EXACT LAWS OF LARGE NUMBERS FOR INDEPENDENT PARETO RANDOM VARIABLES

TOSHIO NAKATA

Department of Mathematics, University of Teacher Education Fukuoka, Akama-Bunkyomachi, Munakata, Fukuoka, 811-4192, JAPAN.
E-mail: nakata@fukuoka-edu.ac.jp
IIII

Abstract

This article explores weighted laws of large numbers, namely exact laws, for independent Pareto distributions with infinite mean. It contains not only exact weak laws but also exact strong laws. Moreover, we give a simple example of the exact strong law applying the algorithm of Adler and Wittmann (1994).

1. Introduction

1.1. Notation

For positive sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\} \subset \mathbb{R}$ symbols $a_{n} \sim b_{n}$ and $a_{n}=$ $o\left(b_{n}\right)$ stand for $\lim a_{n} / b_{n}=1, \lim a_{n} / b_{n}=0$, respectively. The indicator random variable is defined by $\mathbf{1}_{A}(\omega)=1$ if $\omega \in A$, and 0 if $\omega \notin A$ for each event A. We redefine the natural logarithm as the meaning of $\log x:=$ $\max \{\ln (x), 1\}$, where $\ln x$ denotes the ordinary natural logarithm. Moreover, the symbol $\lfloor x\rfloor$ for $x \in \mathbb{R}$ denote the integer part $\lfloor x\rfloor=\max \{k \in \mathbb{Z}: k \leq x\}$.

1.2. Exact weak law of large numbers

Letting $\left\{X_{n}\right\}$ be independent and identically distributed (i.i.d.) random variables with common distribution $\mathrm{P}\left(X_{1}=2^{k}\right)=2^{-k}$ for $k=1,2, \ldots$, we
see $\mathrm{E}\left(X_{1}\right)=\infty$, which is known as the St. Petersburg game (see Chapter X. 4 in [8]). In his textbook, Feller wrote

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} X_{k} /(\log n / \log 2) \stackrel{P}{=} 1
$$

where ' P ' denotes the convergence in probability. In general, for independent random variables $\left\{X_{k}\right\}$ when there exist constant sequences $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$ satisfying that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} X_{k} / b_{n}=1$, it is said to be an exact law of large numbers. More precisely, we call an exact weak law when the convergence is in probability, and an exact strong law when it is almost sure (see page 142 of Adler [1]). We discuss the exact weak law in this subsection, and the exact strong law in the next subsection.

Giving some examples, Adler and his collaborators investigated exact weak laws for i.i.d. random variables (see [1] and references therein). These studies are based on the efficient application of the degenerate convergence criterion (see Theorem 10.1.1 of [7]). When they are no longer identically distributed, the calculation requires careful handling. Hence Adler [2] investigated the exact weak law for independent random variables $\left\{X_{n}\right\}$ with $\mathrm{P}\left(X_{n} \leq x\right)=1-(x+n)^{-1}$. For convenience, we use the following terminology which is not so ordinary.

Definition 1.1. For $h \geq 1$, a distribution of a nonnegative random variable X is said to be Pareto with parameter h, if the law is characterized by

$$
\begin{equation*}
\mathrm{P}(X \leq x)=1-\frac{1}{x+h} \quad \text { for } x>0 \quad \text { and } \quad \mathrm{P}(X=0)=\frac{h}{1+h} \tag{1}
\end{equation*}
$$

Let us note that the probability density function of Equation (1) is $1 /(x+h)^{2}$ for $x>0$.

Theorem 1.1 (Theorem 1 of [2]). Suppose that $\left\{X_{j}\right\}$ are independent and Pareto with parameter j, respectively. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n}(1 / j) X_{j}}{\log n \log \log n} \stackrel{P}{=} 1 \tag{2}
\end{equation*}
$$

This result is naturally extended as follows.

Theorem 1.2 (Theorem 3.1 of [10]). Suppose that $\left\{X_{j}\right\}$ are independent and Pareto with parameter h_{j}, respectively. If

$$
\begin{equation*}
a_{j}:=1 / h_{j}, \quad A_{n}:=\sum_{j=1}^{n} a_{j}, \quad \lim _{n \rightarrow \infty} A_{n}=\infty \tag{3}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{A_{n} \log A_{n}} \stackrel{P}{=} 1 \tag{4}
\end{equation*}
$$

Note that Adler (4) recently extends Theorem 1.1] by considering P $\left(X_{j}>\right.$ $x)=\{\log (x+j)\}^{\alpha} /(x+j)$ for $\alpha>-1$.

1.3. Exact strong law of large numbers

Let us consider nonnegative i.i.d. random variables $\left\{X_{k}\right\}$ with $\mathrm{E}\left(X_{1}\right)=$ ∞. In this case, it is known that there does not exist b_{n} such that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} X_{k} / b_{n} \stackrel{\text { a.s. }}{=} 1$, where 'a.s.' denotes the almost sure convergence. When choosing a suitable weight $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$, we can obtain $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} X_{k} / b_{n} \stackrel{\text { a.s. }}{=} 1$, namely the exact strong law, under some conditions. For example, the exact law for the distribution of the St. Petersburg game was given in Example 7 of [1].

It is known that for i.i.d. cases if the common tail function $x \mapsto \mathrm{P}\left(X_{1}>\right.$ $x)$ is regularly varying with any exponent except -1 , then the exact strong law fails (see page 142 of [1]). Therefore the distributions which have the regularly varying tail with exponent -1 deserve more than a passing notice. The independent Pareto random variables with parameter n may be considered as one of the easiest distributions with this property which are not identically distributed.

Now, for Theorems 1.1 and 1.2 let us examine the almost sure convergence. Theorem 2 of [2] and Remark 3.1 of [10] tell us

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{A_{n} \log A_{n}} \stackrel{\text { a.s. }}{=} \infty \tag{5}
\end{equation*}
$$

when $a_{j}=j^{-1}$. Adler recently showed that if Equation (3) and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{A_{n} \log A_{n}}=\infty \tag{6}
\end{equation*}
$$

are satisfied, then Equation (5) follows (see Theorem 2 of [3]). To obtain Equation (5) we may use the following statement rather than Equation (6).

Proposition 1.1. Let us suppose Equation (3). If

$$
\begin{equation*}
a_{n} \geq a_{n+1} \tag{7}
\end{equation*}
$$

then Equation (5) follows.

From this, the exact strong law naturally fails when assuming Equations (3) and (7). Although Theorem 1.2 may be considered as a natural extension of Theorem 1.1, Equation (3) is not nice for the exact strong law. Here, to obtain the exact strong law, we propose a wider condition including Equation (3).

1.4. Our contribution

Theorem 1.3 (exact weak law). Suppose that $\left\{X_{j}\right\}$ are independent and Pareto with parameter h_{j}, respectively. For positive sequences $\left\{a_{j}\right\}$ and $\left\{b_{n}\right\}$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}^{-1} \sum_{j=1}^{n} a_{j}=0 \tag{8}
\end{equation*}
$$

if there exists $0<A<\infty$ which satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}^{-1} \sum_{j=1}^{n} a_{j} \log \left(1+\frac{b_{n}}{a_{j} h_{j}}\right)=A \tag{9}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{b_{n}} \stackrel{P}{=} A \tag{10}
\end{equation*}
$$

Remark 1.1. Let us observe the case that $\left\{a_{j}\right\}$ and $\left\{b_{n}\right\}$ satisfy Equation (3) and $b_{n}=A_{n} \log A_{n}$. Then Equations (8) and (9) with $A=1$ follow.

Therefore Theorem 1.3 may be considered as an extension of Theorem 1.2., We note that if Equation (3) is fulfilled, then the antilogarithm part in Equation (9) does not depend on j.

Corollary 1.1. Let us suppose the assumptions of Theorem 1.3 ,
(i) If

$$
\left\{\begin{array}{l}
h_{j}=j^{\alpha} \quad \text { for } 0 \leq \alpha<1 \tag{11}\\
a_{j}=(\log j)^{b-2} / j, b_{n}=(\log n)^{b} \text { for } b>0
\end{array}\right.
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{b_{n}} \stackrel{P}{=} \frac{1-\alpha}{b} \tag{12}
\end{equation*}
$$

(ii) If

$$
\begin{equation*}
h_{j}=j, \quad a_{j}=(\log j)^{b-1} / j, b_{n}=(\log n)^{b}(\log \log n) \text { for } b>0, \tag{13}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j} X_{j}}{b_{n}} \stackrel{P}{=} \frac{1}{b} \tag{14}
\end{equation*}
$$

Theorem 1.4 (exact strong law). Suppose that $\left\{X_{k}\right\}$ are independent and Pareto with parameter h_{k}, respectively. For positive sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}<\infty \tag{15}
\end{equation*}
$$

if there exists $0<B<\infty$ which satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}^{-1} \sum_{k=1}^{n} a_{k} \log \left(1+\frac{b_{k}}{a_{k} h_{k}}\right)=B \tag{16}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}} \stackrel{\text { a.s. }}{=} B \tag{17}
\end{equation*}
$$

Corollary 1.2. Let us suppose the assumptions of Theorem 1.4. If Equation (11) holds, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}} \stackrel{\text { a.s. }}{=} \frac{1-\alpha}{b} \tag{18}
\end{equation*}
$$

Unfortunately, Theorem 1.4 cannot apply to the case of Equation (13), since $\sum_{n=1}^{\infty} a_{n} / b_{n}=\infty$. When $h_{j}=j$, we can also obtain the exact strong law making use of the algorithm of Adler and Wittmann [5]. However, parameters $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$ for this law are so complicated, because the construction procedure of them is not so straightforward. Actually, no examples were given in [5]. Here, we have the following statement.

Proposition 1.2. Suppose that $\left\{X_{k}\right\}$ are independent and Pareto with parameter k, respectively. Let us put

$$
\begin{align*}
a_{n} & =k^{-5} e^{-100 k^{4}} \quad \text { for } n_{k-1}<n \leq n_{k}, \quad k \geq 1 \tag{19}\\
b_{n} & =\sum_{k=1}^{n} a_{k}\left(r_{k}-r_{k-1}\right) \quad \text { for } n \geq 1 \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& n_{k}= \begin{cases}\left\lfloor e^{e^{100 k^{4}}}\right\rfloor+1 & \text { if } k \geq 1 \\
0 & \text { if } k=0\end{cases} \tag{21}\\
& r_{n}= \begin{cases}\log n \log \log n & \text { if } n \geq 1 \\
0 & \text { if } n=0\end{cases} \tag{22}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} X_{k} / b_{n} \stackrel{\text { a.s. }}{=} 1 \tag{23}
\end{equation*}
$$

The plan of the article is as follows. In Section 2, we calculate the first and the second moments of the truncated Pareto random variable. In Section 3, we give all proofs of Propositions 1.1, 1.2, Theorems 1.3, 1.4 and Corollaries 1.1, 1.2, respectively.

2. Preliminary

Lemma 2.1. Suppose that X is Pareto with parameter $h \geq 1$. For $a>0$ we have

$$
\begin{equation*}
\mathrm{E}(X 1\{X \leq a\})=\log \left(1+\frac{a}{h}\right)-\frac{a}{h+a} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left(X^{2} \mathbf{1}\{X \leq a\}\right)=a-2 h \log \left(1+\frac{a}{h}\right)+\frac{a h}{h+a}<a . \tag{25}
\end{equation*}
$$

Proof. It is easy to see that

$$
\mathrm{E}(X \mathbf{1}\{X \leq a\})=\int_{0}^{a} \frac{t d t}{(t+h)^{2}}=\log \left(1+\frac{a}{h}\right)-\frac{a}{h+a}
$$

and

$$
\mathrm{E}\left(X^{2} \mathbf{1}\{X \leq a\}\right)=\int_{0}^{a} \frac{t^{2} d t}{(t+h)^{2}}=a-2 h \log \left(1+\frac{a}{h}\right)+\frac{a h}{h+a}<a
$$

The fact that $\log (1+x)>x /(x+1)$ for $x>0$ and some estimates yield the last inequality.

3. Proofs

3.1. Proof of Proposition 1.1

The proof is based on Lemma 6.18 of [11]. The mean value theorem implies

$$
\begin{equation*}
\int_{A_{n-1}}^{A_{n}} \frac{d x}{x \log x}=\left(A_{n}-A_{n-1}\right) c_{n}=a_{n} c_{n} \quad \text { for } n \geq 2 \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{A_{n} \log A_{n}} \leq c_{n} \leq \frac{1}{A_{n-1} \log A_{n-1}} \tag{27}
\end{equation*}
$$

It follows that $\int_{A_{1}}^{\infty} d x /(x \log x)=\infty$ by simple calculation. Therefore, Equation (26) and $\lim _{n \rightarrow \infty} A_{n}=\infty$ yield $\sum_{n=1}^{\infty} a_{n} c_{n}=\infty$. Consequently, Equation (6) holds because

$$
\infty \stackrel{(27)}{=} \sum_{n=2}^{\infty} \frac{a_{n}}{A_{n-1} \log A_{n-1}}=\sum_{n=1}^{\infty} \frac{a_{n+1}}{A_{n} \log A_{n}} \stackrel{(7)}{\leq} \sum_{n=1}^{\infty} \frac{a_{n}}{A_{n} \log A_{n}}
$$

The rest proof from Equation (6) to Equation (5) is the same one of Theorem 2 of [3].

3.2. Proof of Theorem 1.3

The proof is based on Theorem 2.1 of [10]. Equation (8) implies that $\left\{a_{j}\right\}$ and $\left\{b_{n}\right\}$ satisfy Equation (4) with $\alpha=1$ in Lemma 2.2 of [10]. More-
over, since it follows that

$$
\mathrm{E} X_{j} \mathbf{1}\left\{\left|X_{j}\right| \leq b_{n} / a_{j}\right\} \stackrel{(24)}{=} \log \left(1+\frac{b_{n}}{a_{j} h_{j}}\right)-\frac{b_{n}}{a_{j} h_{j}+b_{n}} \quad \text { for } 1 \leq j \leq n
$$

we have

$$
b_{n}^{-1} \sum_{j=1}^{n} a_{j} \mathrm{E} X 1\left\{|X| \leq \frac{b_{n}}{a_{j}}\right\}=b_{n}^{-1} \sum_{j=1}^{n} a_{j} \log \left(1+\frac{b_{n}}{a_{j} h_{j}}\right)-\sum_{j=1}^{n} \frac{a_{j}}{a_{j} h_{j}+b_{n}} .
$$

The first term converges to A as $n \rightarrow \infty$ because of Equation (9). The second term converges to 0 since Equation (8) yields

$$
0 \leq \sum_{j=1}^{n} \frac{a_{j}}{a_{j} h_{j}+b_{n}} \leq b_{n}^{-1} \sum_{j=1}^{n} a_{j} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence, applying Theorem 2.1 of [10], we have Equation (10).

3.3. Proof of Corollary 1.1

1. Equation (8) follows because $\sum_{n=1}^{\infty} a_{n} / b_{n}=\sum_{n=1}^{\infty} 1 /\left\{n(\log n)^{2}\right\}<\infty$ and the Kronecker lemma (Lemma A.6.2 of [9]). Since

$$
\begin{aligned}
& b_{n}^{-1} \sum_{j=1}^{n} a_{j} \log \left(1+\frac{b_{n}}{a_{j} h_{j}}\right) \\
= & (\log n)^{-b} \sum_{j=1}^{n}(\log j)^{b-2} j^{-1} \log \left(1+(\log n)^{b} j^{1-\alpha}(\log j)^{2-b}\right) \\
\sim & (1-\alpha)(\log n)^{-b} \sum_{j=1}^{n} j^{-1}(\log j)^{b-1} \sim \frac{1-\alpha}{b},
\end{aligned}
$$

we have Equation (9) with $A=(1-\alpha) / b$. Therefore, Theorem 1.3 implies Equation (12).
2. Applying Theorem 3.2 of [10] with $\delta=0$ and $\gamma=b-1$, we can prove the desired result.

3.4. Proof of Theorem 1.4

The proof is based on Theorem 1 of [1]. For convenience, let us put
$c_{k}=b_{k} / a_{k}$. Then it follows that

$$
\begin{align*}
\frac{\sum_{k=1}^{n} a_{k} X_{k}}{b_{n}}= & b_{n}^{-1} \sum_{k=1}^{n} a_{k}\left\{X_{k} \mathbf{1}\left(X_{k} \leq c_{k}\right)-\mathrm{E} X_{k} \mathbf{1}\left(X_{k} \leq c_{k}\right)\right\} \tag{28}\\
& +b_{n}^{-1} \sum_{k=1}^{n} a_{k} X_{k} \mathbf{1}\left(X_{k}>c_{k}\right) \tag{29}\\
& +b_{n}^{-1} \sum_{k=1}^{n} a_{k} \mathrm{E} X_{k} \mathbf{1}\left(X_{k} \leq c_{k}\right) \tag{30}
\end{align*}
$$

Equation (28) converges to 0 almost surely. In fact, since it turns out that

$$
\sum_{k=1}^{\infty} \frac{a_{k}^{2}}{b_{k}^{2}} \mathrm{E} X_{k}^{2} \mathbf{1}\left(X_{k} \leq c_{k}\right) \stackrel{(25)}{\leq} \sum_{k=1}^{\infty} \frac{1}{c_{k}} \stackrel{15}{<} \infty
$$

this conclusion holds by using the Khinchine-Kolmogorov convergence theorem (Theorem 5.1.1 of [7]) and the Kronecker lemma.

Equation (29) also converges to 0 almost surely. In fact, since

$$
\sum_{k=1}^{\infty} \mathrm{P}\left(X_{k}>c_{k}\right)=\sum_{k=1}^{\infty} \frac{1}{c_{k}+h_{k}} \leq \sum_{k=1}^{\infty} \frac{1}{c_{k}} \stackrel{15}{<} \infty
$$

we have $\mathrm{P}\left(X_{k}>c_{k}\right.$, infinitely often $)=0$ by the first Borel-Cantelli lemma.
Equation (30) converges to B by the following reasons. It is computed as

$$
\begin{equation*}
b_{n}^{-1} \sum_{k=1}^{n} a_{k} \mathrm{E} X_{k} \mathbf{1}\left(X_{k} \leq c_{k}\right) \stackrel{(24)}{=} b_{n}^{-1} \sum_{k=1}^{n} a_{k} \log \left(1+\frac{b_{k}}{a_{k} h_{k}}\right)-b_{n}^{-1} \sum_{k=1}^{n} \frac{b_{k}}{h_{k}+c_{k}} .(3 \tag{31}
\end{equation*}
$$

Then the first term converges to B by Equation (16), and the second term converges to 0 by also applying the Kronecker lemma to $\sum_{n=1}^{\infty} b_{n} /\left\{b_{n}\left(c_{n}+\right.\right.$ $\left.\left.h_{n}\right)\right\} \leq \sum_{n=1}^{\infty} 1 / c_{n}<\infty$.

3.5. Proof of Corollary 1.2

Equation (15) holds, because of $\sum_{n=1}^{\infty} a_{n} / b_{n}=\sum_{n=1}^{\infty} 1 /\left\{n(\log n)^{2}\right\}<$
∞. Since it follows that

$$
\begin{aligned}
& b_{n}^{-1} \sum_{k=1}^{n} a_{k} \log \left(1+\frac{b_{k}}{a_{k} h_{k}}\right) \\
= & (\log n)^{-b} \sum_{k=1}^{n}(\log k)^{b-2} k^{-1} \log \left(1+k^{1-\alpha}(\log k)^{2}\right) \\
\sim & (1-\alpha)(\log n)^{-b} \sum_{k=1}^{n} k^{-1}(\log k)^{b-1} \sim \frac{1-\alpha}{b},
\end{aligned}
$$

we have Equation (16) with $B=(1-\alpha) / b$. Therefore, Theorem 1.4 implies Equation (18).

3.6. Proof of Proposition 1.2

Firstly, let us quote the following theorem.
Theorem 3.1 (Adler and Wittmann [5]). Let $\left\{Y_{k}\right\}$ be independent random variables. If $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} Y_{k} / r_{n} \stackrel{P}{=} 1$ for some constants $\left\{r_{n}\right\}$, then there exist $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$ which satisfy $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} Y_{k} / b_{n} \stackrel{\text { a.s. }}{=} 1$.

The proof tells us an algorithm for the construction of $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$ from $\left\{Y_{k}\right\}$ and $\left\{r_{n}\right\}$. We apply it to Theorem 1.1. For convenience, let us assume the following.
$\left\{\begin{array}{l}\text { Let }\left\{X_{k}\right\} \text { be independent and Pareto with parameter } k, \text { respectively, } \\ Y_{k}:=X_{k} / k, \quad S_{n}:=\sum_{k=1}^{n} Y_{k} .\end{array}\right.$
Note that Theorem 1.1 implies $\lim _{n \rightarrow \infty} S_{n} / r_{n} \stackrel{P}{=} 1$ for r_{n} defined by Equation (22). We use the following three lemmas to construct $\left\{a_{k}\right\}$ and $\left\{b_{n}\right\}$.

Lemma 3.1. Under Equation (32) we have

$$
\begin{equation*}
\mathrm{P}\left(\left|\frac{S_{n}}{\log n}-\log \log n\right|>x\right) \leq \frac{10}{x} \quad \text { for } x \geq 25 \text { and } n \geq 25 . \tag{33}
\end{equation*}
$$

Proof. This proof is based on Lemma 1 of [6]. First of all, we show

$$
\begin{equation*}
\left(\frac{\sum_{k=1}^{n} \mu_{k n}-r_{n}}{\log n}\right)^{2} \leq 2 x \quad \text { for } x \geq 25 \text { and } n \geq 25 \tag{34}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{k n}=\mu_{k n}(x):=\mathrm{E}\left(Z_{k n}\right)=\mathrm{E}\left(Y_{k} \mathbf{1}\left\{Y_{k} \leq x \log n\right\}\right) \\
& Z_{k n}:=Y_{k} \mathbf{1}\left\{Y_{k} \leq x \log n\right\}, \quad W_{k n}:=Y_{k} \mathbf{1}\left\{Y_{k}>x \log n\right\} \quad \text { for } \quad 1 \leq k \leq n
\end{aligned}
$$

and r_{n} is defined by Equation (22). It is easy to see that

$$
\begin{equation*}
1 \leq \frac{H_{n}}{\log n} \leq 1+\frac{1}{\log n} \tag{35}
\end{equation*}
$$

where $H_{n}=\sum_{k=1}^{n} 1 / k$. Using this, we calculate the left hand side of Equation (34) as follows.
(LHS of Equation (34))

$$
\begin{aligned}
& =\left\{\frac{1}{\log n}\left(\sum_{k=1}^{n} \frac{1}{k} \mathrm{E}\left(X_{k} \mathbf{1}\left\{X_{k} \leq k x \log n\right\}\right)\right)-\log \log n\right\}^{2} \\
& \stackrel{\text { (24) }}{=}\left\{\frac{H_{n}}{\log n}\left(\log (1+x \log n)-\frac{x \log n}{1+x \log n}\right)-\log \log n\right\}^{2} \\
& =\left[\frac{H_{n}}{\log n}\left\{\log x+\left(1-\frac{\log n}{H_{n}}\right) \log \log n+\log \left(1+\frac{1}{x \log n}\right)-\frac{x \log n}{1+x \log n}\right\}\right]^{2} \\
& \leq\left[\frac{H_{n}}{\log n}\left\{\log x+\left(1-\frac{\log n}{H_{n}}\right) \log \log n+\log \left(1+\frac{1}{x \log n}\right)\right\}\right]^{2}
\end{aligned}
$$

$$
\stackrel{(a)}{\leq}\left\{\frac{H_{n}}{\log n} \log x+\left(\frac{H_{n}}{\log n}-1\right) \log \log n+\frac{H_{n}}{x(\log n)^{2}}\right\}^{2}
$$

$$
\stackrel{(b)}{\leq}\left\{\left(1+\frac{1}{\log n}\right) \log x+\frac{\log \log n}{\log n}+\frac{1}{x \log n}\left(1+\frac{1}{\log n}\right)\right\}^{2}
$$

$$
\stackrel{(c)}{\leq}\left\{\left(1+\frac{1}{\log n}\right) \sqrt{x}+\frac{\log \log n}{\log n}+\frac{1}{x \log n}\left(1+\frac{1}{\log n}\right)\right\}^{2}
$$

$$
\stackrel{(d)}{\leq}(1.32 \sqrt{x}+0.4)^{2} \leq(\sqrt{2 x})^{2}
$$

Inequality of (a) follows because $\log (1+x) \leq x$ for $x>0$. Inequality of (b) follows from Equation (35). Inequality of (c) follows since $\log x \leq \sqrt{x}$ for $x \geq 25$. Finally, inequality of (d) follows from $n \geq 25$ and $x \geq 25$.

On the other hand, we have

$$
\begin{aligned}
\sigma_{k n}^{2} & :=\mathrm{E}\left(\left(Z_{k n}-\mu_{k n}\right)^{2}\right) \leq \mathrm{E}\left(Y_{k}^{2} \mathbf{1}\left\{Y_{k} \leq x \log n\right\}\right) \\
& =\frac{1}{k^{2}} \mathrm{E}\left(X_{k}^{2} \mathbf{1}\left\{X_{k} \leq k x \log n\right\}\right) \stackrel{25}{\leq} \frac{x \log n}{k}
\end{aligned}
$$

Hence Equation (35) yields

$$
\begin{equation*}
\sum_{k=1}^{n} \sigma_{k n}^{2} \leq x(1+\log n) \log n \leq 2 x(\log n)^{2} \tag{36}
\end{equation*}
$$

Now, using the subadditivity and the Chebyshev inequality, we obtain

$$
\begin{align*}
& \mathrm{P}\left(\left|\frac{S_{n}}{\log n}-\log \log n\right|>x\right) \\
= & \mathrm{P}\left(\left|\sum_{k=1}^{n} Z_{k n}+\sum_{k=1}^{n} W_{k n}-r_{n}\right|>x \log n\right) \\
\leq & \mathrm{P}\left(\left|\sum_{k=1}^{n} Z_{k n}-r_{n}\right|>x \log n\right)+\mathrm{P}\left(\sum_{k=1}^{n} W_{k n}>0\right) \\
\leq & \frac{\mathrm{E}\left(\left(\sum_{k=1}^{n} Z_{k n}-r_{n}\right)^{2}\right)}{x^{2}(\log n)^{2}}+\sum_{k=1}^{n} \mathrm{P}\left(W_{k n}>0\right) . \tag{37}
\end{align*}
$$

Since $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, the first term of Equation (37) is bounded by

$$
\begin{aligned}
\frac{\mathrm{E}\left(\left(\sum_{k=1}^{n} Z_{k n}-r_{n}\right)^{2}\right)}{x^{2}(\log n)^{2}} & =\frac{\mathrm{E}\left(\left\{\sum_{k=1}^{n}\left(Z_{k n}-\mu_{k n}\right)+\sum_{k=1}^{n} \mu_{k n}-r_{n}\right\}^{2}\right)}{x^{2}(\log n)^{2}} \\
& \leq \frac{2\left\{\sum_{k=1}^{n} \sigma_{k n}^{2}+\left(\sum_{k=1}^{n} \mu_{k n}-r_{n}\right)^{2}\right\}}{x^{2}(\log n)^{2}} \\
& \stackrel{\text { 36 }}{\leq} \frac{2\left\{2 x(\log n)^{2}+\left(\sum_{k=1}^{n} \mu_{k n}-r_{n}\right)^{2}\right\}}{x^{2}(\log n)^{2}} \\
& \stackrel{34}{\leq} 2\left(\frac{2}{x}+\frac{2}{x}\right)=\frac{8}{x}
\end{aligned}
$$

Since $n \geq 25$, the second term of Equation (37) is bounded by

$$
\begin{aligned}
\sum_{k=1}^{n} \mathrm{P}\left(W_{k n}>0\right) & =\sum_{k=1}^{n} \mathrm{P}\left(Y_{k}>x \log n\right)=\sum_{k=1}^{n} \mathrm{P}\left(X_{k}>k x \log n\right) \\
& =\sum_{k=1}^{n} \frac{1}{k(1+x \log n)} \stackrel{135}{\leq} \frac{1+\log n}{1+x \log n} \\
& <\frac{1+\log n}{x \log n}=\frac{1}{x \log n}+\frac{1}{x} \leq \frac{2}{x}
\end{aligned}
$$

Hence Equation (33) follows.
Lemma 3.2. Let us put $\varepsilon_{n}=(\log \log n)^{-1 / 2}$. Then $\varepsilon_{n} r_{n}$ is increasing to infinity, and $\lim _{n \rightarrow \infty}\left(S_{n}-r_{n}\right) /\left(r_{n} \varepsilon_{n}\right) \stackrel{P}{=} 0$.

Proof. It is clear that $\varepsilon_{n} r_{n}=(\log n) \sqrt{\log \log n}$ is increasing to infinity. By Equation (33), it follows that

$$
\begin{equation*}
\mathrm{P}\left(\left|\frac{S_{n}-r_{n}}{r_{n} \varepsilon_{n}}\right|>\frac{x}{\sqrt{\log \log n}}\right) \leq \frac{10}{x} \quad \text { for } x \geq 25 \text { and } n \geq 25 . \tag{38}
\end{equation*}
$$

Let us fix $\delta>0$. Then we see $x=\delta \sqrt{\log \log n} \geq 25$ for sufficiently large n. Inserting this to Equation (38), we have

$$
\begin{equation*}
0 \leq \mathrm{P}\left(\left|\frac{S_{n}-r_{n}}{r_{n} \varepsilon_{n}}\right|>\delta\right) \leq \frac{10}{\delta \sqrt{\log \log n}} \xrightarrow{n \rightarrow \infty} 0 . \tag{39}
\end{equation*}
$$

Recalling $\left\{n_{k}\right\}$ defined by Equation (21), we have the following lemma.
Lemma 3.3. If $m \geq n_{k}$, then

$$
\begin{equation*}
\mathrm{P}\left(\left|S_{m}-r_{m}\right|>\varepsilon_{m} r_{m}\right)<k^{-2} \tag{40}
\end{equation*}
$$

and $r_{n_{k+1}}>2 r_{n_{k}}$ for $k \geq 1$.
Proof. Equation (21) yields $\log \log n_{k} \geq 100 k^{4}$, whence $10 / \sqrt{\log \log n_{k}} \leq$ k^{-2}. Applying Equation (39) with $\delta=1$ to this, we have Equation (40). It is clear that $r_{n_{k+1}}>2 r_{n_{k}}$ because of $r_{n_{k}} \sim 100 k^{4} e^{100 k^{4}}$.

Proof of Proposition 1.2, If $a_{n_{k}}=k^{-5} e^{-100 k^{4}}$, then $a_{n_{k}} r_{n_{k}} \sim 100 / k$. Therefore it is decreasing to 0 as $k \rightarrow \infty$ and $\sum_{k=1}^{\infty} a_{n_{k}} r_{n_{k}}=\infty$. Since the rest proof is followed by the argument of page 181 of [5], the proof is completed.

Acknowledgment

The author would like to thank all members of Hiroshima Probability and Dynamical System Seminar for their hospitality during his visit to Hiroshima University in the first week of October 2017. This work was supported by JSPS KAKENHI Grant Number 15K05001.

References

1. A. Adler, Exact strong laws, Bull. Inst. Math. Acad. Sinica, 28 (2000), no. 3, 141-166.
2. A. Adler, An exact weak law of large numbers, Bull. Inst. Math. Acad. Sinica. (N.S.), 7 (2012), no. 3, 417-422.
3. A. Adler, One sided strong laws for random variables with infinite mean, Open Math., 15 (2017), 828-832.
4. A. Adler, Exact Weak Laws and One Sided Strong Laws, Bull. Inst. Math. Acad. Sinica. (N.S.), 12 (2017), no. 2, 103-124.
5. A. Adler and R. Wittmann, Stability of sums of independent random variables, Stoc. Proc. Appl., 52, no. 1, (1994), 179-182.
6. I. Berkes, E. Csáki and S. Csörgő, Almost sure limit theorems for the St. Petersburg game, Statist. Probab. Lett., 45, no. 1, (1999), 23-30.
7. Y. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd Ed., Springer, 1997.
8. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Ed., Wiley, 1968.
9. A. Gut, Probability: A Graduate Course, 2nd ed., Springer, 2013.
10. T. Nakata, Weak laws of large numbers for weighted independent random variables with infinite mean, Statist. Probab. Lett., 109 (2016), 124-129.
11. V. Petrov, Limit Theorems of Probability Theory, Sequences of Independent Random Variables, Oxford University Press, 1995.
