^{212} \oplus \mathbf{L}^{12121}, \mathbf{L}^{121} \oplus \mathbf{L}^{212} \oplus \mathbf{L}^{12121} \oplus \mathbf{L}^{21212}, \mathbf{L}^{121} \oplus \mathbf{L}^{212} \text { for type } G_{2}
\end{aligned}
$$

Note that in type $G_{2}, \mathbf{L}^{121} \oplus \mathbf{L}^{212}$ comes from two nonisomorphic objects $K$ of $\mathcal{C}^{\mathbf{c}} \tilde{G}_{s}$.
7.8. In this subsection we assume that $\tilde{G}$ is as in case A with $G=S L_{2}(\mathbf{k})$ and $p \neq 2$. In this case we may identify $\mathbf{T}=\mathbf{k}^{*}$ and $W=\{1, \sigma\}$ with $\sigma(t)=$ $t^{-1}$ for $t \in \mathbf{T}$. We take $\tau \in \tilde{G}_{1}$ such that $\mathbf{e}: G \rightarrow G$ in 2.3 satisfies $\mathbf{e}(t)=t^{q}$ for any $t \in T$. Then for $\lambda \in \mathfrak{s}_{\infty} \cong \mathbf{k}^{*}$ we have $\mathbf{e}(\lambda)=\lambda^{q^{-1}}, \sigma(\lambda)=\lambda^{-1}$. Let $\lambda_{0}$ be the unique element of $\mathfrak{s}_{\infty}$ such that $\lambda_{0}^{2}=1, \lambda_{0} \neq 1$. In $\mathbf{H}$ we have $c_{1 \cdot \lambda}=T_{1} 1_{\lambda}$ for all $\lambda, c_{\sigma \cdot \lambda}=v^{-1} T_{\sigma} 1_{\lambda}$ if $\lambda \neq 1, c_{\sigma \cdot 1}=v^{-1} T_{\sigma} 1_{1}+v^{-1} T_{1} 1_{1}$. It follows that the two-sided cells in $I=\left\{w \cdot \lambda ; w \in W, \lambda \in \mathfrak{s}_{\infty}\right\}$ are the following subsets of $I$ :

$$
\begin{aligned}
& \mathbf{c}_{\lambda}=\mathbf{c}_{\lambda^{-1}}=\left\{1 \cdot \lambda, 1 \cdot \lambda^{-1}, \sigma \cdot \lambda, \sigma \cdot \lambda^{-1}\right\} \text { with } \lambda \in \mathfrak{s}_{\infty} ; \lambda^{2} \neq 1 ; \\
& \mathbf{c}_{\lambda_{0}}=\left\{1 \cdot \lambda_{0}, \sigma \cdot \lambda_{0}\right\} ; \\
& \mathbf{c}_{1}^{\prime}=\{\sigma \cdot 1\} ; \\
& \mathbf{c}_{1}=\{1 \cdot 1\} .
\end{aligned}
$$

Let $s \in \mathbf{Z}$. The two-sided cells of $I$ which are stable under $\mathbf{e}^{s}$ are:
(i) $\mathbf{c}_{\lambda}=\mathbf{c}_{\lambda^{-1}}$ where $\lambda \in \mathfrak{s}_{\infty}, \lambda^{2} \neq 1, \lambda^{q^{-s}}=\lambda$ (note that $\mathbf{e}^{s}$ acts as 1 on this two-sided cell);
(ii) $\mathbf{c}_{\lambda}=\mathbf{c}_{\lambda^{-1}}$ where $\lambda \in \mathfrak{s}_{\infty}, \lambda^{2} \neq 1, \lambda^{q^{-s}}=\lambda^{-1}$ (note that $\mathbf{e}^{s}$ acts as a fixed point free involution on this two-sided cell and that we have necessarily $s \neq 0$ );
(iii) $\mathbf{c}_{\lambda_{0}}$ (note that $\mathbf{e}^{s}$ acts as 1 on this two-sided cell);
(iv) $\mathbf{c}_{1}^{\prime}$ (note that $\mathbf{e}^{s}$ acts as 1 on this two-sided cell);
(v) $\mathbf{c}_{1}$ (note that $\mathbf{e}^{s}$ acts as 1 on this two-sided cell).

For $\mathbf{c}$ in (i)-(v), the $\mathbf{e}^{s}$-centre of $\mathcal{C}^{\mathbf{c}} \tilde{\mathcal{B}}^{2}$ has exactly $N$ simple objects (up to isomorphism) where $N=1$ in the cases (i), (ii), (iv), (v) and $N=4$ in the case (iii).

## References

1. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, 100 (1982).
2. R. Bezrukavnikov, M. Finkelberg and V. Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Invent. Math., 188 (2012), 589-620.
3. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math, 103 (1976), 103-161.
4. P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. Math., 162 (2005), 581-642.
5. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
6. G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton Univ. Press, 1984.
7. G. Lusztig, Characters of reductive groups over finite fields, Proc. Int. Congr. Math. Warsaw 1983, North Holland (1984), 877-880.
8. G. Lusztig, Cells in affine Weyl groups II, J. Alg., 109 (1987), 536-548.
9. G. Lusztig, Character sheaves I, Adv. Math., 56 (1985), 193-237.
10. G. Lusztig, Character sheaves II, Adv. Math., 57 (1985), 226-265.
11. G. Lusztig, Character sheaves III, Adv. Math., 57 (1985), 266-315.
12. G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math., 129 (1997), 85-98.
13. G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2003.
14. G. Lusztig, Character sheaves on disconnected groups VI, Represent. Th., 8 (2004), 377-413.
15. G. Lusztig, Character sheaves on disconnected groups VII, Represent. Th., 9 (2005), 209-266.
16. G. Lusztig, Character sheaves on disconnected groups VIII, Represent. Th., 10 (2006), 314-352.
17. G. Lusztig, Character sheaves on disconnected groups IX, Represent. Th., 10 (2006), 353-379.
18. G. Lusztig, Character sheaves on disconnected groups X, Represent. Th., 13 (2009), 82-140.
19. G. Lusztig, Truncated convolution of character sheaves, Bull. Inst. Math. Acad. Sin. (N.S.), 10 (2005), 1-72.
20. G. Lusztig, Unipotent representations as a categorical centre, Represent. Th., 19 (2015), 211-235.
21. G. Lusztig, Non-unipotent character sheaves as a categorical centre, Bull. Inst. Math.Acad. Sin. (N.S.), 11 (2016), 603-731.
22. M. Müger, From subfactors to categories and topology II. The quantum double of tensor categories and subfactors, J. Pure Appl. Alg., 180 (2003), 159-219.
23. T. Yokonuma, Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini, C. R. Acad. Sci. Paris Ser. A, 264 (1967), A334-A347.

[^0]:    Received December 10, 2016 and in revised form July 12, 2017.
    AMS Subject Classification: 20G99.
    Key words and phrases: Reductive group, flag manifold, irreducible representation, categorical centre.
    Supported by NSF grant DMS-1566618.

